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Abstract
We explicitly construct the first nontrivial extractors for degree d ≥ 2 polynomial sources over F2.
Our extractor requires min-entropy k ≥ n −

√
log n

(log log n/d)d/2 . Previously, no constructions were known,
even for min-entropy k ≥ n − 1. A key ingredient in our construction is an input reduction lemma,
which allows us to assume that any polynomial source with min-entropy k can be generated by O(k)
uniformly random bits.

We also provide strong formal evidence that polynomial sources are unusually challenging to
extract from, by showing that even our most powerful general purpose extractors cannot handle
polynomial sources with min-entropy below k ≥ n − o(n). In more detail, we show that sumset
extractors cannot even disperse from degree 2 polynomial sources with min-entropy k ≥ n −
O(n/ log log n). In fact, this impossibility result even holds for a more specialized family of sources
that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF
sources are a natural new family of algebraic sources that lie at the intersection of polynomial and
variety sources, and thus our impossibility result applies to both of these classical settings. This is
especially surprising, since we do have variety extractors that slightly beat this barrier - implying
that sumset extractors are not a panacea in the world of seedless extraction.
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1 Introduction

Randomness is a very important resource in computation. It is widely used in theoretical
and practical implementations of algorithms, distributed computing protocols, cryptographic
protocols, machine learning algorithms, and much more [28]. Unfortunately, the randomness
produced in practice is not of the highest quality, and the corresponding distribution over
bits is often biased and has various correlations [21]. To overcome this, an extractor is used
to convert this biased distribution to a uniform distribution. The extractors used in practice
are based on unproven theoretical assumptions, and so the theoretical study of constructing
efficient extractors is important. Extractors usually come in two flavors: seeded and seedless
extractors. We focus here on the latter, and whenever we mention extractor this is what we
mean. Towards this end, let’s formally define extractors for a class of distributions:
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28:2 Extractors for Polynomial Sources over F2

▶ Definition 1 (Extractor). A function Ext : {0, 1}n → {0, 1}m is called an ε-extractor for a
class X of distributions over {0, 1}n if for all X ∈ X ,

|Ext(X)−Um| ≤ ε,

where | · | denotes statistical distance and Um is the uniform random variable.

In this paper and throughout, we use min-entropy as our measure for randomness: For a
source X with support Ω, we define its min-entropy H∞(X) = − log(maxx∈Ω Pr(X = x)).
Note that for X ∼ {0, 1}n, 0 ≤ H∞(X) ≤ n.

It is well known that there do not exist extractors for arbitrary distributions, even when
they have a lot of randomness (min-entropy = n − 1). To overcome this, a long body of
work has been dedicated to extracting randomness from distributions that not only have
some min-entropy, but also exhibit structure. Two such widely studied classes of structured
sources are: (1) Samplable sources, i.e., sources generated by low complexity classes such as
AC0 circuits, decision trees, local sources, branching programs, and more [36, 22, 12, 38, 7, 1],
and (2) Recognizable sources, i.e., sources that are uniform over the zeroes of a function from
some low complexity class mentioned above [24]. This study has provided insight into the
structure of such complexity classes, and there is an argument to be made that in nature,
most distributions are likely to be generated by such low complexity classes. In this paper,
we study algebraic sources which are samplable and recognizable sources with respect to low
degree multivariate polynomials over F2 (another such natural computational model).

Algebraic sources

Two different flavors of algebraic sources have been studied: variety sources and polynomial
sources. The task of constructing extractors for these sources, apart from being a fundament-
ally important task to help us gain structural insights into polynomials, also has other nice
motivations.

Extractors for polynomial sources (over F2) with poly(log n) degree would immediately
yield extractors for sources sampled by AC0[⊕] circuits, based on well-known approximations
of such circuits by polynomials [31, 35].1 To the best of our knowledge, there are no known
nontrivial explicit extractors for sources sampled by such circuits.

Extractors for variety sources (over F2), on the other hand, have important applications
in circuit lower bounds. If one can construct explicit extractors (or even dispersers -
Definition 3.3) against degree 2 varieties with min-entropy 0.01n, or against degree n0.01

varieties with min-entropy 0.99n, then one immediately gets new state-of-the-art circuit lower
bounds [17, 18].

With these motivations in hand, let’s proceed to formally define these sources. Both
polynomial and variety sources are parameterized by min-entropy k, degree d and finite field
Fq. When q = 2, it is typical to identify Fn

2 with {0, 1}n.

▶ Definition 2 (Polynomial sources). A degree d polynomial source X ∼ Fn
q is associated with

a polynomial map P = (p1, . . . , pn) where each pi : Fm
q → Fq is a polynomial of degree at

most d. Then, X = P (Um) where Um is the uniform distribution over Fm
q .

1 AC0[⊕] circuits are constant depth, polynomial sized circuits with unbounded fan-in AND, OR, NOT,
and PARITY gates.
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▶ Definition 3 (Variety sources). Here, each source X ∼ Fn
q has associated polynomials

p1, . . . , pm : Fn
q → Fq. X is uniform over the set of common zeroes of these polynomials

V = {x ∈ Fn
q : ∀i ∈ [m] : pi(x) = 0}.

In this paper, we introduce and study a natural class of sources that is a subclass
of polynomial sources and the widely studied NOBF (non-oblivious bit-fixing) sources.
Surprisingly, as we will soon see, it is also a subclass of variety sources (Claim 5).
▶ Definition 4 (Polynomial NOBF sources). A degree d polynomial NOBF source X ∼ Fn

q

with H∞(X) = k must have k as an integer and have the following structure:
1. There exists G ⊂ [n] with |G| = k that we call the good coordinates of X. These good

coordinates in X are sampled uniformly and independently at random.
2. Each coordinate outside G is a deterministic function of the k good coordinates of X.

Moreover, each such deterministic function is a degree d polynomial.
We make a basic observation regarding polynomial NOBF sources (this observation seems

to apply to most classes of samplable, NOBF, and recognizable sources):
▷ Claim 5. If X ∼ Fn

q is a degree d polynomial NOBF source, then it is also a degree d

polynomial source and a degree d variety source.
Proof. Let H∞(X) = k and the bad positions be specified by polynomials p1, . . . , pn−k. As
the k good positions are degree 1 polynomials over x1, . . . , xk and the n− k bad positions
are degree d polynomials over x1, . . . , xk, X is indeed a polynomial source. Without loss
of generality, assume that the first k positions of X are the good positions and last n− k

positions are the bad positions. Consider the following set of polynomial equations over
variables y1, . . . , yn:

yk+1 − p1(y1, . . . , yk) = 0
...

yn − pn−k(y1, . . . , yk) = 0

Note that X is uniform over the variety defined by these equations, and thus is also a variety
source. ◁

Related work

Degree 1 polynomial / variety sources, i.e., affine sources have been widely studied both over
F2 and other Fq [5, 16, 30, 2, 13, 25, 34, 39, 4, 6, 26, 8, 19]. Recently, [27] constructed affine
extractors over F2 with asymptotically optimal dependence on min-entropy.

[15] initiated the study of extractors for polynomial sources. Their extractors worked
when either when q ≥ poly(n, d)O(k) or when field has characteristic ≥ poly(n, k, d). [3]
used sum product estimates and constructed extractors for degree 2 polynomial sources
when q ≥ O(1) and min-entropy is ≥ O(n). They also constructed dispersers for arbitrary
multilinear polynomials over F4 with min-entropy ≥ n/2 + O(1). Extractors for variety
sources were first constructed by [14]. They constructed extractors for when either q ≥ exp(n)
or q ≥ poly(d) and min-entropy ≥ O(n). Recently, [19] constructed extractors for images of
varieties over Fq when q ≥ poly(n, d) with no min-entropy restrictions (they define degree
parameter d differently). Over F2, [33] constructed extractors for degree nδ1 varieties with
min-entropy ≥ n−nδ2 for arbitrary δ1 + δ2 < 1

2 . Using correlation bounds against low degree
polynomials, [10, 24] constructed extractors for constant degree d variety sources over F2
with min-entropy ≥ (1− cd)n where cd is a tiny constant that depends on d.

We reiterate that before our work, no extractors were constructed for polynomial sources
over F2 even for min-entropy k ≥ n− 1!

ITCS 2024
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1.1 Our results
We construct the first nontrivial extractors for polynomial sources over F2.

