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Abstract
We show that for every homogeneous polynomial of degree d, if it has determinantal complexity at
most s, then it can be computed by a homogeneous algebraic branching program (ABP) of size at
most O(d5s). Moreover, we show that for most homogeneous polynomials, the width of the resulting
homogeneous ABP is just s − 1 and the size is at most O(ds).

Thus, for constant degree homogeneous polynomials, their determinantal complexity and ABP
complexity are within a constant factor of each other and hence, a super-linear lower bound for
ABPs for any constant degree polynomial implies a super-linear lower bound on determinantal
complexity; this relates two open problems of great interest in algebraic complexity. As of now,
super-linear lower bounds for ABPs are known only for polynomials of growing degree [9, 6], and for
determinantal complexity the best lower bounds are larger than the number of variables only by a
constant factor [10].

While determinantal complexity and ABP complexity are classically known to be polynomially
equivalent [13], the standard transformation from the former to the latter incurs a polynomial
blow up in size in the process, and thus, it was unclear if a super-linear lower bound for ABPs
implies a super-linear lower bound on determinantal complexity. In particular, a size preserving
transformation from determinantal complexity to ABPs does not appear to have been known prior
to this work, even for constant degree polynomials.
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1 Introduction

1.1 Super-linear Lower Bounds in Complexity Theory
Perhaps the principal embarrassment of complexity theory at the present time is its failure
to provide techniques for proving non-trivial lower bounds on the complexity of some of the
commonest combinatorial and arithmetic problems. To add further to the embarrassment,
the previous sentence is a direct quote from Valiant’s 1975 paper [20], and yet it is true
today as it was the day it was written, nearly 50 years ago: we are still unable to prove, for
example, a super-linear circuit lower bound for a problem in NP.
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27:2 Determinants vs. Algebraic Branching Programs

Proving such lower bounds for boolean circuits is a major open problem in complexity
theory (even for circuits of depth O(log n)), but such an analogous result is known in the
model of algebraic circuits, that compute multivariate polynomials using arithmetic operations.
Baur and Strassen [19, 2] proved that computing the degree-d power sum polynomial

∑n
i=1 xd

i ,
for instance, requires circuits of size Ω(n log d), which is super-linear in n assuming d = ω(1).

As evident from the statement of the result (and even more so from the proof technique),
this result crucially relies on the fact that the polynomial being computed is of high degree.
It remains an interesting open problem to prove super-linear lower bounds for algebraic
circuits computing constant degree polynomials (see [16] for a discussion on the importance
of this problem). In fact, even the case of computing linear transformations has attracted
significant attention (see, e.g., [21, 18, 12]).

1.2 Algebraic Branching Programs

Circuits are the most powerful model of algebraic computation, and therefore one may
consider first solving this challenge in easier settings. A formula is a circuit whose underlying
graph is a tree. Kalorkoti [7] developed a technique for proving super-linear lower bounds for
algebraic formulas (based upon Nechiporuk’s method which applies to Boolean formulas [15]).
This technique can be used to prove lower bounds as large as Ω(n2/ log n) for mutilinear
polynomials of degree n (as discussed in [6], in the model of algebraic formulas it is natural
to consider multilinear polynomials since allowing polynomials of large individual degree
results in some trivial lower bounds). This lower bound is slightly improved in [6], using a
different technique, to Ω(n2). It is fairly straightforward to apply Kalorkoti’s method to
constant degree polynomials as well and obtain super-linear lower bounds.

Lying between formulas and circuits is the model of algebraic branching programs (or
ABPs, which are defined formally in Section 2). The best lower bound known for ABPs is
Ω(nd) [6], which is again only super-linear when the degree d is super-constant. Interestingly,
in the analogous boolean model of branching programs (even parity or non-deterministic
branching programs, which are arguably a better suiting analog of algebraic branching
programs), Nechiporuk’s method can be used to show super-linear lower bounds (see, e.g.,
[8]). In the algebraic setting, however, the ability to label a single edge of the program by an
arbitrary linear function of the variables seems like a challenge to this technique. Therefore,
it is still an open problem to prove super-linear lower bounds for constant-degree polynomials,
not only for circuits but even for algebraic branching programs.

