
Learning Arithmetic Formulas in the Presence of
Noise: A General Framework and Applications to
Unsupervised Learning
Pritam Chandra #

Microsoft Research, Bangalore, India

Ankit Garg #

Microsoft Research, Bangalore, India

Neeraj Kayal #

Microsoft Research, Bangalore, India

Kunal Mittal #

Princeton University, NJ, USA

Tanmay Sinha #

Microsoft Research, Bangalore, India

Abstract
We present a general framework for designing efficient algorithms for unsupervised learning problems,
such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm
that learns arithmetic formulas in the presence of noise, using lower bounds. This builds upon the
recent work of Garg, Kayal and Saha (FOCS ’20), who designed such a framework for learning
arithmetic formulas without any noise. A key ingredient of our meta algorithm is an efficient
algorithm for a novel problem called Robust Vector Space Decomposition. We show that our meta
algorithm works well when certain matrices have sufficiently large smallest non-zero singular values.
We conjecture that this condition holds for smoothed instances of our problems, and thus our
framework would yield efficient algorithms for these problems in the smoothed setting.
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1 Introduction

Unsupervised learning involves discovering hidden patterns and structure in data without
using any labels or direct human supervision. Here we consider data that has a nice
mathematical structure or is generated from a mathematically well-defined distribution. An
example of the former is when the data points can be grouped into meaningful clusters based
on some similarity patterns and the goal is to find the underlying clusters. An example of
the latter is mixture modeling, which assumes that the data is generated from a mixture
of succinctly described probability distributions, such as Gaussian distributions, and the
goal is to learn the parameters of these distributions from samples. A general framework for
solving many unsupervised learning problems is the method of moments, which leverages
the statistical moments1 of the data to infer the underlying structure or the underlying

1 Recall that moments are measures of the shape and variability of a data set. They are used to describe
the the location and dispersion of the data. When the dataset consists of a collection of points

A = {ai = (ai1, ai2, . . . , ain) ∈ Rn | i ∈ [N ]},

some examples of (low-order) moments are E
ai∈A

[ai1], E
ai∈A

[ai1 · ai2], etc.
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25:2 Learning Arithmetic Formulas in the Presence of Noise

parameters of the model. For many unsupervised learning problem scenarios wherein the
underlying data has some nice mathematical structure, the moments of the data are well-
defined functions of the parameters. Heuristic arguments then suggest that the converse
should typically hold, i.e. the parameters of the structure/distribution are typically uniquely
determined by a few low order moments of the data. In this broad direction, the main
challenge then is to design algorithms to (approximately) recover the underlying parameters
from the (empirical) moments2. We further want the algorithm to be efficient, noise-tolerant
(i.e. work well even when the moments are known only approximately rather than exactly)
and are even outlier-tolerant (i.e. work well even when a few data points do not conform to
the underlying structure/distribution). But even the simplest problems in this area tend
to be NP-hard and remain so even when there is no noise and no outliers. So one cannot
realistically hope for an algorithm with provable worst-case guarantees. But what one can
hope are algorithms that are guaranteed to typically work well, i.e. either for random problem
instances or even more desirably for instances chosen in a smoothed fashion. Accordingly,
many different algorithms have been designed for each such problem in unsupervised learning
with varying levels of efficiency, noise-tolerance, outlier-tolerance and provable guarantees. In
this work we give a single meta-algorithm that applies to many such unsupervised learning
problems. The starting point of our work is the observation that many such problems reduce
to the task of learning an appropriate subclass of arithmetic formulas.

Connecting unsupervised learning to arithmetic complexity. We now give a few more
details of how such a reduction works for the setting in which the data points are drawn
from a distribution having a nice mathematical structure. Let D be a distribution over
points in Rn. We introduce n formal variables (x1, x2, . . . , xn) and denote it as x. For a
suitably chosen integer d ≥ 2, form a degree-d polynomial f(x) which encodes the d-th order
moments3 of the distribution in some suitable way. For example, in some applications the
coefficient of a monomial of f(x) is simply (a canonically scaled version of) the corresponding
moment. At this point, such a formal polynomial is a mere bookkeeping device for the
d-th order moments of D. For many nice, well-structured distributions such as mixtures of
Gaussians, however this polynomial (or variants thereof) turns out to have a remarkable
property - it can be computed/represented by a small arithmetic formula! Special cases of
this remarkable phenomenon were noted earlier when it was observed that many problems
in (unsupervised) learning reduce to the problem of learning set-multilinear depth-three
formulas, better known as tensor decomposition. Such connection(s) inspired a whole body of
work on tensor decomposition with applications including independent component analysis,
learning Hidden Markov Models, learning special cases of mixtures of Gaussians, latent
Dirichlet allocation, dictionary learning, etc. (cf. the surveys [19, 14, 1]).

Noise-tolerance. Notice however that we are given a finite set of points sampled from
the distribution D, so we do not have the (d-th order) moments of D exactly but only
approximately. Thus for such applications we need the algorithm for learning arithmetic
formulas to also be noise-tolerant, i.e. given a polynomial f̃(x) that is close to4 a polynomial
f(x) that has a small arithmetic formula ϕ, we want to learn/reconstruct a arithmetic

2 In scenarios where the data is a finite sample drawn from a distribution D over Rn, the empirical
moments (which can be very easily and efficiently computed) are estimates of, but not equal to, the
true underlying moments.

3 We are making the mild assumption here that the d-th order moments of D are bounded.
4 Under a natural notion of distance between a pair of polynomials akin to Euclidean distance between

the coefficient vectors of the pair of polynomials - see section 2 in [6].
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formula ϕ̃ from the same subclass as that of ϕ whose output polynomial is close to f̃(x) (and
therefore to f(x) as well). Recently, [10] gave a meta-algorithm for learning many different
subclasses of formulas including the ones relevant for unsupervised learning (assuming that
certain nondegeneracy conditions hold). But it has one important shortcoming that was
also pointed out in [4]: the techniques of [10] were algebraic and it was unclear if they could
handle noise arising out of the fact that the moments are known only approximately and
not exactly. Qualitatively, our main result builds upon and suitably adapts the algorithm
[10] to make it noise-tolerant. Quantitatively, in the noisy setting, we provide bounds on the
quality of the output of our algorithm that depend on singular values of certain matrices
that underlie the algorithm. We expect that for most applications, the relevant singular
values would be well-behaved for random instances and maybe even for smoothed/perturbed
worst-case instances. If so, our algorithm would work and yield good quality outputs on
such instances. Accordingly, we then go on on to analyze the singular values of the relevant
matrices pertaining to subspace clustering5. We also expect (suitable adaptations of) our
algorithm to be tolerant to the presence of a few outliers but we do not pursue this direction
here and leave it for future work.

Illustrative example – mixtures of Gaussians. Let us make the above discussion concrete
via the example of learning mixtures of Gaussians which in itself is a very well-studied
problem with history going back to more than a hundred years. Suppose we are given a
dataset consisting of a finite set of points A ⊂ Rn

A = {ai = (ai1, ai2, . . . , ain) ∈ Rn | i ∈ [N ]}. (1)

The points are drawn independently at random from an unknown mixture of s Gaussians D :=∑s
i=1 wiN (µi, Σi), which means that the i-th component of the mixture has weight6 wi ∈

[0, 1], mean µi ∈ Rn and covariance matrix Σi ∈ Rn×n. Our goal is to estimate the parameters
wi and µi and Σi (i ∈ [s]) from the given samples/data A. Let x = (x1, x2, . . . , xn) be a
tuple of formal variables and consider the polynomial f(x) := Ea∼D

[
⟨x, a⟩d

]
. It is (a scalar

multiple of) a slice of the formal moment generating function defined as Ea∼D [exp(⟨x, a⟩)] .

