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—— Abstract

We consider locally checkable labeling (LCL) problems in the LOCAL model of distributed computing.
Since 2016, there has been a substantial body of work examining the possible complexities of

LCL problems. For example, it has been established that there are no LCL problems exhibiting
deterministic complexities falling between w(log* n) and o(logn). This line of inquiry has yielded a
wealth of algorithmic techniques and insights that are useful for algorithm designers.

While the complexity landscape of LCL problems on general graphs, trees, and paths is now
well understood, graph classes beyond these three cases remain largely unexplored. Indeed, recent
research trends have shifted towards a fine-grained study of special instances within the domains of
paths and trees.

In this paper, we generalize the line of research on characterizing the complexity landscape of
LCL problems to a much broader range of graph classes. We propose a conjecture that characterizes
the complexity landscape of LCL problems for an arbitrary class of graphs that is closed under
minors, and we prove a part of the conjecture.

Some highlights of our findings are as follows.

We establish a simple characterization of the minor-closed graph classes sharing the same

deterministic complexity landscape as paths, where O(1), ©(log™ n), and ©(n) are the only

possible complexity classes.

It is natural to conjecture that any minor-closed graph class shares the same complexity landscape

as trees if and only if the graph class has bounded treewidth and unbounded pathwidth. We

prove the “only if” part of the conjecture.

For the class of graphs with pathwidth at most k, we show the existence of LCL problems

with randomized and deterministic complexities ©(n), ©(n/2),0(n'/?),...,0(n'/*) and the

non-existence of LCL problems whose deterministic complexity is between w(log* n) and o(n'/*).

Consequently, in addition to the well-known complexity landscapes for paths, trees, and general

graphs, there are infinitely many different complexity landscapes among minor-closed graph

classes.
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1 Introduction

In the LOCAL model of distributed computing, introduced by Linial [64], a communication
network is modeled as an n-node graph G = (V, E). In this representation, each node v € V'
corresponds to a computer, and each edge e € E corresponds to a communication link. In
each communication round, each node sends a message to each of its neighbors, receives a
message from each of its neighbors, and then performs some local computation.

The complezity of a distributed problem in the LOCAL model is defined as the smallest
number of communication rounds needed to solve the problem, with unlimited local compu-
tation power and message sizes. Intuitively, the complexity of a distributed problem is the
greatest distance that information needs to traverse within a network to attain a solution,
capturing the fundamental concept of locality in the field of distributed computing.
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There are two variants of the LOCAL model. In the deterministic variant, each node has a
unique identifier of O(logn) bits. In the randomized variant, there are no identifiers, and each
node has the ability to generate local random bits. Throughout the paper, unless otherwise
specified, we assume that the result under consideration applies to both the deterministic
and randomized settings.

1.1 Locally Checkable Labeling

A distributed problem on bounded-degree graphs is a locally checkable labeling (LCL) if
there is some constant r such that the correctness of a solution can be checked locally in
r rounds of communication in the LOCAL model. The class of LCL problems encompasses
many well-studied problems in distributed computing, including maximal independent set,
maximal matching, (A 4 1) vertex coloring, sinkless orientation, and many variants of these
problems.

Formally, an LCL problem P is defined by the following parameters.

An upper bound of the maximum degree A = O(1).

A locality radius » = O(1).

A finite set of input labels ¥;,,.

A finite set of output labels X t.

A set of allowed configurations C.

Each member of C is a graph H = (V/, E') whose maximum degree is at most A with
a distinguished center v € V' such that each node in H is within distance r to v and is
assigned an input label from %, and an output label from 3,,. The special case of [Zi,| =1
corresponds to the case where there is no input label. Since all of r, A, ¥i,, and X, are
finite, C is also finite.

An instance of an LCL problem P is a graph G = (V, E)) whose maximum degree is at
most A where each node is assigned an input label from Xj,. A solution for P on G is
a labeling ¢, that assigns to each node in G an output label from ¥,,;. The solution
dout is correct if the r-radius neighborhood of each node v € V' is isomorphic to an allowed
configuration in C centered at v. It is straightforward to generalize the above definition to
allow edge orientations and edge labels.

1.2 The Complexity Landscape of LCL Problems

The first systematic study of LCL problems in the LOCAL model was done by Naor and
Stockmeyer [66]. They showed that randomness does not help for LCL problems whose
complexity is O(1), and they also showed that it is undecidable to determine whether an LCL
problem can be solved in O(1) rounds.

Since 2016, there has been a substantial body of work examining the possible complexities
of LCL problems [17, 11, 3, 8, 9, 23, 24, 19, 25, 43, 53]. For example, it has been established
that there are no LCL problems exhibiting deterministic complexities falling between w(log™ n)
and o(logn) [17, 23, 67]. The complexity landscape of LCL problems on general graphs, trees,
and paths is now well understood. For trees and paths, complete classifications were known:
The complexity of any LCL problem on trees or paths must belong to one of the following
complexity classes.

Trees: O(1), O(log* n), ©(loglogn), O(logn), and O(n'/*) for each positive integer k.
Paths: O(1), ©(log™ n), and O(n).
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All these complexity classes apply to both randomized and deterministic settings, except
that the complexity class ©(loglogn) only appears in the randomized setting. Moreover,
if an LCL problem has randomized complexity ©(loglogn) on trees, then its deterministic
complexity must be O(logn) on trees.

Implications. This line of research is not only interesting from a complexity-theoretic stand-
point but has also yielded insights of relevance to algorithm designers. The derandomization
theorem proved in [23] illustrates that the graph shattering technique [12] employed in many
randomized distributed algorithms gives optimal algorithms to the LOCAL model. The
distributed constructive Lovdsz local lemma problem [29] was shown [24] to be complete for
sublogarithmic randomized complexity in a sense similar to the theory of NP-completeness,
motivating a series of subsequent research on this problem [22, 37, 43, 48, 73].

The proof of some of the complexity gaps is constructive. For example, the proof that there
is no LCL problem on trees whose complexity is w(logn) and n°M) given in [24] demonstrates
an algorithm such that for any given LCL problem P on trees, the algorithm either outputs
a description of an O(logn)-round algorithm solving P or decides that the complexity of P
is n* (M, Such a result suggests that the design of distributed algorithms could be automated
in certain settings. Indeed, several recent research endeavors in this field have focused on
attaining simple characterizations of various complexity classes of LCL problems that yield
efficient algorithms for the automated design of distributed algorithms [3, 6, 5, 4, 18, 19, 25].
In particular, for LCL problems on paths without input labels, the task of designing an
asymptotically optimal distributed algorithm can be done in polynomial time [18, 25].

Some of the algorithms for the automated design of distributed algorithms are practical
and have been implemented. These algorithms can be used to efficiently discover non-trivial
results such as an O(1)-round algorithm for maximal independent set on bounded-degree
rooted trees [5].

Extensions. The study of the complexity landscape of LCL problems has been extended
to other variants of the LOCAL model: online and dynamic settings [1], message size
limitation [10], volume complexity [72], and node-averaged complexity [7]. Following the
seminal work of Bernshteyn [13], many connections between the complexity classes of
LCL problems in the LOCAL model and the complexity classes arising from descriptive
combinatorics have been established [16, 52, 51].

1.3 Our Focus: Minor-Closed Graph Classes

While the complexity landscape of LCL problems on general graphs, trees, and paths is
now well understood, graph classes beyond these three cases remain largely unexplored.
Indeed, recent research trends in this field have shifted towards a fine-grained study of special
instances within the domains of paths and trees: regular trees [5, 4, 16], rooted trees [5, 4],
trees with binary input labels [6], and paths without input labels [25].