The family of multivariate polynomials that can be computed by ABPs of polynomial
size form the complexity class VBP. One notable member of this class is the determinant
polynomial, Det(X) =

∑
σ∈Sn

∏n
i=1 xi,σ(i). It is, in fact, a rather distinguished member of

this class: perhaps the most natural way to define “reductions” between polynomials is to
consider linear projections of the variables, and under this class of reductions the determinant
is a complete polynomial for VBP, namely, every polynomial in this class can be efficiently
reduced to the determinant (see, e.g., [22, 17] for a proof of this fact). Arguably, the fact
that determinants are ubiquitous in mathematics can be attributed to this completeness
result, as any polynomial with a small branching program (and in particular, any polynomial
with a small formula) is just a determinant in disguise.
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1.3 Determinantal Complexity
The discussion in the previous paragraph implies that one can equivalently define VBP using
determinantal representations. A determinantal representation of size s for a polynomial
f ∈ F[x1, . . . , xn] is an s × s matrix M whose entries are linear functions1 in x1, . . . , xn such
that Det(M) = f . The completeness result mentioned above in particular implies that the
determinantal complexity of every polynomial is finite, and also motivates studying the
determinantal complexity of polynomials as a natural complexity measure of its own.

For a polynomial f , let dc(f) denote its determinantal complexity, that is, the minimal s

such that f has a determinantal representation of size s. By the discussion above, proving
that the determinantal complexity of a sequence of polynomials {fn} is super-polynomial
(in the number of variables n) immediately implies that this sequence is not in VBP. The
sad reality, however, is that we don’t know a single explicit sequence of polynomials whose
determinantal complexity is super-linear (it is easy to show that this quantity is exponential
for a “generic” polynomial, or even a random polynomial with 0/1 coefficients). The best
lower bound, as a function of the number of variables n, is roughly 1.5n, proved by Kumar
and Volk [10]. Also worth mentioning is the lower bound of Mignon and Ressayre [14], who
proved that the determinantal complexity of the n × n permanent over fields of characteristic
0 is at least n2/2. This result was extended to characteristics different than 2 by Cai, Chen
and Li [4] (over characteristic 2, the permanent and determinant coincide). Note however that
the n × n permanent is a polynomial in n2 variables, so this lower bound isn’t super-linear in
the number of variables, and in fact, it seems challenging to extend their technique to prove
a lower bound which is larger than the number of variables. We refer to the introduction of
[10] for further discussion on this subject.

The super-linear lower bounds for algebraic branching programs (or even circuits) don’t
imply super-linear lower bounds on determinantal complexity, as the known reductions to
the determinant incur a polynomial blow-up in the size parameter: that is, a polynomial
computed by a size-s ABP also has a determinantal representation of size poly(s) × poly(s),
but if the best lower bound we can give on s is slightly super-linear, the lower bound we get
on the size of the determinantal representation isn’t super-linear in n.

1.4 Our Contributions
We relate here the two problems mentioned above, of proving lower bounds for constant
degree polynomials and proving lower bounds for determinantal complexity, by reducing
one to the other. Our main result is that proving a super-linear lower bound on the ABP
complexity of a homogeneous constant-degree polynomial would imply a super-linear lower
bound on its determinantal complexity. The other direction of this reduction is already
known: a polynomial that has a size-s ABP can be written as the determinant of an s × s

matrix whose entries are linear functions [17], so a super-linear lower bound on dc(f) also
implies a lower bound on its ABP complexity.

We prove this reduction by constructing an ABP of size poly(d) · s for any homogeneous
polynomial that has a size-s determinantal representation.

▶ Theorem 1.1 (Informal). Let f be a homogeneous polynomial that has a size-s determinantal
representation. Then f has an ABP of size poly(d) · s.

1 Throughout this text when we use the term “linear functions” to include affine functions as well. When
we insist that the constant term is zero, we make it explicit by referring to homogeneous linear functions.
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The formal statement of Theorem 1.1 appears as Theorem 4.1 in Section 4.
We stress again that while the fact that any polynomial with small determinantal

representation has a small ABP isn’t new, the known reductions from determinants to ABPs
(which are simply constructions of algebraic branching programs for the determinant, e.g.,
[3, 13]) all result in ABPs of size s1+c for some c > 0. Thus, Theorem 1.1 gives a more
efficient reduction when d is small, and in particular we have the following corollary.