Notice that the coefficients of a given monomial (over x) in f(x) equals the corresponding
moment of the distribution (upto some canonical scaling). Then in this case, f(x) has the
following small formula7:

f(x) =
∑
i∈[s]

wiGd(ℓi(x), Qi(x)),

where ℓi(x) := ⟨µi, x⟩, Qi(x) := 1
2 xT Σix and Gd is a fixed bivariate polynomial depending

on d. In the zero-mean case (i.e. when µ1 = µ2 = . . . = µs = 0), the formula for f(x) is

f(x) =
∑
i∈[s]

d!
(d/2)!wiQi(x)d/2

when d is even (and 0 if d is odd). In this way, if the sample size was infinite (or equivalently
that if we knew the true moments of the distribution), learning mixtures of Gaussians would

5 A recent work [3] analyzed the singular values of matrices arising in a related (but also different)
algorithm that was tailor-made for the mixtures of (zero-mean) Gaussians and verified that for random
instances the singular values are indeed well-behaved.

6 The weights satisfy
∑

i∈[s] wi = 1.
7 This formula for f(x) can be inferred from the fact that for a single Gaussian distribution N(µ, Σ), its

moment generating function is in fact equal to exp(xT · µ + 1
2 xT · Σ · x).
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reduce to the problem of learning/reconstructing the subclass of arithmetic formulas indicated
by the rhs of the above expression for f(x). But we don’t have access to the exact moments.
Using the empirical moments, we can get hold of an approximate version of f ,

f̃(x) := Ea∼A

[
⟨x, a⟩d

]
= 1

N

∑
i∈[N ]

[
⟨x, ai⟩d

]
.

We will have f̃(x) = f(x) + η(x) for a noise polynomial η(x) whose magnitude will be
inversely proportional to square root of the number of samples N . In this way, learning
mixtures of Gaussians reduces to the problem of reconstructing the indicated subclass of
arithmetic formulas in the presence of noise.

Learning arithmetic formulas in the presence of noise – problem formulation. The above
discussion motivates us to consider the problem of learning (arbitrary subclasses of) arithmetic
formulas in the presence of noise. In many practical settings the output gate of the underlying
formula is a (generalized8) addition gate so that the problem can be formulated as follows.
We are given a polynomial f̃(x) of the form f̃(x) := T1(x) + · · · + Ts(x) + η(x), for structured
polynomials Ti(x)’s and a noise polynomial η(x). Our goal is to approximately recover each
summand Ti(x). For example, for the case of mixture of spherical Gaussians we would have
Ti(x) = wi · ⟨µi, x⟩3 (see Remark 1.1). For the case of mixture of zero-mean Gaussians we
would have Ti(x) = wi · Qi(x)d/2 and so on. In the noiseless setting, i.e. when η(x) = 0, the
paper [10] designed a meta-algorithm applicable to learning many interesting subclasses using
a general framework exploiting lower bound techniques in arithmetic complexity theory. The
algorithm worked under certain relatively mild non-degeneracy assumptions. However, their
algorithm had some algebraic components and it was not clear how to design an algorithm in
the noisy case when the noise polynomial η(x) is non-zero.9 Our main contribution is that
we show how to modify the general framework in [10] to the noisy setting. We also show
how to use this framework to design efficient algorithms for two well studied problems in
unsupervised learning: mixtures of (zero mean) Gaussians and subspace clustering.
▶ Remark 1.1.
(a). Simpler reductions. The ability to handle arbitrary subclasses of arithmetic formulas

not only yields a common (meta) algorithm that applies to a wide variety of problems in
unsupervised learning but it also often makes the reductions simpler. For example, in the
discussion above the reduction of learning mixtures of arbitrary Gaussians to learning
the appropriate subclass of arithmetic formulas is perhaps simpler than the reduction
of learning mixtures of spherical Gaussians10 to tensor decomposition. We sketch this
reduction now. Consider f(x) := Ea∼D

[
⟨x, a⟩3 − 3

(∑
i∈[n] x2

i

)
· ⟨x, a⟩

]
. When D is a

mixture of spherical Gaussians, expanding and simplifying this expression, we can get
that f(x) =

∑s
i=1 wi⟨µi, x⟩3.

(b). Mixtures of general Gaussians. We expect that our algorithm can be extended
to general mixtures of Gaussians (different means and/or covariance matrices) but its
analysis will likely get much more cumbersome, so we avoid this more general case for
the sake of simplicity.

8 A generalized addition gate can compute any fixed linear combination of its inputs.
9 In most settings, one would like the running time of the algorithm to be inverse polynomial in the

magnitude of the noise, to have a polynomial dependence on the number of samples in the final learning
problem.

10 A spherical Gaussian is one where the covariance matrix Σi is the identity matrix.
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(c). Handling outliers. The ability to handle arbitrary subclasses of arithmetic formulas
can also allow the algorithm to be tolerant to the presence of outliers. To see this,
consider the case of zero-mean Gaussians and suppose that the given set of data points
A contains a subset Â ⊂ A of outliers of size N̂ ≪ N . In that case the empirical moment
polynomial f̃(x) would have the following structure:

f̃(x) = N − N̂

N
· d!

(d/2)! ·

∑
i∈[s]

wiQi(x)d/2

 + 1
N

·

 ∑
aj∈Â

(x · aj)d

 + η(x).

We expect that our algorithm can be adapted to learn the class of formulas corresponding
to the right side of the above expression however the analysis of such an algorithm can
get cumbersome. For the sake of keeping the length of this paper to within reasonable
bounds, we do not do the analysis of the outlier tolerance of our algorithm.

(d). Other mixtures models. The connection between learning mixtures of Gaussians
and learning an appropriate subclass of arithmetic formulas arose out of the fact that
(any slice of) the moment generating function of a multivariate Gaussian has a simple
algebraic expression. For some other distributions also the (slices of) moment generating
function or some other related function like the cumulant generating function or the
characteristic function have a nice algebraic expression and we can expect our approach
to be applicable for such mixtures also.

(e). Mixtures of structured point sets and those sampled from probability dis-
tributions. Consider a set of points A ⊂ Rn that can be partitioned into two subsets
A = A1 ⊎ A2 such that A1 is some structured set of points (such as being contained
in the union of a small number of low-dimensional subspaces for example) and A2 is
chosen from some mixture model (such as being chosen from a mixture of Gaussians
for example). When say the moment polynomials of both the structured set A1 and
the sampled set A2 admit small formulas from a tractable subclass of formulas, we
can expect our methods to apply. In particular, we expect (a suitable adaptation of)
our algorithm to be to handle the case where points in A1 are chosen from a union of
low-dimensional subspaces in an non-degenerate way without conforming to any nice
distribution and points in A2 conform to a (mixture of) Gaussians. We leave the task
of handling such mixed datasets and analyzing the relevant algorithms as a possible
direction for future work.