▶ Theorem 6 (Explicit extractor for polynomial sources, informal version of Theorem 4.10).
Let ε > 0 be an arbitrary constant. For all d ∈ N, there exists an explicit ε-extractor
Ext : Fn

2 → FΩ(log log n)
2 for degree d polynomial sources over F2 with min-entropy k ≥

n− Ω
( √

log n

(log log n/d)d/2

)
.

Prior to our work, there were no known constructions of extractors for polynomial
sources over F2 that worked for degree d > 1 and min-entropy k = n− 1. Indeed, all prior
constructions required the field size q to be large, or the degree to be d = 1.

As polynomial sources can have arbitrarily large input length, it’s not clear what is the
size of the class of degree d polynomial sources. Therefore, it is unclear if an extractor should
even exist for this class. To get around this problem, we come up with an input reduction
technique that allows us to bound the number of inputs to the polynomial source by the
min-entropy of the source. We view this as our main technical contribution, and it is the key
ingredient behind our explicit extractor in Theorem 6.

▶ Lemma 7 (Input reduction, informal version of Theorem 4.1). Every degree d polynomial
source with min-entropy k (and an arbitrary number of input variables) is 2−k-close to a
convex combination of polynomial sources of min-entropy k − 2 and O(k) input variables.

Recall that X is a convex combination of distributions {Yi} if there exist probabilities {pi}
summing up to 1 such that X =

∑
i piYi. It is well known that an ε-extractor for {Yi}

will also be an ε-extractor for X. Hence, this lemma reduces the task of extracting from
polynomial sources with an arbitrary number of input variables to the task of extracting
from polynomial sources with O(k) input variables.

We also show negative results for polynomial NOBF sources against sumset extractors.
Sumset extractors are extremely powerful and can be used to extract not only from sumset
sources but also, using reductions to sumset sources, from many well studied models of
weak sources such as degree 1 polynomial / variety sources (affine sources), class of two
independent sources, sources generated by branching programs, sources generated by AC0

circuits and many more [9]. Let’s first define sumset sources:

▶ Definition 8. A source X is a (k, k) sumset source if it is of the form A + B, where
A, B are independent distributions on {0, 1}n with H∞(A) ≥ k, H∞(B) ≥ k, and + denotes
bitwise xor.

Note that k ≤ H∞(X) ≤ 2k and so, H∞(X) = Θ(k). When we write H∞(X) is a sumset
source of min-entropy k, we actually mean X = A + B where H∞(A) ≥ k, H∞(B) ≥ k.
Recently, sumset extractors with the smallest possible dependence on min-entropy (O(log n))
were constructed [27]. A natural question is whether various algebraic sources can be
reduced to sumset sources. We show here that sumset extractors cannot even disperse (see
Definition 3.3) let alone extract below certain min-entropy against quadratic NOBF sources.

▶ Theorem 9 (Sumset extractor lower bound, informal version of Theorem 5.16). Sumset
extractors cannot be used to disperse from degree 2 polynomial NOBF sources with min-entropy
n−O

(
n

log log n

)
.

As polynomial NOBF sources are both variety and polynomial sources, this also implies
that sumset extractors cannot be used to extract from degree 2 variety sources or degree 2
polynomial sources over F2 with min-entropy below n−O

(
n

log log n

)
. For degree 2 variety
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sources over F2, one can use a sumset extractor to extract above min-entropy n−O
(

n
log n

)
[11]. Moreover, using correlation bounds, one can construct explicit extractors against
degree 2 varieties with min-entropy (1− c)n for very small constant c [24]. Hence, the above
result shows that sumset extractors cannot be used to get better extractors than what we get
using correlation bounds against low degree polynomials. We find this surprising as it implies
the generalized inner product function is a better extractor for degree 2 variety sources than
any optimal (blackbox) sumset extractor.

Organization

The rest of the paper is organized as follows. In Section 2, we give an overview of our
proofs. In Section 3, we provide basic definitions and useful properties that we use later. In
Section 4, we prove Lemma 7, our input reduction argument and using it prove Theorem 6, the
construction of polynomial source extractor. In Section 5, we prove Theorem 9, limitations
of the sumset extractor against quadratic NOBF sources. In Section 6, we conclude with
various open problems.

2 Overview of our techniques

In this section, we sketch the proofs of all our main results.

2.1 Existential results
To warm up, it is not clear whether a random function is a good extractor for degree d

polynomial sources. Usually such proofs proceed by arguing that for a fixed source of
min-entropy k, a random function is an ε-extractor with probability at least 1 − 2−2kε2 .
Then, one can do a union bound over total number of sources in the class to obtain that a
random function is a good extractor. The main issue that arises for polynomial sources is
that the number of input variables to the polynomials can be arbitrary and hence, it’s not
clear what is the size of this class. To overcome this difficulty, we use our input reduction
lemma (Lemma 7). Using this, it suffices to consider degree d polynomial sources with O(k)
inputs. This class of polynomial sources has size 2O(k)d·n. Thus, the the earlier union bound
based argument now works out:

▶ Lemma 2.1 (Informal version of Lemma 4.6). A random function with O(k) output bits is
a 2−Ω(k) extractor for degree d polynomial sources over F2 with min-entropy k ≥ d log n.

2.2 Input reduction
We will know sketch the proof for the input reduction lemma that was useful above (in fact,
it will also be very useful for the explicit construction).

We begin by showing that for a polynomial map f(Um), there exists a linear function L

(acting on the same set of variables as f) and a fixing b of L such that f(Um) ≈ε f(Um)|L = b.
In fact, we show the stronger claim that most such fixings b work:

▶ Lemma 2.2 (Existence of affine white-box PRGs). For any polynomial map f : Fm
2 → Fn

2
and ε > 0, there exists a linear function L : Fm

2 → Fm−ℓ
2 with ℓ = n + 3 log(1/ε) such that

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| ≤ 2ε,

where Um and Um−ℓ are independent.

ITCS 2024



28:6 Extractors for Polynomial Sources over F2

Proof sketch. We show a random L works. Indeed, by definition:

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| = Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|]

We now apply the min-entropy chain rule (see Lemma 3.2 for details) to infer that with
high probability over fixings of f to z, the input distribution to L will have high min-entropy.
Indeed, there will exist some distribution X with min-entropy at least k = m−n− log(1/ε) =
m− ℓ + 2 log(1/ε) such that

Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|] ≤ ε + |L(X)−Um−ℓ|

As L was initially chosen as a random function, we apply the leftover hash lemma (see
Corollary 3.6) to infer that |L(X)−Um−ℓ| ≤ ε as desired. ◀

Note that this lemma already yields an input reduction to a single polynomial source
with O(n) variables. This can be done by fixing output of L to some z that preserves small
distance between the two distributions. Once we fix output of L, we induce m − ℓ affine
constraints on the variables. As polynomial sources are closed under affine restrictions, the
resulting polynomial map is still a degree d polynomial map and the resulting distribution is
still close enough to the original one as desired. However, we can do better.

We will first prove the following helpful claim. This claim shows there exists a way to
map every min-entropy k source to a source over O(k) bits and almost full min-entropy.

▷ Claim 2.3. Let X ∼ {0, 1}n be a polynomial source with min-entropy at least k > 0.
Then there exists a function S : {0, 1}n → {0, 1}k+1 such that S(X) has min-entropy at least
k − 1.

This claim is actually true for arbitrary sources X and we prove it by a simple case
analysis on probabilities of the smallest two elements in support of X (see Claim 4.3 for
further details). Using this claim, we are ready to sketch the proof of our main lemma that
will help us achieve the input reduction:

▶ Lemma 2.4. For any polynomial source f : Fm
2 → Fn

2 where f(Um) has min-entropy at
least k, there exists a linear function L : Fm

2 → Fm−O(k)
2 such that

Pr
b∼L(Um)

[
H∞(f(Um) | L(Um) = b) ≥ k − 2

]
≥ 1− 2−k.

Proof sketch. Let S : Fn
2 → Fk+1

2 be a function guaranteed to exist by above claim so that
S(f(Um)) has min-entropy at least k−1. Using data processing inequality (see Claim 4.4), it
suffices to show that S(f(Um)) has high enough min-entropy with high probability over fixing
L(Um). Let Y = Um. By Lemma 2.2, there exists L : Fm

2 → Fm−ℓ
2 with ℓ = k +2+3 log(1/ε)

such that:

|S(f(Y)) ◦ L(Y)− S(f(Y)) ◦Um−ℓ| ≤ ε

This implies

Eb∼f(Um) [|(S(f(Y)) | f(Y) = b)− S(f(Um))|] ≤ ε

By Markov’s inequality, we infer that

Pr
b∼f(Um)

[
|(S(f(Y)) | f(Y) = b)− S(f(Um))| ≥

√
ε
]
≤
√

ε

Setting ε = 2−2k, every element in support of the distribution S(f(Y | L(Y) = b)) must
occur with probability at most 2−k+1 +

√
ε ≤ 2−k+2, and thus has min-entropy at least k− 2.

