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Abstract
In a recent work, Chen, Hoza, Lyu, Tal and Wu (FOCS 2023) showed an improved error reduction
framework for the derandomization of regular read-once branching programs (ROBPs). Their
result is based on a clever modification to the inverse Laplacian perspective of space-bounded
derandomization, which was originally introduced by Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford and Vadhan (FOCS 2020).

In this work, we give an alternative error reduction framework for regular ROBPs. Our new
framework is based on a binary recursive formula from the work of Chattopadhyay and Liao (CCC
2020), that they used to construct weighted pseudorandom generators (WPRGs) for general ROBPs.

Based on our new error reduction framework, we give alternative proofs to the following results
for regular ROBPs of length n and width w, both of which were proved in the work of Chen et al.
using their error reduction:

There is a WPRG with error ε that has seed length

Õ(log(n)(
√

log(1/ε) + log(w)) + log(1/ε)).

There is a (non-black-box) deterministic algorithm which estimates the expectation of any such
program within error ±ε with space complexity

Õ(log(nw) · log log(1/ε)).

This was first proved in the work of Ahmadinejad et al., but the proof by Chen et al. is simpler.
Because of the binary recursive nature of our new framework, both of our proofs are based on a
straightforward induction that is arguably simpler than the Laplacian-based proof in the work of
Chen et al.

In fact, because of its simplicity, our proof of the second result directly gives a slightly stronger
claim: our algorithm computes a ε-singular value approximation (a notion of approximation intro-
duced in a recent work by Ahmadinejad, Peebles, Pyne, Sidford and Vadhan (FOCS 2023)) of the
random walk matrix of the given ROBP in space Õ(log(nw) · log log(1/ε)). It is not clear how to
get this stronger result from the previous proofs.
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1 Introduction

A central problem in complexity theory is to understand to what extent is randomness useful
in space-bounded computation. It is widely conjectured that every randomized algorithm can
be made deterministic with only a constant-factor blowup in space, i.e. BPL = L. A central
approach to derandomize BPL is to construct explicit pseudorandom generators (PRGs) for
standard-order read-once branching programs (ROBPs), which we formally define below.

▶ Definition 1 (ROBPs). A (standard-order) ROBP B of length n and width w is specified by a
start state v0 ∈ [w], a set of accept states Vacc and n transition functions Bi : [w]×{0, 1} → [w]
for i from 1 to n. The ROBP B computes a function B : {0, 1}n → {0, 1} as follows. Given
an input x ∈ {0, 1}n, define vi = Bi(vi−1, xi), where xi denotes the i-th bit of x. Then output
B(x) = 1 if vn ∈ Vacc, or B(x) = 0 otherwise.

▶ Remark 2. Equivalently, one can view a ROBP B as a directed graph as follows. Consider
n + 1 layers of nodes L0, L1, . . . , Ln, each having size w, and label the nodes in each Li with
[w]. For every i ∈ [n], v ∈ [w], b ∈ {0, 1}, construct an edge with label b from v in Li−1 to
Bi(v, b) in Li. Then the computation of B(x) corresponds to a walk following label x from
L0 to Ln. In this paper we usually consider the equivalent graph view, and we refer to Li as
layer i.

▶ Definition 3 (PRGs). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F
is a function G : {0, 1}d → {0, 1}n such that for every f ∈ F ,∣∣∣∣ E

x∼{0,1}n
[f(x)] − E

s∼{0,1}d
[f(G(s))]

∣∣∣∣ ≤ ε.

We say G ε-fools the class F if G is an ε-PRG for F . We call d the seed length of G. We
say G is explicit if it can be computed in space O(d).1

It can be shown (via probabilistic method) that there exists a ε-PRG for width-w length-n
ROBP with seed length O(log(nw/ε)), which is optimal. Furthermore, an explicit PRG
with such seed length would imply BPL = L. In a seminal work, Nisan [17] constructed an
explicit PRG with seed length O(log(n) · log(nw/ε)), which is only a O(log(n)) factor away
from optimal. Nisan [18] then used this PRG to prove that any problem in BPL can be
deterministically computed in O(log2(n)) space and poly(n) time. Another remarkable work
by Saks and Zhou [22] also applied Nisan’s generator in a non-trivial way to show that any
problem in BPL can be deterministically computed in O(log3/2(n)) space.

