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Abstract
Private closeness testing asks to decide whether the underlying probability distributions of two
sensitive datasets are identical or differ significantly in statistical distance, while guaranteeing
(differential) privacy of the data. As in most (if not all) distribution testing questions studied under
privacy constraints, however, previous work assumes that the two datasets are equally sensitive,
i.e., must be provided the same privacy guarantees. This is often an unrealistic assumption, as
different sources of data come with different privacy requirements; as a result, known closeness
testing algorithms might be unnecessarily conservative, “paying” too high a privacy budget for half
of the data. In this work, we initiate the study of the closeness testing problem under heterogeneous
privacy constraints, where the two datasets come with distinct privacy requirements.

We formalize the question and provide algorithms under the three most widely used differential
privacy settings, with a particular focus on the local and shuffle models of privacy; and show that
one can indeed achieve better sample efficiency when taking into account the two different “epsilon”
requirements.
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1 Introduction

Hypothesis testing allows a statistician, practitioner, or scientist to validate their model or to
detect whether one of their assumptions is statistically improbable. One of the prototypical
hypothesis testing tasks is two-sample goodness-of-fit, which asks to determine whether two
unknown probability distributions are equal, based on samples from both. This task has
received a lot of attention from the computer science community over the past decades as part
of the broader area of distribution testing, where testing questions are phrased as promise
problems with a particular emphasis on finite-sample guarantees and data-efficient algorithms
(see, e.g., [41, 17, 19], [36, Chapter 11], and references within). In distribution testing, two-
sample goodness-of-fit corresponds to closeness testing, where the two unknown distributions
p, q are over a discrete domain of size k. Given a distance parameter α ∈ (0, 1], one then
seeks to distinguish (with high probability) between the cases p = q and dTV(p, q) > α

from as few samples from p, q as possible, where dTV denotes the total variation (statistical)
distance. A long line of work in the distribution testing literature culminated in a full
understanding of the sample complexity (i.e., the number of observations required) of this
question, with respect to all parameters [15, 42, 25, 28, 23].
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The recent rise of privacy concerns, and with it a focus on privacy-preserving data analysis,
led researchers to consider the natural question of private hypothesis testing, where the
samples are seen as sensitive data, and the testing algorithms must guarantee differential
privacy (DP) [31], a rigorous definition of privacy which has become the de facto standard.
Various distribution testing questions have been studied under this lens, including that of
closeness testing, for which tight bounds on the sample complexity have been established
in the so-called “central” model of differential privacy [10, 6, 44]. Yet, these results suffer
from one major shortcoming: they assume both sets of samples (the one coming from p, and
the other from q) to be equally sensitive, that is, to require the same privacy guarantees
(the parameter ε > 0 of differential privacy, where smaller values of ε correspond to better
privacy guarantees).

This assumption, while justifiable in some settings, is misguided in many others: for
instance, when the two datasets come from different companies, demographic groups, or even
countries subject to different legal requirements – a typical use case for closeness testing,
where one seeks to check if the data from two distinct populations have similar statistical
properties. Another extreme use case would be when only one of the datasets has privacy
constraints, and the other is from a simulated process (e.g., when checking if the distribution
of the output from a digital twin, or of synthetic data, matches that of the real world). In
these cases, using the “same ε” for data from both distributions would be unnecessarily
conservative, and could lead to requiring much more (costly, or hard to either gather or
generate) data from one distribution than required.

To address this shortcoming, we initiate the study of closeness testing under heterogeneous
privacy constraints, where the two datasets come with distinct privacy parameters ε1, ε2 > 0.
We further formulate the question not only in the (central) DP model, but also in two
others of the most widely used distributed models of privacy, the more stringent local DP
model [38, 30] and the shuffle model of privacy [26, 32]. To the best of our knowledge,
our work is also the first to formulate closeness testing in the two latter models, even for
homogeneous privacy constraints (ε1 = ε2). We next elaborate on our results and detail our
contributions.

1.1 Our Results and Contributions
Our first contribution is to formalize the question of closeness testing under heterogeneous
privacy constraints in three models of differential privacy: the local model, the shuffle model,
and the central model (Section 2.4). While this formalization is somewhat straightforward
in the latter case, it is less so in the first two, especially in the shuffle model. Indeed, the
shuffle model of privacy relies at its core on a trusted channel (the “shuffler”) which randomly
permutes the messages from all users, effectively anonymizing them. However, the very
question of closeness testing requires the ability to distinguish between the messages from
two groups of users: the ones holding samples from p, and the ones holding samples from
q. Thus, some care has to be given in how to define the problem in the first place, putting
an emphasis on what choice captures the best the possible use cases discussed earlier. Our
definition for the shuffle privacy setting involves two “shufflers” (one per group of users),
and the privacy guarantee applies to the shuffled output of each of them separately. This
aligns with the practical setting where the two datasets come from users from two different
company or entities, in which case the shuffling is performed in an early stage (“between”
the users and the corresponding company), before being sent out in the world.

Other definitional choices could have been (1) to add to each message a (non-private)
label, to specify from which population they came, and use a single random permutation for
all messages; or (2) to restrict the type of permutations (no longer uniformly random) to only
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shuffle the messages “within each population.” While these two options are equivalent to the
one we chose, they are less intuitive, possibly more cumbersome to analyze, and obscure the
original motivation for the problem.

Our second contribution is to provide algorithms achieving non-trivial trade-offs between
the two privacy parameters ε1, ε2 in all three models of privacy considered, showing that it is
possible balance the different privacy requirements of the two populations to do significantly
better than defaulting to ε = min(ε1, ε2). Moreover, our results are the first (even for
homogeneous privacy constraints) for closeness testing in the local and shuffle models of
privacy, and yield sample-optimal1 (up to constant factors) bounds in the former.

In order to state our results, we first recall the distinction between private-coin and
public-coin distributed protocols:2 in the former, each user has only access to their own
randomness, independent of every other user’s. In the latter, however, there exists a common
random seed (in addition to each user’s personal randomness), publicly available to all parties
(users, analyzer, and world) but still independent of the users’ data. Thus, while in both cases
the protocols are non-interactive, in public-coin protocols this common random seed can
be used to achieve better accuracy, by letting the users somehow coordinate.3 For detailed
definitions of the privacy settings and types of distributed protocols, we refer the reader
to Section 2.

Our first results address closeness testing under heterogeneous local privacy constraints,
establishing a tight trade-off in all parameters.

▶ Theorem 1 (Local Privacy, Private-Coin). There exists a private-coin protocol for closeness
testing which guarantees ε1-local privacy to the n1 users of the first group, and ε2-local privacy
to the n2 users of the second, with n1 = O

(
k3/2

ε2
1α

2

)
and n2 = O

(
k3/2

ε2
2α

2

)
. Moreover, this is

optimal.

▶ Corollary 2 (Local Privacy, Public-Coin). There exists a public-coin protocol for closeness
testing which guarantees ε1-local privacy to the n1 users of the first group, and ε2-local privacy
to the n2 users of the second, with n1 = O

(
k

ε2
1α

2

)
and n2 = O

(
k

ε2
2α

2

)
. Moreover, this is

optimal.

Our next two results concern the shuffle model of privacy, with algorithms guaranteeing
(approximate) differential privacy. For simplicity, we only provide here an informal statement,
omitting the at most logarithmic dependence on the parameter δ and focusing on ε1, ε2. We
refer the reader to Theorems 24 and 26 for the full statements.

▶ Theorem 3 (Shuffle Privacy, Private-Coin (Informal)). There exists a private-coin protocol
for closeness testing which guarantees ε1-shuffle (approximate) privacy to the n1 users of the
first group, and ε2-shuffle (approximate) privacy to the n2 users of the second, with

n1 = O

(
max

(
k1/2

α2 ,
k3/4

ε1α

))
and n2 = O

(
ε2

1
ε2

2
n1

)
(assuming without loss of generality that ε2 ≤ ε1).