In contrast, a substantial body of work already exists concerning the design and analysis
of distributed graph algorithms for various classes of networks beyond paths and trees in
the LOCAL model [2, 14, 27, 32, 30, 31, 33, 35, 34, 36, 62, 75|, so there currently exists a
considerable gap between the complexity-theoretic and algorithmic understanding of locality
in distributed computing.

To address this issue, let us consider the following generic question: Can we characterize
the set of possible complexity classes of LCL problems for any given graph class G7 As any
set of graphs is a graph class, it is possible to construct artificial graph classes to realize
various strange complexity landscapes. To obtain meaningful interesting results, we must
restrict our attention to some natural graph classes.
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Minor-closed graph classes. In this work, we focus on characterizing the possible complexity
classes of LCL problems on any given minor-closed graph class. The minor-closed graph classes
are among the most prominent types of sparse graphs, covering many natural sparse graph
classes, such as forests, cacti, planar graphs, bounded-genus graphs, and bounded-treewidth
graphs.

A graph H is a minor of G if H can be obtained from G by removing nodes, removing
edges, and contracting edges. Alternatively, H is a minor of G if there exist a partition
of V(G) into k = |V (H)| disjoint connected clusters C = {V1,Va,...,V;} and a bijection
between C = {V1,Va,...,Vi} and V(H) such that for each edge e in H, the two clusters in
C corresponding to the two endpoints of e are adjacent in G.

Any set G of graphs is called a graph class. A graph class G is said to be minor-closed
if G € G implies that all minors H of G also belong to G. Alternatively, a graph class G is
minor-closed if it is closed under removing nodes, removing edges, and contracting edges.

A cornerstone result in structural graph theory is the graph minor theorem of Robertson
and Seymour [71], which implies that for any minor-closed graph class G, there is a finite
list of graphs Hi, Hs, ..., Hy such that G € G if and only if G does not contain any of
Hy,H,, ..., H; as a minor. Thus, any minor-closed graph class has a finite description in
terms of a list of forbidden minors. The ideas developed in the proof of the graph minor
theorem hold significance not only for mathematicians but also prove highly valuable in
algorithm design and analysis. This has given rise to a thriving research field known as
algorithmic graph minor theory [39, 38].

1.4 OQur Contribution

The main contribution of this work is the formulation of a conjecture that characterizes the
complexity landscape of LCL problems for an arbitrary class of graphs that is closed under
minors. We present the conjecture in Section 2. To substantiate the conjecture, we provide
a collection of results in Section 3, which collectively serve as a partial validation of the
proposed conjecture. For the sake of presentation, detailed technical proofs for the assertions
made in Sections 2 and 3 are left to. We conclude the paper with a discussion of potential
future directions in Section 8.

1.5 Additional Related Work

The CONGEST model of distributed computing is a variant of the LOCAL model with
an O(logn)-bit message size constraint. There has been substantial research dedicated
to utilizing the structural graph properties of minor-closed graph classes in the design of
efficient algorithms in the CONGEST model: tree decomposition and its applications [60],
low-congestion shortcut and its applications [47, 56, 57, 59, 58, 55], planarity testing and its
applications [46, 50, 63], expander decomposition and its applications [21, 26].

In local certification, labels are assigned to nodes in a network to certify some property of
the network. The certification is local in that the checking process is done by an O(1)-round
LOCAL algorithm. Researchers have developed local certification algorithms tailored to
various minor-closed graph classes [15, 41, 40, 45, 42, 65]. Akin to the study of LCL problems
in the LOCAL model, some algorithmic meta-theorems that apply to a wide range of graph
properties have been established for local certification [40, 45].
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Figure 1 The construction of T3 3 in Definition 2.

2  Our Conjecture

We first present some terminology that is needed to state our conjecture.

» Definition 1. For any two positive integers k and s, the rooted tree Ty, s is defined as
follows.
For k=1, T, is an s-node path (v1,va,...,vs), where vy is designated as the root.
For each k > 1, Ty, s is constructed as follows. Start from an s-node path (vi,va,...,vs)
and s copies Th,Ts, ..., Ts of Ty—1,s. For each j € [s], add an edge connecting v; and the
root of T;. Designate v as the root.

Intuitively, the rooted tree T} , in Definition 1 can be seen as a k-level hierarchical
combination of s-node paths. The significance of T}, s to the complexity landscape of LCL
problems lies in its role as a hard instance. Specifically, both T}, s and its variants have been
identified as hard instances for LCL problems in the complexity class ©(n'/*). These trees
have been employed as lower-bound graphs in all existing Q(nl/ *) lower-bound proofs for
such LCL problems [4, 5, 24, 19]. See Figure 1 for an illustration of the construction of T3 3
from three copies T4, Ts, and T3 of T 3 and a 3-node path (v1, v, v3), where the roots are
drawn in black.

» Definition 2. For each non-negative integer k, define Ay as the set of all minor-closed
graph classes G meeting the following two conditions.

(C1) Ifk > 1, then Ty, s € G for all positive integers s.

(C2) There exists a positive integer s such that Ty11s ¢ G.

For each positive integer k, Ay is the set of all minor-closed graph classes G that includes
all of T}, s and excludes some of Tj41,s. For the special case of k =0, (C1) is vacuously true,
so Ay is the set of all minor-closed graph classes G that excludes some of 17 .

Pathwidth. A path decomposition of a graph G = (V, E) is a sequence (X7, Xo, ..., X) of

subsets of V' meeting the following conditions.

(P1) X1 UXoU---UX,=V.

(P2) For each node v € V, there are two indices ¢ and j such that v € X; if and only if
i<l1<j.

(P3) For each edge e = {u,v} € E, there is an index ¢ such that {u,v} C X.

The width of a path decomposition (X1, Xa, ..., Xy) is maxi<;<x | X;| — 1. The pathwidth
of a graph is the minimum width over all path decompositions of the graph. Intuitively,
the pathwidth of a graph measures how similar it is to a path. A graph class G is said to
have bounded pathwidth if there is a finite number C' such that each G € G has pathwidth at
most C.

26:5
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It is well-known that for any integer k, the set of all graphs with pathwidth at most &
is a minor-closed graph class. We emphasize that it is, however, possible that a bounded-
pathwidth graph class is not minor-closed. One such example is the set of all graphs with
pathwidth at most k and containing at least two nodes.

Throughout the paper, we write A to denote the set of all minor-closed graph classes
whose pathwidth is bounded. Formally, G € A if G is minor-closed and there is a finite
number C' such that the pathwidth of each G € G is at most C'.

For the sake of presentation, the proof of the following two statements is deferred to
Section 4.

» Proposition 3. A = J,., . Ai is a partition of A into disjoint sets.

Proposition 3 shows that (J,, . A: is a classification of all bounded-pathwidth minor-
closed graph classes.

» Proposition 4. For every integer k > 1, the class of all graphs with pathwidth at most k is
m Ak,

We emphasize that the converse of Proposition 4 does not hold in the following sense:
G € Ay, does not imply that each G € G has pathwidth at most k. For example, if we let G be
the set of all graphs with at most k£ 4+ 1 nodes, then G € A( because it does not contain the
(k + 2)-node path T} y12, but G contains the (k + 1)-node complete graph, whose pathwidth
is k.

