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Abstract
Quantum data access and quantum processing can make certain classically intractable learning
tasks feasible. However, quantum capabilities will only be available to a select few in the near
future. Thus, reliable schemes that allow classical clients to delegate learning to untrusted quantum
servers are required to facilitate widespread access to quantum learning advantages. Building on
a recently introduced framework of interactive proof systems for classical machine learning, we
develop a framework for classical verification of quantum learning. We exhibit learning problems
that a classical learner cannot efficiently solve on their own, but that they can efficiently and
reliably solve when interacting with an untrusted quantum prover. Concretely, we consider the
problems of agnostic learning parities and Fourier-sparse functions with respect to distributions with
uniform input marginal. We propose a new quantum data access model that we call “mixture-of-
superpositions” quantum examples, based on which we give efficient quantum learning algorithms
for these tasks. Moreover, we prove that agnostic quantum parity and Fourier-sparse learning
can be efficiently verified by a classical verifier with only random example or statistical query
access. Finally, we showcase two general scenarios in learning and verification in which quantum
mixture-of-superpositions examples do not lead to sample complexity improvements over classical
data. Our results demonstrate that the potential power of quantum data for learning tasks, while not
unlimited, can be utilized by classical agents through interaction with untrusted quantum entities.
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1 Introduction

For many learning problems, the data to which we have access determine our ability to
obtain a good hypothesis. Unfortunately, in practical settings there is often a cost associated
with collecting high quality data, and this cost prohibits us from solving a learning problem
of interest. In light of this, it would be desirable to delegate learning problems to untrusted
servers with access to more or higher-quality data than ourselves. Ideally we would like such
“data-rich” servers to efficiently solve the learning problem, and we would like to efficiently
verify, using both the limited data available to us and interaction with the server, that the
server has indeed successfully solved the learning problem. Recently, a formal framework –
interactive proofs for the verification of machine learning – has been introduced to explore
when, and to which extent, such delegation of learning tasks is possible [46].

In this work, we are interested in verifying learning with untrusted quantum servers,
with access to quantum data. Indeed, there is a rich history of work on quantum learning
theory [6], aimed at understanding quantum learning algorithms with access to different types
of quantum data oracles. Notably, there exist classically intractable learning problems that
can be efficiently solved by quantum learners. However, the most realistic future scenario is
that quantum devices will be accessed remotely, and that only certain parties have access to
hard-to-prepare and hard-to-store quantum data. Therefore, to realize the advantages of
quantum learning, it becomes crucial that classical clients (verifiers) can delegate learning to
untrusted quantum servers (provers) and efficiently verify the provided hypotheses, using
only interaction with the server and the classical data that is readily available.

To explore the setting just described, it is necessary to fix a formal learning problem. In
supervised learning, [46] showed that for standard Probably Approximately Correct (PAC)
learning there exist trivial techniques for the verification of hypotheses and as such the
verification problem is only non-trivial for agnostic PAC learning. Agnostic learning also
captures an important feature of modern machine learning in practice: Often, one has few
or no promises on the structure of the data, and one attempts to do the best possible by
optimizing over a chosen model class. Given the necessity of working within the framework of
agnostic learning, the question of whether or not it is possible for classical clients to delegate
learning problems to untrusted quantum servers is only interesting if there exist agnostic
learning problems in which the amount of resources required for classical learning exceeds
that sufficient for quantum learners with access to quantum data. Unfortunately, however,
little is known about the power of quantum learning algorithms for agnostic learning.

In light of the above, the main contributions in this work are two-fold: Firstly, we identify
and motivate a novel quantum oracle for agnostic learning and, with respect to this oracle,
provide the first efficient fully agnostic quantum learning algorithms for parities and Fourier-
sparse functions. To the best of our knowledge, these are the first agnostic quantum learning
algorithms for any model class for distributional agnostic learning. Secondly, we leverage
these results to give a concrete example of a classically intractable agnostic learning problem
that can be efficiently and reliably delegated to an untrusted quantum server. Namely, we
provide an explicit interactive verification protocol which, despite the classical intractability
of the learning task, allows the classical client to efficiently verify the hypothesis provided by
a potentially dishonest quantum server. This demonstrates that classical clients can reap
the benefits of quantum advantages in learning, in the realistic setting where learning needs
to be delegated to untrusted servers. Our hope is that these results provide new tools and
insights for agnostic quantum learning, as well as motivation for the development of further
techniques for the secure delegation of learning problems to quantum servers.
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1.1 Framework
Agnostic learning

When formalizing a learning task in which there may be a fundamental mismatch between
the model used by the learner and the data-generating process, a so-called agnostic learning
task [51, 63], there are two canonical choices:

In functional agnostic learning w.r.t. uniformly random inputs, we assume that the data
consists of labeled examples (xi, f(xi)), with the xi drawn i.i.d. uniformly at random
from Xn ≡ {0, 1}n and with f : {0, 1}n → {0, 1} an arbitrary unknown Boolean function.
In this case, we denote the data-generating distribution as D = (Un, f).
In distributional agnostic learning w.r.t. uniformly random inputs, we drop the assumption
of a deterministic function that perfectly describes the data. That is, we assume labeled
examples (xi, yi) drawn i.i.d. from some distribution D over {0, 1}n × {0, 1} with uniform
marginal over {0, 1}n. We denote this as D = (Un, φ) with conditional label expectation
φ : {0, 1}n → [0, 1], φ(z) = E(x,y)∼D[y|x = z].

Whereas in functional agnostic learning there is a “correct” label for every input, this is no
longer true in the distributional agnostic setting. In particular, in the latter case data could
contain conflicting labels for the same input. Nevertheless, in both the functional and the
distributional case, the goal is to learn an almost-optimal approximating function compared
to a benchmark class B: Given an accuracy parameter ε, a confidence parameter δ, and
access to a training data set generated i.i.d. from D, an α-agnostic learner has to output,
with success probability ≥ 1 − δ, a hypothesis h such that

P(x,y)∼D[h(x) ̸= y] ≤ α · inf
b∈B

P(x,y)∼D[b(x) ̸= y] + ε. (1)

Note that here we do not necessarily require that h ∈ B. If we add this requirement, we
speak of proper learning, otherwise the learner can be improper. Also, we recover the
scenario of realizable PAC learning when assuming that infb∈B P(x,y)∼D[b(x) ̸= y] = 0. For a
formalization of this discussion, see [24, Definition 3].

Learning classical functions from quantum data

In quantum learning theory, a learner can have access to D via a potentially more powerful
resource than classical i.i.d. examples. Quantum training data for D is canonically taken to
consist of copies of the quantum superposition example state [17]

|ψD⟩ =
∑

(x,y)∈{0,1}n×{0,1}

√
D(x, y) |x, y⟩ . (2)

Such quantum data is at least as powerful as its classical counterpart, since the former can
simulate the latter via computational basis measurements. In fact, these quantum examples
have proven to be useful for realizable learning and, to some degree, functional agnostic
learning w.r.t. the uniform distribution. However, it is unknown how to use copies of |ψD⟩ to
improve upon classical distributional agnostic learning.

Therefore, we propose a different quantum resource for distributional agnostic learning.
Our starting point is that a distribution D = (Un, φ) induces a distribution FD over the set
of all functions mapping {0, 1}n to {0, 1}. Namely, FD is defined by taking the probability
that f(x) equals 1 to be φ(x) independently for each x, see Equation (3). We then consider
quantum training data for D = (Un, φ) to consist of copies of the mixture-of-superpositions
example state ρD = Ef∼FD

[∣∣ψ(Un,f)
〉 〈
ψ(Un,f)

∣∣], see Definition 5.