The result follows. ◀
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Notice that using this lemma, most fixings of L leave f with min-entropy at least k − 2.
These good fixings form a convex combination of such sources f . As argued earlier, such L

induces m−O(k) linear fixings on the input variables and hence the resulting polynomial
map in each of these convex combinations is over O(k) variables and has degree d as desired.

2.3 Explicit construction
We sketch here the proof of a slightly weaker result that illustrates our main idea.

▶ Theorem 2.5 (Weaker version of Theorem 6). For all constant degree d ∈ N, there exists an
explicit extractor Ext : Fn

2 → F2 for polynomial sources with min-entropy k ≥ n−O(log log n).

Proof sketch. Fix degree d polynomial source X with m inputs and n outputs with min-
entropy n− g where g = O(log log n). Consider a small length t = 2g prefix of the output
bits, and let this source be Xpre. We observe that Xpre has min-entropy at least t− g = t/2
(see Claim 4.11). We now use our input reduction argument: Lemma 7 over Xpre to infer
there exists a source X′

pre with O(t) inputs such that |X′
pre −Xpre| ≤ 2−t. Hence, it suffices

to construct an extractor for min-entropy t/2 degree d polynomial sources with O(t) inputs
and t outputs.

By Lemma 2.1, we know a random function over t bits will be an extractor for such
sources. We exhaustively try all the 22t functions from t bits to 1 bits as our candidate
extractor. We brute force search over all the 2O(t)d·t degree d polynomial sources with O(t)
inputs and t outputs. Then, for each of them, we check if it has enough min-entropy. If it
does, we input the source into our candidate extractor and check if the output is close to
uniform. We will eventually find a candidate extractor that will work for all such sources,
and we output that function as our extractor.

The time required by the above procedure is 22t+O(t). As t = O(log log n), the above
procedure indeed runs in poly(n) time. ◀

In our actual construction, we achieve better parameters by brute forcing over all r-wise
independent functions (for very large r) as our candidate extractor instead of all functions.
We also take advantage of the fact that the input reduction lemma actually reduces number
of input variables to O(k), making the class of polynomial sources that we have to brute
force over even smaller. Together, these optimizations allow us to handle smaller min-entropy.
See Theorem 4.10 for further details.

2.4 Impossibility results
All our impossibility results are against polynomial NOBF sources and hence apply (via
Claim 5) to both polynomial sources and variety sources. We show that sumset extractors,
arguably the most powerful general purpose extractors, cannot be used to even disperse from
degree 2 polynomial NOBF sources below min-entropy n−O

(
n

log log n

)
(Theorem 9). These

results are formally proven in Section 5.3, and Section 5.4. We will use the following useful
theorem to show this. This theorem states there exists some quadratic NOBF source which
does not contain any sumset source of small min-entropy.

▶ Theorem 2.6 (Informal version of Theorem 5.11). There exists a degree 2 polynomial NOBF
source X ∼ Fn

2 with H∞(X) = n − O
(

n
log log n

)
such that for all A, B ∼ Fn

2 , H∞(A) ≥
Ω(log log n), H∞(B) ≥ Ω(log log n), it holds that support(A) + support(B) ̸⊂ support(X).

ITCS 2024



28:8 Extractors for Polynomial Sources over F2

Proof sketch. We take the n − k bad bits in X to be random degree 2 polynomials. Say
such A, B exist and let C, D be projections of support(A), support(B) respectively onto the
good bits of X. Let P : Fk

2 → Fn−k
2 be the polynomial map of the bad bits. Then, it holds

that P (C) + P (D) = P (C + D) + y for some y ∈ Fn−k
2 . To simplify presentation, assume for

this proof sketch that y = 0n−k. We first observe the following:
▷ Claim 2.7 (Informal version of Claim 5.14). There exist affine subspaces U, V such that
P (U) + P (V ) = P (U + V ) and |U | ≥ |C|, |V | ≥ |D|.
Hence, without loss of generality, we can assume that C and D are affine subspaces. We now
use a probabilistic argument to show such large affine subspaces C and D cannot exist with
high probability for a random quadratic map:
▷ Claim 2.8 (Informal version of Claim 5.13). There exists a degree 2 polynomial map
P : Fk

2 → Fk−n
2 such that for every pair of affine subspaces U, V , both of dimension

≥ Ω(log log n), there exist u ∈ U, v ∈ V such that P (u) + P (v) ̸= P (u + v).
Hence, the sumset property is violated and we get a contradiction. ◀

Using these, we finally present the proof of our lower bound result:

Proof sketch of Theorem 9. Let X be the degree 2 polynomial NOBF source with min-
entropy n−O

(
n

log log n

)
that doesn’t contain any sumset of min-entropy O(log log n). We

apply a bipartite Ramsey bound (Corollary 5.20), to show that if a quadratic NOBF source
doesn’t contain sumsets where each of the two sets has size s, then it has small intersection
with sumsets where each of the two sets has size O(2s) (see Lemma 5.17 for details). This
implies X has very small intersection with sumset sources of min-entropy Ω(log n). From this,
we infer X is far away from any convex combination (see Definition 3.7) of sumset sources
with min-entropy Ω(log n). As sumset extractors below min-entropy O(log n) cannot exist
(every function is constant on Ω(log n) dimensional affine subspace), this shows we cannot
use sumset extractors to even disperse against quadratic NOBF sources. See Theorem 5.16
for further details. ◀

3 Preliminaries

To simplify notation, we use ◦ to mean concatenation. Also, all logs in this paper are base 2.

3.1 Basic probability lemmas
Given two random variables X, Y, we let |X−Y| denote their statistical distance, defined as

|X−Y| := max
S

[Pr[X ∈ S]− Pr[Y ∈ S]] = 1
2

∑
z

|Pr[X = z]− Pr[Y = z]| .

We write X ≈ε Y and say that X, Y are ε-close if |X −Y| ≤ ε, and we write X ≡ Y
if |X−Y| = 0. We will often use the fact that applying a function can only decrease the
distance between two distributions:
▶ Fact 3.1 (Data-processing inequality). For any random variables X, X′ ∼ X and function
f : X → Y , it holds that |X−X′| ≥ |f(X)− f(X′)|.

We will utilize the well known fact that for any two distributions X, Y, with high
probability, fixings of Y decrease min entropy of X by about log(|support(Y)|):
▶ Lemma 3.2 (Min-entropy chain rule). For any random variables X ∼ X and Y ∼ Y and
ε > 0, it holds that Pry∼Y[H∞(X | Y = y) ≥ H∞(X)− log |support(Y)| − log(1/ε)] ≥ 1− ε.
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3.2 Extractors
We start by defining dispersers, which are a weaker version of extractors. While the output of
an extractor must look nearly uniform, the output of a disperser only needs to be nonconstant.

▶ Definition 3.3 (Disperser). A function Disp : {0, 1}n → {0, 1} is a disperser for a class of
distributions X if for all X ∈ X , the set {Disp(X)} = {0, 1}.

While the main purpose of this paper is to construct seedless extractors (for polynomial
sources), it turns out that seeded extractors will also be useful in our arguments. We define
them, below.

▶ Definition 3.4 (Seeded extractor). We say that a deterministic function sExt : {0, 1}m ×
{0, 1}s → {0, 1}r is a (k, ε)-strong seeded extractor if for any X ∼ {0, 1}m with min-entropy
at least k,

sExt(X, Y) ◦Y ≈ε Ur ◦Y,

where Y ∼ {0, 1}s and Ur ∼ {0, 1}r are independent uniform random variables. We say
sExt is linear if the function sExt(·, y) : {0, 1}m → {0, 1}r is a degree 1 function, for all
y ∈ {0, 1}s.

One classic way to construct seeded extractors is via the following theorem.

▶ Theorem 3.5 (Leftover Hash Lemma [20]). Let H = {H : {0, 1}n → {0, 1}m} be a 2-
universal hash family with output length m = k − 2 log(1/ε), meaning that for any x ̸= y,
PrH∼H[H(x) = H(y)] ≤ 2−m. Then the function sExt : {0, 1}n ×H → {0, 1}m defined as

sExt(x, h) := h(x)

is a (k, ε)-strong seeded extractor.