1 The results match the lower bounds on the sample complexity of identity testing in the local model.
Since one can reduce identity testing to closeness testing if assuming the ability to generate samples
from known distributions “for free,” the lower bounds for identity testing are also lower bounds for
closeness testing in the same model.

2 Confusingly, the “private” in “private-coin” does not refer to differential privacy, but to the fact that
the randomness (“coin”) of a user is hidden from all others.

3 We note that while much of the work in the shuffle model (and, slightly less so, in the local model) does
not focus on this distinction, we do so here as the availability of a common random seed is known to
make a difference in related testing problems, such as uniformity and identity testing, in both the local
and shuffle models of privacy [1, 11, 13, 22] as well as in other (non-private) distributed settings [3, 4].
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▶ Corollary 4 (Shuffle Privacy, Public-Coin (Informal)). There exists a public-coin protocol
for closeness testing which guarantees ε1-shuffle (approximate) privacy to the n1 users of the
first group, and ε2-shuffle (approximate) privacy to the n2 users of the second, with

n1 = O

(
max

(
k1/2

α2 ,
k1/2

ε1α
,

k2/3

ε
2/3
1 α4/3

))

and n2 = O
(
ε2

1
ε2

2
n1

)
(assuming without loss of generality that ε2 ≤ ε1).

Interestingly, specializing our results to the homogeneous privacy constraints case (ε1 =
ε2), our upper bounds for local and shuffle privacy match4 the best known algorithms for
the simpler problem of identity testing (where one of the two distributions is fully known in
advance). This shows, perhaps surprisingly, that unlike in the non-private and central DP
cases, there is no sample complexity gap between closeness and identity testing.

Finally, we provide a simple closeness testing algorithm for the central model of differential
privacy:

▶ Theorem 5 (Central Privacy). There exists an algorithm for closeness testing which
guarantees ε1-differential privacy to the n1 users of the first group, and ε2-differential privacy
to the n2 users of the second, with

n1 = O

(
max

(
k1/2

α2 ,
k1/2

ε
1/2
1 α

,
k2/3

α4/3 ,
k1/3

ε
2/3
1 α4/3

,
1

ε1α

))

and n2 = O
(
ε1
ε2

n1

)
(assuming without loss of generality that ε2 ≤ ε1).

Our results can be interpreted in two ways. The first focuses on privacy as a requirement
from the two groups of users, and looks at how the costs varies among the two populations.
That is, our results quantifies how much more data one needs to collect from the group with
more stringent privacy requirements, compared to the group of less “privacy-demanding”
users. Our upper bounds show that the overhead scales at most quadratically with the ratio
of privacy parameters, i.e., as (ε1/ε2)2 under local and shuffle privacy, and as ε1/ε2 under
(central) differential privacy.

The second point of view focuses on privacy as a promise (or incentive) instead of a
requirement: under this lens, our results show that if more users from one group are willing to
participate in the analysis, or if one of the two populations is larger, then it can automatically
be guaranteed better data privacy (and our algorithms provide a bound on “how much more
privacy” this is).

1.2 Overview of Techniques

We now outline the main ideas behind our results, and outline some possible approaches to
improve upon them.

4 That is, exactly match the optimal sample complexity in the locally private case; and match the best
known upper bounds in the shuffle private case for approximate privacy (or for pure privacy if one
treats δ as a constant), and nearly match the corresponding lower bounds for shuffle DP.
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1.2.1 Local privacy
The algorithm underlying Theorem 1 relies on Hadamard response, which was proposed in [7]
as a communication-efficient mechanism under local differential privacy constraints. As shown
in [1], when the privacy parameters of two groups of users are identical, this mechanism allows
reducing the original closeness testing problem to testing whether the ℓ2-distance between
the mean vector of two product-Bernoulli distributions (product distributions over {±1}d)
is 0 or larger than some parameter. Any sample-optimal ℓ2-closeness testing algorithm
for product-Bernoulli distributions can be used to achieve this task efficiently. Here, noise
is added to samples from these two product-Bernoulli distributions to preserve privacy.
When the privacy parameter becomes smaller (more privacy), the two product-Bernoulli
distributions are perturbed by more noise, i.e., each attribute in the mean vector will be
closer to 1

2 . However, when the privacy parameters are heterogeneous this reduction does
not go through as is, since even in the case when p = q the transformation will lead to
two product-Bernoulli distributions with distinct mean vectors. In particular, previous
ℓ2-closeness (of the mean vectors) testing algorithm for product distributions can no longer
be used as a blackbox to achieve the task.

To adapt it to the heterogeneous privacy case, we considered a test statistic for testing
closeness of two product-Bernoulli distributions with different levels of noise. A side product
is a new sample-optimal ℓ2-closeness tester for product distributions, which simplifies previous
algorithms (which were designed for a more general problem, either testing closeness of the
product distributions in total variation distance instead of ℓ2 distance of the mean vectors,
or without the independence assumption in the soundness case).

Corollary 2 then follows from combining Theorem 1 and the domain compression primitive,
which was proposed in [2] as a general technique to derive public-coin schemes from private-
coin ones: at a high level, the idea is for the users to leverage public randomness in order to
jointly hash the domain of size k into k′ ≪ k parts, and to consider the induced probability
distributions on these k′ parts. This was shown to preserve the total variation distance
between probability distributions up to a shrinking factor of

√
k′/k, effectively “replacing”

α by α′ ≍ α
√

k′/k. Selecting the optimal value of k′ to minimize the resulting sample
complexity when applying the private-coin algorithm with the new parameters k′ and α′ (in
this case, k′ = 2) leads to the public-coin algorithm.

1.2.2 Shuffle privacy
Turning to shuffle privacy, the algorithm behind Theorem 3 starts with the following observa-
tion, which was somewhat implicit in [22] in the context of uniformity testing: if n users get
each a sample from some distribution p over [k] and use the distributed Poisson mechanism
with parameter µ

n = O
(
1/(nε2)

)
to “privately report” their data in the shuffle model, then

the central server gets access to N := n + kµ i.i.d. samples from a new mixture distribution

p′ := (1 − γ) · p + γ · uk

where γ := kµ/N and uk is the uniform distribution on [k]. (This is not totally accurate as
stated, but becomes true if we replace “n users” and “N samples” by “Poisson(n) users” and
Poisson(N) samples.”) In our case, this means that we can obtain N1 “ε1-private” samples
from p′ and N2 “ε2-private” samples from q′, where

p′ := (1 − γ1) · p + γ1 · uk
q′ := (1 − γ2) · q + γ2 · uk

ITCS 2024
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where γ1 := kµ1/N1 = O
(

k
n1N1ε2

1

)
and γ2 := kµ2/N2 = O

(
k

n2N2ε2
2

)
(ignoring again, for the

sake of this discussion, the dependence on the second privacy parameter δ). Now, a natural
requirement is to ask that p′ = q′ whenever p = q, so that our original private closeness
testing task on p, q reduces to a new one, non-private, on p′, q′, for which we can leverage
the existing results on closeness testing.

Doing so boils down to enforcing γ1 = γ2, which in turn leads to the requirement
n2 = Θ

(
(ε1/ε2)2n1

)
; this also gives the “new” distance parameter α′ := (1−γ1)α = (1−γ2)α

for resulting closeness testing problem on p′, q′. All that remains is to now invoke an existing
and optimal (non-private) closeness testing algorithm with unequal numbers of samples
(since N1 ≠ N2), e.g., that of [29], and derive the resulting conditions on N1, N2 (and thus
on n1, n2) this yields to establish Theorem 3.