ITCS 2024
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Interactive verification of agnostic learning

If quantum processing and quantum data are only available to a select few, enabling
widespread use of quantum learning requires classical verification procedures. Extending the
framework of [46], who formalized interactive verification of classical learning, we consider
interactive classical verification of quantum learning. Here, an efficient classical verifier with
classical data access, via random examples or statistical queries (SQs), interacts with an
efficient quantum prover with mixture-of-superpositions quantum example or quantum SQ
(QSQ) access. The goal of the verifier is twofold: On the one hand, when interacting with an
honest quantum prover, the verifier should, with high probability, produce a hypothesis that
satisfies the agnostic learning requirement. On the other hand, even when interacting with
an arbitrarily powerful dishonest prover, the verifier should only accept the interaction and
output a faulty hypothesis with small probability. If these two requirements are satisfied,
the classical verifier can reliably profit from potential quantum advantages in learning. We
work with the following small modification of [46, Definition 4] (see also [24, Definition 7]):

▶ Definition 1 (Interactive verification of α-agnostic learning – Classical and/or quantum).
Let B ⊆ {0, 1}Xn be a benchmark class. Let D be a family of probability distributions over
Xn ×{0, 1}. Let α ≥ 1. We say that B is α-agnostic verifiable with respect to D using classical
or quantum oracles OV and OP if there exists a pair of classical or quantum algorithms (V, P )
with access to the oracles OV (D) and OP (D) respectively that satisfy the following conditions
for every input accuracy parameter ε ∈ (0, 1) and for every confidence parameter δ ∈ (0, 1):

Completeness: For any D ∈ D, if V interacts with the honest prover P , then, with
probability ≥ 1 − δ, V accepts the interaction with P and outputs a hypothesis h that
satisfies the agnostic learning criterion (Equation (1)).
Soundness: For any D ∈ D and for any (possibly unbounded) dishonest prover P ′, if
V interacts with P ′, then, with probability ≤ δ, V accepts the interaction with P ′ and
outputs a hypothesis h that does not satisfy the agnostic learning criterion (Equation (1)).

Moreover:
If the above can be achieved with computationally efficient V and P , then we say that B
is efficiently α-agnostic verifiable with respect to D using oracles OV and OP .
If V either rejects or outputs a hypothesis h ∈ B, then we say that B is proper α-agnostic
verifiable with respect to D using oracles OV and OP .

1.2 Overview of the Main Results
Our first contribution is proposing a new resource for agnostic quantum learning, namely
mixture-of-superpositions states ρD = Ef∼FD

[∣∣ψ(Un,f)
〉 〈
ψ(Un,f)

∣∣] (see Definition 5). With
this proposal, we return to the fundamental question of quantum learning theory: Do
quantum versions of classical data access models enlarge the class of feasible learning
problems? In particular, while quantum superposition examples have been widely adopted
as the canonical “quantization” of classical random examples, it is of fundamental interest
to understand what other consistent quantizations of classical data oracles exist, and how
access to such oracles influences the complexity of different learning problems. To this end,
we note that our mixture-of-superpositions examples are indeed consistent, in the sense
that they reduce to classical random examples upon measurements in the computational
basis, and to the established quantum superposition examples in the functional agnostic
case. Additionally, our definition is well-motivated by a natural operational interpretation
of classical random examples for arbitrary distributions, which has previously been used
to provide reductions from classical distributional to functional agnostic learning (see the
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discussion in [24, Appendix B]). More specifically, each time a mixture-of-superpositions
oracle for the distribution D is queried, it responds by first choosing a random function
f : {0, 1}n → {0, 1} according to the distribution FD induced by D and then sending a copy
of

∣∣ψ(Un,f)
〉
. Finally, our mixture-of-superpositions examples can be viewed as enriching

quantum learning by an analogue of randomized quantum oracles, which, as discussed in
Section 1.3, have recently received attention in quantum complexity theory [50, 37, 71, 12].
Indeed, our motivation here is similar to these recent works – namely to understand the
effect of different oracle models on the landscape of quantum sample/query complexity.

Quantum Fourier sampling [14] is a central subroutine in most existing quantum learning
algorithms. However, while it is known how to do quantum Fourier sampling from quantum
superposition examples for functional agnostic learning, it is unknown whether quantum
superposition examples suffice to perform quantum Fourier sampling in the distributional
agnostic setting. Our first main result shows that mixture-of-superpositions examples allow
for an approximate version of quantum Fourier sampling in the distributional agnostic setting
and are thus a valuable resource for distributional agnostic quantum learning algorithms:

▶ Theorem 2 (Distributional agnostic approximate quantum Fourier sampling and learning –
Informal). Let D = (Un, φ) be an unknown probability distribution over {0, 1}n × {0, 1}, with
(known) uniform marginal over {0, 1}n and with (unknown) conditional label expectation
φ : {0, 1}n → [0, 1].
1. Distributional agnostic quantum Fourier sampling: There is an efficient quantum

algorithm that, given a single copy of ρD, with success probability 1/2 outputs a sample from
a probability distribution over {0, 1}n that is inverse-exponentially close to the squares of
the Fourier coefficients of ϕ = 1 − 2φ.

2. Distributional agnostic proper quantum parity learning: There is an efficient
quantum algorithm that properly 1-agnostically learns parities from an efficient number
of copies of ρD.

3. Distributional 2-agnostic improper quantum Fourier-sparse learning: There
is an efficient quantum algorithm that improperly 2-agnostically learns Fourier-sparse
functions from an efficient number of copies of ρD.

Theorem 2, proved in Section 2, constitutes the first general progress on distributional
agnostic quantum learning w.r.t. uniform input marginal. It achieves this by generalizing
quantum Fourier sampling from the functional to the distributional setting (see Theorem 7).
In proving Theorem 2, we establish agnostic learning guarantees from Fourier spectrum
approximation that, to the best of our knowledge, also improve upon the best known
analogous classical result in terms of the achieved α. Moreover, in the full version [24], we
prove that, based on a version of the Goldreich-Levin/Kushilevitz-Mansour algorithm [44, 65],
agnostic parity and Fourier-sparse learning remain possible efficiently even in a weaker data
access model of distributional agnostic quantum statistical queries, which we introduce as an
extension of the classical statistical query model [61] and its functional quantum variant [8].
In addition, we provide a variety of results establishing the feasibility of Fourier sampling,
finding heavy Fourier coefficients, and agnostic learning in the functional setting, when given
access to different types of quantum oracles.

In our second main result, we identify an agnostic learning problem that a classical learner
cannot solve on their own, but that becomes feasible for a classical verifier interacting with a
quantum prover who has access to mixture-of-superpositions examples.

ITCS 2024
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▶ Theorem 3 (Verifying distributional agnostic quantum learning – Informal). There is a
class D of probability distributions over {0, 1}n × {0, 1} with (known) uniform marginal over
{0, 1}n such that:
(a) Distributional 1-agnostic parity learning is classically hard from SQs or random examples,

even if the unknown distribution is promised to lie in D.
(b) When promised that the unknown distribution lies in D, there is an efficient interact-

ive verification procedure that allows a classical verifier, with SQ or random example
access, to verify a distributional 1-agnostic quantum parity learner, who has mixture-of-
superpositions example or QSQ access.

(c) When promised that the unknown distribution lies in D, there is an efficient interactive
verification procedure that allows a classical verifier, with SQ or random example access,
to verify a distributional 2-agnostic quantum Fourier-sparse learner, who has mixture-of-
superpositions example or QSQ access.

Theorem 3, which collects the statements of several theorems in [24, Section 6], shows that
our new notion of quantum data not only enables distributional agnostic quantum learning
but does so in a classically efficiently verifiable manner. Thereby, Theorem 3 establishes a
separation between what a classical learner can achieve on their own and what they can
achieve when interacting with an untrusted quantum prover. This separation is unconditional
for SQ access and conditional on the hardness of Learning Parity with Noise (LPN) for
random example access. Moreover, we show that the distribution class D used in Theorem 3
cannot be meaningfully enlarged without significant losses in the efficiency of the classical
verifier. All of this is proved in Section 3.

Theorems 2 and 3 show that mixture-of-superpositions examples serve as a powerful
resource that can change the learning landscape in a positive way, by allowing us to solve
learning problems for which we have so far been lacking quantum learners. Crucially,
however, our proposed model of quantum data access is not all-powerful: Just like their
established superposition counterpart, mixture-of-superpositions examples do not allow for
relevant sample complexity advantages over classical learners when considering distribution-
independent agnostic learning.