▶ Corollary 3.6. For any ε > 0 and m = k−2 log(1/ε), the function sExt : {0, 1}n×Fm×n
2 →

{0, 1}m defined as

sExt(x, L) := Lx

is a linear (k, ε)-strong seeded extractor.

Proof. It suffices to show that the family of all linear functions L : Fn
2 → Fm

2 , which
correspond to matrices Fm×n

2 , is a 2-universal hash family. That is, we must show that for
any distinct x, y,

Pr
L∼Fm×n

2

[L(x) = L(y)] = Pr
L

[L(x + y) = 0] ≤ 2−m.

This is equivalent to showing that PrL[Lx = 0] ≤ 2−m for any nonzero x. This is clearly
true (in fact, equality holds), since the rows of L are exactly m independent uniform parity
checks on a nonzero x. ◀

Next, we define the notion of reductions for extractors.

▶ Definition 3.7 (Convex combination). We say X is a convex combination of distributions
{Yi} if there exist probabilities {pi} summing up to 1 such that X =

∑
i piYi.
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▶ Fact 3.8. Let Ext : {0, 1}n → {0, 1} be an ε-extractor for class X . Let X ∼ {0, 1}n be a
distribution that can be written as convex combination of distributions in X . Then, Ext is
also an ε-extractor for X.

Finally, the following proposition shows that for a fixed source, a random function is a
good extractor.

▶ Proposition 3.9 (Implicit in [29, Theorem 2.5.1]). For every n, m ∈ N, every k ∈ [0, n],
every ε > 0, and every X ∼ {0, 1}n with H∞(X) = k, if we choose a random function
Ext : {0, 1}n → {0, 1}m with m ≤ k− 2 log(1/ε)−O(1), then Ext(X) ≈ε Um with probability
1− 2−Ω(Kε2) where K = 2k.

4 Constructing extractors

4.1 Input reduction
We show that it suffices to construct extractors for polynomial sources with input length
linear in k:

▶ Theorem 4.1 (Input reduction). Let X ∼ Fn
2 be a degree d polynomial source with min-

entropy at least k. Then X is 2−k-close to a convex combination of degree d polynomial
sources with min-entropy at least k − 2 and input length at most 8k.

We begin with the following useful lemma:

▶ Lemma 4.2 (Existence of affine white-box PRGs). For any function f : Fm
2 → Fn

2 and ε > 0,
there exists a linear L : Fm

2 → Fm−ℓ
2 with ℓ = n + 3 log(1/ε) such that

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| ≤ 2ε,

where Um and Um−ℓ are independent.

Proof. We show a random choice of L works. Indeed, we compute:

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| = Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|]
≤ ε + |L(X)−Um−ℓ|
≤ 2ε.

Above X has min-entropy at least k = m − n − log(1/ε) = m − ℓ + 2 log(1/ε) by the
min-entropy chain rule (Lemma 3.2), and the last inequality follows via the leftover hash
lemma (Corollary 3.6). ◀

We will utilize the following helpful claim:

▷ Claim 4.3 (Entropy smoothing). Let X ∼ {0, 1}n be a random variable with min-entropy
at least k > 0. Then there exists a function S : {0, 1}n → {0, 1}k+1 such that S(X) has
min-entropy at least k − 1.

Proof. Consider the two least probable elements x1, x2 ∈ support(X) that occur with prob-
abilities 0 < p1 ≤ p2 respectively. We take cases on their values:
Case 1. p1 ≥ 2−k−1. This implies |support(X)| ≤ 2k+1 and we are done.
Case 2. p1 < 2−k−1 ≤ p2. We now merge x1, x2 into a single element (that gets hit with

probability < 2−k−1 + 2−k ≤ 2−k+1), and end up with a support which again has size at
most 2k+1.
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Case 3. p1 ≤ p2 < 2−k−1. We again merge x1, x2 into a single support element that gets
hit with probability at most 2−k. Now even if the support size is still too big, we have
decreased it by 1, while maintaining the invariant that X has min-entropy at least k. We
now recurse on this same argument until we hit one of the first two good cases, which are
eventually guaranteed to happen. ◁

We will also use the data processing inequality for min-entropy:

▷ Claim 4.4 ([37, Lemma 6.8]). For any random variable X and function f , it holds that
H∞(f(X)) ≤ H∞(X).

Equipped with these, we prove our main lemma:

▶ Lemma 4.5 (Existence of affine white-box PEGs). For any function f : Fm
2 → Fn

2 such that
f(Um) has min-entropy at least k, there exists a linear L : Fm

2 → Fm−8k
2 such that

Pr
b∼L(Um)

[
H∞(f(Um) | L(Um) = b) ≥ k − 2

]
≥ 1− 2−k.

Proof. Let S : Fn
2 → Fk+1

2 be a function, guaranteed to exist by Claim 4.3, such that
S(f(Um)) has min-entropy at least k− 1. By Claim 4.4, it suffices to show that S(f(Um)) ∼
{0, 1}k+1 has high enough min-entropy with high probability over fixing L(Um). Let Y = Um.
By Lemma 4.2, there exists L : Fm

2 → Fm−ℓ
2 with ℓ = k + 2 + 3 log(1/ε) such that:

|S(f(Y)) ◦ L(Y)− S(f(Y)) ◦Um−ℓ| ≤ ε.

This implies

Eb∼f(Um) [|(S(f(Y)) | f(Y) = b)− S(f(Um))|] ≤ ε

By Markov’s inequality, we infer that

Pr
b∼f(Um)

[
|(S(f(Y)) | f(Y) = b)− S(f(Um))| ≥

√
ε
]
≤
√

ε

Setting ε = 2−2k, we infer that the for every “good” fixing b, and z ∈ {0, 1}k+1, it
holds that the probability S(f(Y | L(Y) = b)) outputs z is at most 2−k+1 +

√
ε ≤ 2−k+2.

Hence, S(f(Y | L(Y) = b)) has min-entropy at least k − 2. The result follows, since
ℓ = k + 2 + 3 log(1/ε) = k + 2 + 6k ≤ 8k. ◀

Using this main lemma, our theorem easily follows:

Proof of Theorem 4.1. We apply Lemma 4.5 and use the fact that polynomial sources are
closed under affine restrictions. ◀

4.2 Existential results
We first show that with high probability, a random function is a good extractor. We will then
improve upon it to show that for large enough t, a function sampled using t-wise distribution
is a good enough extractor.

▶ Lemma 4.6. Let n, d, k, ε be such that d < O(n/ log log n), k ≥ Ω(log n +
d log log n), 2−Ω(k) ≤ ε ≤ 1/2, m = k− 2 log(1/ε)−O(1). For any polynomial source X ∼ Fn

2
of degree at most d with H∞(X) ≥ k, a random function r : Fn

2 → Fm
2 is a ε-extractor with

high probability.
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Proof. By Theorem 4.1 and Fact 3.8, it suffices to extract from degree d polynomial sources
X′ ∼ Fn

2 with O(k) inputs and H∞(X) ≥ k− 2. By Fact 3.1, we infer that an extractor with
error ε for X′ is also an extractor for X with error ε + 2−k.

By Proposition 3.9, for a fixed source Y with H∞(Y) = k, a random function r : Fn
2 → Fm

2
satisfies r(Y) ≈ε Um with probability 1− 2−Ω(2k)ε2 where m = k − 2 log(1/ε)−O(1). We
now do a union bound over all the 2( ℓ

≤d)·n degree d sources with ℓ inputs and n outputs. As
ε ≥ 2−Ω(k), k ≥ log n + Ω(d log log n), ℓ = O(k), the union bound indeed succeeds and we
infer the claim. ◀

We will use k-wise independent hash functions to help construct extractors for polynomial
sources. We will show a random function from a family of such functions will be an extractor.
Lets first define them:

▶ Definition 4.7 ([37, Definition 3.3.1]). For n, m, t ∈ N such that t ≤ 2n, a family of functions
H = {h : {0, 1}n → {0, 1}m} is t-wise independent, if for all distinct x1, . . . , xt ∈ {0, 1}n,
the random variables h(x1), . . . , h(xt) are independently and uniformly distributed in {0, 1}m

when h is a randomly chosen function from H.