▶ Corollary 1.2. Let f = {fn} be a family of homogeneous polynomials of constant degree.
Then a super-linear lower bound on the ABP complexity of f implies a super-linear lower
bound on the determinantal complexity of f .

Theorem 1.1 applies for every constant degree polynomial. It turns out, however, that
for “most” polynomials we can construct a reduction which is simultaneously simpler and
more efficient. We first explain what do we mean by “most” polynomials. The singular
locus of a homogeneous polynomial f is the variety defined by the common zeros of its first
order partial derivatives. This variety is defined by n polynomials and thus for a “generic”
homogeneous polynomial f , one expects this variety to be zero-dimensional. There are, of
course, notable exceptions. For the n × n determinant polynomial, for example (that has n2

variables), this variety has dimension exactly n2 − 4 (see [23]).
Having a singular locus whose dimension is strictly less than n − 4 imposes powerful

structure on the determinantal representations which we are able to use in order to prove:

▶ Theorem 1.3 (Informal). Let f be a homogenous polynomial such that its singular locus
has dimension less than n − 4, and f has a size-s determinantal representation. Then f has
an ABP of width s − 1 and size at most ds.

The formal statement of Theorem 1.1 appears as Corollary 3.2 (of Theorem 3.1) in
Section 3.

The structure that we exploit to prove Theorem 1.3 is the fact that for polynomials
whose singular locus has dimension less than n − 4, it holds that the constant part of any
determinantal representation must be of rank s − 1 (this fact was discovered by [23] and is
also used in the determinantal complexity lower bounds of [1] and [10]: see Observation 2.6
in Section 2). This motivated Landsberg and Ressayre [11] to define the notion of regular
determinantal complexity. A determinantal representation is said to be regular if its constant
part has rank s − 1, and the regular determinantal complexity of a polynomial f is the size
of its smallest regular determinantal representation. Another motivation for this definition
comes from the fact that the natural reductions from formulas and ABPs to determinantal
representations give regular determinantal representations. Theorem 3.1 shows that the
notions of regular determinantal complexity and ABP complexity are essentially equivalent,
since the relation between the size of the regular determinantal representation and the width
of the ABP is particularly sharp.

We stress again that “almost all” polynomials satisfy the assumption of Theorem 1.3.
In particular, it seems conceivable that most proof techniques that would imply a lower
bound for ABPs will be applicable to at least one polynomial with a small dimensional
singular locus, so that we can apply Theorem 1.3 to obtain lower bounds on its determinantal
complexity.

A final remark is in order regarding the homogeneity assumptions in Theorem 1.1 and
Theorem 1.3. We don’t see it as a major hurdle towards proving lower bounds using our
reduction. Most polynomials studied in algebraic complexity (such as the determinant,
permanent, elementary symmetric polynomials, power sum polynomials, iterative matrix
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multiplication, and so on) are homogeneous to begin with, and we are not aware of a single
technique for proving lower bounds that uses non-homogeneity in a crucial way, so it seems
conceivable again that most proof techniques for lower bounds would apply to homogeneous
polynomials just as well.

Nevertheless, it is still an assumption, and one may try to eliminate it, if only for purely
aesthetic reasons. One natural way to go about it is to try to handle each homogeneous
component of f separately, apply our transformation to obtain an ABP, and then assemble
the ABPs computing each homogeneous component to an ABP computing the sum.

Such an approach indeed works in other contexts in algebraic complexity theory, where
non-homogeneity is rarely an issue when studying strong models of computation such as ABPs
and circuits. These models can be efficiently homogenized: namely, given a possibly non-
homogeneous circuit or ABP computing a polynomial f , one can find, for each homogeneous
component of f , a circuit (or ABP) that computes it, whose size is bigger than the original
size only by a multiplicative factor which depends polynomially on the degree d (even further,
one can find a single circuit or ABP with multiple outputs, that simultaneously computes
all the homogeneous components, with similar size guarantees). One can then handle each
homogeneous component of f separately. Thus, when one considers super-polynomial lower
bounds this is never an issue, and for the question of proving super-linear lower bound this
isn’t a problem if d is a constant.