The conjecture. For any graph class G and a positive integer A, we write G2 to denote the
set of graphs in G whose maximum degree is at most A. In the subsequent discussion, we
informally say that a range of complexities is dense to indicate that many different complexity
functions in this range can be realized by LCL problems in a way reminiscent of the famous
time hierarchy theorem for Turing machines. We are now ready to state our conjecture that
characterizes the complexity landscape of LCL problems for an arbitrary minor-closed graph
class.

» Conjecture 5. Let G be a minor-closed graph class that is not the class of all graphs, and
let A >3 be an integer. The complexity landscape of LCL problems on G* is characterized
as follows.

If G € Ay, then O(1) is the only possible complexity class.

If G € Ay, for some k > 0, then the possible complezity classes are exactly

0(1),0(log" n), O (nl/k) ,0 (nl/(k_1)> yeoe,0(n).

If G has unbounded pathwidth and bounded treewidth, then G shares the same complexity
landscape as trees. In other words, the possible complexity classes are exactly

0(1),0(og* n),0(oglogn),O(logn), and © (nl/k) for all positive integers k.
If G has unbounded treewidth, then the possible complexity classes are exactly
0(1),0(log" n),O(loglogn), and a dense region [O(logn),O(n)].

Similar to the case of trees discussed earlier, all complexity classes in Conjecture 5 apply
to both randomized and deterministic settings, except that the complexity ©(loglogn) only
exists in the randomized setting.
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3  Supporting Evidence

In this section, we show a collection of results that prove a part of Conjecture 5. We say that
an LCL problem P is solvable in a graph class G if all graphs in G admit a correct solution
for P. Let us first consider Ay. Intuitively, G € Ay means that there is some length bound ¢
such that all graphs in G do not contain a minor isomorphic to the ¢-length path. Therefore,
all members in G have bounded diameter, so as long as the considered LCL problem P is
solvable, P can be solved in O(1) rounds in the LOCAL model by a brute-force information
gathering.

» Theorem 6. Let A > 3 be an integer, and let G € Agy. All LCL problems that are solvable
in G2 can be solved in O(1) rounds in gA.

Our classification A = Jj,; ., A makes sense from two different points of view. The
first viewpoint is to consider the special role of the trees T} s as hard instances in the study
of the complexity of LCL problems.

Recall from an earlier discussion that all existing Q(n'/*) lower-bound proofs for LCL in
the complexity class ©(n!/*) in trees are based on the tree T}, , or its variants. In view of
the definition of Ay, for any G € Aj. we expect that the complexity class ©(n'/*) exists for
all s € {1,2,...,k}.

» Theorem 7. Let k> 1, A >3, and s € {1,2,...,k} be integers, and let G € Ay. There is
an LCL problem whose complexity in G* is ©(nl/*).

Similarly, for any G € Aj. we expect that the complexity class ©(n'/*) does not exist for
all s e {k+ 1,k +2,...}. To establish this claim, we consider a different perspective.

In Section 5, we prove an alternative characterization of the set of graph classes Ay in
terms of the growth rate of the size of the d-radius neighborhood. In particular, we show
that Ay, is precisely the set of all minor-closed graph classes G such that k is the smallest
number such that the size of the d-radius neighborhood of any node in any bounded-degree
graph in G is O(d¥).

The growth rate of the size of the d-radius neighborhood is relevant to the complexity
landscape of LCL problems in that the growth rate affects the complexity gaps resulting from
existing approaches. In particular, the alternative characterization of Ay, combined with the
existing proofs [23, 24, 66] to establish complexity gaps for LCL problems in general graphs,
yields the following two results.

» Theorem 8. Let k > 1 and A > 3 be integers, and let G € Ay. There is no LCL problem
whose deterministic complexity in G* is between w(log* n) and o(n'/*).

» Theorem 9. Let k > 1 and A > 3 be integers, and let G € Ay. There is no LCL problem
whose complezity in G2 is between w(1) and o ((log* n)'/*).

The proof of Theorems 6-9 are deferred to Section 6.

An infinitude of complexity landscapes. Theorems 7 and 8 and Proposition 4 imply that,
in addition to the well-known complexity landscapes for paths, trees, and general graphs,

there are infinitely many different complexity landscapes among minor-closed graph classes.

For every A > 3 and k > 1, let us consider the class of graphs with maximum degree A
and pathwidth at most k. For this class of graphs, there exist LCL problems with randomized
and deterministic complexities O(n), ©(n'/?),0(n'/?),...,0(n'/*), and there does not exist

26:7
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an LCL problem whose deterministic complexity is between w(log* n) and o(n'/*). These
results already guarantee that the complexity landscapes necessarily vary for different values
of k.

Algorithmic implications. Proposition 4 and Theorem 8 imply that any n°"-round de-
terministic distributed algorithm A for any LCL problem on bounded-pathwidth graphs can
be automatically turned into an O(log™ n)-round deterministic algorithm A’ solving the same
problem on bounded-pathwidth graphs. This allows us to automatically speed up existing
algorithms significantly on bounded-pathwidth graphs.

» Corollary 10. The following problems can be solved in O(log™ n) rounds deterministically
on graphs of bounded pathwidth and bounded degree.

Constructive Lovdsz local lemma with the condition epd < 1 — 4§, for any constant § > 0.
A wertex coloring.
(A +1) edge coloring.

Proof. Given the discussion above, we just need to check that these LCL problems can
be solved in 7°") rounds deterministically on graphs with maximum degree A = O(1).
Indeed, constructive Lovasz local lemma can be solved in polylogarithmic rounds on general
graphs [73], A vertex coloring can be solved in O(log? n) rounds on bounded-degree graphs [49],
and (A + 1) edge coloring can be solved in poly(A,logn) rounds on general graphs [28]. <«

It seems to be a highly nontrivial task to explicitly construct the O(log* n)-round al-
gorithms whose existence is guaranteed in Corollary 10, as the proof of Theorem 8 is
non-constructive in the sense that it does not offer an algorithm that decides between the
two cases O(log* n) and Q(n'/*).

3.1 Path-Like Graph Classes

Theorems 7-9 allow us to completely characterize the minor-closed graph classes whose
deterministic complexity landscape is identical to that of paths: O(1), ©(log™ n), and O(n).

» Corollary 11. For any minor-closed graph class G, the possible deterministic complexity
classes for LCL problems on bounded-degree graphs in G are exactly O(1), ©(log" n), and
O(n) if and only if G € A;.

Proof. Suppose G € A;. Then Theorems 8 and 9 show that O(1), O(log" n), and O(n)
are the only possible deterministic complexity classes for LCL problems in bounded-degree
graphs in G. Indeed, it is well-known [25] that there exist LCL problems with deterministic
complexities O(1), O(log" n), and O(n) even if we restrict ourselves to path graphs. Since
G € A4, G contains all path graphs, so O(1), ©(log* n), and ©(n) are exactly the possible
deterministic complexity classes for LCL problems on bounded-degree graphs in G.

Suppose G ¢ Ay. If G € Ay, for some k # 1, then Theorems 6 and 7 show that the set of
possible deterministic complexity classes for LCL problems on bounded-degree graphs in G
cannot be O(1), O(log™ n), and O(n). If G ¢ Ay, for all k, then G has unbounded pathwidth.
The well-known excluding forest theorem [68] implies that any minor-closed graph class G
with unbounded pathwidth must contain all trees. Hence the complexity landscape for G2
includes all the complexity classes for trees, such as ©(logn), see [24]. <
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The complexity of the characterization. The graph minor theorem [71] of Robertson and
Seymour implies that if G is a minor-closed graph class, then there is a finite list of graphs
H{, Hs,..., H; such that G € G if and only if G does not contain any of Hy, Ho, ..., Hj as a
minor. Therefore, any minor-closed graph class G admits a finite representation by listing its
finite list of forbidden minors {Hy, Ha, ..., Hj}, so it makes sense to consider computational
problems where the input is an arbitrary minor-closed graph class.