(f). Potential application – Topic Modeling. It turns out that there are some other
problems in unsupervised learning which reduce to robustly learning an appropriate
subclass of arithmetic formulas. We expect that a suitable instantiation/adaptation of
our algorithm should apply for these applications but we do not pursue these applications
here and leave it as a direction for future work. One such problem is called topic modelling.
It is known that learning some simple topic models reduce to tensor decomposition. It
turns out that learning some general topic models as proposed in [20] reduce to the
problem of learning set-multilinear formulas of larger depth.

(g). Potential application – Learning (Mixtures of) Polynomial Transformations.
Another such application is the problem of learning polynomial transformations as
studied in [7] which also reduces to learning a certain subclass of arithmetic formulas11.
The generality of our approach makes us expect that it should apply to this task also as
well as to its generalizations like learning mixtures of polynomial transformations. We
do not pursue this potential application here but leave it as a direction for future work.

11 The work of [7] does not state it this way but this can be inferred from the observations underlying
their work.

ITCS 2024



25:6 Learning Arithmetic Formulas in the Presence of Noise

2 Overview – Arithmetic Formula Learning algorithm

Background. Arithmetic formulas are a natural model of computing polynomials using the
basic operations of addition (+) and multiplication (×). A natural problem about arithmetic
formulas is that of learning: given a polynomial f(x)12, find the smallest (or somewhat
small) arithmetic formula computing f(x). We consider formulas in their alternating normal
form: i.e. the formula consists of alternating layers of addition and multiplication gates.
The learning problem boils down to recovering the polynomials computed at each child
of a node v given the polynomial computed at v. When v is a multiplication node then
generically, the polynomials computed at its children are irreducible13 in which case the
efficient multivariate polynomial factorization algorithm of Kaltofen and Trager [13] recovers
the children’s outputs. Even when there is noise, the robust factorization algorithm of [12]
can recover the factors approximately14. Thus the main challenge is to recover the children
of addition gates. This connects us to the problem discussed in the previous section with
the structured polynomials being the polynomials computed at the children gates. In the
noiseless setting, a meta algorithm for this problem was given in [10]. We provide a meta
algorithm in the noisy case and show worst-case bounds on the quality of the output in
terms of singular values of certain matrices 15. The abstract problem is as follows. Given a
polynomial f̃(x) that can be expressed as

f̃(x) = T1(x) + T2(x) + . . . + Ts(x) + η(x), (2)

where Ti’s are structured polynomials and the noise/perturbation polynomial η(x) has small
norm, can we approximately recover the Ti’s via an efficient algorithm?

Learning from lower bounds. [10] showed how the linear maps used in the known arithmetic
formula lower bound proofs could be used to recover the Ti’s in the noiseless (η = 0) setting,
assuming that appropriate non-degeneracy conditions hold. [10] observed that the assumption
that the Ti’s are structured can effectively be operationalized via the existence of a known
set of linear maps L from the vector space of polynomials to some appropriate vector space
W1 such that dim(⟨L · Ti⟩) is16 small for every simple polynomial Ti. When we apply such a
set of linear operator L to (2) with η = 0, we get:〈

L · f̃(x)
〉

⊆ ⟨L · T1(x)⟩ + ⟨L · T2(x)⟩ + . . . + ⟨L · Ts(x)⟩ . (3)

[10] observe that generically two things tend to happen.

12 There are various input models all of which lead to interesting questions. Some of the common ones are
as a black box or described explicitly as a list of coefficients.

13 Random multivariate polynomials are almost surely irreducible and with that as intuition, one expects
the output of a formula with output being an addition gate to almost surely be an irreducible polynomial
when the underlying field constants are chosen randomly. However proving this can be technically
involved for any given subclass of formulas.

14 The work of [13] aims to devise a factorization algorithm that is empirically as robust as possible and
does not contain theoretical bounds on how much the output factors get perturbed as a function of the
noise added to a true factorization. Nevertheless such a bound can be inferred from their work. The
bound would depend on the appropriate singular values of an instance-dependent matrix called the
Ruppert matrix that comes up in their algorithm.

15 The matrices whose singular values are used to bound the quality of the output depend on the input
instance as well as on the choice of linear operators used to instantiate our framework

16 Here, ⟨S⟩ denotes the R-linear span of a set S that consists of vectors or linear maps. Also L · Ti denotes
the set of vectors obtained by applying each linear map in L to Ti.
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▶ Assumption 2.1 (First blessing of dimensionality17). If
∑

i∈[s] dim(⟨L · Ti(x)⟩) ≪ dim(W1)
then almost surely (over the independent random choice of the Ti’s), it holds that the subspaces
⟨L · Ti(x)⟩ form a direct sum, i.e.

dim(⟨L · T1(x)⟩ + ⟨L · T2(x)⟩ + . . . + ⟨L · Ts(x)⟩) =
∑
i∈[s]

dim(⟨L · Ti(x)⟩).

▶ Assumption 2.2 (Second blessing of dimensionality18). If
∑

i∈[s] dim(⟨L · Ti(x)⟩) ≪
dim(⟨L⟩) then almost surely (over the independent random choice of the Ti’s), it holds
that for all i ∈ [s]:

⟨L · (T1(x) + . . . + Ts(x))⟩ ⊇ ⟨L · Ti(x)⟩ .

Under these nondegeneracy assumptions we then have (for η = 0):

U
def=

〈
L · f̃(x)

〉
= ⟨L · T1(x)⟩ ⊕ ⟨L · T2(x)⟩ ⊕ . . . ⊕ ⟨L · Ts(x)⟩ . (4)

We observe that in the noisy case, on input f̃ , finding the best (dim(U))-rank subspace
through the set of points (L ◦ f̃) yields a subspace Ũ that is pretty close to U (lemma D.1
in [6] gives quantitative bounds). Coming back to the noiseless case, [10] then observe that
linear maps constructed for the purpose of proving lower bounds also yield a set of linear
maps B such that

V
def= ⟨B · U⟩ = ⟨B · U1⟩ ⊕ · · · ⊕ ⟨B · Us⟩, (5)

where Ui
def= ⟨L · Ti(x)⟩. This motivated the following problem which they call Vector Space

Decomposition. Given a set of linear maps B between two vector spaces U and V , find a
(maximal) decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs s.t. B · Ui ⊆ Vi for all
i ∈ [s]. In most applications, such a decomposition turns out to be unique (up to some
obvious symmetries like permuting the subspaces) and hence an algorithm for vector space
decomposition finds the intended decomposition.

Reduction to Vector Space Decomposition in the noisy setting. We then formulate and
give an algorithm for a robust/noise-tolerant version of vector space decomposition. But
there is an important difficulty that crops up in trying to use the problem of robust vector
space decomposition as formulated below to the setting of learning arithmetic formulas in
the presence of noise. B is a collection of maps from W1 to W2 where U ⊆ W1, V ⊆ W2 and
B · U equals V . However, B · Ũ will typically not be contained in Ṽ . In fact the dimension
of the image of Ũ under the action of B (denoted dim

(〈
B · Ũ

〉)
) will typically be much

larger than the dimension of Ṽ (denoted dim(Ṽ )). To overcome this difficulty, our idea is to
compose maps in B with the projection19 map to Ṽ to obtain a tuple of maps B̃ from Ũ to

17 The intuition is that (pseudo)-randomly chosen small-dimensional subspaces of a large-dimensional
ambient space should form a direct sum.