▶ Theorem 4 (Sample Complexity Lower Bound for Distribution-Independent Distributional
Agnostic Quantum Learning – Informal Version). The quantum sample complexity of distribution-
independent distributional agnostic learning a function class F ⊆ {0, 1}{0,1}n from mixture-
of-superpositions examples does not improve upon the classical sample complexity, up to
logarithmic factors.

Classically, it is well-established that the sample complexity of distribution-independent
distributional agnostic learning F behaves as Θ

(
VCdim(F)+log(1/δ)

ε2

)
[77, 15, 76]. Here, the

VC-dimension VCdim(F) is a combinatorial complexity measure for the function class F [77].
While we prove a quantum sample complexity lower bound that matches the classical upper
bound up to factors logarithmic in VCdim(F), we in fact conjecture that quantum and
classical sample complexities for distribution-independent learning coincide up to constant
factors. In addition, we show that also the optimal sample complexity lower bound for
verifying distribution-independent agnostic classical learning from [70] carries over to agnostic
quantum learning with mixture-of-superpositions examples. Thus, whereas Theorem 2
and Theorem 3 exhibit the power of our newly proposed quantum resource, Theorem 4
demonstrates that, from an information-theoretic perspective, mixture-of-superpositions
examples do not change the landscape of distribution-independent learning.



M. C. Caro, M. Hinsche, M. Ioannou, A. Nietner, and R. Sweke 24:7

1.3 Related Work

Interactive verification of learning

Recently, Refs. [45, 46] introduced a complexity-theoretic framework for reasoning about the
verification of delegated learning tasks via interactive proofs for PAC learning. Since then, the
complexity of verifying PAC learning has been further characterized [70], and the framework
has been extended to consider both statistical learning algorithms and arbitrary benchmark
learning algorithms [70], as well as the setting of limited communication complexity between
prover and verifier [73]. Our work initiates the study of the natural setting in which the
untrusted prover is quantum, with access to a quantum data oracle.

Quantum and agnostic learning

Quantum learning theory is aimed at understanding the potential and limitations of quantum
learning algorithms with access to different notions of quantum data [6], such as quantum
examples [17], quantum membership queries [75, 69, 5] and quantum statistical queries [8].
A wide variety of results have shown both the limitations of quantum learning algorithms in
the distribution-independent setting [9, 79, 7], as well as the advantages offered by quantum
learning algorithms for distribution-dependent problems [17, 57, 10, 60, 19] and for learning
from noisy quantum examples [32, 49, 19]. However, despite a rich history of work on
agnostic learning in the classical setting [47, 58, 59, 40, 38, 39, 48, 52], the notion of quantum
agnostic learning is relatively undeveloped, with only one recent work providing a functional
agnostic quantum learning algorithm for decision trees [13]. Against this backdrop, our
work makes a variety of contributions. Firstly, we broaden the scope of quantum learning
theory through both the introduction of the mixture-of-superpositions quantum example for
agnostic learning, as well as the initiation of delegated quantum learning. Additionally, by
using the mixture-of-superpositions oracle, we give the first efficient distributional quantum
agnostic learning algorithms. We achieve this by developing the toolbox for quantum Fourier
sampling [14], which extends a long and active line of classical work on Fourier-based learning
algorithms [44, 65, 66, 35].

Randomized quantum oracles

The mixture-of-superpositions oracle that we propose is similar in spirit to a variety of
“non-standard” randomized quantum oracles that have recently been used to provide oracle
seperations between QMA and QCMA, and to expose the subtle effects of oracle design on
the quantum query complexity of testing problems [50, 37, 71, 12]. Our work introduces
such oracles to the setting of quantum learning theory.

Verification of quantum computation

This work can be seen as a learning-theoretic analogue to a long line of research aimed at
providing protocols via which efficient classical verifiers (BPP machines) can verify the results
of efficient quantum provers (BQP machines) [43, 67]. As discussed in Ref. [46], we note that
the relation between verification of learning and verification of computation is non-trivial.
Additionally, there is a large body of work on privacy-preserving delegation of both quantum
computations [16, 41] and classical learning [18]. While similar in spirit to this work, we do
not enforce any notion of privacy.

ITCS 2024
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2 Mixture-of-Superpositions Examples and Distributional Agnostic
Quantum Learning

2.1 Mixture-of-Superpositions Examples
Despite successes in using quantum superposition examples for functional agnostic learning,
their power for distributional agnostic learning remains unclear. Here, we introduce a new
form of quantum data for distributional agnostic quantum learning:

▶ Definition 5 (Mixture-of-superpositions quantum examples for distributional agnostic learning).
Let D be a probability distribution over Xn × {0, 1}. Let FD be the probability distribution
over {0, 1}Xn defined by sampling f(x) from the conditional label distribution independently
for each x ∈ Xn. That is, for any f̃ : Xn → {0, 1},

Pf∼FD [f = f̃ ] =
∏

z∈Xn

P(x,y)∼D[f̃(z) = y|x = z] =
∏

z∈Xn

(
(1 − φ(z))(1 − f̃(z)) + φ(z)f̃(z)

)
. (3)

A mixture-of-superpositions quantum example for D is a copy of the (n+ 1)-qubit state

ρD = Ef∼FD

[∣∣ψ(DXn ,f)
〉 〈
ψ(DXn ,f)

∣∣] . (4)

Accordingly, a mixture-of-superpositions quantum example oracle for D is an oracle that when
queried outputs a copy of ρD.

Randomized quantum oracles similar in spirit to Definition 5 have previously appeared in
a complexity-theoretic context, see for example [50, 37, 71, 12]. While standard quantum
oracles (as for example that of Equation (2)) can be viewed in terms of black box unitaries,
randomized quantum oracles correspond to black box mixed unitary channels. Note that
Definition 5 reproduces the definition of a noisy functional quantum example from [49] when
applied to a distribution Dη that is obtained by adding i.i.d. label noise of strength η ≥ 0 to
a distribution (DXn

, f) with a deterministic labeling function f : Xn → {0, 1}. In particular,
Definition 5 reproduces the functional superposition example of [17] for distributions of
the form (DXn

, f) with Boolean f . Importantly, however, Definition 5 covers more general
distributions, for example distributions arising from adding correlated labeling noise to
a deterministic labeling. Definition 5 also reproduces the standard notion of a classical
distributional agnostic random example under computational basis measurements:

▶ Lemma 6. Let D be a probability distribution over Xn × {0, 1}. Performing computational
basis measurements on all n+ 1 qubits of a copy of ρD produces a sample from D.

Proof. By definition of ρD, the probability of observing an output string (x, b) ∈ Xn × {0, 1}
when measuring all n+ 1 qubits in the computational basis is given by

⟨x, b| ρD |x, b⟩ = Ef∼FD

[∣∣〈x, b∣∣ψ(DXn ,f)
〉∣∣2

]
= Ef∼FD

[
DXn

(x)δb,f(x)
]

(5)

= DXn
(x)Pf∼FD [f(x) = b] = D(x, b), (6)

as claimed. ◀

Thus, Definition 5 constitutes a generalization of established definitions, both classical
and quantum. Moreover, the probability distribution FD over functions is an object that
naturally appears in classical learning-theoretic proofs of reductions between distributional
and functional agnostic learning, compare [47, Appendix A] and [24, Appendix B].
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2.2 Distributional Agnostic Approximate Quantum Fourier Sampling
It is not known how to use the conventional superposition quantum examples |ψD⟩ to speed
up distributional agnostic learning. As we show below, the key advantage of our newly
introduced mixture-of-superpositions quantum examples ρD = Ef∼FD

[∣∣ψ(Un,f)
〉 〈
ψ(Un,f)

∣∣] is
that they enable approximate quantum Fourier sampling in the distributional setting under
uniform input marginal. To achieve this approximate Fourier sampling, we use the same
simple, standard quantum algorithm that is known to work in the realizable setting: applying
a layer of single-qubit Hadamard gates to a single copy of ρD followed by a measurement in
the computational basis and post-selecting on the outcome 1 in the last qubit.