A common method to demonstrate the simplicity of a characterization is by establishing
its polynomial-time computability. Given any minor-closed graph class G, represented by a
list of forbidden minors Hy, Ho, ..., Hy, is there an efficient algorithm deciding whether G is
path-like in the sense of Corollary 117 We show an affirmative answer to this question. In
fact, we prove a more general result which shows that for any fixed index ¢, whether G € A;
is decidable in time polynomial in the size of the representation of G, which is a finite list of
forbidden minors {Hy, Ha, ..., Hy}.

» Proposition 12. For any fized index i, there is a polynomial-time algorithm that, given
a list of graphs Hy, Hs, ..., Hy, decides whether the class of {Hy, Ha, ..., Hy}-minor-free
graphs G is in A;.

The proof of Proposition 12 is in Section 7. We remark that although the algorithm of
Proposition 12 finishes in polynomial time, the algorithm is unlikely to be practical in that

the list of forbidden minors for the considered minor-closed graph class G is often not known.

3.2 Tree-Like Graph Classes

It is natural to conjecture that any minor-closed graph class shares the same complexity
landscape as trees if and only if the graph class has bounded treewidth and unbounded
pathwidth. We prove the “only if” part of the conjecture.

» Corollary 13. A minor-closed graph class G shares the same complexity landscape as trees
only if G has bounded treewidth and unbounded pathwidth.

Proof. Theorem 8 implies that if a minor-closed graph class G has bounded pathwidth, then
the complexity class O(logn) disappears. Therefore, for G to have the same complexity
landscape as that of trees, G must have unbounded pathwidth.

Now suppose G is a minor-closed graph class with unbounded treewidth. Then the
well-known excluding grid theorem [69] implies that G contains all planar graphs.

It was shown in [8] that for any rational number % < ¢ < 1, there exists an LCL problem
P that is solvable in O(n®) rounds for all graphs and requires Q(n¢) rounds to solve for
planar graphs. As G contains all planar graphs, this implies that the complexity of P is
©(n) in G, This shows that [©(y/n),©(n)] is a dense region in the complexity landscape for
G. Hence the complexity landscape for G is different from that of trees. <

The range of the dense region. As mentioned in the above proof, we see that the dense
region [©(y/n), ©(n)] exists in the complexity landscape for any minor-closed graph class G
that has unbounded treewidth. In the full version of the paper [20], we generalize this result
to extend the range of the dense region to cover the entire interval [O(logn), ©(n)], which is
the widest possible due to the w(log” n) — o(logn) gap shown in [23]. Specifically, we show
that there are LCL problems with the following complexities.

» Theorem 14. For any minor-closed graph class G that has unbounded treewidth, there are
LCL problems on bounded-degree graphs in G with the following complexities.
O(n®), for each rational number ¢ such that 0 < c¢ < 1.

O(log®n), for each rational number ¢ such that ¢ > 1.
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Existing approaches. We briefly explain the construction of the LCL problem P in [§]
which is used in the above proof of Corollary 13. The LCL problem uses locally checkable
constraints to force the underlying network to encode an execution of a linear-space-bounded
Turing machine M in a two-dimensional grid. Suppose the time complexity of M on the
input string 0° is T'(s). Running a simulation of M on 0° requires n = s - T(s) nodes and
t = T(s) rounds. For any 3 < ¢ < 1, the round complexity function ¢ = ©(n®) can be realized
with T'(s) = s¢/(1=¢). Since T(s) = Q(s), [O(y/n), O(n)] is the largest possible dense region
resulting from this approach.

It was shown in [8] that LCL problems with complexity ©(n°) exist by extending this
construction to higher dimensional grids. This extension is not applicable for proving
Theorem 14, due to the following reason. For any graph H there exists a number d such
that H is a minor of a sufficiently large d-dimensional grid. If a minor-closed graph class G
contains arbitrarily large d-dimensional grids for all d, then G must be the set of all graphs.

With a completely different approach, in another previous work [11], the two dense regions
[©(loglog™ n), ©(log™ n)] and [O(logn), ©(n)] were shown for LCL problems on general graphs.
Due to a similar reason, their construction of LCL problems is also not applicable for proving
Theorem 14.

The proof in [11] relies on the following graph structure. Start with an a x b grid graph
whose dimensions a and b can be arbitrarily large. Let u; ; denote the node on the ith row
and the jth column. For each row 7, add an edge between u; ;, and w; j, if jo — ji = 4. This
graph contains a k-clique as a minor given that & < min{a,b}. To see this, contract the jth
column into a node v; for each 1 < j < k. Then {v1,v2,...,v;} forms a clique. Thus, for
the results in [11] to apply to a minor-closed graph class G, G must contain the k-clique for
all k. Since any graph is a minor of a sufficiently large clique, it follows that G is necessarily
the set of all graphs.

New ideas. To establish the dense region [O(logn), ©(n)], in the full version of the paper [20],
we modify the construction of [8] by attaching a root-to-leaf path of a complete tree to one
side of the grid used in the Turing machine simulation. This enables us to increase the
number of nodes to be exponential in the round complexity of Turing machine simulation,
allowing us to realize any reasonable LCL complexity in the region [©(logn),©®(n)] and to
prove Theorem 14.

3.3 Summary

For convenience, in the subsequent discussion, let B denote the set of all minor-closed graph
classes G that has unbounded pathwidth and bounded treewidth, and let € denote the set
of all minor-closed graph classes G that has unbounded treewidth and is not the set of all
graphs.

The state of the art. We summarize the old and new results on the complexity of LCL
problems as follows. For simplicity, here we only consider the deterministic LOCAL model.

Ay O(1)

?

A O(1) Rale) ((log* n)%>l6 (log™ n) Ralye) (n%> l@ (nﬁ) L z@ (n%) l@ (n)

X ? ? X ? ? 1 ? 1 ?
B O()—6O(loglog*n)—0O (log"n) —O (logn) — --- —O (nﬁ) —0 nﬁ) —O(n)
?

? ?
e 0( Ralc) (loglog™ n)—© (log" n) A (logn) dense
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The w(log® n) — o(logn) and w(1) — o(loglog” n) gaps for B and € are due to [23, 24]. The
existence of the complexity class ©(n'/*) for all positive integers k for B is due to [24]. The
existence of the complexity class ©(log" n) for Ay, As, ..., B, and € is due to the well-known
fact that the complexity of 3-coloring paths is ©(log* n). The existence of the complexity
class ©(logn) for B and C is due to the well-known that the complexity of A-coloring trees
is O(logn). All the remaining results are due to Theorems 6-9 and 14.

The conjecture. For the sake of comparison, here we also illustrate the complexity land-
scapes described in Conjecture 5.