As in the locally private case, the public-coin case (Corollary 4) then follows via the
domain compression technique, by selecting the optimal number of parts k′ := k′(k, α, ε1, ε2)
to hash the domain into, to minimize the resulting sample complexity when plugging k′ and
α′ ≍ α

√
k′/k into Theorem 3, subject to 2 ≤ k′ ≤ k.

What about amplification by shuffling? We note that a natural idea to obtain a (different)
private-coin shuffle private algorithm (and, via domain compression, a corresponding-public-
coin one as well) would be to start from a locally private algorithm under heterogeneous
privacy constraints and apply the amplification by shuffling result of [34]. This idea was used
in [22] for identity testing (under homogeneous privacy constraints), i.e., testing whether an
unknown distribution is equal to a fully known reference one. However, this approach comes
with two conditions on the LDP protocol one starts with: (1) all users of the same group
must use the same local randomizer, and (2) the protocol needs to work reasonably well even
for large privacy parameters ε1, ε2 ≫ 1, i.e., in the low-privacy regime. Unfortunately, the
LDP protocol behind Theorem 1 satisfies (1) but not (2), and thus amplification by shuffling
would not lead to a shuffle private algorithm with good enough sample complexity; and the
LDP identity testing algorithm of [22] does not seem to generalize to closeness testing, let
alone closeness testing under heterogeneous privacy constraints. We believe that obtaining a
sample-optimal LDP algorithm under heterogeneous privacy constraints satisfying (1) and
(2) could lead to an improvement over Theorem 3 and Corollary 4 (in terms of n2), and leave
this as an interesting future direction.

1.2.3 Central privacy
Finally, Theorem 5 follows from combining two ingredients: the first is the (sample-optimal)
closeness testing algorithm of [44] for the central model of differential privacy for the equal-
privacy case, which has sample complexity

O

(
max

(
k1/2

α2 ,
k1/2

ε1/2α
,

k2/3

α4/3 ,
k1/3

ε2/3α4/3 ,
1

εα

))
.

This algorithm relies on adding suitably calibrated noise to the non-private, but low-sensitivity
closeness testing algorithm of [28]; this low sensitivity (i.e., robust to changing any single
sample) is crucial when bounding the noise required to make the algorithm differentially
private, as adding Laplace noise with parameter O(1/ε) independent of n, k, α then suffices.

A natural idea to adapt this to the heterogeneous privacy case would be, as for our shuffle
privacy protocol, to first extend this algorithm to the “uneven-sample case” (i.e., n2 ≥ n1)
and then introduce two different levels of noise, balancing n1, n2 accordingly in order to
achieve privacy with parameters ε1, ε2. Unfortunately, as we discuss further in Section 3.3,
this approach turns out to be much trickier than expected, as the main algorithm of [28]
does not appear to easily generalize to the n1 ̸= n2 case. Worse, any attempt to do so (as
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done in [28] for this particular algorithm, via the so-called “flattening” technique, or using
the other non-private, uneven-sample closeness testing algorithms available in the literature)
results in algorithms with much higher sensitivity, requiring too large a level of random noise
in the “privatization” step and leading to vacuous sample complexity bounds.

Instead, we take recourse to a much simpler technique, privacy amplification by sub-
sampling [39] (as used for a similar goal in [37]). The idea is to use the above algorithm
of [44] with privacy parameter ε1, requiring n1 samples (where n1 is given by the above
equation) from both groups. Now, this achieves ε1-privacy for the first group; as for the
second, which requires a better privacy guarantee, we start with a larger group of n2 users
and subsample by picking uniformly at random a subgroup of n1 users. By a standard
argument, this improves the privacy guarantee from ε1 to n1

n2
ε1 = ε2, as desired.

1.3 Related Work
Uniformity, identity, and closeness testing are three of flagship (and related) questions in
distribution testing, with a long history in classical statistics, where the analysis is under an
asymptotic regime, as the number of samples goes to infinity. In contrast, computer scientists
often study these problems under the framework of property testing, where one wishes to
achieve certain accuracy with a limited number of samples (i.e., a particular focus on the
“finite-sample” regime). For this regime, goodness-of-fit testing without privacy constraints
has been extensively studied, with sample complexity bounds summarized in Table 1.5 We
refer the readers to [18, 12, 19] for surveys of the area.

Table 1 Sample complexity bounds of goodness-of-fit testing without privacy constraints.

Testing Upper bound Lower bound

Identity testing O

(
k1/2

α2

)
tight

Closeness testing O

(
k1/2

α2 + k2/3

α4/3

)
tight

A significant body of work has considered these questions under (homogeneous) DP
constraints: we list previous results in Table 2. Most relevant to our work, [44] proposed a
sample-optimal closeness-testing algorithm under central differential privacy by leveraging
the (non-private) test statistic of [28]. [1] gave sample-optimal identity testing algorithms
under local differential privacy for both private-coin and public-coin settings. For shuffle
differential privacy, [13, 22] gave identity testing algorithms with the same complexity bounds
on the required number of samples (approximate DP), and [27] later provided analogous
bounds in the pure privacy setting; however, the exact sample complexity of the question for
homogeneous shuffle privacy (either pure or approximate) remains open.

On heterogeneous privacy

The focus of our paper is to introduce and formalize the question of heterogeneous privacy
for closeness testing. However, the idea to allow for different users to have different privacy
requirements has appeared in other contexts, and has been studied for different problems
(with various formalizations of what allowing for “heterogeneous privacy parameters” then
means). See, for instance, [37, 8, 40, 33].

5 It is well known that uniformity testing and identity testing share the same upper bound and lower
bound of sample complexity, as these two problems can be reduced to each other. Thus, we only include
’identity testing’ in this table.

ITCS 2024



23:8 Private Distribution Testing with Heterogeneous Constraints

Table 2 Sample complexity bounds for goodness-of-fit testing under homogeneous differential
privacy. (The shuffle privacy bounds from [27], marked with “*”, hold for pure privacy, i.e., without
the logarithmic factor in 1/δ).

Testing question Upper bound Lower bound

Local Identity, private-coin O

(
k3/2

α2ε2

)
[1] tight [3]

Identity, public-coin O
(

k
α2ε2

)
[1] tight [3, 11]

Closeness, private-coin No result Ω
(

k3/2

α2ε2

)
[3]

Closeness, public-coin No result Ω
(

k
α2ε2

)
[3, 11]

Shuffle Identity, private-coin O

(
k3/4

αε

√
log( 1

δ ) +
√

k
α2

)
[13, 22], [27]* Ω

(
k2/3

α4/3ε2/3 +
√

k
α2 + 1

αε

)
[13]

Identity, public-coin O

(
k2/3

α4/3ε2/3 log1/3 1
δ +

√
k

αε log1/2 1
δ +

√
k

α2

)
[22], [27]* Ω

(
k2/3

α4/3ε2/3 +
√

k
α2 + 1

αε

)
[13]

Closeness (either) No result Ω
(

k2/3

α4/3ε2/3 +
√

k
α2 + 1

αε

)
[13]

Central Identity O

(
k1/2

α2 + k1/2

αε1/2 + k1/3

α4/3ε2/3 + 1
αε

)
[6] tight [6]

Closeness O

(
k1/2

α2 + k2/3

α4/3 + k1/2

αε1/2 + k1/3

α4/3ε2/3 + 1
αε

)
[44] tight [44]

1.4 Organization of the Paper
In Section 2, we give the formal definition of our problem and introduce some necessary tools
used in this paper. In Section 3, we present our algorithms and the related proofs, and give
a discussion on closeness testing under homogeneous central differential privacy constraint.
In Section 4, we discuss future work. All omitted proofs can be found in the full version of
the paper [24].