Curiously enough, however, we don’t know if the same can be done for determinantal
representation. While it is true that if f has a size s determinantal representation then each
of its homogeneous component has a determinantal representation of size poly(s, d) (where
d = deg(f)), the proof for this fact involves first converting the determinantal representation
to an ABP using, for example, the reductions of [13, 3], homogenizing the ABP, and converting
the ABP back to a determinantal representation. This results in a size blow-up which is
super-linear in s (due to the first step of the transformation), which makes it unsuitable
for us.

A similar issue arises when one considers determinantal complexity of sums of polynomials,
which leads to the question of whether dc(f + g) ≤ dc(f) + dc(g) (or perhaps the inequality
holds up to a constant factor). It is easy to see that dc(f · g) ≤ dc(f) + dc(g) (just
take a block matrix), and using the conversion to ABPs it’s also easy to conclude that
dc(f + g) = poly(dc(f), dc(g)), but as most natural models of computation have the stronger
subadditivity property, it would be interesting to prove it (or disprove it) for determinantal
complexity.

2 Preliminaries

In this section we give definitions of some of the notions we use later, and state some basic
results.

We start by defining the singular locus of a polynomial.

▶ Definition 2.1. Let f ∈ F[x] be a polynomial. The hypersurface defined by f , V (f), is the
set of points a such that f(a) = 0. The singular locus of f , Sing(f) is the variety defined by

Sing(f) =
{

a ∈ V (f) : ∂f

∂xi
(a) = 0, 1 ≤ i ≤ n

}
.

We briefly remark that some previous related papers (such as [6, 10]) defined the singular
locus as simply the set of common zeros of the first order partial derivatives of f , without
requiring that they are also zeros of f . In this context this is a minor distinction that has no

ITCS 2024



27:6 Determinants vs. Algebraic Branching Programs

significance on the results of [6, 10] or the results of this paper. However in Section 5 we
consider a generalization of Definition 2.1 to higher order derivatives and thus it is slightly
more elegant to use the definition above.

▶ Fact 2.2 ([23]). Let F be an algebraically closed field and let Detm be the m×m determinant
polynomial. Then Sing(Detm) ⊆ Fm×m is precisely the set of matrices of rank at most m − 2,
and dim Sing(Detm) = m2 − 4.

We also require the following elementary and well known identity.

▶ Lemma 2.3. Let M ∈ Fm×m be a matrix over a field F and let A, B, C, D be submatrices
of M of dimension k × k, k × (m − k), (m − k) × k and (m − k) × (m − k) respectively, such
that

M =
(

A B

C D

)
.

If the matrix D is invertible, then

Det(M) = Det(A − BD−1C) · Det(D) .

2.1 Determinantal Complexity
We now define the determinantal complexity of a polynomial f .

▶ Definition 2.4. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d. A determinantal
representation of f of size s is an s × s matrix M , whose entries are linear functions in
x1, . . . , xn, such that Det(M) = f . We denote by dc(f) the minimal integer s such that f

has a determinantal representation of size s.
A determinantal representation M of f is said to be regular if the constant part M0 of

M (i.e., M(0)) is of rank s − 1. We denote by rdc(f) the minimal integer s such that f has
a regular determinantal representation of size s.

The fact that the determinantal complexity is finite for every polynomial f was established
by Valiant [22]. As explained in [11], the same proof establishes the fact that the regular
determinantal complexity is also finite (as several of the proofs of Valiant’s theorem construct
regular determinantal representations).

In fact, the following lemma of von zur Gathen [23] shows that for “most” homogeneous
polynomials one may consider regular determinantal representations without loss of generality.
We refer to [23, 1, 10] for proofs of this fact, and [11] for some related discussion.

▶ Lemma 2.5. Let f ∈ F[x] be a polynomial, and let M : Fn → Fs×s be a polynomial
map such that f(x) = Dets(M(x)). Suppose further that dim(Sing(f)) < n − 4. Then
Im(M) ∩ Sing(Dets) = ∅. Furthermore, all matrices in Im(M) have rank at least s − 1.

An easy consequence of this lemma is the following observation.