We rely on the following property of t-wise independent hash functions in our construction:

▶ Lemma 4.8 (Implicit in [36, Proposition A.1]). Let X be arbitrary class of min-entropy at
least k distributions over n bits. Let H be class of t-wise independent hash functions from n

bits to m bits where t = 2 log(k + |X |), m = k − 2 log(1/ε)− log(t)− 2. Then, there exists
h ∈ H such that h is a (k, ε) extractor against all sources in class X .

Using this, we extend our existential result for t-wise independent hash functions.

▶ Corollary 4.9. Let n, d, k, t, ε be such that t = 2 log
(

k + 2(O(k)
d )·n

)
, m = k − log(t) −

2 log(1/ε)−O(1). For any polynomial source X ∼ Fn
2 of degree at most d with H∞(X) ≥ k,

a random function Ext : Fn
2 → Fm

2 from a family of t-wise independent functions is an
ε + 2−k-extractor with high probability.

Proof. As earlier, by Theorem 4.1 and Fact 3.8, it suffices to extract from degree d polynomial
sources X′ ∼ Fn

2 with O(k) inputs and H∞(X) ≥ k − 2. By Fact 3.1, we infer that an
extractor with error ε for X′ is also an extractor for X with error ε + 2−k. Using naive
bounds on the number of such polynomial sources, there are at most 2(O(k)

≤d )·n such sources.
We apply Lemma 4.8 for our choice of parameters and infer the claim. ◀

4.3 Explicit construction
We use the input reduction trick and the existential results to construct non-trivial extractors
for polynomial sources and prove the formal version of our main result, i.e., Theorem 6.

▶ Theorem 4.10. Let d, n, k be such that d ≤ Θ(log log n/ log log log n) and k ≥ n −

O

( √
log n

(log log n/d)d/2

)
. Let X be class of degree d polynomial sources that output n bits and

have min-entropy at least k. Then we can construct an extractor for X in time poly(n) that
extracts Ω(log log n) bits and has error 2−Ω(log log n).

Towards proving the theorem, we first need the following simple observation that the
entropy gap of a source cannot get worse by projecting onto a few bits:
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▷ Claim 4.11. Let X ∼ Fn
2 be an arbitrary source such that H∞(X) = k. Let X0 be

projection of X onto arbitrary n0 bits. Then, H∞(X0) ≥ n0 − (n− k).

Proof. Let x0 ∈ Fn0
2 be arbitrary. Let Pr(X0 = x0) = p0. Then by an averaging argument,

there exists x ∈ Fn
2 such that the projection of x onto coordinates corresponding to X0

equals x0 and Pr(X = x) = p ≥ p0 · 2−(n−n0). Hence, if p0 > 2−(n0−(n−k)), then p > 2−k, a
contradiction. ◁

We use the following lemma to efficiently construct t-wise independent hash functions:

▶ Lemma 4.12 (Follows from [37, Corollary 3.3.4]). For every n, m, t ∈ N, there exists a family
of t-wise independent functions H = {h : {0, 1}n → {0, 1}m} such that we can enumerate the
family in 2t·max(n,m) · poly(n, m, t) time and evaluate each function in poly(n, m, t) time.

Here is the construction algorithm that we will utilise to construct extractors in
Lemma 4.13.

Algorithm 1 Extractor from t-wise independent family.

input : degree d, input source length ℓ, output source length n0, min-entropy
k0 = n0 − g, extractor output length r, target error ε, the parameter t for
t-wise independence

output : An extractor f from n0 bits to r bits with error ε for degree d polynomial
sources from ℓ bits to n0 bits if it exists from some t-wise independent family

Let F be some fixed family of t-wise independent functions from n0 bits to r bits.
for every function f ∈ F do

flag ← True.
for every degree d polynomial map P from ℓ bits to n0 bits do

Brute force over all 2ℓ assignments to compute min-entropy of P(Uℓ) and let
it be kp.

if kp ≥ k0 then
Brute force over all 2ℓ assignments to compute εf,P = |Um − f(P(Uℓ))|.
if εf,P > ε then

flag ← False.
end

end
end
if flag = True then

return f
end

end
return Fail

Using these, we prove our algorithm in Algorithm 1 indeed works:

▶ Lemma 4.13. Let d, g, n, k, r be such that 0 ≤ g ≤ n, k ≥ n− g, d ≤ O
(

g
log g

)
, Ω(log g +

d log log g) ≤ r ≤ O(g). Let X be class of degree d polynomial sources that output n bits and
have min-entropy at least k. Then we can construct an extractor for X in time 2O((Θ(r)

≤d )·g2)
that extracts r bits and has error 2−Ω(r).
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Proof. Let X ∈ X be arbitrary. Consider the first n0 = 1.01g bits of X and let this source be
X0. Then, by Claim 4.11, it holds that H∞(X0) ≥ n0−g ≥ Ω(n0). We use Theorem 4.1 with
min-entropy k0 = Ω(r) to infer that it suffices to construct extractors polynomial sources
with input length ℓ = Θ(k0). By Corollary 4.9, there exists a function f : Fn0

2 → Fr
2 such

that for all polynomial sources Y, |f(Y)−Ur| ≤ 2−Θ(k0). Moreover, such f will be one of
the functions in family of t-wise independent functions where t = 2 log(Θ(k0) + |X |). By
setting these input parameters to Algorithm 1, we will indeed find such f .

Let’s analyze the runtime of Algorithm 1. The number of degree d sources with input
length ℓ and output length n0 is 2( ℓ

≤d)·n0 . The time to enumerate the t-wise independent
family is 2tn0 poly(t, n0) ≤ 22( ℓ

≤d)·n2
0 poly(ℓ, d, n0) (Lemma 4.12). Computing entropy and

checking if the function is an extractor takes O(2O(ℓ+n0) · poly(n0)). As ℓ = Θ(r) and
d ≤ O(n0/ log n0), the overall runtime of this algorithm is 2O((Θ(r)

≤d )·n2
0). As n0 = 1.01g, the

runtime is as desired. ◀

We specialize above lemma to obtain Theorem 4.10.

Proof of Theorem 4.10. Set g = Θ
( √

log n

(log log n/d)d/2

)
and r = Θ(log g + d log log g) in

Lemma 4.13. ◀

5 Impossibility results

In this section, we show various impossibility results for polynomial NOBF sources and hence,
these results apply to both polynomial sources and variety sources. We first show a sampling
result that demonstrates power of the quadratic NOBF sources: they can sample optimal
sized Sidon sets. We then show affine dispersers cannot be used to disperse from degree d

polynomial NOBF sources below certain min-entropy (this is tight). We finally will prove
Theorem 9, that sumset extractors cannot be used to even disperse against quadratic NOBF
sources below certain min-entropy.

5.1 A warm-up via Sidon sets
To start things off, let us recall the definition of Sidon sets.

▶ Definition 5.1 (Sidon sets). We say S ⊂ Fn
2 is a Sidon set if for all a, b, c, d ∈ S such that

a + b = c + d, it holds that {a, b} = {c, d}.

We show that quadratic NOBF sources can uniformly sample the largest possible Sidon
sets over Fn

2 , and thus we cannot use sumset extractors below min-entropy n/2 to extract
from polynomial NOBF sources. Later, we obtain a much stronger version of the latter claim.

We consider the correspondence between F2t and Ft
2:

▶ Definition 5.2. For a finite field F2t , we define the function ϕ : F2t → Ft
2 that sends the

field element to its vector representation.

We observe that ϕ is additive:

▶ Fact 5.3. For all x, y ∈ F2t , it holds that ϕ(x + y) = ϕ(x) + ϕ(y). Moreover, ϕ is a
bijection.

We will use the following nice lemma involving ϕ:
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▶ Lemma 5.4 ([23, Lemma 2.3.1]). Let p : F2t → F2t be a degree d polynomial and let
hamming weight of d when expressed in binary be w. Then, there exists a degree w multilinear
polynomial q : Ft

2 → Ft
2 such that for all x ∈ F2t , it holds that ϕ(p(x)) = q(ϕ(x)).

Using these, we show there exists a quadratic NOBF source that uniformly sample largest
possible Sidon set over Fn

2 :

▷ Claim 5.5. There exists a degree 2 polynomial NOBF source Y with H∞(Y) = n/2 such
that Y uniformly samples a Sidon set.