2 Model and Preliminaries

2.1 Closeness Testing
Given sample access to two unknown distributions, closeness testing asks whether these
distributions are the same, or differ significantly in terms of statistical distance:6

▶ Definition 6 (Closeness testing). Let p, q be two unknown distributions with domain [k]. A
closeness testing algorithm with sample complexity n takes inputs α ∈ (0, 1], a set of n i.i.d.
samples from p and a set of n i.i.d. samples from p and outputs either accept or reject such
that the following holds:

If p = q, then the algorithm outputs accept with probability at least 2
3 ;

If dTV(p, q) > α, then the algorithm outputs reject with probability at least 2
3 .

In this definition, 2
3 is just some arbitrary number picked between 1

2 and 1. By a standard
amplification argument any high probability 1 − β can be achieved by repeating the test
independently O(log(1/β) times and using a majority rule.

2.2 Differential Privacy
We now recall the relevant concepts we will extensively use, starting with the definition of
differential privacy.

6 The statistical (total variation) distance between two probability distributions p, q over the same domain
X is defined as dTV(p, q) = supS⊆X (p(S) − q(S) = 1

2 ∥p − q∥1, where the supremum is taken over all
measurable subsets.
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▶ Definition 7 (Differential privacy [31]). A randomized algorithm M : Xn → Rk is said to be
(ε, δ)-differentially private if for all measurable S ⊆ Rk and all neighboring datasets x, y ∈ X :
Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] + δ , where two datasets x, y are said to be neighboring if
dist(x, y) ≤ 1 (i.e., for dist(,) being the Hamming distance, if they only differ in (at most)
one entry).

A key property of differential privacy is immunity of post-processing.

▶ Lemma 8 (Immunity of post-processing). Let f : Xn → Rk be a mapping which is (ε, δ)-
differentially private. Let g : Rk → Rk′ be any arbitrary random mapping. Then the mapping
g ◦ f is still (ε, δ)-differentially private.

In many cases, this randomized mapping M is obtained by adding random noise to
some function f(x) of the data, where f is the (non-private) function to be computed (such
mechanisms are called additive noise mechanisms). The amount of noise to be added to f(x)
then needs to be tailored to the specific properties of f : in particular, such an important
property is its ℓ1-sensitivity.

▶ Definition 9 (Sensitivity). The ℓ1-sensitivity of a function f : N |X | → Rk is △ =
maxx,y∈N |X |, dist(x,y)≤1∥f(x) − f(y)∥1 . We say the function f is △-sensitive.

One mechanism for adding randomness using ℓ1-sensivity as a parameter is the Poisson
mechanism. We use this mechanism in the shuffle model.

▶ Lemma 10 (Poisson mechanism [35]). Let f : Xn → Z be a △-sensitive function. For any
ε > 0, δ ∈ (0, 1) and λ ≥ 16 log(10/δ)

(1−e−ε/△)2 + 2△
1−e−ε/△ , the randomized function A(x) = f(x) + Y

where x ∈ Xn, Y ∼ Poisson(λ) is (ε, δ)−differentially private in the central and shuffle model.

A standard technique to amplify a differential-private algorithm is amplification by
subsampling. The formal statement is as follows.

▶ Lemma 11 (Amplification by subsampling (see, e.g.,, [39], or[14, Theorem 9])). Let A :
Xn1 → Rk be a (ε1, δ1)-differentially private mapping and H : Xn2 → Xn1 be a randomized
mapping which uniformly chooses n1 elements from n2 elements. Then, the composition of this
two mappings A◦H : Xn2 → Rk is (ε2, δ2)-differentially private where ε2 = ln(1+ n1

n2
(eε1 −1))

and δ2 = n1
n2

δ1. In particular, if ε1 ≤ 1 then ε2 = O
(
n1
n2

ε1

)
.

We conclude by recalling the privacy of Randomized Response [43], a standard mechanisms:

▶ Fact 12 (Randomized Response). Let Mf be the mechanism which takes one bit as input
and flips it with probability 1

eε+1 . Then, M is (ε, 0)−differentially private.

2.3 Central, local and shuffle models
In the central model of differential privacy, there is a trusted data curator who holds all the
original data and guarantees its output is differentially private. A stricter model is the local
model of differential privacy, where the data curator is untrusted and only receives noisy
data. It is well known that the local model provides a stronger privacy guarantee, but often
at the cost of utility (that is, usually leads to worse accuracy).

A third model, “between” the local and central models is the shuffle model. While a central
data curator is still not trusted in this model, we allow a “shuffler” to receive messages from the
users and anonymize them by applying a uniformly random permutation . The permutation is
typically implemented using cryptographic primitives such as secure multi-party computation.
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23:10 Private Distribution Testing with Heterogeneous Constraints

One advantage of shuffling is that while these cryptographic primitives are time-intensive,
implementing a shuffler is simple enough and is not too time-consuming. (Instead, a fully
trusted algorithm using cryptography would be too computationally intensive.)

2.4 Central, Shuffle, and Local Models for Heterogeneous Privacy and
Data

Since testing involves two different distributions, it is natural to consider the case where users
from different distributions have different concerns of privacy. Specifically, we want to make
sure our algorithm is (ε1, δ1)-differentially private for samples from p and (ε2, δ2)-differentially
private for samples from q. We introduce the corresponding definition of the testing task
below.

▶ Definition 13 (Closeness testing under heterogeneous local differential privacy constraints).
Let p, q be two unknown distributions with domain [k]. A closeness testing algorithm under
heterogeneous local differential privacy constraints consists of the following:

n1 randomizers R1, ..., Rn1 : X × {0, 1}r → Y mapping a sample drawn from p and a
public randomness bit of length r to a privatised output.
n2 randomizers R′

1, ..., R′
n2 : X ′ × {0, 1}r → Y ′ mapping a sample drawn from q and a

public randomness bit of length r to a privatised output.
an analyser A : Yn1 × Yn2 × {0, 1}r → Z mapping all privatised message and the public
randomness bit to the result of analysis either accept or reject such that the following
holds

If p = q, then A outputs accept with probability at least 2
3

If dTV(p, q) > α, then A outputs reject with probability at least 2
3

When r = 0 (no public randomness), the testing algorithm is said to belong to the
private-coin local differential-private model. Otherwise, it belongs to the public-coin local
differential-private model.

When the output R(X ) of each randomizer R is (ε1, δ1)-differentially private w.r.t. X
and the output R′(X ′) of each randomizer R′ is (ε2, δ2)-differentially private w.r.t. X ′, P is
said to be ((ε1, δ1), (ε2, δ2))-heterogeneously locally differentially private. For simplicity, P
is said to be (ε1, ε2)-heterogeneously locally differentially private when δ1, δ2 = 0.

X1 . . . Xn1 X ′
1 . . . X ′

n2

R1
. . . Rn1 R′

1 . . . R′
n2

p q

Analyzer

output ∈ {accept, reject}

trusted

Figure 1 Closeness testing under heterogeneous local differential privacy constraints. The Ri’s
(resp. R′

i’s) are the local randomizers used by the users to privatize their data prior to sending it to
the analyzer.
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We now provide the analogous definitions for shuffle privacy. As discussed in the intro-
duction, this definition is not entirely straightforward, as the very definition of the closeness
testing problem requires the ability to distinguish between two groups of users – those with
inputs from p, and those with inputs from q. This goes against the objective of shuffling,
and motivates the introduction of two distinct shufflers: one for each group.