▶ Observation 2.6. Let f ∈ F[x] be a polynomial whose constant term is zero. Further
assume that dim(Sing(f)) < n − 4. Then any determinantal representation of f must be
regular.

Proof. Let f has a determinantal representation M of size s. As dim(Sing(f)) < n − 4,
using Lemma 2.5 we know that all matrices in Im(M) have rank at least s − 1. In particular,
M(0) is of rank ≥ s − 1. M(0) can not be of full rank as f has a zero constant term, so
f(0) = Det(M(0)) = 0. Therefore, the rank of M(0) is exactly s − 1 and M is a regular
determinantal representation of f . ◀
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2.2 ABP complexity
We now define the ABP complexity of a polynomial f . As our work deals with the fine
notions of complexity (rather than separating polynomial size from super polynomial size),
we take care to account for the various subtleties concerning the definition.

▶ Definition 2.7. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d. We say f has an
algebraic branching program (ABP) of width w and size s if

f = bT M1 · M2 · · · Mkc,

where b ∈ F[x]w0 and c ∈ F[x]wk are vectors whose entries are linear functions in x1, . . . , xn,
for every i ∈ [k], Mi ∈ Fwi−1×wi are matrices whose entries are linear functions in x1, . . . , xn,
and the following properties hold:
1. wi ≤ w for all 0 ≤ i ≤ [k]
2.

∑k
i=0 wi ≤ s.

We say that the ABP is homogeneous if all functions appearing in b, c and the Mi’s are
homogeneous.

We denote by abp(f) the minimal s such that f has a size-s ABP (of any width), and by
abpw(f) the minimal s such that f has a width-w ABP of size s. We similarly use habp(f)
and habpw(f) for the homogeneous variants of these notions.

Definition 2.7 is an algebraic definition. Equivalently, one may define algebraic branching
programs in a graph-theoretic equivalent way, as a labeled, layered and directed acyclic graph,
with a source and a sink, in which the matrices above correspond to the adjacency matrices
between one layer to the next. The graph theoretic definition is more convenient when one
considers operations on ABPs such as taking their sum or their product, homogenizing them
or composing them. Note that our measure of “size” counts vertices and not edges.

Note that for a homogeneous polynomial f , abp(f) ≤ habp(f) ≤ (d + 1) · abp(f), where
the first inequality is trivial and the second follows by a standard homogenization argument,
and a similar inequality holds for ABP width. More formally, we have the following lemma.

▶ Lemma 2.8 (Partial homogenization of ABPs). Let A be an ABP of size s and width w

computing a polynomial f of degree ∆. Then, for every d ∈ {0, 1, . . . , ∆}, there exists a
homogeneous ABP Ãd of size at most s(d + 1) and width at most w(d + 1) that computes the
homogeneous component of degree d of f .

Finally, note that in a homogeneous ABP we must have exactly d + 1 layers, and
habp(f) ≤ (d + 1) · habpw(f).

We also use the following result of Mahajan and Vinay [13] who showed that determinants
have small ABPs.

▶ Theorem 2.9 ([13]). For every field F and all n ∈ N, the polynomial Detn can be computed
by an ABP of width n2 and (n + 1) layers, and thus total size O(n3).

3 Algebraic Branching Programs from Regular Determinantal
Representation

In this section we prove our results for regular determinantal representations. Recall again
that by Observation 2.6, for “most” polynomials, one may consider regular representations
without loss of generality, as all of their determinantal representation are regular.

The following theorem states that the regular determinantal complexity of a homogeneous
polynomial f is an upper bound on its homogeneous ABP width.

ITCS 2024
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▶ Theorem 3.1. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
rdc(f) = s. Then habpw(f) ≤ s − 1 (and in particular, abp(f) ≤ habp(f) = O(ds)).

As an immediately corollary of Observation 2.6 and Theorem 3.1, we obtain:

▶ Corollary 3.2. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2 such that
dim(Sing(f)) < n−4. Then habpw(f) ≤ s−1 (and in particular, abp(f) ≤ habp(f) = O(ds)).