1.1 Weighted PRGs
Despite decades of effort, the seed length of Nisan’s PRG remains the state-of-the-art for
width w ≥ 4. In fact, even for the w = 3 special case, Nisan’s seed length remained
unbeatable until a recent work by Meka, Reingold and Tal [15] which improved the seed
length to Õ(log(n) log(1/ε)). This has motivated researchers to study relaxed notions of
PRGs and their applications in the derandomization of BPL. A well-studied notion is that
of a hitting set generator (HSG), which is the “one-sided” variant of a PRG.

1 Throughout this paper, when we say a function f is explicit, it means the function f can be computed
in space O(n) where n is the input length.
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▶ Definition 4 (HSGs). Let F be a class of functions f : {0, 1}n → {0, 1}. A ε-HSG for F
is a function G : {0, 1}d → {0, 1}n such that for every f ∈ F s.t. Ex∼{0,1}n [f(n)] > ε, it
holds that Es∼{0,1}d [f(G(s))] > 0.

The study of explicit HSGs for ROBPs has a long history, starting from the seminal work
by Ajtai, Komlós and Szemerédi [3]. While being weaker than PRGs, explicit constructions
of HSGs can still be used to derandomize randomized log-space algorithms with one-sided
error (RL). In fact, a recent work by Cheng and Hoza [10] shows that an explicit HSG with
optimal seed length O(log(nw/ε)) already implies BPL = L.

In 2018, Braverman, Cohen and Garg [6] introduced another relaxed notion of PRG called
weighted PRG (WPRG). In this relaxed notion, each output string of G is further assigned a
real weight that can possibly be negative.

▶ Definition 5. Let F be a class of functions f : {0, 1}n → {0, 1}. A ε-WPRG is a pair of
functions (ρ, G) : {0, 1}d → {0, 1}n × R such that for every f ∈ F ,∣∣∣∣ E

x∼{0,1}n
[f(x)] − E

s∼{0,1}d
[ρ(s) · f(G(s))]

∣∣∣∣ ≤ ε.

Surprisingly, by simply allowing negative weights, [6] showed how to construct an explicit
ε-WPRG with seed length

Õ(log(n) log(nw) + log(1/ε)),

which has almost optimal dependence on ε. A sequence of followup work [8, 11, 19, 12] further
improved the seed length with simpler WPRG constructions. In particular, Hoza [12] com-
pletely removed the hidden log log factors and improve the seed length to O(log(n) log(nw) +
log(1/ε)).

It was observed in [6] that ε-WPRGs implies ε-HSGs. In addition, WPRGs seem closer
to PRGs than HSGs in the sense that one can use a WPRG to estimate the expectation of a
ROBP f by simply enumerating all the seeds. In fact, following a suggestion in [6], [8] proved
that a WPRG with good enough bound on the output of ρ can be used in the derandomization
framework by Saks and Zhou [22]. Hoza [12] then used the WPRG in [11, 19] to prove that
BPL can be derandomized in deterministic space O(log3/2(n)/

√
log log(n)). This was the

first improvement over Saks and Zhou’s decades-old result.

1.2 Regular branching programs
For the original notion of PRGs, while there has been no improvement over Nisan’s seed
length for general (standard-order) ROBPs, a lot of progress has been made in some restricted
families. One important example is the setting of regular ROBPs, which is the main focus of
this work.

▶ Definition 6 (Regular ROBPs). We say a (standard-order) ROBP B is regular if for every
transition function Bi : [w] × {0, 1} → [w] in B, every state v ∈ [w] has exactly 2 pre-images.