▶ Theorem 7 (Formal statement of Theorem 2, Point 1). Let D be a probability distribution
over Xn × {0, 1} with DXn = Un. Consider the following quantum algorithm: Given a copy of
ρD, first apply (the unitary channel for) the unitary H⊗(n+1), then measure all n+ 1 qubits
in the computational basis. The measurement outcomes of this procedure satisfy the following:

(i) The computational basis measurement on the last qubit gives outcome 0 with probability
1/2 and outcome 1 with probability 1/2.

(ii) Conditioned on having observed outcome 1 for the last qubit, the computational basis
measurement on the first n qubits outputs a string s ∈ {0, 1}n with probability

1
2n

(
1 − Ex∼Un

[(ϕ(x))2]
)

+ (ϕ̂(s))2. (7)

The squares of the Fourier coefficients of ϕ in general do not form a probability dis-
tribution, because in general Ex∼Un [(ϕ(x))2] < 1. Thus, it does not make sense to speak
of exact sampling from the “distribution formed by squares of Fourier coefficients” in this
distributional agnostic case. However, by Parseval, we know that { 1

2n

(
1 − Ex∼Un [(ϕ(x))2]

)
+

(ϕ̂(s))2}s∈{0,1}n does form a probability distribution. It is exactly this probability distribution
that Theorem 7 allows us to sample from (with success probability 1/2).

Proof. As ρD is a probabilistic mixture, we have, for any s ∈ {0, 1}n and b ∈ {0, 1},

⟨s, b|H⊗(n+1)ρDH
⊗(n+1) |s, b⟩ = Ef∼FD

[∣∣∣⟨s, b|H⊗(n+1) ∣∣ψ(Un,f)
〉∣∣∣2

]
. (8)

Thus, standard (functional agnostic) quantum Fourier sampling [14] (see also [24, Lemma 2])
immediately gives (i) and tells us that, conditioned on having observed outcome 1 for the
computational basis measurement on the last qubit, the computational basis measurement
on the first n qubits produces string s ∈ {0, 1}n with probability Ef∼FD [(ĝf (s))2], where
gf (s) = (−1)f . Using the definition of FD via an independent sampling of labels, we can
rewrite this quantity as

Ef∼FD [(ĝf (s))2] (9)

= 1
4n

∑
x,y∈{0,1}n

χs(x)χs(y)Ef∼FD

[
(−1)f(x)(−1)f(y)

]
(10)

= 1
4n

∑
x,y∈{0,1}n

χs(x)χs(y) ·

{
Ef∼FD

[
(−1)f(x)] · Ef∼FD

[
(−1)f(y)] if x ̸= y

1 if x = y
. (11)

Next, recall that Ef∼FD

[
(−1)f(x)] = 1 − 2φ(x) = ϕ(x) holds by definition of FD. Using that

χ2
s = 1 holds for any s ∈ Xn, this allows us to further rewrite

Ef∼FD [(ĝf (s))2] = 1
4n

∑
x∈{0,1}n

(χs(x))2 + 1
4n

∑
x,y∈{0,1}n

x ̸=y

χs(x)ϕ(x)χs(y)ϕ(y) (12)
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= 1
2n

+

 1
2n

∑
x∈{0,1}n

χs(x)ϕ(x)

2

− 1
4n

∑
x∈{0,1}n

(χs(x))2(ϕ(x))2 (13)

= 1
2n

(
1 − Ex∼Un

[(ϕ(x))2]
)

+ (ϕ̂(s))2. (14)

This finishes the proof. ◀

To see that Theorem 7 indeed implies Point 1 of Theorem 2, note that ϕ is [−1, 1]-valued,
so 0 ≤ 1 − Ex∼Un

[(ϕ(x))2] ≤ 1. Therefore, we can, with success probability 1/2, produce a
sample from a distribution that is (1/2n)-close in ∞-norm to the sub-normalized distribution
formed by the squares of the Fourier coefficients of ϕ as follows: First, perform n+ 1 single-
qubit Hadamard gates on ρD. Second, measure the last qubit in the computational basis. If
the outcome is 0, the sampling attempt fails. If the outcome is 1, then measure the first n
qubits in the computational basis and output the observed string of bits.

Now equipped with a distributional agnostic analogue of quantum Fourier sampling, we
can approximate the Fourier spectrum of the conditional label expectation relying on the
Dvoretzky-Kiefer-Wolfowitz (DKW) Theorem [34, 68, 64] (compare also [60, Lemma 4]):

▶ Corollary 8. Let D be a probability distribution over Xn × {0, 1} with DXn = Un. Let
δ, ε ∈ (0, 1). Assume that ε > 2−( n

2 −2). Then, there exists a quantum algorithm that, given
O

(
log(1/δε2)

ε4

)
copies of ρD, uses O

(
n log(1/δε2)

ε4

)
single-qubit gates, classical computation

time Õ
(
n log(1/δε2)

ε4

)
, and classical memory of size Õ

(
n log(1/δε2)

ε4

)
, and outputs, with success

probability ≥ 1 − δ, a succinctly represented ϕ̃ : Xn → [−1, 1] such that ∥ϕ̃− ϕ̂∥∞ ≤ ε and
∥ϕ̃∥0 ≤ 16Ex∼Un [(ϕ(x))2]

ε2 ≤ 16
ε2 .

Note that Corollary 8 imposes an additional assumption compared to the functional
case, namely a lower bound on the desired accuracy ε. However, this lower bound is inverse-
exponential in n and thus satisfied (for large enough n) for the inverse-polynomial accuracies
that are usually of interest.

Proof. Our proof is similar to that of [60, Theorem 5]. Theorem 7 gives a procedure that,
using a single copy of ρD and n+ 1 single-qubit quantum gates, produces a sample from the
probability distribution q : {0, 1}n+1 → [0, 1] defined via

q(s, 1) = 1
2

(
1
2n

(
1 − Ex∼Un [(ϕ(x))2]

)
+ (ϕ̂(s))2

)
, q(0n, 0) = 1

2 . (15)

Hence, according to [24, Lemma 3] applied for the probability distribution q, confidence
δ > 0 and accuracy τ = ε2

/8, we see that m = O
(

log(1/δ)
ε4

)
copies of ρD are sufficient to

obtain, with success probability ≥ 1 − δ
2 , a succinctly represented estimate q̃m such that

∥q̃m∥0 ≤ O
(

log(1/δ)
ε4

)
and ∥q − q̃m∥∞ ≤ ε2

8 . Moreover, the estimate q̃m can be obtained

using O(nm) = O
(
n log(1/δ)

ε4

)
single-qubit Hadamard gates, classical computation time

Õ
(
n log(1/δ)

ε4

)
, and classical memory of size Õ

(
n log(1/δ)

ε4

)
.

Starting from the estimate q̃m for q, we output a list L of strings s ∈ {0, 1}n such
that q̃m(s, 1) ≥ ε2

/4. As we have a succinct representation of q̃m with at most O
(

log(1/δ)
ε4

)
non-zero entries, the list L can be compiled by brute-force search in classical computation
time O

(
n log(1/δ)

ε4

)
. By our approximation guarantee, with success probability ≥ 1 − δ

2 , we
have the following:
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If |ϕ̂(s)| ≥ ε, then q̃(s, 1) ≥ ε2

2 − ε2

8 ≥ ε2

4 . So, if s is an ε-heavy Fourier coefficient of ϕ̂,
then s ∈ L.
If s ∈ L, that is, if q̃m(s, 1) ≥ ε2

4 , then (ϕ̂(s))2 ≥ 2
(

ε2

8 − 1
2n

(
1 − Ex∼Un

[(ϕ(x))2]
))

≥ ε2

16 ,
thus also |ϕ̂(s)| ≥ ε

4 and s is an ( ε
4 )-heavy Fourier coefficient of ϕ̂. In particular,

combining this with Parseval’s equality and the fact that Ex∼Un [(ϕ(x))2] ≤ 1, we see that
|L| ≤ 16Ex∼Un [(ϕ(x))2]

ε2 ≤ 16
ε2 .