Proof of Theorem 3.1. Let M(x) be a regular determinantal representation of f of size
s, that is, Det(M) = f . Write M = M ′(x) + M0 where M0 is the constant part of M ,
which is of rank s − 1, and M ′ is a matrix whose entries are homogeneous linear functions.
As in [23, 1, 10], by applying elementary row and column operations we may assume that
M0 = diag(0, 1, . . . , 1). Thus, we can write M in blocks as

M =
[
a bT

c I − D

]
where a(x) is a homogeneous linear polynomial, b, c ∈ F[x]s−1 are vectors of homogeneous
linear polynomials, and D ∈ F(s−1)×(s−1) is a matrix of homogeneous linear polynomials.
We now claim that f = −bT (Dd−2)c, which implies the statement of the theorem.

To see this, note that I − D is an invertible matrix over F(x) (indeed, its determinant is
a polynomial whose constant term is 1, so it is non-zero), and therefore by Lemma 2.3,

f = Det(M) = Det(I − D) · Det(a − bT (I − D)−1c) = Det(I − D) · (a − bT (I − D)−1c). (1)

The last equality follows from the fact that a − bT (I − D)−1c is a 1 × 1 matrix.
We write Det(I − D) = 1 + R where R is a polynomial whose constant term is zero. We

also note that we can expand (I − D)−1 as a power series (I − D)−1 = I + D + D2 + D3 + · · ·
over the ring of formal power series F[[x]], and thus,

(a − bT (I − D)−1c) = a − bT Ic −
∑
i≥1

bT Dic

(this equality holds in the ring F[[x]]).
In particular, the homogeneous component of degree 0 of the power series above is zero,

the degree one homogeneous component is a, degree two homogeneous component is bT c
and for every i > 2, the degree i homogeneous component equals bT Di−2c.

Plugging this into (1), we get

f = (1 + R) ·

a − bT Ic −
∑
i≥1

bT Dic

 (2)

Recall that f is a homogeneous polynomial of degree d ≥ 2. We shall now compare the
homogeneous components of both sides in (2).

Note that since the constant term of 1 + R is 1, we have that if k is the smallest natural
number such that the degree k homogeneous component of the right hand side of (2) is non-
zero, then this homogeneous component must equal the degree k homogeneous component of
(a − bT Ic −

∑
i≥1 bT Dic).

If f is homogeneous, then the lowest degree homogeneous component of the right hand
side of (2) that is non-zero must have degree equal to d, and must equal f . Moreover, since
deg(f) ≥ 2, we get that

f = −bT (Dd−2)c .

Thus, −bT Dd−2c is a homogeneous ABP that computes f and has the properties claimed in
the lemma. ◀
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The ABP constructed in the proof of Theorem 3.1 has a very special structure. Apart
from the first and last layers, all the middle layers are identical and have the same transition
matrix D. Further, b, c and D satisfy the equations bT Dic = 0 for all 0 ≤ i ≤ d − 3. Hence,
for the sake of proving super-linear lower bounds on determinantal complexity, one may
focus on ABPs that have this structure, although it’s not clear (to us) how to utilize this
additional structure to get stronger lower bounds.

4 Algebraic Branching Programs for All Homogeneous Polynomials

In this section we generalize the construction given in Section 3 and construct ABPs of size
s · poly(d) for all homogeneous degree-d polynomials.

Some of the proofs are omitted and can be found in the full version [5].

▶ Theorem 4.1. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d. Suppose
dc(f) = s. Then habp(f) ≤ O(d5 · s).

We begin as before by putting the determinantal representation of f in a convenient
normal form.

▷ Claim 4.2. Let f be a homogeneous polynomial over F of degree d ≥ 2 and M an s × s

determinantal representation of f over F. Write M = M ′ + M0 where M0 is the constant
part of M , and denote rank(M0) = s − r. Then r ≥ 1, and if r < s, there exists a matrix M̃ ,
with det(M̃) = f such that

M̃ =
[
A B

C I − D

]
(3)

where A ∈ F[x]r×r, B ∈ F[x]r×(s−r), C ∈ F[x](s−r)×r, D ∈ F[x](s−r)×(s−r), A, B, C, D are
matrices whose entries are homogeneous linear functions, and I is the (s−r)× (s−r) identity
matrix.