Ao 0 (1)

Ay 0(1) 20 (log"n) 20 (nt) Al () X %0 (n#) o)
B 0 (1) 26 (log*n) =0 (logn) = --- 26 (né) Ralc) (n*) >0 (n)
e 0(1) 220 (log™ n) 20 (log n) 2 6 (n)
3.4 Roadmap

In Section 4, we prove that | Jj, ., Ai is a classification of all bounded-pathwidth minor-
closed graph classes. In Section 5, we show a combinatorial characterization of the set of graph
classes A; based on the growth rate of the size of the d-radius neighborhood. In Section 6,
we use the combinatorial characterization to prove Theorems 6-9. In Section 7, we present a
polynomial-time algorithm that decides whether G € A; for any given minor-closed graph
class G. Due to the page limit, the proof of the existence of the dense region [©(logn), ©(n)]
for any minor-closed graph class that has unbounded treewidth is left to the full version of
the paper [20].

4 A Classification of Bounded-Pathwidth Networks

In this section, we prove Propositions 3 and 4. That is, (Jj<;. ., A: is a classification of
all bounded-pathwidth minor-closed graph classes, and A contains the class of graphs
of pathwidth at most k. We need the following well-known characterization of bounded-
pathwidth minor-closed graph classes by Robertson and Seymour [68].

» Theorem 15 (Excluding forest theorem [68]). A minor-closed graph class G has bounded
pathwidth if and only if G does not contain all forests.

Propositions 3 and 4 are proved using the observation that the pathwidth of T; , equals ¢
whenever s > 3. The calculation of the pathwidth of T; ; can be done in a way similar to
the folklore calculation to show that the pathwidth of a complete ternary tree of height d is
precisely d. We still present a proof of the observation here for the sake of completeness.

» Observation 16. For any two integers i and s such that i > 1 and s > 3, the pathwidth of
Ti,s S 1.

We need an auxiliary lemma.

» Lemma 17 ([74]). Consider a rooted tree T whose root r has three children uy, uz, and
uz. If the pathwidth of the subtree rooted at w; is at least k for each i € {1,2,3}, then the
pathwidth of T is at least k + 1.

We are now ready to prove Observation 16.

26:11

ITCS 2024



26:12

The Distributed Complexity of LCLs Beyond Paths and Trees

Proof of Observation 16. We prove the upper bound. For the base case, (X1, Xa,...,Xs_1)
with X; = {v;,v;41} is a path decomposition of the s-node path (vy,vs,...,vs), showing
that the pathwidth of T;  is at most 1.

Given that the pathwidth of T;_; s is at most ¢ — 1, we show that the pathwidth of T; 4
is at most ¢. Let the s-node path (v1,vs,...,v) and s instances T4, T5,..., T, of T;_1 s be
the ones in the definition of T; ;. For each 1 < j <'s, let (X1, X2;,..., Xk ;) be a path
decomposition of T; of width at most ¢ — 1. Define X ; = X; ; U {v;}. Then

(X{yl, . 7XII<:,17 {vl,vg},X{’z, . ,X,’C’Q, {va,v3}, ..., {vs,l,us},X{’s, . 7Xll<:,s)

is a path decomposition of T; ; of width at most i.

For the rest of the proof, we consider the lower bound. It suffices to consider the case of
s =3, as the pathwidth of T 5 is at least the pathwidth of T; 5 for each s > 3. For the base
case, it is trivial that the pathwidth of T3 3 is at least 1.

Given that the pathwidth of T;_; 3 is at least ¢ — 1, we show that the pathwidth of T; 3
is at least 4. Consider the path (v1, vz, vs) in the definition of T; 3. We re-root the tree by
setting vo as the root. Now v has three children. Let 7" be any subtree of T; 3 rooted at one
of the children of vy. Observe that T" contains 7;_1 3 as a subgraph, so the pathwidth of T is
at least ¢ — 1 by induction hypothesis. Applying Lemma 17 to T; 3 rooted at ve, we obtain
that the pathwidth of T; 5 is at least i. <

Using Observation 16, we now prove Propositions 3 and 4.
» Proposition 3. A = J,., . Ai is a partition of A into disjoint sets.

Proof. First of all, Theorem 15 implies that any minor-closed graph class G ¢ A cannot
belong to A; for any i, as G contains all forests, so (<, ., Ai € A.

We claim that Aq, Ao, ... are disjoint sets. Suppose there are two indices i and j such that
GeA;and G € Aj and i < j. Then we have T) s € G for all j' and s such that 1 < j' <j
and s > 1 by (C1) in Definition 2, as T}/ ; is a minor of T} ,. However, G € A; implies that
Ti41,s ¢ G for some s by (C2) in Definition 2. This is a contradiction because 1 <7+ 1 < j.

It remains to show that each graph class G € A belongs to A; for some index i. As G has
bounded pathwidth, let k < oo be the maximum pathwidth of graphs in G. Then Tyy1 s ¢ G
for all s > 3 by Observation 16. We pick i to be the smallest index such that T;11 s ¢ G for
some s. Such an index 7 exists, and we must have 0 < i < k. As a result, G € A;, as both
(C1) and (C2) in Definition 2 are satisfied due to our choice of i. <

» Proposition 4. For every integer k > 1, the class of all graphs with pathwidth at most k is
m .Ak.

Proof. Let G be the graph class that contains all graphs with pathwidth at most k. We
have Ty, ; € G for all positive integers s by Observation 16, so (C1) in Definition 2 is satisfied.
Here we use the fact that T} o is a minor of T} ; whenever s’ < s. Since G does not contain
any graph with pathwidth at least k + 1, by Observation 16, Ty41 s ¢ G for all s > 3, so (C2)
in Definition 2 is satisfied. |

5 The Bounded Growth Property

In this section, we prove an alternative characterization of the set of graph classes A; that
will be crucial in the complexity-theoretic study in Section 6.
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Let ¢ > 0. We say that a graph class G is g-growth-bounded if, for every integer A > 3,
there exists a constant C'a > 0 only depending on A and G such that, for every d > 1, every
G=(V,E) € G? and every r € V,

{v eV |dist(v,r) <d}| < Cha -df.

In other words, G is g-growth-bounded if the d-radius neighborhood of any node in any
bounded-degree graph in G has size O(d9). Recall that G2 is the set of graphs G' € G with
maximum degree at most A.

The goal of this section is to prove the following result, which gives an alternative
characterization of the set Ay: It is the set of all minor-closed graph classes G such that k is
the smallest number such that G is k-growth-bounded.

» Proposition 18. Let G be any minor-closed graph class. If G ¢ Uogi<oo‘Aif then G is not
k-growth-bounded for any k < co. If G € Ay, then k is the smallest number such that G is
k-growth-bounded.

We first prove an easy part of Proposition 18.

» Lemma 19. Let G be any minor-closed graph class such that G ¢ Ao UA; U---UAy. For
any s < k+1, G is not s-growth-bounded.

Proof. Consider the set of graphs & = {Ty41.. | + > 3}. By Definition 2, as G ¢ Ag U A3 U
--UAyg, S is a subset of GA for each A > 3. From the graph structure of Tk+1 5, the size of
the d-radius neighborhood of a node in a graph in & cannot be bounded by any function
O(d®) with s < k+ 1. <

Layers of nodes. Consider the following terminology. Given a positive integer C' and a
rooted tree T' = (V, E), we define a sequence L§, L1, L}, L2, L}, ... of node subsets of T as
follows.
L§ =V is the set of all nodes in T'.
For each i > 1, L; is the set of nodes v such that the subtree rooted at v contains at least
C nodes in L_;.
For each ¢ > 1, L7 is the set of nodes v having at least two children in L;.
For each non-negative integer k, we say that a rooted tree T is (k, C)-limited if Ly, = 0.
We write N¢(r) to denote the set of nodes v € V with dist(v,7) < d. We have the
following auxiliary lemma.