▶ Definition 14 (Closeness testing under heterogeneous shuffle differential privacy constraints).
Let p, q be two unknown distributions with domain [k]. A closeness testing algorithm under
heterogeneous shuffle differential privacy constraints consists of the following:

n1 randomizers R1, ..., Rn1 : X × {0, 1}r → Y mapping a sample drawn from p and a
public randomness bit of length r to a privatised output.
n2 randomizers R′

1, ..., R′
n2 : X × {0, 1}r → Y ′ mapping a sample drawn from q and a

public randomness bit of length r to a privatised output.
A shuffler S1 : Y → Y∗ that concatenates message vectors and then applies a uniformly
random permutation to the messages.
A shuffler S2 : Y ′ → Y ′∗ that concatenates message vectors and then applies a uniformly
random permutation to the messages.
an analyser A : Y∗ × Y ′∗ × {0, 1}r → Z mapping all privatised message and the public
randomness bit to the result of analysis either accept or reject such that the following
holds

If p = q, then A outputs accept with probability at least 2
3

If dTV(p, q) > α, then A outputs reject with probability at least 2
3

When the output of the shuffler S1 is (ε1, δ1)-differentially private w.r.t. X and the output
of the shuffler S2 is (ε2, δ2)-differentially private w.r.t. X ′, P is said to be ((ε1, δ1), (ε2, δ2))-
heterogeneously shuffle differentially private. For simplicity, P is said to be (ε1, ε2)-
heterogeneously shuffle differentially private when δ1, δ2 = 0.

X1 . . . Xn1 X ′
1 . . . X ′

n2

R1
. . . Rn1 R′

1 . . . R′
n2

S2S1

p q

Analyzer

output ∈ {accept, reject}

trusted

Figure 2 Closeness testing under heterogeneous shuffle differential privacy constraints. Here, S1

and S2 are the shufflers for the two groups, and the Ri’s (resp. R′
i’s) are the randomizers used by

the users, prior to the shuffling.

Finally, we conclude with the definition of the task under (central) differential privacy:
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23:12 Private Distribution Testing with Heterogeneous Constraints

▶ Definition 15 (Closeness testing under heterogeneous central differential privacy constraints).
Let p, q be two unknown distributions with domain [k]. A closeness testing algorithm under
central local differential privacy constraints consists of the following:

an analyser A : X × X ′ × {0, 1}r → Z mapping a sample vector X from p and a sample
vector X ′ from q to the result of analysis either accept or reject such that the following
holds

If p = q, then A outputs accept with probability at least 2
3

If dTV(p, q) > α, then A outputs reject with probability at least 2
3

When the output A(X ) of the analyser A is (ε1, δ1)-differentially private w.r.t. X and
(ε2, δ2)-differentially private w.r.t. X ′, P is said to be ((ε1, δ1), (ε2, δ2))-heterogeneously
centrally differentially private. For simplicity, P is said to be (ε1, ε2)-heterogeneously
centrally differentially private when δ1, δ2 = 0.

X1 . . . Xn1 X ′
1 . . . X ′

n2

p q

Analyzer

output ∈ {accept, reject}

trusted

Figure 3 Closeness testing under heterogeneous central differential privacy constraints.

▶ Remark 16 (Using the right tool for the job). While the shuffle model of privacy is very
appealing due to its balance between privacy guarantees and utility, and stems from practical
considerations [26, 16], we emphasize that it might not be a “silver bullet” for every scenario.
We believe that the use of two shufflers for some goodness-of-fit questions is natural, both
conceptually and in practice; however, there may be settings where implementing instead
the central privacy algorithms with secure multiparty computation (MPC) may be easier.

2.5 Domain compression

Finally, to obtain public-coin protocols from private-coin ones, we will rely on the following
domain compression result, a hashing-type technique that allows to trade domain size for
distance parameter in distribution testing:

▶ Lemma 17 (Domain Compression [2]). There exist absolute constants c1, c2 > 0 such that
the following holds. For any 2 ≤ k′ ≤ k and any distributions p, q over [k],

Pr
Π

[
dTV(pΠ, qΠ) ≥ c1

√
k′

k
dTV(p, q)

]
≥ c2 ,

where Π = (Π1, . . . Πk′) is a uniformly random partition of [k] in k′ subsets, and pΠ denotes
the probability distribution on [k′] induced by p and Π via pΠ(i) = p(Πi).
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Notation

Throughout, we write an ≳ bn (resp. an ≲ bn) to denote the existence of an absolute constant
C > 0 such that an ≤ C · bn (resp. an ≥ C · bn) for all n; and use an ≍ bn when both an ≳ bn
and an ≲ bn hold. Besides this, we use the standard O(·), Ω(·), and Θ(·) notation. Hereafter,
we identify a probability distribution p over a discrete domain X with its probability mass
function (pmf), writing p(x) for PrX∼p[ X = x ]; and for a subset S of the domain, write
p(S) =

∑
x∈S p(x).

3 Our Algorithms

We now provide the details of our algorithms, starting with those under (heterogeneous)
local privacy.

3.1 Under Local Privacy
3.1.1 Private-coin protocol
Our algorithm for testing closeness under heterogeneous local differential privacy constraints
is based on the Hadamard Response mechanism [5]; we recall one of its key properties below.

▶ Theorem 18 ([5]). Let HK be the K × K Hadamard matrix where K = 2⌊log2(k+1)⌋, which
is the smallest power of two larger than k. Let Cj be the locations of 1s in the jth column of
HK where j ∈ [K]. For any distribution p, let p(Cj) be the probability that a sample from p
falls in set Cj. Then we have

k∑
j=1

(p(Cj) − q(Cj))2 = K

4 ∥p − q∥2
2.

Recall that identity and closeness testing fix a distance α, and test whether two distribu-
tions p, q are the same or the total variation distance between two distributions is larger
than α. By using the Cauchy–Schwarz inequality, we have

√
k∥p − q∥2 ≥ ∥p − q∥1 for

any two distributions p, q ∈ [k]. Thus, if dTV(p, q) = 1
2 ∥p − q∥1 > α then we must have

4
K

∑k
j=1(p(Cj) − q(Cj))2 = ∥p − q∥2

2 ≥ ( 1√
k

∥p − q∥1)2 > 4
kα2. Since K ≥ k, that implies

k∑
j=1

(p(Cj) − q(Cj))2 > α2. (1)

Otherwise, if p = q, we must have

k∑
j=1

(p(Cj) − q(Cj))2 = K

4 ∥p − q∥2
2 = 0. (2)

Motivated by this observation, the identity testing algorithm in [1] divides users from
distribution p into K disjoint groups with equal size. It then assigns the users in the jth
group to a set Cj . Each user generates a 1-bit message, indicating whether the data of the
user belongs to Cj . To make the output of each user differentially private, each user needs
to add some noise to their output. Specifically, each user flips the 1 bit of message with a
certain probability 1

eε+1 and sends it using Randomized Response Fact 12.
Recall that the message sent by each user is only one bit, and the messages sent in the

same group follows the same Bernoulli distribution. For users from distribution p, by taking
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the message from one user from every set, we can obtain a sample from a product-Bernoulli
distribution P with length K. Let µ(P ) be the mean of the product-Bernoulli distribution,
we have

µ(P )j = eε

eε + 1
∑
x∈Cj

p(x) + 1
eε + 1

∑
x/∈Cj

p(x) = eε − 1
eε + 1p(Cj) + 1

eε + 1 (3)

Since our task is closeness testing instead of identity testing, we also need to perform
the same operations for users from q and obtain samples from another product-Bernoulli
distribution Q. Similarly, we use µ(Q) to denote the mean of the product-Bernoulli distribu-
tion Q.