We note that the case r = s is rather uninteresting: indeed, if r = s then M is a matrix
of homogeneous linear functions such that Det(M) is a homogeneous polynomial of degree
d, which implies that s = d, which in turn makes the contents of Theorem 4.1 trivial by
applying the ABP construction of [13] (Theorem 2.9) directly to M .

As a corollary, we obtain the following:

▶ Corollary 4.3. Let f be a homogeneous polynomial over F of degree d ≥ 2 and M an s × s

determinantal representation of f over F in normal form as in (3). Expand

A − B(I − D)−1C = A − B

∑
i≥0

Di

 C = A −
∑
i≥0

BDiC

as matrices over the ring F[[x]] of powers series in x .
Then, the lowest degree non-zero homogeneous component of Det(A −

∑
i≥0 BDiC) is of

degree d and equals f .

The benefit of Corollary 4.3 is that now instead of the s × s matrix M we are dealing with
the r × r matrix (A −

∑
i≥0 BDiC). This however comes with some costs. The first is that

now we can only say that f is the lowest degree homogeneous component of the determinant
of this smaller matrix. The second is that this smaller matrix involves power series. The
second problem is easily resolved via the following simple observation.
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▶ Observation 4.4. Let A, B, C, D as in (3) and let d ∈ N. For a polynomial f , let Homd(f)
denote its homogeneous component of degree d. Then

Homd(Det(A − B(I − D)−1C)) = Homd(Det(A − BC − BDC − BD2C − · · · − BDd−2C)).

The representation above already gets us very close to the final construction of the ABP.

▶ Lemma 4.5. Let f be a homogeneous polynomial over F of degree d ≥ 1 and M an s × s

determinantal representation of f over F in normal form as in (3). Define the r × r matrix

W = A − BC − BDC − BD2C − · · · − BDd−2C. (4)

Then:
1. Every entry of W is a constant free polynomial of degree at most d.
2. The smallest degree homogeneous component of Det(W ) equals f .
3. r ≤ d.
4. Every entry of W is a polynomial computed by an ABP of size at most O(ds) and of

width O(s).

Proof. Items 1 and 2 follow from Corollary 4.3 and Observation 4.4.
To prove item 3, note that by assumption every entry of A, B, C, D is a homogeneous

linear polynomial. Thus, W ∈ Fr×r is a matrix of constant free polynomials, and the smallest
degree homogeneous component of Det(W ) is of degree at least r. Since it is of degree d (by
item 2), r ≤ d.

Item 4 also follows easily from the definition of W . The (i, j)-th entry of W is given by

eiWej = eiAej − eiBCej − eiBDCej − · · · − eiBDd−2Cej .

Each summand above is computed by an ABP of size O(ds) as per Definition 2.7. Summing
up those ABPs we get an ABP of size O(d2s).

We can slightly improve the upper bound to O(ds). See the full version for the details. ◀

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let f be a homogeneous polynomial over F of degree d ≥ 1 and M

an s × s determinantal representation of f over F in normal form as in (3). Let W be as in
Lemma 4.5.

We now construct the following ABP that computes f using the following steps. We start
by taking an ABP that computes the determinant of an r × r symbolic matrix. (where r is
as in Claim 4.2). This has size O(r3) = O(d3) by the construction of [13] (Theorem 2.9) and
Lemma 4.5.

We now replace each variable xi,j by the ABP of size O(ds) computing the (i, j)-th entry
of W given by Lemma 4.5. We get an ABP of total size O(d4s) that computes Det(W ).

Now, from Lemma 2.8, we get that there is a homogeneous ABP of size at most O(d5s)
that computes the degree d homogeneous component. ◀

5 r-Regular Determinantal Complexity

The methods of Section 3 and Section 4 suggest that an important parameter in the study of
determinantal representations is the rank of the constant part of the matrix. In this section
we investigate it further and define classes of determinantal representations parametrized
by this rank. These generalize the definition of a regular determinantal representation and
regular determinantal complexity (Definition 2.4).

The proofs are similar to Section 4 and added in the full version [5].
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▶ Definition 5.1. We define a determinantal representation M of f to be r-regular if the
constant part M0 of M (i.e., M(0)) is of rank s − r. We denote by rdcr(f) the minimal
integer s such that f has a r-regular determinantal representation of size s.