18 The intuition is that in most applications when the underlying dimension n = |x| is large enough then
the dimension of the set of operators L is large relative to dim(⟨L · Ti(x)⟩) for any i. In such a situation
if the Ti’s are chosen generically then L tends to contain many operators that kill all the other Tj ’s (for
j ̸= i) so that ⟨L · f(x)⟩ tends to contain each of the subspaces ⟨L · Ti(x)⟩.

19 Projection to Ṽ here implicitly uses a decomposition of the ambient space W2 into Ṽ and its orthogonal
complement (defined via some canonical inner product on W2 that is clear from context). It is the
unique map in Lin(W2, W2) which is identity on Ṽ and whose kernel is the the orthogonal complement
of Ṽ .

ITCS 2024



25:8 Learning Arithmetic Formulas in the Presence of Noise

Ṽ . In general such a composition can completely spoil the structure of the set of maps B but
our conceptual insight here is that in this situation, one can set up a natural correspondence
between Lin(U, V ) and Lin(Ũ , Ṽ ) that can be used to infer that the projection-composed
maps B̃ are slight perturbations of the corresponding maps in B (lemma 4.1 in [6] gives
quantitative bounds). This insight gives us the reduction. Then, the robust vector space
decomposition algorithm yields a decomposition

Ũ = Ũ1 ⊕ Ũ2 ⊕ . . . ⊕ Ũs (6)

where Ũ1, Ũ2, . . . , Ũs are slightly perturbed versions of ⟨L · T1(x)⟩ , ⟨L · T2(x)⟩ , . . . , ⟨L · Ts(x)⟩
respectively (corollary 4.1 in [6] gives quantitative bounds). In particular this implies that
for each L ∈ L we can obtain a vector close to L · T1(x) by projecting20 L · f̃(x) to Ũ1. This
implies that we can approximately recover T1(x) itself via an appropriate pseudo-inverse
computation. Similarly, we can recover all the Ti(x)’s up to some error (Theorem 14 in [6]
gives quantitative bounds). Before stating the quantitative bound on this error (Theorem 3.3)
let us discuss the subroutine of robust vector space decomposition which is perhaps of interest
in itself and might have wider applicability.

3 Overview – Vector Space Decomposition algorithm

We refer to the noise-tolerant version of vector space decomposition as Robust Vector Space
Decomposition (RVSD). The setting is the following: let W1 and W2 be vector spaces, and let
U = U1 ⊕· · ·⊕Us ⊆ W1 and V = V1 ⊕· · ·⊕Vs ⊆ W2 be subspaces. Let B = (B1, B2, . . . , Bm)
be an m-tuple of linear operators, with each Bj : U → V being a linear map from U to V .
Suppose that, under the action of B, each Ui is mapped inside Vi; that is, for each i ∈ [s],
it holds that ⟨B · Ui⟩ ⊆ Vi. We consider the problem of recovering the Ui’s approximately
given noisy access to U, V and B. Specifically21

Robust Vector Space Decomposition (RVSD). We are given as input the integer s, two
vector spaces Ũ ⊆ W1 and Ṽ ⊆ W2, and a m-tuple of operators B̃ = (B̃1, B̃2, . . . , B̃m) from Ũ

to Ṽ , such that dist(Ũ , U), dist(Ṽ , V ) and dist(B̃, B)22 are “small”. Our goal is to efficiently
find an s-tuple Ũ = (Ũ1, Ũ2, . . . , Ũs) of subspaces in Ũ ⊆ W1, such that (upto a reordering
of the components) for each i ∈ [s], dist(Ũi, Ui) is “small”23.

Now we give some rough ideas that go behind our Robust Vector Space Decomposition
algorithm. For more details, the reader is referred to Section 4 in [6] . Let us first consider the
noiseless setting, in which we are given an integer s, the vector spaces U ⊆ W1, V ⊆ W2, and
a m-tuple of operators B = (B1, . . . , Bm) from U → V ; the goal is to find a decomposition
U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, such that each Ui is mapped into Vi under the
action of B, i.e.

U = U1 ⊕ U2 ⊕ . . . ⊕ Us and V = V1 ⊕ V2 ⊕ . . . ⊕ Vs, ⟨B · Ui⟩ ⊆ Vi ∀i ∈ [s]. (7)

20 Projection to Ũ1 here refers to using the decomposition given by (6). It is applying the unique map in
Lin(Ũ , Ũ) which is identity on Ũ1 and whose kernel is (Ũ2 ⊕ Ũ3 ⊕ . . . ⊕ Ũs).

21 As discussed above, it is often the case that a set of operators (B1, . . . , Bm), with each Bi : W1 → W2,
satisfying the above property are exactly known. In this case, we can instantiate the Robust Vector
Space Decomposition problem with suitable projections of these operators on the set of linear maps
from U → V , and Ũ → Ṽ respectively. For more details, the reader is referred to Section 4.3 in [6].

22 In the formulation here, the distance dist(B̃, B) is defined by extending all operators to map W1 into
W2.

23 As we note in Remark 6 in [6] , our algorithms can be used to find (V1, . . . , Vs) approximately as well,
but we omit that here since our applications do not need it.
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The adjoint algebra and its properties. Based on [17, 8], [10] defined a notion called
the adjoint algebra24 whose structure can be used to understand (the potentially many)
decompositions. Let us recall this notion.

▶ Definition 3.1 (Adjoint algebra). The adjoint algebra, corresponding to the vector spaces
U, V , and the tuple of operators B, denoted AdjU,V (B) is defined to be the set of all tuples of
linear maps (D, E), with D : U → U , E : V → V , such that Bj · D = E · Bj for all j ∈ [m].

Observe that the adjoint algebra always contains the space of scaling maps25: that is, the set
of maps D : U → U, E : V → V such that D (resp. E) simply scales each Ui (resp. Vi) by
some scalar λi, for each i ∈ [s]. We observe that in most applications these maps are all that
the adjoint algebra contains, and in this case, there is a simple algorithm to solve the vector
space decomposition, and the obtained decomposition is unique:

▶ Proposition 3.2 (Proposition A.326 in [10]). Suppose that U, V admit a decomposition into
direct sum of s spaces under the action of B as in (7). If dim(AdjU,V (B)) = s, then it holds
that:
1. AdjU,V (B) equals the set of scaling maps (as defined above) and,
2. The decomposition given by (7) is the unique irreducible decomposition, i.e. if

U = Û1 ⊕ Û2 ⊕ . . . ⊕ Ûŝ and V = V̂1 ⊕ V̂2 ⊕ . . . ⊕ V̂ŝ, ŝ ≥ s,

and〈
B · Ûi

〉
⊆ V̂i, ∀i ∈ [ŝ],

then ŝ = s and upto reordering if necessary, Ûi = Ui and V̂i = Vi for all i ∈ [s].

Noiseless algorithm. Note that given B (and U, V ) computing AdjU,V (B) is easy and simply
involves solving for D and E that satisfy the linear constraints specified in definition 3.1.
Further under the assumption that AdjU,V (B) equals the set of scaling maps (this we refer to
as strong uniqueness), the required subspaces U1, U2, . . . Us can be obtained as the eigenspaces
corresponding to distinct eigenvalues of the linear map D : U 7→ U which is the component
of a random element (D, E) of AdjU,V (B).