There is a very intuitive understanding of Equation (3). When ε → ∞ (no privacy),
µ(P )j → p(Cj). When ε → 0 (no accuracy), µ(P )j converges to 1

2 . Moreover, if users
from two distributions are using the same parameter (ε, 0) for differential privacy and
dTV(p, q) ≥ α, we have ∥µ(P ) − µ(Q)∥2 > eε−1

eε+1 α by combining Equations (1) and (3).
That implies we can test whether p = q or dTV (p, q) > α by non-privately testing

whether µ(P ) = µ(Q) or ∥µ(P ) − µ(Q)∥2 > eε−1
eε+1 α., using any sample-optimal ℓ2-testing

algorithm for testing identity and closeness of product distributions (e.g., [21]). This leads to
the optimal sample complexity for identity testing under LDP constraints, as shown in [1].

If we want to use the same privatizing method with heterogeneous constraints, however,
we can no longer simply use a ℓ2 closeness testing algorithm for product distributions as
outlined above: indeed, our differential privacy constraints for the two distributions p, q
are not the same. By Fact 12 we need to flip the bits of message from two distributions
with probabilities 1

eε1 +1 and 1
eε1 +1 respectively, if we want messages from p to be (ε1, 0)-

differentially private and messages from q to be (ε2, 0)-differentially private. But that implies
µ(P ) and µ(Q) will not be the same even if p = q. Thus, we need to have a different
algorithm for testing closeness between p, q given µ(P ), µ(Q). To design this algorithm,
we first provide an algorithm for closeness testing of product distributions tailored to our
purpose, which is simpler than the (more general) algorithm in [21]. The idea of this testing
algorithm is inspired by the test statistic in [20], which we can simplify as we do not need,
in our case, to deal with arbitrary covariances. While the end guarantees are not new, we
provide this slightly simpler algorithm for completeness.

Algorithm 1 Testing closeness of two product distributions P, Q.

Require: Two groups of samples X(1), ..., X(n), X ′(1), ..., X ′(n) from the d−dimensional product
distribution P and two groups of samples Y (1), ..., Y (n), Y ′(1), ..., Y ′(n) from the d−dimensional
product distribution Q, where P, Q ∈ {−1, 1}d and n = 100

√
d

α2

1: Calculate X̂, X̂ ′, Ŷ , Ŷ ′, which are mean vectors of X, X ′, Y, Y ′ respectively.
2: Define Z1 = ⟨ X̂ − Ŷ , X̂ ′ − Ŷ ′⟩.
3: if Z1 ≤ 1

2 α2 then
4: return accept.
5: else
6: return reject.

▶ Lemma 19. Assume we can draw samples from two d-dimensional product-Bernoulli
distributions P, Q ∈ {0, 1}d. Given a distance parameter α > 0, Algorithm 1 is a sample-
optimal algorithm which distinguishes between P = Q and ∥µ(P )−µ(Q)∥2 > α with probability
at least 2

3 using O
(√

d
α2

)
samples.

The proof can be found in the full version.
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We then show that Algorithm 1, with some modification, can deal with two groups of
samples under different differential privacy constraints.

▶ Theorem 20. Assume we can draw samples with noise from two d-dimensional product
distributions P, Q ∈ {0, 1}d , where each coordinate in samples from P, Q is flipped with
probability 1

eε1 +1 , 1
eε2 +1 respectively. Given privacy parameters ε1, ε2 ∈ (0, 1] and a distance

parameter α, there exist an sample-optimal algorithm which uses
√
d

α2ε2
1

samples from P and
√
d

α2ε2
2

samples from Q, and distinguish between ∥µ(P ) − µ(Q)∥2 = 0 and ∥µ(P ) − µ(Q)∥2 > α

with high probability.

In the interest of space and clarity of exposition, the proof of this theorem is deferred to the
full version.

Finally, we can claim that we have an sample-optimal algorithm for testing closeness of
two distributions under heterogeneous local privacy constraints.

▶ Theorem 21. For every k ≥ 0 and ε1, ε2 ∈ (0, 1], there exist a private-coin protocol
for (k, α)-closeness testing between two unknown distributions p, q using O

(
k3/2

α2ε2
1

)
samples

from p and O
(
k3/2

α2ε2
2

)
samples from q, as this protocol is (ε1, 0)−LDP for samples in p and

(ε2, 0)−LDP private for samples in q respectively.

Proof. We claim Algorithm 2 below satisfies our demands. Its correctness directly follows
from Theorems 18 and 20, Equation (1), , and Fact 12. ◀

Algorithm 2 Closeness testing under heterogeneous local differential privacy constraints.

Require: Privacy parameters ε1, ε2, a distance parameter α, n1 users from unknown distribution
p and n2 users from unknown distribution q.

1: Define Cj = {i ∈ [K] : H
(K)
ij = 1}, j ∈ [K].

2: n1 users from p and n2 users from q are divided into K disjoint subgroups of equal size separately.
Users in the jth group generate a bit of message 1 or 0 depending on whether their data is in
the set CJ .

3: Users from p flip their one bit of message with probability 1
eε1 +1 , and users from q flip their

one bit of message with probability 1
eε2 +1 . Then users send their message to the analyser.

4: For users from p, by taking one user from each block and viewing the resulting collection
of messages as a length-K binary vector, the analyser gets n1/K independent samples of a
product-Bernoulli distribution P ∈ {0, 1}K .

5: The analyser does the same thing for users from q and gets n2/K independent samples of a
product-Bernoulli distribution Q ∈ {0, 1}K .

6: The analyser calculates Z2 as defined as follows:

Z2 =
〈

a · (X̂ − 1
eε1 +1 ) − b · (Ŷ − 1

eε2 +1 ), a · (X̂ ′ − 1
eε1 +1 ) − b · (Ŷ ′ − 1

eε2 +1 )
〉

(4)

where a := eε1 +1
eε1 −1 , b := eε2 +1

eε2 −1 .
7: if Z2 ≤ 1

2 α2 then
8: return accept.
9: else

10: return reject.

▶ Remark 22. The sample complexity of this algorithm matches the known lower bound
of sample complexity of locally private identity testing, and thus this algorithm is sample-
optimal.
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3.1.2 Public-coin protocol
By combining the domain compression technique stated in Lemma 17 with Theorem 21, we
are then able to obtain a sample-efficient public-coin algorithm:

▶ Theorem 23. For every k ≥ 0 and ε1, ε2 ∈ (0, 1], there exist a public-coin protocol for
(k, α)-closeness testing between two unknown distributions p, q using O

(
k

α2ε2
1

)
samples from

p and O
(

k
α2ε2

2

)
samples from q, as this protocol is (ε1, 0)−LDP for samples in p and

(ε2, 0)−LDP private for samples in q respectively.

Proof. Recall that by using the domain compression, we are able to compress the size of
domain to L while the total variation distance between any two distributions are preserved
with high probability. Specifically, if we set the size of the compressed domain to be a
constant L = c1, we have a (c1,

√
c1c2
k , β)-domain compression such that for all p, q with

domain sizes k and total variation distance dTV(p, q) > α, the mapping satisfies

Pr[dTV
(
pψU , qψU

)
≥
√

c1c2

k
α] > 1 − β.

Also, pψU = qψU when p = q.
From Theorem 21 we know that there is an algorithm testing whether pψU = qψU or

Pr[dTV
(
pψU , qψU

)
>
√

c1c2
k α] using O

(
c

3/2
1√

c1c2
k

2
α2ε2

1

)
samples from p and O

(
c

3/2
1√
c1c2

k

2

)
from

q as this algorithm is (ε1, 0)−LDP for samples in p and (ε2, 0)−LDP private for samples in
q. By standard probability amplification techniques, we can decrease the error probability
by a constant factor by increasing the number of samples by a constant factor, to achieve
any desired constant error probability β0. That implies the probability of this algorithm
outputting the correct answer is at least (1 − c3)(1 − β0). By choosing the right constants,
the probability can be made larger than 2

3 . ◀

3.2 Under Shuffle Privacy
We now turn to our algorithms under the less stringent shuffle privacy model.

3.2.1 Private-coin protocol
For closeness testing under heterogeneous shuffle differential privacy constraints, we propose
an algorithm based on Poisson mechanism, whose guarantees are stated in Lemma 10. (I.e.,
each user will add Poisson noise to their data to preserve their privacy in the shuffled
model.) Since 1 − e−x ≥ x/2 for any x ∈ [0, 1], we only need to set µ = O

(
log(1/δ)
ε2

)
when

ε ∈ [0, 1], △ ≥ 1, in this lemma.
We now claim their is a sample-efficient algorithm for closeness testing under heterogeneous

shuffle differential privacy constraints, as stated in Theorem 24.