Now, for each of the at most 16
ε2 strings in L, we estimate the corresponding Fourier

coefficient. For any single such string s, by Hoeffding’s inequality, we know that O
(

log(1/δ)
ε2

)
classical samples from D suffice produce an empirical estimate ϕ̃(s) that matches ϕ̂(s) up
to accuracy ε, with success probability ≥ 1 − δ

2 . By a union bound over L, this implies
that m2 = O

(
|L| log(|L|/δ)

ε2

)
= O

(
log(1/δε2)

ε4

)
classical samples from D suffice to estimate all

ϕ̂(s) with s ∈ L simultaneously up to accuracy ε, with success probability ≥ 1 − δ
2 . As

ϕ̂(s) ∈ [−1, 1] for all s ∈ {0, 1}n, these estimates can only improve if we project them to
[−1, 1]. Moreover, building these empirical estimates can be done using classical computation
time Õ

(
n log(1/δε2)

ε4

)
and classical memory of size Õ

(
n log(1/δε2)

ε4

)
. It remains to observe that

a single copy of ρD can be measured in the computational basis to obtain a sample from
D (recall Lemma 6), and that, by one more union bound, the produced estimate ϕ̃ has the
desired properties with probability ≥ 1 − δ. ◀

With this subroutine for obtaining a succinctly represented approximation to the Fourier
spectrum of interest, we can now obtain distributional agnostic quantum learning algorithms.

2.3 Distributional Agnostic Quantum Learning Parities and
Fourier-Sparse Functions

First, we show how to apply Corollary 8 as a subroutine for distributional agnostic quantum
parity learning.

▶ Corollary 9 (Formal statement of Theorem 2, Point 2). Let D be a probability distribution
over Xn × {0, 1} with DXn

= Un. Let δ, ε ∈ (0, 1). Assume that ε > 2−( n
2 −2). There is a

quantum algorithm that, given O
(

log(1/δε2)
ε4

)
copies of ρD, uses O

(
n log(1/δε2)

ε4

)
single-qubit

gates, classical computation time Õ
(
n log(1/δε2)

ε4

)
, and classical memory of size Õ

(
n log(1/δε2)

ε4

)
,

and outputs, with success probability ≥ 1 − δ, a bit string s ∈ {0, 1}n such that

P(x,b)∼D[b ̸= s · x] ≤ min
t∈{0,1}n

P(x,b)∼D[b ̸= t · x] + ε . (16)

Thus, this quantum algorithm is a distributional agnostic proper quantum parity learner up
to inverse-exponentially small accuracies, assuming a uniform marginal over inputs.

Proof. As parity learning corresponds to learning a largest Fourier coefficient (compare [24,
Lemma 11]), it suffices to show that there is a quantum algorithm with the claimed complexity
bounds that, with success probability ≥ 1 − δ, outputs a (2ε)-approximately-largest Fourier
coefficient of ϕ. To achieve this, first run the procedure from Corollary 8 to obtain, with
probability ≥ 1 − δ, a succinctly represented ϕ̃ such that ∥ϕ̃− ϕ̂∥∞ ≤ ε and ∥ϕ̃∥0 ≤ 16

ε2 .
Now, let s ∈ argmaxt∈{0,1}n ϕ̃(t). Note that such an s can be found in time O

(
n
ε2

)
since

∥ϕ̃∥0 ≤ 16
ε2 . This s now satisfies
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max
t∈{0,1}n

ϕ̂(t) − ϕ̂(s) = max
t∈{0,1}n

ϕ̂(t) − ϕ̃(t) + ϕ̃(t) − ϕ̃(s) + ϕ̃(s) − ϕ̂(s) (17)

≤ ∥ϕ̃− ϕ̂∥∞ + 0 + ∥ϕ̃− ϕ̂∥∞ ≤ 2ε, (18)

as needed. The bounds on copy complexity, quantum gate complexity, classical runtime, and
classical memory are all inherited from Corollary 8. ◀

In particular, Corollary 9 gives an efficient agnostic quantum parity learner for inverse-
polynomial accuracy parameter ε and for inverse-exponential confidence parameter δ. In
contrast, by reduction to the widely believed hardness of LPN, we do not expect an efficient
classical procedure for the corresponding classical agnostic learning problem to exist.

In a similar vein, Corollary 8 can serve as a subroutine for distributional agnostic quantum
learning of Fourier-sparse functions:

▶ Corollary 10 (Formal statement of Theorem 2, Point 3). Let D be a probability distribution
over Xn × {0, 1} with DXn

= Un. Let δ, ε ∈ (0, 1). Assume that ε > 2−( n
2 −2). Then, there

is a quantum algorithm that, given O
(

k4 log(k2/δε2)
ε4

)
copies of ρD, uses O

(
nk4 log(1/δε2)

ε4

)
single-qubit gates, classical computation time Õ

(
n

k4 log(k2/δε2)
ε4

)
, and classical memory of

size Õ
(
n

k4 log(k2/δε2)
ε4

)
, and outputs, with success probability ≥ 1−δ, a randomized hypothesis

h : Xn → {0, 1} such that

P(x,b)∼D [b ̸= h(x)] ≤ 2 min
f̃ :Xn→{0,1}

Fourier−k−sparse

P(x,b)∼D[b ̸= f̃(x)] + ε . (19)

In particular, this quantum algorithm is a distributional 2-agnostic improper quantum Fourier-
sparse learner up to inverse-exponentially small accuracies, assuming a uniform marginal
over inputs.

Proof. By [24, Lemma 14] it suffices to show that there is a quantum algorithm with the
claimed complexity bounds that, with success probability ≥ 1 − δ, outputs (ε/2k)-accurate
estimates of k (ε/2k)-approximately-heaviest Fourier coefficients of ϕ. To achieve this, let
ε̃ = ε/4k and run the procedure from Corollary 8 to obtain, with probability ≥ 1 − δ, a
succinctly represented ϕ̃ : Xn → [−1, 1] such that ∥ϕ̃− ϕ̂∥∞ ≤ ε̃ and ∥ϕ̃∥0 ≤ 16

ε̃2 . Let
s1 ∈ argmaxt∈{0,1}n |ϕ̃(t)| and, for 2 ≤ ℓ ≤ k, let sℓ ∈ argmaxt∈{0,1}n\{s1,...,sℓ−1}|ϕ̃(t)|.
Note that such s1, . . . , sk can be found in time O

(
nk4

ε2

)
since ∥ϕ̃∥0 ≤ 16

ε̃2 ≤ O
(

k4

ε2

)
. Let

t1 ∈ argmaxt∈{0,1}n |ϕ̂(t)|, and for 2 ≤ ℓ ≤ k, let tℓ ∈ argmaxt∈{0,1}n\{t1,...,tℓ−1}|ϕ̂(t)|. By
the technical lemma ([24, Lemma 17]), ∥|ϕ̃| − |ϕ̂|∥∞ ≤ ∥ϕ̃− ϕ̂∥∞ ≤ ε̃ implies that, for every
1 ≤ ℓ ≤ k,

∣∣∣|ϕ̂(tℓ)| − |ϕ̂(sℓ)|
∣∣∣ ≤ 2ε̃ ≤ ε/2k, so we can apply [24, Lemma 14]. The bounds on

copy complexity, quantum gate complexity, classical runtime, and classical memory are all
inherited from Corollary 8. ◀

As 1-agnostic Fourier-sparse learning is at least as hard as 1-agnostic parity learning,
which in turn is at least as hard as LPN, this task is widely believed to be classically
intractable from random examples. To the best of our knowledge, currently there are also
no classical algorithms for 2-agnostic Fourier-sparse learning from examples. Thus, while
Corollary 10 does not achieve 1-agnostic quantum Fourier-sparse learning, it serves as an
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indication for the power of mixture-of-superpositions examples in learning Fourier-sparse
functions w.r.t. uniformly random inputs. In [24, Section 5.3], we further introduce a notion
of mixture-of-superpositions QSQs and demonstrate that also they are a powerful resource
for distributional agnostic learning.