Making the algorithm robust. There is a relatively straightforward way to make this
algorithm robust: we use the maps in B̃ to compute a vector space27 that is in some sense
an approximation to the original adjoint algebra. Finally, we recover the Ui’s approximately
as (the sum of a few) eigenspaces of suitably chosen elements of this approximate adjoint
algebra. In the noiseless setting it suffices to chose random elements of the adjoint algebra
but in the noisy setting this does not work very well. This is because the error incurred in the
recovery of an eigenvector/eigenspace of an operator is inversely related to the corresponding
eigengap(s) (see lemma A.8 in [6]). Simply picking a random element of the adjoint algebra

24 The adjoint algebra is a generalization of the notion of the centralizer algebra in matrix/group theory
to the case when the image space of the set of linear maps is different from the domain space.

25 This observation is due to [8] and forms the starting point of the [10] algorithm for vector space
decomposition.

26 This proposition is a special case of the more general proposition A.3 in [10] wherein the blocks of
AdjU,V (B) consist of scalar matrices only.

27 This space is typically not closed under multiplication and so does not form an algebra.
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AdjU,V (B) leads to a rather small eigengap and we therefore incur a rather large error both
theoretically and practically (i.e. in both the worst case noise scenario and the random noise
scenarios). Our insight here is that the multiplicative structure of the adjoint algebra can be
exploited to find operators in it with (some) large eigengaps and this yields an algorithm that
is more robust. Indeed, our initial experiments suggest that the resulting algorithm when
applied to tensor decomposition empirically performs better (in terms of error in the output)
than any of the known algorithms for tensor decomposition. The details and quantitative
bounds are provided in section 4 in [6].

Our Results. The noise-tolerance and performance of our meta-algorithm is captured by the
following theorem which bounds the error incurred in terms of various parameters involved.

▶ Theorem 3.3 (Learning Noisy Arithmetic Circuits, Informal version of Theorem 14 in
[6]). Let f(x) = T1(x) + · · · + Ts(x) be a polynomial such that each Ti ∈ R[x]=d belongs to a
circuit class C that admits operators L and B satisfying the following properties:

L consists of linear maps L : R[x]=d → W1 such that U
def= ⟨L · f⟩ = U1 ⊕ · · · ⊕ Us,

dim(U) = dU , where Ui
def= ⟨L · Ti⟩.

B consists of linear maps B : W1 → W2 satisfying V
def= ⟨B · L · f⟩ = V1 ⊕ · · · ⊕ Vs,

dim(V ) = dV , where Vi
def= ⟨B · L · Ti⟩.

The decomposition of (U, V ) under B is strongly unique, i.e. dim(AdjU,V (B)) = s.
We also need the robust versions of the above assumptions and that L and B are appropriately
normalized. Let M, N be matrices with columns L · f, L ∈ L and B · L · f, B ∈ B, L ∈ L
respectively. Suppose that the dth

U and the dth
V largest singular values of M and N , respectively,

are bounded from below by some σ > 0. Similarly, for an appropriate operator corresponding
to the adjoint algebra, we need an appropriate singular value lower bounded by σ.

Let f̃(x) = f(x) + η(x) be a polynomial such that ∥η∥ ≤ ϵ28. Then, there is an efficient
algorithm, which on input f̃ , recovers T̃1, T̃2, . . . , T̃s, such that for any δ > 0, with probability
at least 1 − δ, (upto reordering) for each i ∈ [s] it holds that∥∥∥Ti − T̃i

∥∥∥ ≤ poly (s, d, dU , dV , 1/δ, 1/σ) · ϵ.

▶ Remark 3.4.
1. Error for random noise. The above bound on the output error is for the case when the

noise η(x) is chosen in an adversarial (i.e. worst-case) fashion, subject of course to the
indicated upper bound on its norm. In practice η(x) often behaves like a random vector
so that the output error is in practice significantly less29 than the worst-case bound in
the above theorem. Our intuition is that when η(x) is random the output error should
be less by a factor of poly(dim(⟨L⟩)) compared to when η(x) is adversarially chosen. We
leave it as a potential direction for future investigation.

2. Noise-tolerance. As noted earlier, our initial experiments indicate that for the well-
studied special case of tensor decomposition our algorithm seems to be more noise-tolerant
than existing algorithms. We remark here that for subspace clustering, one can have a
somewhat different reduction to vector space decomposition which also incorporates the

28 Under an appropriate norm called the Bombieri norm as defined in Section 2 in [6]. The Bombieri norm
is a suitably scaled version of the ℓ2 norm that has many desirable properties including being invariant
under a unitary transformation of the underlying variables.

29 This situation is reminiscent of the well-studied spiked tensor problem in machine learning which can
be thought of as a very special case of our problem.
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affinity-based information to obtain a more noise-tolerant clustering algorithm. It might
be interesting to do an empirical comparison of noise-tolerance of (such adaptations of)
our algorithm to existing algorithms for various applications of interest.

3. Running Time. The algorithm boils down to computing singular value decompositions
and/or pseudoinverses of certain matrices and thus its running time30 is upper bounded
by the cube of the dimension of the largest vector space involved.

4. We suggest a potential way to speed up the above algorithm in section 6.

4 Application 1: Subspace Clustering

Subspace clustering is the following problem - we are given a set of N points A =
{a1, a2, . . . , aN } ⊆ Rn that admit a partition

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

such that the points in each Aj (j ∈ [s]) span a low-dimensional (relative to the number of
points in Aj) space ⟨Aj⟩. The goal is to find such a partition.

Even for n = 3, this problem is NP-hard in the worst case [15]. Despite this, it has been
intensely studied and we refer the reader to the surveys [16], [18] and the references therein.
Most state of the art techniques rely on constructing an affinity matrix, which measures how
likely two points are to be in the same subspace, followed by spectral clustering using the
affinity matrix. Most such algorithms have little theoretical analysis about the robustness
and recovery guarantees.

A non-degeneracy condition and a reduction. Suppose now that the span of the Aj ’s
satisfy the following non-degeneracy condition: they form a direct sum, i.e.

⟨A⟩ = ⟨A1⟩ ⊕ ⟨A2⟩ ⊕ . . . ⊕ ⟨As⟩ . (8)

We will see that in this case subspace clustering reduces to vector space decomposition in
the following way. For a point a = (a1, a2, . . . , an) ∈ Rn, let a · x ∈ R[x] denote the linear
form a1x1 + a2x2 + · · · + anxn, in the formal variables x = (x1, x2, . . . , xn). For d ≥ 1 we
denote by A⊗d the set

{
(a · x)d : a ∈ A

}
⊆ R[x]=d. Consider the space of first-order partial

differential operators B = ∂=1 acting on the subspace of polynomials〈
A⊗2〉

=
〈
(a1 · x)2, (a2 · x)2, . . . , (aN · x)2〉

⊆ R[x]=2.

The image space is then〈
A⊗1〉

= ⟨(a1 · x), (a2 · x), . . . , (aN · x)⟩ ⊆ R[x]=1.

Note that our non-degeneracy condition can be restated as saying that〈
A⊗1〉

=
〈
A1

⊗1〉
⊕

〈
A2

⊗1〉
⊕ . . . ⊕

〈
As

⊗1〉
.