An important reason to study this family is that general ROBPs can be reduced to regular
ROBPs [20, 5]. In fact, a surprisingly simple proof in a recent work by Lee, Pyne and
Vadhan [14] shows that any function that can be computed by a ROBP of length n and
width w can also be computed by a regular ROBP of width O(nw).

In 2010, Braverman, Rao, Raz and Yehudayoff [7] proved that the INW generator [13]
with proper choices of parameters is in fact a PRG for regular ROBPs with seed length
O(log(n) · (log log(n) + log(w/ε))). This is better than Nisan’s PRG’s seed length when

ITCS 2024



29:4 Recursive Error Reduction for Regular Branching Programs

log(w/ε) = o(log(n)). More generally, they introduced the “weight” measure for ROBPs
and proved that an INW generator with fixed parameters has error proportional to the
weight. They then showed that regular ROBPs have smaller weight than general ROBPs
when w ≪ n, which implies their better seed length bound. (See Section 3 for the formal
definitions.) Their better PRG construction for “small-weight” ROBPs also turns out to be
an important ingredient of the PRG for width-3 ROBPs in [15].

Recently, Ahmadinejad, Kelner, Murtagh, Peebles, Sidford and Vadhan [1] proved a
remarkable result that it takes only Õ(log(nw)) space to estimate the expectation of a regular
ROBP B in a non-black-box way. In fact, they designed an algorithm that can estimate the
expectation of B to a very high precision without much overhead:

▶ Theorem 7. For every ε > 0 there is a deterministic algorithm which takes a regular
ROBP B of length n and width w as input, and computes a value within Ex [B(x)] ± ε in
space complexity Õ(log(nw) log log(1/ε)).

1.3 Error reduction for regular branching programs
Given the better PRG by [7] in the regular setting, it is natural to ask whether one can get
a better WPRG than [12] in the regular setting too. This is in fact plausible because most
of the WPRG constructions2 introduced in Section 1.1 can be viewed as a black-box error
reduction procedures: given any ε0-PRG for ROBPs for some “mild error” ε0 (which we call
the “base PRG”), one can construct a ε-WPRG for ROBPs with better dependence on ε.
For general standard-order ROBPs, the O(log(n) log(nw) + log(1/ε)) seed length described
in Section 3 was obtained by taking Nisan’s PRG as the base PRG. Therefore, it is natural
to think that one can obtain a better ε-WPRG for regular ROBPs by taking the PRG in [7]
as the base PRG instead.

However, it turns out that the intuition is not trivially true, because every known error
reduction procedure for general ROBPs requires the “base error” ε0 to be at most < 1/n.
When ε0 < 1/n, the Õ(log(n) log(w/ε0)) seed length bound in [7] is no better than Nisan’s
O(log(n) log(nw/ε0)) seed length, so we cannot hope to get any improvement in the seed
length of the corresponding WPRG.

This problem was recently solved by Chen, Hoza, Lyu, Tal and Wu [9]. They showed how
to exploit the regular property and obtain a reduction from ε-WPRG for regular ROBPs
to PRG for regular ROBPs with error ε0 = O(1/ log2(n)). As a result, they proved the
following theorem.

▶ Theorem 8 ([9]). There is an explicit ε-WPRG for regular ROBPs with seed length

Õ
(

log(n)
(

log(w) +
√

log(1/ε)
)

+ log(1/ε)
)

.

Following [1, 11, 19, 12], the WPRG construction in [9] is based on the “inverse Laplacian”
perspective of small-space derandomization and Richardson iteration. The key step in
their construction is to modify the approximated inverse Laplacian based on a structure
called “shortcut graph”. With the shortcut graph structure, they showed how to apply the
potential argument in [7] to get a better bound for ε that is still non-trivial even when
ε0 = O(1/ log2(n)). Based on the same idea, [9] also showed how to get a simplified proof of
the non-black-box derandomization result in [1] (Theorem 7).