3 Classical Verification of Distributional Agnostic Quantum Learning

Section 2 has demonstrated the power of quantum data for agnostic parity learning and
Fourier-sparse learning. Here, we show that classical verifiers interacting with quantum
provers can make use of this power to solve similar learning problems. The results in
this subsection, which serve to fully establish Theorem 3 when focusing on the regime
ε, ϑ ≥ Ω(1/poly(n)) and δ ≥ Ω(1/exp(n)), rely on two assumptions.

▶ Definition 11 (Distributions with no small non-zero Fourier coefficients). Let ϑ ∈ (0, 1). We
denote the class of probability distributions D = (Un, φ) over Xn × {0, 1} that have a uniform
marginal over Xn and whose {−1, 1}-label expectation ϕ has no non-zero Fourier coefficients
of magnitude < ϑ by

DUn;≥ϑ :=
{

(Un, φ) | ϕ̂ ̸= 0 ⇒ |ϕ̂| ≥ ϑ
}
. (20)

Importantly, when considering learning problems under the promise D ∈ DUn;≥ε, this
includes scenarios in which the unknown distribution is a (noisy) parity or Fourier-sparse
function. For the distributional agnostic setting considered in this subsection, we rely on the
following additional assumption.

▶ Definition 12 (Distributions with L2-bounded bias). Let 0 ≤ a ≤ b ≤ 1. We denote the
class of probability distributions D = (Un, φ) over Xn × {0, 1} that have a uniform marginal
over Xn and whose {−1, 1}-label expectation ϕ has squared L2 norm in [a2, b2] by

DUn;[a2,b2] :=
{

(Un, φ) | Ex∼Un [(ϕ(x))2] ∈ [a2, b2]
}
. (21)

Even with an added promise of this form, we still generalize beyond the noiseless and
noisy functional agnostic cases. Namely, the noiseless functional case comes with the strong
promise of D ∈ DUn;[a2,b2] for a = b = 1, and for the noisy functional case with noise rate η
we can take a = b = (1 − 2η). In particular, distributional agnostic parity learning under the
promise D ∈ DUn;≥(1−2η) ∩ DUn;[(1−2η)2,(1−2η)2] is at least as hard as LPN.

We now state the distributional agnostic version of classical verification for quantum
parity learning (see [24, Theorem 15] for a Fourier-sparse learning version).

▶ Theorem 13. Let ϑ ∈ (2−( n
2 −3), 1). Let 0 ≤ a ≤ b ≤ 1. Let δ ∈ (0, 1) and ε ≥ 2

√
b2 − a2.

The class of n-bit parities is efficiently proper 1-agnostic verifiable w.r.t. DUn;≥ϑ ∩ DUn;[a2,b2]
by a classical verifier V with access to classical random examples interacting with a quantum
prover P with access to mixture-of-superpositions quantum examples. There is a verifier-
prover pair (V, P ) such that P uses O

(
log(1/δϑ2)

ϑ4

)
copies of ρD, O

(
n log(1/δϑ2)

ϑ4

)
single-qubit

gates, a classical memory of size Õ
(
n log(1/δϑ2)

ϑ4

)
, and classical running time Õ

(
n log(1/δϑ2)

ϑ4

)
,

and such that V uses O
(

b4 log(1/δϑ2)
ε4ϑ4

)
classical random examples, Õ

(
n b4 log(1/δϑ2)

ε4ϑ4

)
classical

running time, and a classical memory of size Õ
(
n b4 log(1/δϑ2)

ε4ϑ4

)
. Moreover, this can be achieved

by a pair (V, P ) that uses only a single round of communication consisting of at most O
(

n
ϑ2

)
classical bits.
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Proof sketch (see [24, Theorem 12] for a detailed proof). In our protocol, the prover P
uses their quantum data access to produce a list L = {s1, . . . , s|L|} corresponding to all
non-negligible Fourier coefficients ϕ̂(s) and sends it to the verifier V . Given such a list, the V
can independently from P estimate the total squared Fourier weight of the list,

∑|L|
ℓ=1(ϕ̂(sℓ))2,

using their classical data access only. Based on the promise D ∈ DUn;[a2,b2], V can find out
if P cheated by checking whether its estimate of the total Fourier weight of the list deviates
too much from the a priori known total Fourier weight of the distribution. Moreover, the
promise D ∈ DUn;≥ϑ ensures that P can efficiently find all relevant Fourier coefficients and
implies a bound on the length of the list L, which is important for the runtime of V .

Let us describe the protocol in more detail. Let δ, ε ∈ (0, 1). Let 0 ≤ a ≤ b ≤ 1. Let
D ∈ DUn;≥ϑ ∩ DUn;[a2,b2]. Assume that ε ≥ 2

√
b2 − a2, with ϑ ∈ (2−( n

2 −3), 1). The actions
of the classical verifier V and the honest quantum prover P are as follows:
1. V asks P to provide a list L = {s1, . . . , s|L|} ⊂ {0, 1}n of length |L| ≤ 64b2

/ϑ2 consisting
of pairwise distinct n-bit strings whose associated Fourier coefficients are non-zero.

2. P follows the procedure in Corollary 8 to produce, with success probability ≥ 1 − δ
2 ,

a succinctly represented ϕ̃ : Xn → [−1, 1] such that ∥ϕ̃− ϕ̂∥∞ ≤ ϑ/2 and ∥ϕ̃∥0 ≤ 64b2

ϑ2 .
If P obtains an output that violates the ∥·∥0-bound, then P declares failure and the
interaction aborts. Otherwise, P then sends the list L = {s ∈ {0, 1}n | |ϕ̃(s)| ≥ ϑ/2} to V .

3. If V receives a list L of length |L| > 64b2
/ϑ2, V rejects the interaction. Otherwise,

V uses O
(

|L|2 log(|L|/δ)
ε4

)
classical random examples from D to obtain simultaneously

(ε2
/16|L|)-accurate estimates ξ̂(s) of ϕ̂(s) for all s ∈ L, with success probability ≥ 1 − δ

2 ,
via Chernoff-Hoeffding combined with a union bound over L. (For t ̸∈ L, the verifier’s
estimate γ̂(t) for ĝ(t) is just 0.)

4. If
∑|L|

ℓ=1

(
ξ̂(sℓ)

)2
≥ a2 − ε2

8 , then V determines sout ∈ argmax1≤ℓ≤|L| ξ̂(s) and outputs

the hypothesis h : Xn → {0, 1}, h(x) = sout · x. If
∑|L|

ℓ=1

(
ξ̂(sℓ)

)2
< a2 − ε2

8 , then V

outputs reject.
We now show that the pair (V, P ) has the desired completeness and soundness properties.
As a first step towards this goal, we show that V accepts an interaction with P with high
probability. To this end, observe that, conditioned on P succeeding in Step 2, V never rejects
in Step 3. If we then further condition on V succeeding in Step 3, we can use 2-Lipschitzness
of [−1, 1] ∋ ξ → ξ2, the promise D ∈ DUn;≥ϑ ∩ D ∈ DUn;[a2,b2], and Parseval to show

|L|∑
ℓ=1

(
ξ̂(sℓ)

)2
= a2 − ε2

8 . (22)

Thus, if both Step 2 and Step 3 succeed, which by a union bound happens with probability
≥ 1 − δ, then V accepts in Step 4.