This implies that the subspaces
〈
Aj

⊗2〉
also form a direct sum. Its also easily seen that the

image of each
〈
Aj

⊗2〉
under B = ∂=1 is precisely

〈
Aj

⊗1〉
. Thus the vector space

〈
A⊗2〉

admits a decomposition under the action of B. Furthermore, under the additional mild
assumption that each

〈
Aj

⊗2〉
is indecomposable under the action of B it turns out (using

Corollary B.1 in [6]) that the decomposition is unique and thus the subspace clustering
problem reduces to the problem of vector space decomposition.

30 This is in the model where operations over real numbers are of unit cost. A more precise bound on the
running time in terms of the dimensions of the various relevant vector spaces can be
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A weaker non-degeneracy condition. Note that the non-degeneracy condition given by (8)
is rather restrictive - it implies in particular that the number of subspaces s cannot exceed
n, the dimension of the ambient space. We can get a weaker non-degeneracy condition by
considering the action of first-order partial differential operators B = ∂=1 on the space

〈
A⊗d

〉
instead (for some suitable choice of d ≥ 2). The image space is then

〈
A⊗(d−1)〉. As before,

under the (now weaker) non-degeneracy condition that〈
A⊗(d−1)

〉
=

〈
A1

⊗(d−1)
〉

⊕
〈

A2
⊗(d−1)

〉
⊕ . . . ⊕

〈
As

⊗(d−1)
〉

,

the vector space
〈
A⊗d

〉
admits a decomposition under the action of B. Furthermore, as

before, under the additional mild assumption that each
〈

Aj
⊗d

〉
is indecomposable under

the action of B it turns out (Corollary B.1 in [6]) that the decomposition is unique and thus
the subspace clustering problem reduces to the problem of vector space decomposition (see
Theorem 9 in [6]).

Robust subspace clustering. The robust or noisy version of the subspace clustering problem
is the following. Given a set of points Ã = {ã1, ã2, . . . , ãN } ⊆ Rn suppose that each
point ãi is close to an (unknown point) ai ∈ Rn such that the resulting set of points
A = {a1, a2, . . . , aN } ⊆ Rn can be clustered using s subspaces, i.e.

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

where each Aj spans a low-dimensional subspace ⟨Aj⟩. The computational task is to
approximately recover each subspace ⟨Aj⟩, that is, output W̃ = (W̃1, W̃2, . . . , W̃s) such
that (upto reordering) each W̃j is close to ⟨Aj⟩ for each j ∈ [s]. We can reduce this
problem to the robust vector space decomposition as follows. Let md

def= dim(
〈
A⊗d

〉
) and

md−1
def= dim(

〈
A⊗(d−1)〉). Given Ã we algorithmically compute the best fitting subspace

Ũ (resp. Ṽ ) of dimension md (resp. md−1) to Ã⊗d (resp. to Ã⊗(d−1)). It turns out then
that Ũ (resp. Ṽ ) is close to

〈
A⊗d

〉
(resp. to

〈
A⊗(d−1)〉) (Lemmas B.7 and B.8 in [6] give

the quantitative bounds). Applying the robust version of vector space decomposition on
(Ũ , Ṽ , B), the subspaces that we obtain are close to

〈
Aj

⊗d
〉

(j ∈ [s]) and from these we can,
in turn, also approximately recover ⟨Aj⟩ (Proposition B.1 in [6]), as required. This yields
the following theorem.

▶ Theorem 4.1 (Robust Subspace Clustering, Informal version of Theorem 10 in [6]). Let
A = {a1, . . . , aN } ⊆ Rn be a finite set of N points of unit norm, which can partitioned as
A = A1 ⊎ · · · ⊎ As, where each ⟨Ai⟩ is subspace of dimension at most t.

Let d ≥ 2 be an integer, let U = (U1, . . . , Us) (resp. V = (V1, . . . , Vs)) be an s-tuple of
subspaces with Uj =

〈
Aj

⊗d
〉

(resp. Vj =
〈

Aj
⊗d−1

〉
) for each j ∈ [s]. Let U = ⟨U⟩ (resp.

V = ⟨V⟩) have dimension md (resp. md−1).
Suppose that:
U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs, and for each j ∈ [s], it holds that dim(Uj) =(dim(⟨Aj⟩)+d−1

d

)
, dim(Vj) =

(dim(⟨Aj⟩)+d−2
d−1

)
.

σA is the minimum of σmd
(MA, d) and σmd−1(MA, d−1), where MA,d (resp. MA, d−1) is

the matrix whose columns are the polynomials (ai · x)d (resp. (ai · x)d−1) (see Definition
B.4 in [6]).
κ(U) denotes the condition number of the tuple of subspaces U (see Section 2 in [6]).
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σ−(s+1)(A) is the (s+1)th smallest singular value of the adjoint algebra map (see Definition
4.2 in [6]), corresponding to the action of B = (B1, . . . , Bn) on U, V, where Bi corresponds
to the operator ∂xi

.

Let Ã = {ã1, ã2, . . . , ãN } ⊆ Rn be a set of unit norm vectors such that ∥ai − ãi∥2 ≤ ϵ

for each i ∈ [N ]. Then, there is an algorithm, which on input Ã, runs in time poly(N, nd),
and recovers subspaces (W̃1, W̃2, . . . , W̃s), such that with probability at least 1 − δ, (upto
reordering) for each j ∈ [s] it holds that

dist(W̃j , ⟨Aj⟩) ≤ poly
(
t, N, d, s, 1/δ, κ(U), 1/σA, 1/σ−(s+1)(A)

)
· ϵ.

We show how to lower bound σ−(s+1)(A) (Theorem 11 in [6]). The main technical
component is an inductive argument to analyze singular values of basic adjoint operators,
which is inspired by the inductive argument in recent works on analyzing eigenvalues for
random walks on simplicial complexes (e.g. [2]). Next we see what our algorithms would yield
in the smoothed case and state some explicit conjectures about singular values of relevant
smoothed matrices.

Smoothed analysis of subspace clustering. We first describe the input model. For simplicity,
we assume that each of the subspaces have the same dimension (equal to t).
1. Perturbation model for subspaces. We have a tuple of s hidden subspaces of Rn,

W = (W1, W2, . . . , Ws), each of dimension t. Let P1, P2, . . . , Ps ∈ Rn×t be matrices
with orthonormal columns, such that the column span of Pi is Wi. Each subspace
Wi is perturbed by perturbing Pi by a random (and independent) Gaussian matrix
Gi ∼ N (0, ρ2/n)n×t. Let P̂i = Pi + Gi, and Ŵ1, Ŵ2, . . . , Ŵs be the column spans of
P̂1, P̂2, . . . , P̂s respectively.

2. Perturbation models for points from each subspace. Sample (possibly adversarially)
sets of points A1, A2, . . . , As from Ŵ1, Ŵ2, . . . , Ŵs respectively, of unit norm. For each
i ∈ [s], perturb each point in Ai with respect to Ŵi to get the set of points Âi. Formally,
this means perturbing points in Ai by B̂i · v, where B̂i is an n × t matrix describing an
orthonormal basis for Ŵi and v ∼ N (0, ρ2/t)t (independently generated for each point),
and normalizing. Let Â = Â1 ∪ Â2 ∪ · · · ∪ Âs.

3. Adding noise. For each a ∈ Â, add noise (possibly adversarially) and normalize to
get a unit norm point a′ such that ∥a − a′∥2 ≤ ϵ. We are given as input Â′, the set of
noise-added points.