Proof. Consider the set S = {(x, x3) : x ∈ F2n/2}. It’s well known that this set is a Sidon
set [32]. Let ϕ : F2n/2 → Fn/2

2 be the function that sends the field element to their vector
representation. Using Lemma 5.4, we infer that there exists a degree 2 polynomial map
q : Fn/2

2 → Fn/2
2 such that for all x ∈ Fn/2

2 , ϕ(x3) = q(ϕ(x)). Applying Fact 5.3, we infer that
T = {(y, q(y)) : y ∈ Fn/2

2 } is also a Sidon set. We define Y : Fn/2
2 → Fn

2 to be the degree 2
polynomial NOBF source that is uniform over the set T . Then, Y uniformly samples a Sidon
set and H∞(Y) = n/2 as desired. ◁

We show the following towards our impossibility result:

▷ Claim 5.6. Let S ⊂ Fn
2 be a Sidon set. For all A, B ⊂ Fn

2 , |A| ≥ 2, |B| ≥ 3 : A + B ̸⊂ S.

Proof. Say such A, B existed. Pick a1, a2 ∈ A and b1, b2 ∈ B such that a1 + a2 ̸= b1 + b2. Let
C = {a1+b1, a1+b2, a2+b1, a2+b2}. Then, |C| = 4 and C ⊂ S. However, (a1+b1)+(a1+b2) =
(a2 + b1) + (a2 + b2) which contradicts the fact that S is a Sidon set. ◁

From these, we infer an impossibility result as a corollary:

▶ Corollary 5.7. There exists a degree 2 polynomial NOBF source Y with H∞(Y) = n/2
such that for all A, B ⊂ Fn

2 , |A| ≥ 2, |B| ≥ 3 : A + B ̸⊂ support(Y).

Looking ahead, we can apply Lemma 5.17 and Lemma 5.18 to infer that we cannot use a
(black box) sumset extractor to extract from polynomial NOBF sources of min-entropy n/2.

5.2 Affine dispersers cannot disperse from Polynomial NOBF sources
We show that we cannot use affine dispersers to disperse from degree d polynomial NOBF
sources below min-entropy n−n/(log n)d−1. By [11, Theorem 7], we know that that an affine
disperser for dimension Ω(log n) is a disperser for degree d variety sources with min entropy
n− n

(log n)d−1 . As polynomial NOBF sources are also variety sources, and affine dispersers
below min-entropy log n cannot exist, this result is tight.

▶ Theorem 5.8. Let c1 > 0 be an arbitrary constant. Then, there exists another constant
c2 > 0 such that the following holds: For 2 ≤ d ≤ log n

2·log log n , There exists a degree d polynomial
NOBF source X with H∞(X) = n− c2

n
(log n)d−1 such that support(X) does not contain any

affine subspace of dimension c1 log n.

As affine dispersers with min-entropy requirement log n can’t exist, it indeed follows that
we can’t use affine dispersers to disperse from polynomial NOBF sources with the stated
min-entropy bound.

We first show that a random degree d polynomial map will not become a linear map over
any small affine subspace.
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▷ Claim 5.9. There exists a universal constant c such that the following holds. Let d, n, t

be such that 2 ≤ d < n/2 and t < n. Then, there exist degree d polynomials p1, . . . , pt such
that on every affine subspace U of dimension k ≥ cd · (n/t)1/(d−1), there exists at least one i

such that pi has degree ≥ 2.

Proof. Let p1, . . . , pt : Fn
2 → F2 be random polynomials of degree d. Let U be arbitrary but

fixed affine subspace of dimension k. Then, p1|U , . . . , pt|U are also uniform polynomials over
k variables of degree d. Hence, it must be that:

Pr
p1,...,pt

 ∧
1≤i≤t

deg(f |U ) ≤ 1

 ≤ 2−(( k
≤d)−( k

≤1))t

We union bound over all ≤ 2n
(2n

k

)
affine subspaces of dimension k and see that the probability

that there exists some affine subspace of dimension k over which all these polynomials have
degree at most 1 is at most

2−(( k
≤d)−( k

≤1))t · 2n ·
(

2n

k

)
We set c to a large constant so that the above probability less than 1. ◁

We now show a random polynomial NOBF source does not contain any small affine
subspace.

▷ Claim 5.10. There exists a universal constant c such that the following holds: Let d, k

be such that 2 ≤ d < k/2. For any 0 < t < k, there exists a degree d polynomial NOBF
source X over k + t bits with H∞(X) = k such that support(X) does not contain any affine
subspace of dimension cd · (k/t)1/(d−1).

Proof. Let s = cd · (k/t)1/(d−1). Let (p1, . . . , pt) : Fk
2 → Ft

2 be the t polynomials from
Claim 5.9. Let X be the polynomial NOBF source over k + t bits where first k bits are
x1, . . . , xk and last t bits are p1(x1, . . . , xk), . . . , pt(x1, . . . , xk).

Assume that there exists an affine subspace U ⊂ support(X) such that dim(U) = s.
Observe that once the first k bits of X are fixed, the last t bits are also fixed. As U ⊂
support(X), U must also have this property. Let P ⊂ Fk

2 be the projection of U over the
first k bits. Then, dim(P ) = dim(U) = s. Moreover, as U is an affine subspace, the last t

bits of U are linear functions of the first k bits. However, this implies that for each 1 ≤ i ≤ t,
deg(pi|P ) ≤ 1, which is a contradiction. ◁

Proof of Theorem 5.8. Let C be a large enough constant. We apply Claim 5.10 and set
t = k

(
Cd

log n

)d−1
to infer the claim. ◀

5.3 Sumset dispersers cannot disperse from Polynomial NOBF sources
We show that we cannot use sumset dispersers to disperse from quadratic NOBF sources
below min-entropy n− n/ log n.

▶ Theorem 5.11. Let c1 > 0 be an arbitrary constant. Then, there exists another constant
c2 > 0 such that the following holds: There exists a degree 2 polynomial NOBF source X
with H∞(X) = n− c2

n
log n such that support(X) does not contain any sumset A + B where

|A| ≥ nc1 , |B| ≥ nc1 .
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In fact, we will prove the following, more fine-grained, version of Theorem 5.11.

▷ Claim 5.12. There exists a universal constant c such that the following holds. For
any 0 < t < k, there exists a degree 2 polynomial NOBF source X over n = k + t

bits with H∞(X) = k such that support(X) does not contain any sumset A + B where
|A| ≥ 2cn/t, |B| ≥ 2cn/t.

Given the above claim, it is easy to prove Theorem 5.11.

Proof of Theorem 5.11. The theorem follows by setting t = O(n/ log n) in Claim 5.12. ◀

The rest of this section is devoted to proving Claim 5.12. To do so, we prove two claims.

▷ Claim 5.13. There exists a universal constant c such that the following holds. Let t, n ∈ N
be such that t < n. There exist degree 2 polynomials p1, . . . , pt : Fn

2 → F2 such that for every
pair of affine subspaces U, V of dimensions r ≥ c(n/t) each, and for all y ∈ Fn

2 , there exists
at least at least one i and at least one u ∈ U, v ∈ V such that pi(u + v) ̸= pi(u) + pi(v) + yi.

▷ Claim 5.14. Let P = (p1, . . . , pt) : Fn
2 → Ft

2 be a degree 2 polynomial map. Let
y ∈ Ft

2 be arbitrary. Let A, B ⊂ Fn
2 be such that for all a ∈ A, b ∈ B, it holds that

P (a) + P (b) = P (a + b) + y. Then, there exist affine subspaces U, V ⊂ Fn
2 such that for all

u ∈ U, v ∈ V , it holds that P (u) + P (v) = P (u + v) + y and |U | ≥ |A|, |V | ≥ |B|.

Using these two claims, it is not too difficult to prove Claim 5.12.

Proof of Claim 5.12. Let X be the polynomial NOBF source where first k bits are uniform
variables and last t bits are output of polynomial map P from Claim 5.13 (hence set c to the
universal constant from there). We now proceed by contradiction and assume there exist
A, B ⊂ Fn

2 such that |A| ≥ 2cn/t, |B| ≥ 2cn/t, and A + B ⊂ support(X). Let a0 ∈ A, b0 ∈ B

be arbitrary. Let A′ = a0 +A, B′ = b0 +B, X′ = X+(a0 +b0). Then, A′ +B′ ⊂ support(X′).
Observe that 0n ∈ A′ and 0n ∈ B′. So, A′ ⊂ support(X′), and B′ ⊂ support(X′). Moreover,
X′ is a degree 2 polynomial NOBF source with H∞(X′) = H∞(X).