We emphasize that under our definition r denotes co-rank of the constant part (rather
than the rank itself), as this parameter is slightly more elegant to work with. For r = 1, this
definition is identical to the previous definition of regular representation, i.e. rdc1(f) = rdc(f).

One may again relate the rank of the constant part of determinantal representations of
f to natural varieties associated with f , as in Lemma 2.5. Now, instead of looking at the
variety defined by first-order partial derivatives, we look at partial derivatives of order up
to r.

▶ Definition 5.2. Let f ∈ F[x] be a polynomial. We define Sr(f) is the variety defined by

Sr(f) =
{

a : ∂rf

∂xi1 · · · ∂xir′

(a) = 0, for every r′ ≤ r and for all i1, . . . , ir′ ∈ {1, . . . , n}
}

.

That is, Sr(f) is the set of common zeros of all partial derivatives of f of order at most r.

Clearly, since partial derivatives of the determinant are either identically zero or determ-
inants of smaller submatrices, Sr(Detm) is the set of matrices of rank at most m − (r + 1).
The following fact is a generalization of Fact 2.2.

▶ Fact 5.3. Let F be an algebraically closed field and let Detm be the m × m determinant
polynomial. Then Sr(Detm) ⊆ Fm×m is precisely the set of matrices of rank at most m−(r+1),
and dim Sr(Detm) = m2 − (r + 1)2.

The proof is a identical to the proof of [23, Lemma 2.1] with the required changes in
parameters.

We can now conclude as before the following natural analog of Lemma 2.5.

▶ Lemma 5.4. Let f ∈ F[x] be a polynomial, and let M : Fn → Fs×s be a polynomial
map such that f(x) = Dets(M(x)). Suppose further that dim Sr(f) < n − (r + 1)2. Then
Im(M) ∩ Sr(Dets) = ∅. Furthermore, all matrices in Im(M) have rank at least s − r.

And again, an easy consequence of this lemma is the following observation, analogous to
Observation 2.6.

▶ Observation 5.5. Let f ∈ F[x] be a polynomial whose constant term is zero. Further
assume that dim Sr(f) < n − (r + 1)2. Then any determinantal representation of f must be
r′-regular for some r′ ≤ r.

Having defined r-regular determinantal representations, we remark that the construction
given in Theorem 4.1 of Section 4 implies the following theorem.

▶ Theorem 5.6. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 2. Suppose
rdcr(f) = s. Then habp(f) ≤ O(r3 · d2 · s).

We remark that Theorem 5.6 indeed generalizes Theorem 4.1, as degree-d polynomials
have only r-regular determinantal representations in which r ≤ d (see item 3 of Lemma 4.5).

Theorem 5.6 follows directly by inspecting the proof of Theorem 4.1 and keeping r as a
separate parameter instead of using the crude upper bound r ≤ d.
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6 Open problems

We conclude with some open problems.

1. Based on the results in this paper, a natural question to investigate further is the question
of proving super linear lower bounds for ABPs for a constant degree polynomial. For
such a lower bound to imply a lower bound on determinantal complexity lower bounds,
we require a lower bound on the number of vertices in the ABP. Perhaps an easier first
step would be to prove a super linear lower bound on the number of edges in an ABP for
a constant degree polynomial.

2. It would be very interesting to extend the tight connection between determinantal
complexity and ABP size/width observed here to polynomials of large degree. Note
that from Theorem 3.1, if we consider the complexity measure of ABP width, such a
connection holds (independent of degree) for homogeneous polynomials that have singular
loci of dimension at most n − 5. Extending this to arbitrary polynomials in a way that
does not incur the poly(d) multiplicative blow up in size observed in Theorem 4.1 would
be very interesting.

3. The notion of determinantal complexity of a polynomial can be naturally generalized
in the following way: a polynomial f ∈ F[x] is said to have degree d determinantal
complexity (denoted by dcd(f)) at most s if there is a matrix M ∈ F[x]s×s such that
Det(M) = f and every entry of M is a polynomial of degree at most d. Understanding the
behavior of dcd(f) as d increases would be interesting. Besides being a natural quantity
on its own, it offers a potential approach towards improving the known determinantal
complexity lower bounds using the techniques in [10].
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