▶ Theorem 24. For every k ≥ 0, ε1, ε2 ∈ (0, 1] (w.l.o.g. ε1 ≥ ε2), and δ ∈ (0, 1], there exists
a private-coin protocol for (k, α) closeness testing between two unknown distributions p, q
using

n1 = O

(√
k

α2 +
k3/4

√
log(1/δ)

αε1
+ min

(
ε2

1ε2
2

α4 log2(1/δ)
,

k2/3

α4/3

(
ε2

ε1

)2/3
))
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samples from p and n2 = ( ε1
ε2

)2n1 samples from q; and this protocol is (ε1, δ)−shuffle
differentially private for samples in p and (ε2, δ)−shuffle differentially private for samples in
q respectively.
▶ Remark 25. When ε1 = ε2 and ignoring δ, our algorithm retrieves the best known upper
bound even for identity testing in the shuffle differential privacy model.
Due to space constraints, the proof of Theorem 24 is deferred to the full version.

3.2.2 Public-coin protocol
By leveraging again the domain compression technique of Lemma 17 with Theorem 24, we
get the following public-coin sample complexity:
▶ Theorem 26. For every k ≥ 0 and ε1, ε2 ∈ (0, 1], and δ ∈ (0, 1], there exist a private-coin
protocol for (k, α) closeness testing between two unknown distributions p, q using

n1 = O

(√
k

α2 + k2/3

α4/3ε
2/3
1

log1/3 1
δ

+
√

k

αε1

√
log 1

δ

)

samples from p and n2 = O

((
ε1
ε2

)2
n1

)
samples from q, as this protocol is (ε1, δ)−shuffle

differentially private for samples in p and (ε2, δ)−shuffle differentially private for samples in
q respectively.
Proof. We also use domain compression technique, and the procedure is the same as that in
the proof of Theorem 23. The only thing we need to do is to choose an appropriate size of the
compressed domain. I.e., we need to choose 2 ≤ L ≤ k such that the following is minimised:

n1 ≳

√
L(√
Lα√
k

)2 +
L3/4√

µ1(√
Lα√
k

) + min

 1(√
Lα√
k

)4
µ1µ2

,
L2/3(√
Lα√
k

)4/3

(
µ1

µ2

)1/3
,

i.e.

n1 ≳
k√
Lα2

+
L1/4

√
k
√

µ1

α
+ min

(
k2

L2α4µ1µ2
,

k2/3

α4/3

(
µ1

µ2

)1/3
)

.

If we set L to minimise the sum of the two terms, that is, L := min
(

k, max
(

2, k2/3

α4/3µ
2/3
1

))
,

we get

n1 ≳

√
k

α2 + k2/3

α4/3 µ
1/3
1 +

√
k

α

√
µ1 + min

(
max

(
k2

α4µ1µ2
,

1
α4µ1µ2

,
k2/3

α4/3µ
2/3
1 µ2

)
,

k2/3

α4/3

(
µ1

µ2

)1/3
)

i.e.

n1 ≳

√
k

α2 + k2/3

α4/3 µ
1/3
1 +

√
k

α

√
µ1 + min

(
k2

α4µ1µ2
,

k2/3

α4/3

(
µ1

µ2

)1/3
)

(5)

Since we have min
(

k2

α4µ1µ2
, k

2/3

α4/3

(
µ1
µ2

)1/3
)

≤ k2/3

α4/3

(
µ1
µ2

)1/3
≤ k2/3

α4/3 µ
1/3
1 , we can remove the

last term in Equation (5). Thus, the sample complexity is

n1 ≳

√
k

α2 + k2/3

α4/3ε
2/3
1

log1/3 1
δ

+
√

k

αε1

√
log 1

δ
,

n2 =
(

ε1

ε2

)2
n1.

This concludes the proof. ◀
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3.3 Under Central Privacy?
We now recall our result for closeness testing in the heterogeneous central privacy model, The-
orem 5.

▶ Theorem 27 (Central Privacy, restated). There exists an algorithm for closeness testing
which guarantees ε1-differential privacy to the n1 users of the first group, and ε2-differential
privacy to the n2 users of the second, with

n1 = O

(
max

(
k1/2

α2 ,
k1/2

ε
1/2
1 α

,
k2/3

α4/3 ,
k1/3

ε
2/3
1 α4/3

,
1

ε1α

))

and n2 = O
(
ε1
ε2

n1

)
(assuming without loss of generality that ε2 ≤ ε1).

As outlined in Section 1.2, this follows straightforwardly by combining the result from [44]
and privacy amplification by subsampling Lemma 11.

This begs the question of whether this simple approach can be improved upon. We
discuss below some other natural approaches, and why they failed or did not pan out.

3.3.1 Second idea: find a test statistics with heterogeneous sensitivity
Designing a sample-efficient closeness testing algorithm under heterogeneous central differen-
tial privacy constraints is much more challenging than that under local and shuffle constraints.
Our first attempt was to generalize previous work. As mentioned in the background section, a
sample-optimal closeness testing algorithm under central differential privacy constraints was
proposed in [44] by using the test statistic in [28]. To be more specific, that test statistic is as
follows. Suppose we take two sets of n i.i.d. samples from both p and q, and let Xi, X ′

i, Yi, Y ′
i

be the number of occurrences of i in those four sets respectively for i ∈ [k] where k is the
size of the domain of p, q. Then the test statistic Z is defined as

Z := |Xi − Yi| + |X ′
i − Y ′

i | − |Xi − X ′
i| − |Yi − Y ′

i | (6)

In [44], the algorithm shifts Z to get a new test statistic

Z ′ = (Z − C1
√

n − C2

ε
)/2 (7)

Then, it uses a sigmoid function to map εZ ′ to (0, 1) and then draws a Bernoulli random
variable using this value as a parameter. Finally, the algorithm outputs accept or reject
depending on whether the value of this random variable is 1 or 0. Roughly speaking, the
idea is that Z will either be close to 0 or greater than

√
n, depending on whether p = q or

dTV(p, q) > α; and therefore after shifting, Z ′ will be either < −C2/ε or > C2/ε (with high
probability). Using the sigmoid function on εZ ′ maps this to a Bernoulli with bias either
1/2 − Ω(1) or 1/2 + Ω(1), which allows to distinguish the two cases while satisfying ε-DP
(since changing one sample will change the value of Z by at most 2, as we will see below,
and thus of εZ ′ by at most ε.