Given the set of points Â′, the goal is to recover subspaces W̃ = (W̃1, W̃2, . . . , W̃s) such
that dist(Ŵ, W̃) is small. Next we state a couple of conjectures about minimum singular
values of smoothed random matrices that we encounter:

▶ Conjecture 4.2. Let vi1, . . . , vit be an orthonormal basis for Ŵi generated as above. Define
the linear forms ℓij(x) = ⟨vij , x⟩. Consider the

(
n+d−1

d

)
× s

(
t+d−1

d

)
matrix M where the

columns are divided into s chunks and in the ith chunk, the columns are all the monomials
of degree d in the polynomials ℓi1, . . . , ℓit. Also suppose s

(
t+d−1

d

)
≤ (1 − δ)

(
n+d−1

d

)
for a

constant δ > 0. Then for constant d, with high probability, σs(t+d−1
d )(M) ≥ poly (ρ, 1/n).

▶ Conjecture 4.3. Consider arbitrary vectors v1, . . . , vs ∈ Rt of unit norm and their smoothed
versions v̂1, . . . , v̂s, where v̂i = vi + gi, gi ∼ N (0, ρ2/t)t (and then further normalized to unit
norm). Consider the s×

(
t+d−1

d

)
matrix M where the ith row contains the polynomial ⟨v̂i, x⟩d.

Suppose s ≥ (1 + δ)
(

t+d−1
d

)
for a constant δ > 0. Then for constant d, with high probability,

σ(t+d−1
d )(M) ≥ poly (ρ, 1/t).
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▶ Theorem 4.4 (Smoothed analysis of subspace clustering, Theorem 12 in [6] restated).
Suppose Conjectures 4.2 and 4.3 are true. Then for constant d, Algorithm 5 in [6] on input
(Â′, d, s, md, md−1) outputs W̃ = (W̃1, . . . , W̃s) such that with high probability,

dist(W̃j , Ŵj) ≤ poly (n, t, 1/ρ) · ϵ

Regarding the two conjectures, Conjecture 4.3 is closely linked to the paper [5]. There
they considered the setting where s ≤ (1 − δ)

(
t+d−1

d

)
and proved a similar lower bound for

σs(M). In both the settings there is slack, so it is plausible that the techniques of [5] can
be adapted to prove Conjecture 4.3. But we don’t know how to do that. In Conjecture 4.2,
the matrix M is such that both the rows and columns share random variables. Most of the
smoothed analysis till now focuses on matrices where either rows or columns have different
sets of variables involved, and this makes it amenable to the leave-one-out distance method.
Still, in Conjecture 4.2, the sharing of variables is not completely arbitrary. One can divide
rows into chunks so that different chunks have different sets of variables. However, even this
setting seems to require new techniques to analyze.

5 Application 2: Learning Mixtures of Gaussians

In this section we will see how the problem of computing the parameters of a mixture of
Gaussians reduces to (several instances of) vector space decomposition.

Reduction to a special case of formula learning. It is implicit in [11] that learning a
mixture of s zero-mean Gaussians reduces to robustly expressing a given homogeneous
polynomial p(x) as a sum of s powers of quadratics, i.e.

p(x) = p1(x)d + p2(x)d + . . . + ps(x)d, (9)

where the pi’s are homogeneous quadratic polynomials. Following the ideas in [10], we give a
direct reduction31 to vector space decomposition as follows.

Obtaining a vector space that is the direct sum of unknown spaces. Following [10], we
apply partial derivatives followed by a random projection to obtain a vector space that is
a direct sum of s unknown subspaces, one corresponding to each pi(x). Specifically, let L
be the set of operators corresponding to taking k-th order partial derivatives followed by a
random restriction32. Applying L to both sides of equation (9), we get

⟨L · p(x)⟩ ⊆
〈
L · p1(x)d

〉
+

〈
L · p2(x)d

〉
+ . . . +

〈
L · ps(x)d

〉
,

It turns out that (Lemma C.1 in [6]) under relatively mild nondegeneracy conditions on
the choice of the pi’s, the vector space sum on the right hand side of the above equation is
actually a direct sum and the containment is actually an equality, i.e.

⟨L · p(x)⟩ =
〈
L · p1(x)d

〉
⊕

〈
L · p2(x)d

〉
⊕ . . . ⊕

〈
L · ps(x)d

〉
.

We now carefully choose another set of operators B such that the subspace U
def= ⟨L · p(x)⟩

admits a unique decomposition under the action of B.

31 In [10], there is an additional “multi-gcd” step which we avoid here.
32 W can think of a random projection as keeping a subset y ⊆ x of the variables alive and setting the rest

to zero.
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Choice of B. The set of operators L maps polynomials in x to polynomials in a subset of
variables y ⊆ x. Under the above mentioned nondegeneracy conditions, it also turns out that
for each i ∈ [s],

〈
L · pi(x)d

〉
is of the form Ui

def=
〈
y=k · qi(y)d−k

〉
⊆ R[y]=(2d−k). With this

in mind, we choose B as the following set of operators: first order partial derivatives followed
by multiplication33 by polynomials of degree 1. In detail: B consists of |y|2 operators with
the (i, j)-th operator (i, j ∈ [|y|]) being

Bij : R[y]=(2d−k) 7→ R[y]=(2d−k), Bij · q(y) = yj · (∂yi
q(y)) for any q(y) ∈ R[y]=(2d−k).

It turns out that for any i ∈ [s], under the action of B, the image of

Ui
def=

〈
y=k · qi(y)d−k

〉
is the subspace Vi

def=
〈

y=(k+2) · qi(y))d−k−1
〉

and that the Ui’s and Vj ’s form direct sums (Lemma C.2 in [6]). Furthermore, under mild
non-degeneracy conditions such a decomposition is unique (Corollary C.1 in [6]) implying
that our vector space U has a unique decomposition into s subspaces under the action of B.
Lastly, from each Ui we can recover the corresponding qi(y) which is a restriction of pi(x) to
a chosen subspace. Any polynomial can be recovered from its restriction to a small number
of chosen subspaces and we use this to recover each pi(x) (i ∈ [s]), as required. In this way,
the problem of learning mixtures of Gaussians reduces to robust vector space decomposition.

Robust version. Our general algorithm for learning arithmetic circuits with noise (The-
orem 3.3) can be used to make the above algorithm robust. We will also need to use the
algorithm of [3] in this case to combine the various projections of pi’s. Our algorithm will
depend on condition numbers of certain matrices which can be deduced from the operators
used in the above algorithm. Lemmas C.1, C.2 and C.3 in [6] show that at least the ranks of
these matrices are as expected. Lemmas C.1 and C.2 in [6] are from [10]. Lemma C.3 in [6]
is new and is the main technical contribution for this section, and shows that the relevant
adjoint algebra is of the correct dimension. Also [3] analyze similar matrices corresponding
to Lemmas C.1 and C.2 in [6] and prove the required condition number bounds in the fully
random case. For the singular values of the adjoint operator (robustification of Lemma C.3
in [6], we believe similar techniques as Theorem 11 in [6] should work to give us a bound but
the setting is more challenging and we don’t know how to prove a bound here yet.

Comparison to [10] and [3]. The algorithms of [10, 3] for learning mixtures of Gaussians
roughly proceed as follows (for simplicity, we only consider the the noiseless case here).