Let the last n − k bits of X′ be the output of the degree 2 polynomial map P ′. Let
A′

0, B′
0 ⊂ Fk

2 be the projections of A′, B′ respectively onto the first k bits. As A′ ⊂
support(X′), B′ ⊂ support(X′), and the last n − k bits are deterministic functions of the
first k bits, it must be that |A′

0| = |A′| and |B′
0| = |B′|. Similarly, as A′ + B′ ⊂ support(X′),

it must be that P ′(A′
0) + P ′(B′

0) = P ′(A′
0 + B′

0). By Claim 5.14, there exist affine subspaces
U ′, V ′ ⊂ Fk

2 such that for all u′ ∈ UPr, v′ ∈ V Pr, it holds that P ′(u′) + P ′(v′) = P ′(u′ + v′)
where |U ′| ≥ |A′

0| = |A′|, |V ′| ≥ |B′
0| = |B′|.

Observe that P ′(x) = P (g + x) + h where g ∈ Fk
2 , h ∈ Ft

2 are some fixed strings. Then,
P (g+U ′)+P (g+V ′) = P (g+U ′+V ′)+h. Let U, V ⊂ Fk

2 be such that U = g+U ′, V = g+V ′.
Then, U, V are affine subspaces, P (U) + P (V ) = P (U + V ) + h, and |U | = |U ′| ≥ |A′| =
|A|, |V | = |V ′| ≥ |B′| = |B|. However, this is a contradiction to the choice of P . ◁

We now prove the helpful claim that random quadratic maps P have the property that for
every large affine subspaces U, V , there exist u ∈ U, v ∈ V such that P (u) + P (v) ̸= P (u + v).

Proof of Claim 5.13. Fix y ∈ Ft
2. At the end, we will union bound over these 2t distinct

y. Let P = (p1, . . . , pt) : Fn
2 → Ft

2 be a random degree 2 polynomial map. Without loss
of generality assume that y = 0t. Indeed, we can define P ′(x) = P (x) + y so that for all
a ∈ A, b ∈ B, it holds that P ′(a) + P ′(b) = P ′(a + b). Moreover, if there exist U, V such that
for all u ∈ U, v ∈ V : P ′(u) + P ′(v) = P ′(u + v), then we will recover that for all u ∈ U, v ∈ V :
P (u) + P (v) = P (u + v) + y as desired. Moreover, P ′ as defined will be distributed as a
uniformly random degree 2 polynomial map.
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Call a degree 2 polynomial map P “bad” if there exist affine subspaces C, D of dimensions
r each such that for all c ∈ C, d ∈ D it holds that P (c) + P (d) = P (c + d). Call such C, D

the affine subspaces that “witness” the badness of P . We will go over each pair of affine
subspaces C, D and show that the fraction of bad maps witnessed by the pair (C, D) are
very small.

Let U, V be arbitrary dimension r subspaces. Let u0, v0 ∈ Fn
2 be arbitrary. Then, we fix

u0 + U, v0 + V to be arbitrary but fixed affine subspaces of dimension r each. We consider
two cases:
Case 1. dim(U ∩ V ) ≥ r/2.

Let W = (U ∩ V ). Let P be a bad map witnessed by u0 + U, v0 + V , i.e., for all
u ∈ (u0 +U), v ∈ (v0 +V ), it holds that P (u)+P (v) = P (u+v). We claim that P |(u0+W )
is a degree 1 polynomial map. Indeed, above condition guarantees that ∀w1, w2 ∈ W :
P (u0 + w1) + P (v0 + w2) = P (u0 + v0 + w1 + w2). This also implies that ∀w ∈ W :
P (u0 + w) + P (v0 + w) = P (u0 + v0). Repeatedly applying these, we infer that:

P (u0 + (w1 + w2)) = P (u0 + v0) + P (v0 + (w1 + w2))
= P (u0 + v0) + (P (u0 + w1) + P (u0 + v0 + w2))
= P (u0 + w1) + (P (u0 + v0)) + (P (v0 + (u0 + w2)))
= P (u0 + w1) + (P (u0) + P (v0)) + (P (v0) + P (u0 + w2)))
= P (u0 + w1) + P (u0 + w2) + P (u0)

Hence, P restricted to u0 + W is indeed an affine map. We observe that
p1|u0+W , . . . , pt|u0+W are distributed as uniform degree at most 2 polynomials over
r/2 variables. The probability that each of these polynomials has degree at most 1 is at
most 2−(r/2

2 )t.
Case 2. dim(U ∩ V ) < r/2.

Let u0+S be the largest affine subspace inside u0+U such that S∩(U∩V ) = {0}. Similarly,
let v0 + T be the largest affine subspace inside V such that T ∩ (U ∩V ) = {0}. It must be
that dim(S), dim(T ) ≥ r/2 and S∩T = ∅. By considering appropriate subsets of S and T ,
we without loss of generality assume dim(S) = dim(T ) = r/3, (u0 + S)∩ (T ∪ (v0 + T )) =
(v0 + T ) ∩ (S ∪ (u0 + S)) = ∅. Let basis vectors of S and T be (s1, . . . , sr/3), and
(t1, . . . , tr/3) respectively. Without loss of generality, let it be that u0 + s1, . . . , u0 + sr/3
are linearly independent and v0 + t1, . . . , v0 + tr/3 are also linearly independent. Then,
by using the various empty intersection conditions above, the vectors u0 + s1, . . . , u0 +
sr/3, v0 + t1, . . . , v0 + rr/3 are also linearly independent. Let b1, . . . , bn−r/3 be linearly
independent vectors so that u0 + s1, . . . , u0 + sr/3, v0 + t1, . . . , v0 + rr/3, b1, . . . , bn−r/3 are
all linearly independent. Let’s rename these vectors to be c1, . . . , cn.
Now, we choose the random quadratic polynomials p1, . . . , pt by randomly sampling
monomials of degree at most 2 over these ci. As the ci are linearly independent, P

will still be a uniformly random quadratic map. Let P be a bad map witnessed by
u0 + U, v0 + V . We claim there does not exist i such that pi contains the monomial
cjck where cj ∈ {u0 + s1, . . . , u0 + sr/3} and ck ∈ {v0 + t1, . . . , v0 + tr/3}. Proceed by
contradiction and assume there exists i such that pi contains the monomial cjck where
cj ∈ {u0 + s1, . . . , u0 + sr/3} and ck ∈ {v0 + t1, . . . , v0 + tr/3}. Without loss of generality
we assume that the singleton monomials cj and ck are not present in pi and the degree 0
monomial is also absent (if any of them are present, then we can easily change assignments
α1, α2 and their outcomes below and get the same claim). Consider the following two
assignments:
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1. Assignment α1 where cj = 1, and remaining variables are set to 0.
2. Assignment α2 where ck = 1, and remaining variables set to 0.
Then, pi(α1) = pi(α2) = 0. Moreover, we observe that pi(α1 + α2) = 1. However, this
means we found α1 ∈ (u0 + U) and α2 ∈ (v0 + V ) such that P (α1) + P (α2) ̸= P (α1 + α2),
contradicting the fact that u0 + U, v0 + V witnessed badness of P . Hence, for this not
to happen, all such “cross” monomials must not occur in any pi. This happens with
probability at most 2−(r/3)2t.