Moreover, whenever Step 3 is successful and V does not reject in Step 4, then the output
string sout ∈ argmax1≤ℓ≤|L| γ(s) of V is as desired. To see this, we again use 2-Lipschitzness
of [−1, 1] ∋ ξ → ξ2 to show: If V does not reject in Step 4 and if Step 3 was successful, then
this implies that for any s ̸∈ L,(

ϕ̂(s)
)2

= (b2 − a2) + ε2

4 . (23)

This tells us that |ϕ̂(s)| ≤
√

(b2 − a2) + ε2

4 ≤
√
b2 − a2+ε/2 ≤ ε holds for every s ̸∈ L, which –

writing the misclassification probability of a parity as P(x,y)∼D[y ̸= χt(x)] = 1
2 (1− ϕ̂(t)) – now

allows us to show that the output sout ∈ argmax1≤ℓ≤|L| γ(s) of V has the desired property
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P(x,y)∼D[y ≠ χsout(x)] ≤ mint∈{0,1}n P(x,y)∼D[y ̸= χt(x)] + ε. This last part of our reasoning
only relies on V succeeding in Step 3 and accepting in Step 4, but is independent of the
action of the quantum prover. Therefore, we have also established the desired soundness. ◀

▶ Remark 14. In the full version [24], we provide an alternative approach to classically
verifying functional agnostic quantum learning, based on the interactive Goldreich-Levin
algorithm laid out in [46]. Said verification scheme requires classical membership query
access for the prover in order to answer the queries sent by the verifier. We observe that
under certain Fourier-sparsity assumptions on the unknown function, the quantum prover
can emulate this membership query access. Moreover, the full version [24] also contains
variants of Theorem 13 for an SQ verifier and/or a mixture-of-superpositions QSQ prover.

In Theorem 13, the achievable accuracy is limited by 2
√
b2 − a2. Next, we show that

such a limitation is necessary for interactive classical-quantum verification of learning with a
sublinear-in-n sample complexity for the classical verifier:

▶ Theorem 15. Let η ∈ [0, 1/6). Define a = 0 and b = ϑ = 1 − 2η. Let δ = 1/3 and
ε = (1−2η)/3 = 1

3 ·
√
b2 − a2. Proper 1-PAC verification for the class of n-bit parities

w.r.t. DUn;≥ϑ ∩ DUn;[a2,b2] by a classical verifier V with access to classical random examples
interacting with a quantum prover P with access to mixture-of-superpositions quantum
examples requires the verifier to use at least Ω(n) classical examples.

Here, we consider η to be a constant and focus on the scaling with n. Theorem 15 tells
us that the accuracy lower bound ε ≥ 2

√
b2 − a2 in Theorem 13 cannot be significantly

improved without at the same time worsening the number of examples used by the classical
verifier from n-independent to linear-in-n.

Proof sketch (see [24, Theorem 13] for a detailed proof). We adapt the proof strategy
of [70, Theorem 8] to our setting. That is, we use the assumed pair (V, P ) of a classical
verifier and a quantum prover to construct a testing algorithm T that can distinguish between
D = Un+1 and D ∈ {(Un, (1 − 2η)χs)}s∈{0,1}n using mT = mV + O(1) classical random
examples of the unknown distribution. This distinguishing task is known to require Ω(n)
classical examples (see [24, Lemma 18] for a proof). T first simulates the interaction of V
and P , where V has access to classical examples drawn from D and P has access to copies
of ρUn+1 . Importantly, as Un+1 is a fixed distribution, T can simulate P without requiring
any quantum access to D. After this simulation step, T decides between D = Un+1 and
D ∈ {(Un, (1 − 2η)χs)}s∈{0,1}n using mT = mV + O(1) based how the output of V performs
on an additional classical test data set drawn from D. ◀

▶ Remark 16. While Theorem 15 focuses on sample complexities, the proof has immediate
computational complexity implications. To see this, notice that (by Theorem 7) it is trivial
to classically simulate distributional agnostic quantum Fourier sampling if D = Un+1 and
thus ϕ ≡ 0. Namely, we first toss a fair coin to decide whether the sampling attempt succeeds
or fails, and in the case of success we then sample a uniformly random n-bit string s. Thus,
a classical T can efficiently simulate the actions of a quantum P with access to copies of
ρUn+1 . Consequently, with the same parameter choices as in Theorem 15, a computationally
efficient V would lead to a computationally efficient classical tester T able to distinguish
between the uniform distribution and random noisy parities. Therefore, assuming that this
distribution testing version of LPN is hard, we cannot meaningfully improve the accuracy
lower bound ε ≥ 2

√
b2 − a2 in Theorem 13 without losing computational efficiency of V .
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4 Distribution-Independent Agnostic Quantum Learning and its
Verification

So far, we have focused on agnostic learning under a promise on the input marginal. Namely,
we assumed that DXn = Un is the uniform distribution. While this focus on distribution-
dependent learning is common in computational learning theory (to avoid computational
infeasibility results), statistical learning theory also often considers a setting of distribution-
independent learning, where no prior assumptions on the input marginal of the unknown
distribution are made. The sample complexity of learning in this distribution-independent
agnostic model has long been fully characterized in the classical case [77, 15, 76]. Moreover, [7]
recently established that the optimal quantum sample complexity when using superposition
examples coincides with the classical one up to constant factors. Here, we demonstrate that
such a limitation of quantum learning also applies to our mixture-of-superpositions examples.

▶ Theorem 17 (Formal statement of Theorem 4). Let F ⊆ {0, 1}Xn be a benchmark class
with VC-dimension VC(F) = d ≥ 1. Then at least

m ≥ Ω̃
(
d+ log(1/δ)

ε2

)
(24)

copies of ρD, with D an unknown probability distribution over {0, 1}n × {0, 1}, are necessary
for distribution-independent quantum agnostic learning of F with accuracy ε ∈ (0, 1

4 ) and
confidence parameter δ ∈ (0, 1

2 ). Here, the Ω̃ hides prefactors logarithmic in d.

Proof sketch (see [24, Theorem 17] for a detailed proof). The d-independent part of the
lower bound, m ≥ Ω

(
log(1/δ)

ε2

)
, can be proved for any non-trivial benchmark class F with

a reasoning similar to [7, Lemma 12] and [20, Lemma 5.1]. This argument relies only on
basic tools from quantum information, namely on the characterization of the optimal success
probability for distinguishing between two quantum states in terms of their trace distance
(compare, e.g., [72]), on the Fuchs-van de Graaf inequalities [42], and on the strong concavity
of the fidelity [72, Theorem 9.7].

Next, we prove the d-dependent part of the lower bound. For this, we adapt the
information-theoretic proof strategy from [7]. Let ε ∈ (0, 1

4 ). As VC(F) = d, we can find
a set S = {x1, . . . , xd} ⊂ Xn of d distinct points that is shattered by F . That is, for every
a ∈ {0, 1}d, there exists fa ∈ F such that fa(xi) = ai holds for all 1 ≤ i ≤ d. Now, for each
a ∈ {0, 1}d, we define the probability distribution Da over Xn × {0, 1} as follows:

Da(x, b) =
{

1
2d

(
1 + (−1)ai+b · 4ε

)
if x = xi

0 else
. (25)

By construction, for every a ∈ {0, 1}d and for every f ∈ F , we have

P(x,b)∼Da
[b ̸= f(x)] = 1

2d

d∑
i=1

(
(1 + 4ε) δf(xi),ai⊕1 + (1 − 4ε) δf(xi),ai

)
(26)

Thus, f ∈ F is a minimum-error concept in F w.r.t. Da if an only if f |S(xi) = ai holds for
all 1 ≤ i ≤ d. Moreover, if f |S(xi) = ci for some c ∈ {0, 1}d with c ̸= a, then such an f

incurs excess risk 4ε
d · dH(a, c), where dH(·, ·) denotes the Hamming distance. Accordingly,

any quantum algorithm for distribution-independent quantum agnostic learning F from m

copies of ρDa
, a ∈ {0, 1}d unknown, has to output a hypothesis that, when restricted to S,
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becomes a d-bit string that is d
4 -close to a in Hamming distance, with success probability

≥ 1 − δ. This still holds if the quantum learner is promised in advance that the unknown
distribution is supported on S.