» Lemma 20. If T is a (k,C)-limited rooted tree whose mazimum degree is at most A, then
|Lx N N(r)| < ACd, where 7 is the root.

Proof. Since T is (k,C)-limited, we have Lyy1 = 0, so |[L}| < C. If we remove the edges
between each v € L} and its children in the rooted tree 7', then the set of nodes in Ly
are partitioned into paths Py, P, ..., P, as L} is the set of nodes in L with at least two
children in Lj. Here x is the number of paths in the partition. Orienting each edge toward
the parent, we write each path P; as P, = u;1 < 2 < ---.

Observe that u; ; is either the root r of T or a child of a node in L. Since the paths
Py, P, ..., P, are disjoint, at most one path P; has u;; = r. The number of nodes whose
parent is in L} is at most |Lj|(A — 1) + 1. Hence the total number x of paths is at most
r=|Li[(A-1)4+2< (C-1)(A-1)+2< CA.

A necessary condition for a node v € Ly to be in N%(r) is that it is within the first d
nodes of some path P;, we have |L, N N%(r)| < zd < ACd. <
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Using Lemma 20, we show that the size of the d-radius neighborhood of the root r of any
(k, C)-limited rooted tree T is small.

» Lemma 21. For any three integers C > 1, k > 0, and A > 1, there exists a constant
Kc g,a only depending on C, k, and A such that the number of nodes within distance d
to the root in any (k,C)-limited rooted tree T with degree at most A is upper bounded by
Kc g - d.

Proof. We set K¢ 1, a as follows.

oo _fo-u ik =0,
CEETVAC (AKega +1) ifk> 1

Let T = (V, E) be any (k,C)-limited rooted tree, so Lgt1 = (). Let r be the root of
T. We verify that the number of nodes within distance d to the root in T is at most
INY(r)| < Kegoa - d*

Base case. For the case of k =0, if L; = (), then T contains at most C' — 1 nodes, since
otherwise the root of T belongs to Ly. Therefore, [N4(r)| < |[V| < C — 1= Kca-

Inductive step. Now, suppose k > 1. If Ly, = (), then T is (C, k — 1)-limited, so the number
of nodes within distance d to the root is at most Kc)k,LAdk_l < Kc,k,Adk by inductive
hypothesis.

Suppose Ly # @, then the root r belongs to L, and the number of nodes in L; within
distance d to the root is at most ACd by Lemma 20. Let S = N¢(r) N Ly denote these nodes.

Each node in N¢(r) \ S belongs to the tree rooted at a child u of some v € S. Let S’ be
the set of nodes in V'\ Ly, that are children of nodes in S. Then |S’| < AlS].

Since u ¢ Ly, for each u € S’ the subtree of T rooted at w is (C, k — 1)-limited, so it
contains at most K¢ p—1, Ad*~1 nodes that are within distance d to u by inductive hypothesis.
Therefore,

IN(r)| = [NU(r) 0 Lyg| + [N9(r) \ L
<18+ |8 Kep—1,ad" "
< ACd+ A*Cd - Kg gy adi ™!
<AC-(1+AKgp_1a)d*

%
= Kcpad",

as desired. <

Rooted minors. A rooted graph is a graph G with a distinguished root node r € V. A
rooted graph can also be treated as a graph without a root. We say that H is a rooted
minor of G if there exist a partition of V(G) into k = |V (H)| disjoint connected clusters
C ={V1,Va,...,Vi} and a bijection between C = {V,Va,..., Vi } and V(H) satisfying the
following two conditions:

For each edge e in H, the two clusters in C corresponding to the two endpoints of e are

adjacent in G.

The cluster in C corresponding to the root of H contains the root of G.
Observe that in Definition 1, T; ; is a rooted minor of T} » whenever ¢ < ¢’ and s < s'.

We show that a rooted minor isomorphic to T;41 s exists in any rooted tree T that is not
(i, C)-limited, for some sufficiently large C.
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» Lemma 22. For any positive integers x and A, there is a number Cy Ao > 0 only depending
on x and A such that for each positive integer i, any rooted tree T with degree at most A
that is not (i, Cy a)-limited contains Tiy1 4 as a Tooted minor.

Proof. We define B; = 1 and B; = 14+ A - Bj_; for j > 1. Remember that if T is not
(i,C)-limited, then L;1q1 # 0, so |Lf| > C. We claim that for C' = B,, in any rooted tree T’

with |L¥| > C, there is a path P = (u1, ug, ..., u)) meeting the following conditions.
The first node vy of the path is the root r of T
The path contains z nodes in L]. Denote these nodes as v1,va,...,0;.

All nodes in the path belong to L; .

Such a path P can be constructed as follows. We start with u1 = r. Once (uq, ug, ..., u;)

has been constructed, if the current path still does not contain = nodes in L}, then we extend
the path by picking u;; as a child of u; that maximizes the number of nodes in L} in the
subtree rooted at u;1.

To analyze this construction, let ®; > 0 be the number of nodes in L} in the subtree
rooted at u;. There are two cases.

If u; € L; \ L}, then u; has exactly one child u;11 in L; with ®;11 = ®;.

Otherwise, u; € L;. Then u; has at most A children in L;, so ®;,1 > (®; — 1)/A.

Our choice of C' = B, ensures that this process leads to a path containing x nodes in L.

Now, consider such a path P. If i = 0, then P already contains 7} , as a rooted minor,
as P contains at least x nodes and 7 , is an xz-node path.

From now on, we assume ¢ > 1. Since v; € L7, it has a child w; € L; outside of P. By
inductive hypothesis, the subtree T} rooted at w; has a rooted minor isomorphic to T; c.
For each 1 < j <z, we consider the partition of the nodes in T} witnessing the fact that it
has T; ¢ as a rooted minor. The rest of the nodes in 1" can be partitioned into x connected
clusters 51,52, ...,5; so that v; € §;. We must have » € S;, and the overall partition of

the nodes of T shows that T;11,¢ is a rooted minor of T', so we may set C, A =C = B,. <«

For a graph class G, we say that G is (k,C)-limited if all trees T = (V, E) in G are
(k, C)-limited for all choices of the root r € V. Tt is still allowed that G contains graphs that
are not trees.

» Lemma 23. Let G be any minor-closed graph class such that for each positive integer A
there is a constant C' > 0 such that G® is (k, C)-limited. Then G is k-growth-bounded.

Proof. Suppose G2 is (k,C)-limited. For each G = (V,E) € G with degree at most A,
we pick any node r € V| and let T" be the tree corresponding to any BFS starting from 7.
Because G is minor-closed, we have T € G, so T rooted at r is (k,C)-limited. Applying
Lemma 21 to the rooted tree T' with the parameters C,k, and A, we conclude that the size
of the d-radius neighborhood of 7 in G is at most K¢ . a - d*, so G is k-growth-bounded with
Ca = KC,k,A- <4

» Lemma 24. IfG € AgUAU---UAyg, then for each integer A > 3, there exists a constant
C > 0 such that G~ is (k,C)-limited.

Proof. Suppose there exists A > 3 such that G2 is not (k, C)-limited for all C' < co. We
apply Lemma 22 to any tree T' € G that is not (k, C)-limited for C' = C, a for some choice
of the root r. Then we obtain that T" contains T}41 , as a minor, so Tj41,, € G. Since this
holds for all =, G contains Tj41 , for all z, implying that G ¢ Ao UA; U--- U Ay, which is a
contradiction to the assumption that G € Ag UA; U---UAg. Hence for each integer A > 3,
there exists a constant C' > 0 such that G2 is (k, C)-limited. <
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Now we are ready to prove Proposition 18.