We union bound over all pairs of affine subspaces of dimension r and consider whether
they fall into the first case or the second case. If they fall into the first case, then we only
union bound over ≤ 2n ·

( 2n

r/2
)

affine subspaces of dimension r/2 and consider the probability
that a bad map P that they witness becomes linear over that affine subspace. If they fall
into the second case, then we union bound over all ≤

(
2n ·

( 2n

r/3
))2

disjoint pairs of affine
subspaces of dimension r/3 use consider the probability that any bad map they witness won’t
have such cross monomials. We finally add both these probabilities to get our final bound.
For the first case, the expression will be

2−(r/2
2 )t · 2n ·

(
2n

r/2

)
For the second case, the expression will be:

2−(r/3)2t ·
(

2n ·
(

2n

r/3

))2

We can choose c large enough so that the sum of the above probabilities is much smaller
than than 2−t. Then, we union bound over all 2t of the y ∈ Ft

2 to get the desired claim. ◁

We lastly prove the useful claim that for a quadratic map P , if there exist sets A, B

such that for all a ∈ A, b ∈ B it holds that P (a) + P (b) = P (a + b), then we can also find
affine subspaces U, V with the same property and of larger sizes. We first need the notion of
directional derivatives:

▶ Definition 5.15 (Directional derivative). For a polynomial p : Fn
2 → F2 and a ∈ Fn

2 , we
define its directional derivative in direction a, i.e., Da(p)(·) : Fn

2 → F2 as

Da(p)(x) = p(x) + p(x + a)

Clearly Da(p)(·) is a polynomial. It’s well known that deg(Da(p)(·)) ≤ deg(p) − 1. We
also extend the definition of directional derivatives to apply to a polynomial map P :
Fn

2 → Ft
2. For a fixed direction a ∈ Fn

2 , we define Da(P )(·) : Fn
2 → Fm

2 as Da(P )(x) =
(Da(p1)(x), . . . , Da(pm)(x)). Using these, we present our proof:

Proof of Claim 5.14. Without loss of generality assume that y = 0t. Indeed, let P ′(x) =
P (x) + y so that for all a ∈ A, b ∈ B: P ′(a) + P ′(b) = P ′(a + b). Moreover, if there exist
such affine subspaces U, V so that for all u ∈ U, v ∈ V : P ′(u) + P ′(v) = P ′(u + v), then
we will indeed recover the fact that for all u ∈ U, v ∈ V : P (u) + P (v) = P (u + v) + y

as desired. Let C, D be such that A ⊂ C, B ⊂ D, and for all c ∈ C, d ∈ D it holds that
P (c) + P (d) = P (c + d). Moreover, let C and D are the largest such sets. To prove the claim,
it suffices to show that C and D are affine subspaces.
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For a ∈ Fn
2 , define Da(P )(x) = (Da(p1)(x), . . . , Da(pt)(x)) = P (x) + P (x + a), the map

of directional derivatives in direction a. Let Sa = {z ∈ Fn
2 : Da(P )(z) = P (a)}. We claim

that y ∈ Sa ⇐⇒ P (y) + P (a) = P (a + y). Indeed,

Da(P )(y) = P (a) ⇐⇒ P (y) + P (y + a) = P (a)

Let SC =
⋂

c∈C Sc. Then, it must be that B ⊂ SC . As D is maximal such set and for all
c ∈ C, s ∈ SC : P (c) + P (s) = P (c + s), it must be that D = SC . By a symmetric argument,
C = SD. Observe that for arbitrary a ∈ Fn

2 , Sa is an affine subspace. As intersection of affine
subspaces is an affine subspace, SC = D and SD = C are affine subspaces, as desired. ◁

5.4 Sumset extractors cannot disperse from Polynomial NOBF sources
We show that we cannot use sumset extractors to disperse from quadratic NOBF sources
below min-entropy n− n/ log log n.

▶ Theorem 5.16. Let 0 < ε < 1, 0 < c1 be arbitrary constants. Then, there exists another
constant c2 > 0 such that the following holds: There exists a degree 2 polynomial NOBF
source X with H∞(X) = n− c2

n
log log n such that X is (1− ε)-far from a convex combination

of sumset sources of min-entropy c1 log n.

Note that if a distribution is 1
2 distance away from any convex combination of sumset

sources then a sumset extractor cannot be used in a blackbox way as a disperser. Also, as no
sumset extractor can exist for min-entropy below log n, these results indeed show we can’t
use sumset extractors in a blackbox way to disperse from degree 2 polynomial NOBF sources.

We will prove a worst case to average case type reduction for sumsets.

▶ Lemma 5.17. Let 0 < δ < 1 be a fixed constant. Let X ∼ Fn
2 be such that for all

flat sources A, B ∼ Fn
2 with H∞(A) = H∞(B) = t, it holds that (A + B) ̸⊂ support(X).

Then, for all flat sources R, S ∼ Fn
2 such that H∞(R) = H∞(S) = c · 2t, it holds that

Prr∼R,s∼S[r + s ∈ support(X)] ≤ δ. Here, c > 0 is a constant depending only on δ.

We will show that if a source is far from all sumset sources, then it is also far from all
convex combination of sumset sources:

▶ Lemma 5.18 (Similar to [1, Theorem 14]). Let 0 ≤ δ ≤ 1, 0 ≤ k, and X ∼ Fn
2 be such

that for all flat sources R, S ∼ Fn
2 with H∞(R), H∞(S) ≥ k, it holds that Prr∼R,s∼S[r + s ∈

support(X)] ≤ δ. Then, for all Y such that Y is a convex combination of sumset sources of
min-entropy at least k, it holds that |X−Y| ≥ 1− δ.

Using these, and Claim 5.12 from Section 5.3, we show that sumset extractors cannot
even disperse from degree 2 polynomial NOBF sources:

Proof of Theorem 5.16. Let X be source guaranteed by Claim 5.12 with H∞(X) = n −
c2

n
log log n such that for all A, B ⊂ Fn

2 with |A| = |B| = c log n, it holds that (A + B) ̸⊂
support(X). Using Lemma 5.17, we infer that for all flat sources R, S ∼ Fn

2 with H∞(R) =
H∞(S) = c1 log n, it holds that Pr(R+S) ∈ support(X) ≤ δ. Let Y ∼ Fn

2 be arbitrary convex
combination of sumset sources {(R(i) + S(i))}i, each with min-entropy c1 log n. Applying
Lemma 5.18, we infer that |X−Y| ≥ 1− δ as desired. ◀

We use a bipartite Ramsey bound to get a worst case to average case type reduction for
sumset sources:
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▶ Lemma 5.19 ([40]). The maximum number of edges in a bipartite graph over [n] × [n]
without inducing a complete bipartite t× t subgraph is at most (t−1)1/t ·n2−1/t + 1

2 · (t−1) ·n.

We will utilize the following corollary of this statement:

▶ Corollary 5.20. Fix 0 < δ ≤ 1. Let G be a bipartite graph over [n] × [n] with at δ · n2

edges. Then, G induces a complete bipartite subgraph H over [ε · log n] × [ε · log n] where
0 < ε ≤ 1 is a constant depending only on δ.

Equipped with this, we prove our main lemma:

Proof of Lemma 5.17. Assume this is not the case and there exist such R and S. Let
H∞(R) = H∞(S) = k. Consider a bipartite graph G over support(R)× support(S) with an
edge between r ∈ support(R) and s ∈ support(S) if r + s ∈ support(X). By assumption, G

has at least δ · 22k edges. Using Corollary 5.20, we infer that G induces a complete bipartite
subgraph where where each part has size ε · k (ε depends only on δ). Equivalently, there exist
sets C ⊂ support(R), D ⊂ support(S) such that |C| = |D| = ε ·k and (C +D) ⊂ support(X).
Let A be the uniform distribution over C and B be the uniform distribution over D. Then,
H∞(A) = H∞(B) = log(ε · k). Setting c = 1/ε, we get a contradiction. ◀

Finally, we show that if a distribution is far from every sumset source, then it’s far from
every convex combination of sumset sources.

Proof of Lemma 5.18. Let Y ∼ Fn
2 be arbitrary convex combination of sumset sources

{(R(i) + S(i))}i, each with min-entropy at least k. Let T = support(X). Then,

|X−Y| ≥ Pr[Y ∈ T ]− Pr[X ∈ T ] = Pr[Y ∈ T ]

≥ min
i

Pr[Y(i) ∈ T ] = 1−max
i

Pr[Y(i) ∈ T ]

≥ 1− δ. ◀

6 Open problems

The problem of constructing extractors for sources sampled by F2-polynomials is a natural
one, and we view our results as initial progress on this question. We leave open a number of
interesting open directions:
1. Construct extractors or dispersers for polynomial sources with better min-entropy depend-

ence than what we constructed here. For instance, some interesting potential candidates
to explore are the MAJORITY function, or the generalized inner product function.

2. It will be interesting to make progress on the easier question of extracting from constant
degree polynomial NOBF sources below min-entropy 0.999n. Extracting from constant
degree variety sources below min-entropy 0.999n is an important open problem and here,
we introduced an interesting subclass of variety sources – polynomial NOBF sources – for
which we also don’t have better extractors.
An even simpler question is to construct dispersers for constant degree polynomial NOBF
sources below min-entropy n/2. Note that for any NOBF source with > n/2 good bits,
the MAJORITY function is a disperser.

3. Construct extractors or dispersers for polynomial sources with degree poly(log n). Such
an extractor will also extract from sources sampled by AC0[⊕] circuits, a model for which
no non-trivial extractors are known. Our constructions work for degree up to O(log log n),
and thus fall short of achieving this.
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