2 This includes [11, 19, 12], and implicitly [8] as we shall see in this paper.
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In short, the main purpose of using the shortcut graph idea in [9] is to embed a “binary-
recursive-like” structure into the inverse Laplacian analysis. Such a structure makes their
analysis compatible with the potential argument in [7]. In order to prove the non-black-box
derandomization result in Theorem 7, [9] showed that one can apply a different potential
argument based on the notion of “singular-value approximation” (SV approximation) defined
in [2].

1.4 Our contribution
While the shortcut graph modification gives a nice structure to the inverse Laplacian analysis,
the inverse Laplacian perspective itself is sometimes tricky to work with. In fact, although
the proof of Theorem 7 in [9] is simpler than the original proof in [1], they still need to work
on a sophisticated matrix seminorm, and the corresponding potential argument requires
non-trivial ideas to analyze.

In this work, we give an alternative error reduction framework for regular ROBPs by
modifying a WPRG construction by Chattopadhyay and Liao [8]. The advantage of using [8] is
that their WPRG construction is actually binary recursive, and hence is naturally compatible
with the weight argument in [7]. To construct a WPRG for regular branching program that
matches the parameter in Theorem 8, we show that the analysis in [8] can be improved in the
regular setting based on the weight argument in [7]. Inspired by the proof of Theorem 7 in [9],
we also give an alternative proof of Theorem 7 based on the notion of SV approximation.
Because of the binary recursive nature of [8], both proofs are relatively straightforward by
induction and are arguably simpler than the proofs in [9].

In fact, our proof of Theorem 7 implies a slightly stronger claim (Theorem 32) which
might be of independent interest: we can compute an ε-SV approximation of the random
walk matrix of any regular ROBP of width w and length n in space Õ(log(nw) log log(1/ε)).
(See [2] for comparison between SV approximation and other notions of approximation.) It
is not clear how to obtain this stronger claim from the previous proofs of Theorem 7 [1, 9].

Finally, we show in Appendix D that the Laplacian-based construction in [9] is actually
equivalent to the binary recursive construction in [8] that we use in this paper. We note that
our proofs of Theorem 7 and Theorem 8 are self-contained and do not rely on this fact.

▶ Remark 9. There are two additional results in [9] which are based on their proof of
Theorem 7 and Theorem 8: WPRGs for width-3 ROBPs and WPRGs for unbounded-width
permutation ROBPs, both having seed length Õ(log(n)

√
log(1/ε) + log(1/ε)). Our new

proofs for Theorem 7 and Theorem 8 can also be plugged into the corresponding parts of
their proofs to get the same results.

1.5 Organization
In Section 2 we introduce some general definitions that are used in both the proofs of
Theorem 8 and Theorem 7, and give a brief overview of our proofs. In Section 3 we formally
prove Theorem 8. In Section 4 we prove Theorem 7.

2 General Setup and Proof Overview

Notation

For n ∈ N, denote [n] = {1, 2, . . . , n}. We write matrices in boldface and use M[i, j] to
denote the entry of matrix M on the i-th row and the j-th column. We use Iw to denote
the w × w identity matrix. For a column vector x, we denote the i-th entry of x by x[i].

ITCS 2024



29:6 Recursive Error Reduction for Regular Branching Programs

For every matrix M ∈ Rw×w, ∥M∥∞ denotes the infinity norm sup∥v∥∞=1 ∥Mv∥∞ and ∥M∥
denotes the 2-norm sup∥v∥=1 ∥Mv∥. For any alphabet Σ and string x ∈ Σ∗, we use |x| to
denote the length of x, x[i] to denote the i-th symbol of x and x[≤i] to denote the prefix of x

of length x. For any two strings x, y, we use x ◦ y to denote the concatenation of x and y.

2.1 ROBPs and matrices
For the rest of this paper, we consider a fixed regular ROBP B of length n and width w

specified by transition functions B1, . . . , Bn. For every i ∈ [n], and every b ∈ {0, 1}, define
the matrix Mi(b) ∈ Rw×w as

∀u, v ∈ [w], Mi(b)[u, v] :=
{

1 if Bi(u, b) = v,

0 otherwise.