Proof of Proposition 18. If G ¢ (J,<, .., Ai, then Proposition 3 and Theorem 15 imply that
G contains all trees. By considering complete trees, we infer that G is not k-growth-bounded
for any k < oo.

Now suppose G € Ag. Since G € AgUA; U---UAg, Lemmas 23 and 24 implies that
G is k-growth-bounded. Since G ¢ Ag U A; U--- U Ap_1, Lemma 19 implies that G is
not s-growth-bounded for any s < k. Hence k is the smallest number such that G is
k-growth-bounded. <

6 The Complexity Landscape

In this section, we consider the complexity of LCL problems for the graph class G® with
G € Ayg, for some k > 0. We first consider the case of G € Ay.

» Theorem 6. Let A > 3 be an integer, and let G € Ag. All LCL problems that are solvable
in G2 can be solved in O(1) rounds in GA.

Proof. By Proposition 18, there is a number Ca such that the size of d-radius neighborhood
of any r € V in any G = (V, E) € G2 is at most Ca. As the statement holds for all d, we
infer that each graph in G® has at most Ca nodes. Therefore, if an LCL problem is solvable
in G € G2, then it can be solved in Ca = O(1) rounds. <

For the rest of the section, we consider k > 0.

» Theorem 7. Let k> 1, A>3, and s € {1,2,...,k} be integers, and let G € Ay. There is
an LCL problem whose complexity in G2 is O(n'/*).

Proof. The LCL problem P considered by Chang and Pettie [24] can be solved in O(n'/*)
rounds on all graphs, including the ones in G. It was shown in [24] that P, requires Q(n'/*)
rounds to solve in the graphs T ., for all . Since any G € A}, contains T , for all = by the
definition of Ay, the complexity of P, in any G € Ay, is Q(n'/*). Combining the upper and
lower bounds, we conclude that the complexity of Py is @(nl/ %) in G. <

» Theorem 8. Let k > 1 and A > 3 be integers, and let G € Ay. There is no LCL problem
whose deterministic complexity in G* is between w(log* n) and o(n'/*).

Proof. This lemma follows from a modification of the proof of the existence of the determ-
inistic w(log® n) — o(logn) complexity gap on general graphs by Chang, Kopelowitz, and
Pettie [23].

We briefly review their proof and describe the needed modification. Fix any G € Ay.
Consider any deterministic algorithm A solving an LCL problem P in T'(n) = o(n'/*) rounds
for all graphs in G». The goal is to design an algorithm A’ that also solves P for all graphs
in G2 and costs only O(log* n) rounds.

Suppose the locality radius of P is r. If we can assign distinct O(log7)-bit identifiers to
each node such that the (T'(72) + r)-radius neighborhood of each node has size at most 7 and
does not contain repeated identifiers, then P can be solved in T'(72) rounds by running A
with these O(logn)-bit identifiers and pretending that the underlying network has 7 nodes.
To see that this strategy works, we use the property that G is minor-closed. We show that
the output label of each node v resulting from the above approach is correct. Given any node
v in G, consider a subgraph G of G that contains exactly 7 nodes and contains the entire
(T'(n) 4 r)-radius neighborhood of v. We assign distinct O(log71)-bit identifiers to the nodes
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in G in such a way that the O(log#)-bit identifiers in the (T'(72) 4 r)-radius neighborhood
of v are chosen to be the same in G and G. Because G is minor-closed, we have G € G.
The output labels resulting from running A in G and G must be the same in the r-radius
neighborhood of v, so the correctness of A in G implies that the output label of v must be
locally correct in G.

We show that we can choose 7o = O(1) to satisfy the property that the (7'(72) + r)-radius
neighborhood of each node has size at most 7. Let d = T(72) + r. Then d = o(7'/*) because
r = O(1) and T(7) = o(”'/*). By Proposition 18, the size of the d-radius neighborhood of
any node in any graph G' € G2 is O(d¥). Thus, the size of the (T'(#) +r)-radius neighborhood
of each node is upper bounded by o(7), meaning that by choosing 7 to be a sufficiently large
constant, the size of the (T(n) + r)-radius neighborhood of each node is at most 7.

As 7 = O(1) is a constant, the needed O(logn)-bit identifiers can be computed in
O(log* n) rounds deterministically using the coloring algorithm of [44]. Since T'(7) = O(1)
is also a constant, this approach yields a new algorithm A’ that solves P in just O(log" n)
rounds. |

» Theorem 9. Let k > 1 and A > 3 be integers, and let G € Ay. There is no LCL problem
whose complezity in G2 is between w(1) and o ((log* n)*/*).

Proof. This lemma is proved by the Ramsey-theoretic technique of Naor and Stockmeyer [66],
as discussed in the paper of Chang and Pettie [24]. Although this proof considers only
deterministic algorithms, the result applies to randomized algorithms as well, because it is
known that randomness does not help for algorithms with round complexity 200" %) as
shown by Chang, Kopelowitz, and Pettie [23].

Fix a graph class G with G € Ay. Consider a T'(n)-round deterministic algorithm A
solving an LCL problem P for a graph class G». Fix a network size n. Consider the following
parameters.

7 = T(n) is the round complexity of A on n-node graphs in G2.

p is the maximum number of nodes in a 7-radius neighborhood of a node in a graph in

GA. According to Proposition 18, p = O(7%).

m is the maximum number of nodes in a (7 + r)-radius neighborhood of a node in a

graph in gAa.

c is the number of distinct functions mapping each possible 7-radius neighborhood of a

graph in G2, whose nodes are equipped with distinct labels drawn from some set S with

size p, to an output label of P.

Let R(p, m,c) be the minimum number of nodes guaranteeing that any edge coloring of

a complete p-uniform hypergraph with ¢ colors contains a monochromatic clique of size m.

It is known that log* R(p,m,c) < p +log" m + log™ ¢ + O(1). Suppose the space of unique
identifiers has size n©. As long as n® > R(p,m,c), it is possible to transform A into an
O(1)-round deterministic algorithm solving A. See [24, 66] for details.

Since the part log™ m + log™ ¢ + O(1) is negligible comparing with p, if p < log* n, then
the above transformation is possible. Since p = O(7*), the inequality p < log* n holds
whenever the round complexity of A is o ((1og* n)t/ k). Hence the complexity of P is not
within w(1) and o ((log* n)*/*) on GA. <

7 The Computational Complexity of the Classification

In this section, we prove Proposition 12 by showing a polynomial-time algorithm that decides
whether G € A; for any given minor-closed graph class G, where G is represented by a finite
list of excluded minors Hy, Ho, ..., H.
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» Lemma 25. Let G be the class of {H1, Ha, ..., Hy}-minor-free graphs. Then G € Ag U
A1 U---UA,; if and only if there exist an integer s > 3 and an index j € [k] such that H; is
a minor of Tiy1s.

Proof. Suppose H; is a minor of T;14  for some s > 3. Then T;41 s ¢ G. For each z > i + 1,
T;41,s is a minor of T, 5, so T, s ¢ G, as G is closed under minors. Since a necessary condition
for G € A, is T, s € G, we must have G ¢ A,. Since H; is a tree, G has bounded pathwidth
by Theorem 15. Therefore, G € A\ (Aj11 UA; 42U ) =AgUAL U UA,.