Let us consider the CQ state ρ := 1
2d

∑
a∈{0,1}d |a⟩ ⟨a| ⊗ ρ⊗m

Da
where m is the training

data size. We will refer to its classical subsystem as the A-subsystem and to the m quantum
registers as subsystems B1, . . . , Bm. Using that the output of the quantum agnostic learner
upon input of ρ⊗m

Da
is d

4 -close to a, one can show that the mutual information between the
classical subsystem and the quantum subsystems in ρ satisfies I(A;B1, . . . , Bm)ρ ≥ Ω(d),
compare [7, Proof of Theorem 12]. Next, since ρ⊗m

Da
is a tensor power for every a, we have

I(A;B1, . . . , Bm)ρ ≤ m · I(A;B1)ρ, compare again [7, Proof of Theorem 12]. Thus, the
remainder of the proof is concerned with upper bounding I(A;B1)ρ. As ρAB1 is a CQ-state,
I(A;B1)ρ equals the Holevo information of the ensemble {( 1

2d , ρDa
)}a∈{0,1}d , compare [78,

Exercise 11.6.9]. That is,

I(A;B1)ρ = S

 1
2d

∑
a∈{0,1}d

ρDa

 − 1
2d

∑
a∈{0,1}d

S (ρDa
) = S (ρ) − 1

2d

∑
a∈{0,1}d

S (ρDa
) , (27)

where we defined ρ := 1
2d

∑
a∈{0,1}d ρDa

and S(ρ) denotes the von Neumann entropy of a
state ρ. It turns out that we can diagonalize both ρ as well as ρDa

exactly and hence obtain
their respective spectra and then also their von Neumann entropies. In fact, the ρDa for
different a are related via permutations. Thus, they share the same spectrum. For more
details on the diagonalization, we refer the reader to the full version [24, Theorem 17]. The
respective entropies are given by

S (ρ) = 1 + 1
2 log (d) , S (ρDa

) = 1 + 1
2 log (d) − d

2 (d− 1) log (d) ϵ̃2 +O
(
ϵ̃4

)
. (28)

Plugging, these entropies into the mutual information I(A;B1)ρ in Equation (27), we
find that I(A;B1)ρ = O

(
ϵ2 log d

)
. Hence, we have an overall upper bound on the mutual

information

I(A;B1, . . . , Bm)ρ ≤ O(mϵ2 log d). (29)

Contrasting this with the lower bound found above that is required for agnostic learning,
namely of I(A;B1, . . . , Bm)ρ = Ω(d), we hence find that the number of copies m necessary
to learn must be at least

m = Ω
(

d

ϵ2 log d

)
= Ω̃

(
d

ϵ2

)
. (30)

This proves the d-dependent part of the overall lower bound on the sample complexity of
distribution-independent agnostic learning and hence completes the proof. ◀

With Theorem 17, we have seen that mixture-of-superpositions examples do not signific-
antly impact the landscape of distribution-independent agnostic learning compared to their
classical data counterpart when focusing on sample complexities. Our next result shows
that mixture-of-superpositions examples are also not information-theoretically more powerful
than classical examples for verification of learning. Namely, when we consider interactive
verification of distribution-independent learning, we match the classical upper and lower
bounds of [70] for this task.
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▶ Theorem 18. Let F ⊆ {0, 1}Xn be a benchmark class with VC-dimension VC(F) = d ≥ 1.
Assume that (V, P ) is an interactive classical-quantum verifier-prover pair that 1-agnostic
verifies F with accuracy parameter ε = 1/3 and confidence parameter δ = 1/3. If we assume
that V uses mV classical random examples and P uses mP mixture-of-superpositions quantum
examples, then mV ≥ Ω(

√
d), independently of mP .

Proof. As already argued in the proof of Theorem 15, the reduction strategy used in [70,
Theorem 8] is also immediately applicable to a scenario with a quantum prover, because the
relevant quantum mixture-of-superpositions state ρUn+1 is completely known and because we
can, due to the focus on sample complexity, ignore computational efficiency issues arising
from classically simulating a quantum computation. Thus, we get the lower bound as in [70,
Theorem 8]. ◀

5 Directions for Future Work

Our work opens up several directions for future research. Firstly, we have demonstrated
that mixture-of-superpositions examples enable quantum Fourier sampling-based distribu-
tional agnostic learning – in the distribution-dependent setting – by giving explicit learning
algorithms for parities and Fourier-sparse functions. At the same time, we have shown that
mixture-of-superpositions examples do not give a sample complexity advantage over classical
random examples in the distribution-independent setting. Thus, it is of natural interest
to go beyond these initial results and to further understand both the potential and the
limitations of mixture-of-superpositions examples for agnostic learning, for example exploring
their use for other model classes. Additionally, one of the primary motivations for the
mixture-of-superpositions examples introduced here is the difficulty in developing techniques
for Fourier sampling from standard quantum superposition examples in the distributional
agnostic setting. However, while no such techniques have been developed to date, there are no
established hardness results. As such, it remains unclear whether mixture-of-superpositions
examples are indeed strictly more powerful than standard quantum superposition examples.
In light of this, it would be interesting to understand whether there is a separation between
the power of the two oracle models.

Additionally, in this work we have explored the extent to which one can delegate problems
of supervised learning of Boolean functions to untrusted quantum servers. However, there
is a plethora of other learning problems whose delegation to quantum algorithms would be
desirable to investigate. A natural first example would be the delegation and verification of
distribution learning [62] problems to quantum servers. In particular, we note that, unlike
for supervised learning, in the distribution learning context even the realizable setting seems
non-trivial. Alternatively, there is a multitude of learning and testing problems for which the
object to be learned or tested is inherently quantum. Examples include testing or learning
to predict properties of quantum states [1, 2, 55], quantum measurements [30], or quantum
processes [31, 20, 36, 21, 54]. For many of these problems there are known exponential
separations between what can be achieved by quantum algorithms with or without access
to a quantum memory (see [56, 4, 28, 53, 21, 27]). This prompts a natural question: Can
quantum learning algorithms without a quantum memory efficiently delegate such learning
or testing problems to untrusted quantum algorithms with access to a quantum memory?

Moreover, from a technical perspective, there are concrete ways in which our learning
algorithms and verification procedures might be improved. Firstly, for distributional agnostic
learning Fourier-sparse functions, our learning algorithms are 2-agnostic – i.e., they yield
hypotheses whose risk is guaranteed to be at most twice the risk of the optimal model,
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plus some desired tolerance ε. Ideally, however, one would like to give 1-agnostic learning
algorithms. Secondly, our verification procedures do not work for arbitrary unknown func-
tions or distributions, but require prior assumptions. The learning problems we consider
remain classically hard under these assumptions, and are therefore still sufficient for demon-
strating the existence of problems which can be efficiently delegated/verified by classical
learning algorithms, although not efficiently solved without delegation. Nevertheless, it seems
interesting to understand the extent to which our assumptions are truly necessary.

Finally, our work is motivated by a desire to understand the potential for classical clients
to profit from the advantages of quantum learning algorithms in a (realistic) world where
quantum computations are delegated to untrusted quantum servers with access to proprietary
quantum data resources. However, at least currently and for the intermediate-term future, any
quantum server will only have access to “noisy intermediate scale quantum” (NISQ) devices
[74]. As such, to bring our results closer to immediate practical relevance, it is of interest
to explore the extent to which classical clients can verify untrusted NISQ-friendly quantum
machine learning algorithms based on the variational optimization of parameterized quantum
circuits. Indeed, there has recently been progress on the statistical foundations of such hybrid
quantum-classical learning algorithms [22, 3, 11, 23, 33, 25, 26], and it would be of significant
interest to enrich this developing understanding with insight into the complexity of classical
verification. Additionally, in our work we have explored the setting in which a classical client
interacts with a quantum server, with access to a quantum data oracle. However, one may
also consider quantum clients of limited complexity (e.g., NISQ clients) that interact with
more powerful quantum servers. This would serve to enrich our growing understanding of
the capability of NISQ algorithms from a complexity-theoretic perspective [29].
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