Given a polynomial p(x) =
∑s

i=1 pi(x)d, where each pi is a quadratic polynomial:
1. Apply a set of operators L to p(x), where L corresponds to taking some k-th order partial

derivatives followed by a random restriction: as described before, each ⟨L · pi(x)⟩ is of the
form

〈
y=k · qi(y)d−k

〉
⊆ R[y]=(2d−k). This step is essentially the same in both [10, 3].

We note however that [3] actually do not work under the non-degeneracy condition of the
spaces ⟨L · pi(x)⟩’s forming a direct sum, and instead explicitly characterize the structure
of the intersections ⟨L · pi(x)⟩ ∩ ⟨L · pj(x)⟩. This allows them to deal with a broader
range of parameters compared to [10].

33 The relevant literature on arithmetic formula lower bounds would refer to the set of operators B as
shifted partials and denote it by y=1 · ∂=1

y .
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2. The next step is a “multi-gcd” step, which is used to find the vector space
〈
qi(y)d−k

〉
+

· · · +
〈
qs(y)d−k

〉
. This step is already present in the algorithm of [10], however [3] give a

significantly simpler algorithm for this step, along with an analysis for the robust version
of this step.

3. The next step, which is in some sense the “main part” of the algorithm, is where the two
algorithms [10] and [3] differ:
a. The algorithm of [10] considers another application of k-th order partial derivatives

+ random restriction on this vector space, and uses vector space decomposition with
respect to this set of operators. This allows them to recover the component polynomials.

b. The algorithm of [3] follows the approach in [11], and does a “desymmetrization
+ tensor-decomposition” step. This roughly enables them to convert the sum of
polynomials to a sum of tensors, and then apply standard tensor decomposition
methods to obtain the required components.

4. The final step is to repeat the above procedure multiple times, using a different random
restriction each time, and then aggregating the obtained qi(y)’s into pi(x), as described
before.

Our algorithm essentially follows the same first and final step as both these algorithms.
It significantly deviates from the two algorithms in Steps 2 and 3:
1. While we follow the same vector space decomposition paradigm as [10], our algorithm

completely eliminates the use of the multi-gcd step. Instead, we use a very simple set of
operators, namely order one partial derivatives + order one shifts, directly on the vector
space ⟨L · p(x)⟩. Hence, our approach provides a much more direct reduction to vector
space decomposition.

2. In comparison to [3], we first eliminate the use of the multi-gcd step, and further we do
not go through the desymmetrization step at all. Instead, our framework of vector space
decomposition allows us to deal with symmetric polynomials throughout the algorithm;
this inherently seems much more natural since the inputs and outputs all deal only with
polynomials (symmetric tensors).

Finally, we note the the above described simplification allows us to obtain a much better
range of parameters compared to [10], whereas we still expect them to be slightly worse
than [3].

6 Conclusion and Future Directions

In this work we showed how to adapt the algorithm of [10] for learning subclasses of arithmetic
formulas to make it noise-tolerant. This turns out to have a number of applications arising
out of the remarkable fact that in these applications, a suitably defined polynomial formed
out of the statistics of the data has a small arithmetic formula. We feel that our approach
has the potential to give algorithms which are fast, noise-tolerant, outlier-tolerant and come
with provable guarantees34 for many such applications and is therefore worthy of further
investigation. We now pose some problems that might encourage or guide such further study.

34 For most such applications the worst-case instances are intractable so the best we can hope for are
algorithms whose performance can be bounded using singular values of certain instance-dependent
matrices.
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Making the vector space decomposition algorithm faster. Consider a set of operators
B mapping a real vector space U to another real vector space V . Our algorithm for
decomposition of U (and V ) under the action of B involved computations with the adjoint
algebra which entailed working in the vector spaces of linear maps Lin(U, U) and Lin(V, V ).
These spaces of linear maps have larger dimension than that of U and V themselves and
consequently, our approach for decomposing U has running time pertaining to the cost of
doing linear algebra over spaces of dimension (dim(U)2 + dim(V )2). Let us first make an
observation. Suppose that the decomposition induced by B, namely:

U = U1 ⊕ U2 ⊕ . . . ⊕ Us, V = V1 ⊕ V2 ⊕ . . . ⊕ Vs

had the property that the Ui’s (respectively also the Vi’s) were orthogonal complements
of each other (under some canonical inner product on the spaces U and V ). Consider the
collection of linear maps L ⊆ Lin(U, U) defined as L :=

{
BT

j · Bi : Bi, Bj ∈ B
}

. Then each
Ui is an invariant subspace (i.e. an eigenspace) of every operator in L. In such a situation
we typically expect the following simple algorithm to work: simply pick three random maps
B1, B2, B3 ∈ ⟨B⟩ and compute35 L := BT

2 · B1 and M := BT
3 · B1. Then for each eigenvector

u of L, compute the span of the orbit of u under the action of M . The distinct subspaces
so obtained should typically give us the required subspaces U1, U2, . . . , Us. Clearly such an
algorithm, when it works, would be much faster. We expect that for most applications, the
above algorithm should work but we don’t know.

▶ Problem 1. For problems such as subspace clustering and learning mixtures of Gaussians,
if the relevant Ui’s (respectively also the Vi’s) are orthogonal to each other, does the above
algorithm correctly recover the Ui’s?

▶ Problem 2. Whats the best way to make this algorithm noise-tolerant?

Finally, in situations where the Ui’s (resp the Vi’s) are not orthogonal to each other we
can clearly make them so by using appropriate inner products on U and V . But how do we
find such an inner product? We expect the operator scaling algorithm of [9] to yield such an
inner product(!)

▶ Problem 3. For (noiseless) subspace clustering, does the operator scaling algorithm of
[9] applied on the relevant B yield inner products under which the relevant subspaces are
orthogonal?

Mixture of Gaussians. As mentioned in Remark 1.1(b) earlier, we expect that our algorithm
can be extended to handle general mixtures of Gaussians with differing means and covariance
matrices. Let us formally state this as an open problem.

▶ Problem 4 (Random instances of general mixtures of Gaussians.). Let n, s ≥ n be integers.
For i ∈ [s] suppose that we pick µi ∈ Rn and covariance matrices Σi ∈ Rn×n independently
at random36. Let D :=

∑s
i=1

1
s · N (µi, Σi) be the equi-weighted mixture of Gaussians with the

above randomly chosen parameters. Design an efficient algorithm that given samples from D

recovers the µi’s and Σi’s approximately.

35 The linear maps BT
2 , BT

3 from V to U are defined using the canonical inner products on these two
spaces.

36 Any reasonable distribution would do but for concreteness say we pick µi ∼ N (0, In) and we pick
Σi = BT · B, where B ∼ N (0, 1)n×n.
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Our work as well as that of [3] leave open the problem of doing a smoothed analysis of the
corresponding algorithm for mixtures of zero-mean Gaussians. To encourage this direction of
research, let us state this explicitly in the form of a conjecture.

▶ Conjecture 6.1 (Smoothed analysis of our algorithm for mixture of zero-mean Gaussians.).
Our algorithm efficiently recovers the unknown parameters for smoothed instances of mixtures
of zero-mean Gaussians.

Handling outliers and other applications. In Remark 1.1, we conjectured that our ap-
proach/framework should enable the design of efficient algorithms that can handle outliers
and also be useful for many more applications in unsupervised learning. It would be nice to
have concrete results in such directions.
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