For the other direction, suppose G € AgUA; U---UA,;. Then G € A, for some z € [0, 1].
By the definition of A, there is an index s > 3 such that G does not contain 7,11 5. Since
Ty+1,s is a minor of Tj4q ¢, G also does not contain 7511 s, so there is some graph H; in the
list of excluded minors {H1, Ho, ..., Hy} such that H; is a minor of Tjq 5. <

» Lemma 26. For any rooted tree H = (V, E), the following two statements are equivalent.
There exists a positive integer s such that H is a rooted minor of T} s.
There is a choice of a node u in H satisfying the following requirement. Let P be the
unique path connecting u and the root r of H. Let S be the set of nodes in V' \ P whose
parent is in P. For each v € S, there exists a positive integer s’ such that the subtree
rooted at v is a rooted minor of Tj_1 o .

Proof. Suppose H = (V, E) is a rooted minor of Tj,. Consider any clustering C of the
node set of T; ; witnessing the fact that 7} s contains H as a rooted minor. Consider the
path (v1,v2,...,vs) and the s rooted trees T4, T5, ..., T, in the definition of T} ;. Let C* be
the set of clusters in C containing a node in {vy,vs,...,vs}. Then the set of nodes in H
corresponding to the clusters in C* form a path P connecting the root r of H to some other
node u.

Let S be the set of nodes in V'\ P whose parent is in P. We show that the subtree rooted
at each v € S is a rooted minor of Tj_; ;. For each node v € 9, let C, be the set of clusters
in C \ C* corresponding to nodes in the subtree of H rooted at v. The union of the clusters
in C, must be a connected set U of nodes that are confined to one T; of the rooted trees
T1,Ty,...,Ts in the definition of T} ;. Let T” be the rooted subtree of T; = Tj_ s induced
by U. Observe that the cluster in C, corresponding to v contains the root of 7. We extend
the clustering C, to cover all nodes in T; = T, , as follows. For each node w in 7; that is
not covered by the clustering C,, let w join the cluster in C, that contains the unique node
w’ in T" minimizing dist(w,w’) in T;. The resulting clustering shows that the subtree rooted
at v is a rooted minor of T; = Tj_1 .

For the other direction, suppose there is a choice of a node u in H satisfying the following
condition. Let P = (r = uy,us, ..., u, = u) be the unique path connecting the root r and u
in H, where z is the number of nodes in P. Let S be the set of nodes in V' \ P whose parent
is in P. For each node v € S, there exists a positive integer s’ = s, such that the subtree
rooted at v is a rooted minor of Tj_; .

We choose s to be the maximum of |S| and s, among all v € S. We show that H is a
rooted minor of T} ; by demonstrating a clustering of the nodes of T} ; meeting all the needed
requirements in the definition of rooted minor. Consider the path (v1,ve,...,vs) and the
s rooted trees Ty, 15, ..., T in the definition of Tj ;. We partition the path (v, va, ..., vs)
into x subpaths (vy,vs,...,v5) = Py o Pyo--- 0 P, such that the number of nodes in P; is at
least the number of children of w; in S. This partition exists due to our choice of s.

A clustering of the nodes of T} ; is constructed as follows. For each child w of u; such that
w € S, we associate w with a distinct index [, such that v;,, € P;. Recall that the subtree
rooted at w € S is a rooted minor of T;_; 5, . Since s > s, Tj_1,5, is a rooted minor of
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T;_1,s, so the subtree rooted at w € S is also a rooted minor of T;, = Tj_1 . We find a
clustering of the nodes in 7;,, witnessing that the subtree rooted at w is a rooted minor of
T;,, . For each u; € P, its corresponding cluster C' in T s is chosen as follows. Start with the
subpath C = P;. For each node v; € P; that is not associated with any node in .S, we add all
nodes in the subtree T; to C.

The clustering covers all nodes in T} ,, the root v; of T} ; belongs to the cluster corres-
ponding to the root u; = r of H, and each edge in H corresponds to a pair of adjacent
clusters, so H is a rooted minor of 7} ;. <

Now we are ready to prove Proposition 12.

» Proposition 12. For any fixed index i, there is a polynomial-time algorithm that, given
a list of graphs Hy, Ho, ..., Hy, decides whether the class of {Hy, Ha, ..., Hi}-minor-free
graphs G is in A;.

Proof. In view of Lemma 25, G € A; if and only if the following two conditions are met.

If ¢ > 0, then for all integers s > 1, each graph H; € {Hy, Hs,...,H} is not a minor of

T s.

There exist an integer s > 1 and a graph H; € {H1, Ho, ..., Hy} that is a minor of Tjyq 5.
Therefore, to decide whether G € A; in polynomial time, it suffices to design a polynomial-time
algorithm that accomplishes the following task for a fixed index j.

Given a graph H, decide if there exists an integer s > 1 such that H is a minor of 7} ;.
We may assume that H is a tree, since otherwise we can immediately decide that H is not a
minor of T} ;. Moreover, the above task can be reduced to following rooted version by trying
each choice of the root node in H.

Given a rooted tree H, decide if there exists an integer s > 1 such that H is a rooted

minor of T} ;.

For the rest of the proof, we design a polynomial-time algorithm for this task by induction
on j. For the base case of j = 1, as T s is simply an s-node path, the task of checking
whether H is a rooted minor of T s for some s can be restated as follows. Given a rooted
tree H, check whether it is a path where its root is an endpoint of the path, that is, H
is isomorphic to T} s for some s. This task is doable in polynomial time. Assuming that
we have a polynomial-time algorithm for j — 1, the characterization of Lemma 26 yields a
polynomial-time algorithm for j by checking all choices of the node w in the characterization
of Lemma 26. <

Remark. In the minor containment problem, we are given two graphs H and G, and the
goal is to decide whether H is a minor of G. The problem is well-known to be polynomial-time
solvable when H has constant size [61, 70]. In the minor containment instances in the above
proof, H is one of the forbidden minors Hy, Hy,...,Hx. As {Hy, Ho,...,Hy} is seen as
the input to the problem considered in Proposition 12, these graphs cannot be treated as
constant-size graphs, so the polynomial-time algorithms in [61, 70] cannot be adapted here.

If H does not have constant size, then the problem is NP-complete, even when G is a
tree [54]. A polynomial-time algorithm for minor containment is known for the case where G
is a tree and H has bounded degree [54]. This polynomial-time algorithm does not apply to
our setting in the above proof, as the maximum degree of the graphs Hy, Hs, ..., Hx can be
arbitrarily large.
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8 Conclusions

In this work, we proposed a conjecture that characterizes the complexity landscape of LCL
problems for any minor-closed graph class, and we proved a part of the conjecture. We
believe that our classification A = (Jy<; . A of bounded-pathwidth minor-closed graph
classes offers the right measure of similarity between a minor-closed graph class and paths
from the perspective of locality of distributed computing.

A significant effort is required to completely settle the conjecture. To extend the existing
techniques to establish complexity gaps for LCL problems from paths or trees to bounded-
pathwidth graphs or bounded-treewidth graphs, new local algorithms to decompose these
graphs are needed. One major challenge here is that both path decomposition and tree
decomposition are global in that computing them requires at least diameter rounds, so they
are not directly applicable to the LOCAL model. New results along this direction not only
have complexity-theoretic implications but it is likely going to yield new algorithmic tools in
the LOCAL model.

On a broader note, we hope our work will inspire others to explore structural graph
theory techniques in the study of the algorithms and complexities of local distributed graph
problems and build bridges between distributed computing and other areas within algorithms
and combinatorics.
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