If we view Z as a function of X, X′, Y, Y′ respectively, the ℓ1-sensitivity of Z must be
smaller than or equal to 2. To see why, let us w.l.o.g. consider one sample in the first set
taken from p. The change of that sample will only add 1 to Xi and decrease 1 from Xj for
some i, j ∈ [k] where i ̸= j. Thus, Z will only by increased by 1 or decreased by 1 when that
sample changes. By using a similar statement, one can show that the sensitivity of εZ ′ is
not larger than ε. Combined with the fact e−|γ| ≤ σ(x + γ)σ(x) ≤ e|γ|, the author of [44]
showed the algorithm is (ε, 0)-differential private in the central model.
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Now, we consider how to generalize their algorithm. One natural idea is to adapt the test
statistic to differentiate its sensitivity for samples from p and samples from q. An example
would be the following statistic:

Z = |Xi

n
− Yi

m
| + |X

′
i

n
− Y ′

i

m
| − |Xi

n
− X ′

i

n
| − |Yi

m
− Y ′

i

m
|. (8)

However, that test static is not easy to analyze as previous approaches do not naturally
extend to this. Specifically, in [28], the analysis of the test static defined in Equation (6) relied
on two things: (1) the samples are drawn using the “Poissonisation trick” (Xi, X ′

i, Yi, Y ′
i are

Poisson random variables), and (2) clever use of the additive property of Poisson distributions.
Thus, we cannot use their proof technique for our proposed test statistic as a scaled Poisson
(such as Xi/n) is no longer Poisson, and the different scalings prevent their approach from
going through. To overcome that difficulty, we found a simpler and more general method
to analyze the static defined in Equation (6). It relies on an identity (Zolotarev identity)
relating the expectation of the absolute value of any random variable to the integral of its
characteristic function:

E|X| = 2
π

∫ ∞

0

1 − ℜ(EeitX)
t2 dt

We have written the complete analysis in [23]. However, we were still not able to find
an appropriate tester even after finding the new analysis method. However, even this new
analysis did not allow us to establish the desired properties of the testers we considered
(such as the one in Equation (8)), and it is unclear whether they would actually work. We
conjecture so, and proving this would be an interesting (and non-trivial) future direction.

3.3.2 Third idea: using a different privatizing method
In [44], the closeness testing algorithm firstly calculates the test statistic using samples drawn
from p and q, then privatizes the test static. Instead, we want to privatize the histograms
drawn from p and q respectively, and then use the privatized histogram to calculate a test
statistic.

However, we do not want to use a continuous noise such as the Laplace noise. If we use
one of those continuous distributions for the noise, then analysing the statistic will become
very hard. (E.g. the distribution of sums of Poisson/multinomial and Laplace can be very
complicated.) For example, we can consider using the Skellam mechanism. (A Skellam
distribution is the same as the distribution of the difference between two Poisson random
variables.) The correctness of the Skellam mechanism directly follows from the correctness of
the Poisson mechanism.

▶ Lemma 28 (Skellam noise). Let f : Xn → Z be a △-sensitive function. For any ε > 0, δ ∈
(0, 1) and λ ≥ 16 log(10/δ)

(1−e−ε/△)2 + 2△
1−e−ε/△ , the randomized function A(Xn) = f(x) + Y1 − Y2 where

Y1, Y2 ∼ Poisson(λ) is (ε, δ)−differentially private in the shuffle model.

Proof. Since the Poisson mechanism is correct, the randomized function f is already
(ε, δ)−differentially private after adding Y1. Then it should still be (ε, δ)−differentially
private after adding Y2 due to the immunity of post-processing of differential privacy. ◀

Assuming we are dealing with homogeneous privacy constraints and want our output
to be (ε, δ)−differentially private, we would set the parameter µ of the Skellam mechanism
to be Θ(log(1/δ)/ε2). With some transformation, our test statistic could be written in this
form:
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Z̃ =
k∑
i=1

(|Xi + ai − Yi − ci| + |X ′
i + bi − Y ′

i − di| − |Xi + a′
i − X ′

i − b′
i| − |Yi + c′

i − Y ′
i − d′

i|)

where a1, bi, ci, di, a′
1, b′

i, c′
i, d′

i ∼ Poisson(2µ) due to the additivity property of the Poisson
distribution. By using the additivity property of the Poisson distribution again, it could be
rewritten as

Z̃ =
k∑
i=1

(|Ai − Bi| + |A′
i − B′

i| − |Ai − A′
i| − |Bi − B′

i|)

where Ai, A′
i ∼ Poisson(npi + 2µ), Bi, B′

i ∼ Poisson(nqi + 2µ). Since npi + 2µ = (n +
2kµ)npi+2µ

n+2kµ and
∑k
i=1

npi+2µ
n+2kµ = 1, using this test statistic is then equivalent to using the

test statistic in [28] by taking n + 2kµ samples from another distribution p′ and n + 2kµ

samples from another distribution q′, where p′
i = npi+2µ

n+2kµ , q′
i = nqi+2µ

n+2kµ . Then, directly from
the analysis in npi+2µ

n+2kµ we have

E[Z̃]2 ≳
n3α4

k(1 + kµ/n)

To bound the variance of the test statistic, we will use the Efron–Stein inequality. Our
test statistic could be seen as the sum of 12k independent Poisson random variables. For
each i ∈ [k], there are 2 Poisson(npi) random variables, 2 Poisson(nqi) random variables, 8
Poisson(2µ) random variables, and they are independent of each other. Then by using the
Efron–Stein inequality, we get

Var(Z̃) ≤ 1
2

12k∑
i=1

E
[
(Z̃ − Z̃ ′

i)
2
]

where the ith independent random variable in Z̃ is different from that in Z̃ ′
i, and other pairs

of random variables are the same, respectively. This allows us to bound the variance as

Var(Z̃) ≤ 1
2

k∑
i=1

2 · 2npi + 2 · 2nqi + 8 · 2 · 2µ = O(n + kµ).

Then, for our tester to work, we need the “signal” to be larger than the “noise”, i.e., we want
E[Z̃]2 ≫ Var(Z̃). When n ≥ kµ, this implies n3α4

k ≳ n, and thus n = Ω
(
k1/2

α2

)
. Otherwise,

we have n3α4

k(1+kµ/n) ≳ kµ, and thus n3 ≳ k3µ
nα4 ≳ k3

nε3α4 , which implies n = Ω
(

k3/2

ε3/2α2

)
.

Combining the results, we get the overall requirement that, for this tester to work, n must
be Ω

(
k1/2

α2 + k3/4

εα

√
log(1/δ)

)
.

This bound is not optimal, but it is not too bad. However, it cannot be generalized to the
heterogeneous setting because the privatizing procedure is, in fact, not separated (because it
can be viewed as adding noise to the difference of histograms taken from two distributions).
We also considered other methods of privatizing but were not able to develop an algorithm
with good sample complexity due to the time frame of this thesis.
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3.3.3 Fourth idea: use “flattening samples” and “testing samples”
In [29], the authors proposed a new approach for sample-optimally closeness testing. They
firstly use some “flattening samples” from one distribution to “flatten” the domain in order
to decrease the expected value of ℓ2−norm. Then, they use a standard ℓ2 tester to achieve ℓ1
closeness testing. It is natural to develop a close testing algorithm using different numbers
of samples from two distributions, which is proposed in that paper. However, it is hard to
make that algorithm differential private because the sensitivity of the “flattening samples”
can be prohibitively large (as large as the number of samples).

It is worth noting that the authors of [9] developed a method for making the algorithm
in [29] deferentially private. They considered all permutations of “flattening samples” and
“testing samples” in the calculation of the test statistic to decrease the sensitivity of “flattening
samples.” However, we were not able to generalize their proof to our needs, and it is unclear
whether this technique could yield a sample-efficient tester for our problem.

4 Future Work

Our results raise several future directions. First, it is not clear how to achieve pure privacy
for the shuffle model, which is interesting since pure privacy is a stricter privacy guarantee.
Second, while we are able to obtain sample-optimal algorithms for the local model tight
bounds for the central and shuffle model remain unknown. Third, since our algorithms
only work for the high privacy regime where ε ∈ (0, 1], it will be interesting to determine
algorithms for the low privacy regime. Note that a low-privacy algorithm for the local model
should directly lead to a high-privacy algorithm for the shuffle model, via amplification by
shuffling. Last, it would be interesting to consider a mixed privacy guarantee, e.g., where
one group of users works a local model, while the other group relies on the shuffle model.
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