We refer to Mi(b) as the transition matrix of Bi on b. In addition, for every 0 ≤ ℓ < r ≤ n

and a string s ∈ {0, 1}r−ℓ, we denote the transition matrix from layer ℓ to layer r on input x

as

Mℓ..r(s) :=
r−ℓ∏
i=1

Mℓ+i(si)

In this paper we frequently use the following fact:

▶ Fact 10. For every ℓ < m < r and x ∈ {0, 1}m−ℓ, y ∈ {0, 1}r−m, Mℓ..m(x)Mm..r(y) =
Mℓ..r(x ◦ y).

In addition, observe that for a start state v0 ∈ [w] and a set of accept state Vacc ⊆ [w],
B(s) = 1 if and only if there exists vn ∈ Vacc s.t. M0..n(s)[v0, vn] = 1.

Given the definitions above, we further define Mi := 1
2 (Mi(0) + Mi(1)) which we call the

random walk matrix of Bi, and define Mℓ..r :=
∏r

i=ℓ+1 Mi which is the random walk matrix
from layer ℓ to layer r. Note that ∥Mℓ..r∥∞ ≤ 1 because Mℓ..r is right-stochastic,3 and we
also have ∥Mℓ..r∥ ≤ 1 because Mℓ..r is doubly-stochastic by the regularity.

Finally, we define vst to be the “start vector” s.t. vst[v0] = 1 and vst[i] = 0 for every
i ≠ v0, and ved to be the “accept vector” s.t. ved[i] = 1 if i ∈ Vacc and ved[i] = 0 otherwise.
Then observe that

B(s) = v⊤
st M0..n(s)ved

and

E
s∈{0,1}n

[B(s)] = v⊤
st M0..nved.

Given these facts, our goal is to find a “good approximation” of M0..n, denoted by M̃0..n, s.t.∣∣∣v⊤
st M0..nved − v⊤

st M̃0..nved

∣∣∣ ≤ ε.

For Theorem 8 we want M̃0..n to correspond to the output of a WPRG with short seed
length, while for Theorem 7 we want to make sure that M̃0..n can be implemented in
Õ(log(nw) log log(1/ε)) space. Because of the different goals, the notions of approximation
would also be different in the proofs of Theorem 8 and Theorem 7.

3 This still holds even when B is not regular.
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2.2 Recursion
In this section, we introduce a recursive definition from [8] which we use in both the proofs
of Theorem 8 and Theorem 7. Without loss of generality, we assume that n is a power of 2
for the rest of this paper. For ease of notation, we define the set of pairs

BSn = {(ℓ, r) : ∃i, k ∈ N ∪ {0} s.t. ℓ = i · 2k, r = ℓ + 2k and 0 ≤ ℓ < r ≤ n}.4

Suppose for every (ℓ0, r0) ∈ BSn, we have defined a matrix M(0)
ℓ0..r0

that is a “mild approx-
imation” of Mℓ0..r0 . Then consider the following recursive definition of matrices for every
(ℓ, r) ∈ BSn and every k ∈ N, where m = (ℓ + r)/2:

M(k)
ℓ..r :=

{
Mr if r − ℓ = 1,∑

i+j=k M(i)
ℓ..m · M(j)

m..r −
∑

i+j=k−1 M(i)
ℓ..m · M(j)

m..r otherwise.
(1)

The WPRG construction in [8] is exactly a derandomization of the matrix M(log(1/ε))
0..n , where

the base cases M(0)
ℓ0..r0

are generated by Nisan’s PRG with error 1/n. In this paper, we also
prove Theorem 8 and Theorem 7 by showing that M(k)

0..n is a good enough approximation of
M0..n (with different choices of the parameter k and base case matrices M(0)

ℓ0..r0
).

Now for every i ≥ 0, define ∆(i)
ℓ..r := M(i)

ℓ..r − Mℓ..r. The correctness of both [8] and our
results relies on the following identity, which was used in the proof of [8, Lemma 15].

▶ Lemma 11. For every (ℓ, r) ∈ BSn s.t. r − ℓ > 1 and m = (ℓ + r)/2,

∆(k)
ℓ..r =

∑
i+j=k

∆(i)
ℓ..m · ∆(j)

m..r −
∑

i+j=k−1
∆(i)

ℓ..m · ∆(j)
m..r + ∆(k)

ℓ..mMm..r + Mℓ..m∆(k)
m..r.

We briefly sketch how the correctness in [8] was proved based on the lemma above. Suppose
the “base PRG” has error ε0 so that

∥∥∥∆(0)
ℓ0..r0

∥∥∥
∞

≤ ε0. Then one can prove by induction

that
∥∥∥∆(k)

0..n

∥∥∥
∞

≤ O(nε0)k+1, i.e. M(k)
0..n is a O(nε0)k+1-approximation of M0..n, using the

fact that ∥Mℓ..r∥∞ ≤ 1 for every ℓ < r.
Now observe that the O(nε0)k+1 bound is only non-trivial when ε0 < 1/n. As discussed

in the introduction, the seed length of [7] is not better than Nisan’s PRG in this parameter
regime. Therefore, in the regular setting, even if we can take the base PRG to be the
improved PRG in [7], we do not get a better WPRG directly. The main contribution of this
work is to give an improved analysis of the error of M(k)

0..n in the regular setting.

2.3 Proof overview
Similar to [9], the reason why we can get an improvement in the regular setting is because a
regular ROBP has a bounded “total amount of mixing”, no matter how large n is. Our goal
is to inductively prove an approximation guarantee that the error of M(k)

ℓ..r is proportional
to the amount of mixing from layer ℓ to layer r. For the proof of WPRG construction
(Theorem 8), this statement is formalized based on the “weight” defined in [7]. For the
proof of non-black-box derandomization (Theorem 7), this statement is formalized with SV
approximation [2]. We defer the formal definitions to later sections, and focus on why this
statement gives a better bound.

The first observation is that the last two error terms in Lemma 11 combine nicely. That
is, by induction hypothesis we can show that the second last error term ∆(k)

ℓ..mMm..r is
proportional to the amount of mixing from layer ℓ to layer m, and the last error term

ITCS 2024



29:8 Recursive Error Reduction for Regular Branching Programs

Mℓ..m∆(k)
m..r is proportional to the amount of mixing from layer m to layer r. Therefore, their

sum is proportional to the total amount of mixing from layer ℓ to layer r. Furthermore, we
observe that with a proper choice of parameters, the error terms in the first two summations
(
∑

i+j=k ∆(i)
ℓ..m · ∆(j)

m..r and
∑

i+j=k−1 ∆(i)
ℓ..m · ∆(j)

m..r) are actually very small compared to the
last two terms, and hence do not affect the total error too much.

Specifically, suppose we already know that the magnitude of ∆(i)
ℓ..m, ∆(i)

m..r is roughly
bounded by ε(i) for every i ∈ N, and we want to prove by induction that the magnitude of
the new error matrix ∆(k)

ℓ..r is also roughly bounded by ε(k). We properly choose ε(i) as in
the following lemma, so that the error terms in the first two summations sum up to roughly
ε(k)/ log(n), which is much smaller than the “target error” ε(k), and hence does not affect
the total error too much. We defer the proof of Lemma 12 to Appendix A.5

▶ Lemma 12. Let γ < 1/2, and define ε(i) = γi+1

10 log(n)(i+1)2 . Then for every k ∈ N we have∑
i+j=k

ε(i)ε(j) +
∑

i+j=k−1
ε(i)ε(j) ≤ ε(k)/ log(n).

With the choice of parameters above, we can prove that the error of the “level-k approximation”
M(k)

ℓ..r only grows by a factor of (1 + 1/ log(n)) after each recursion. After log(n) levels of
recursion, the error only grows by a constant factor. Therefore, we can choose the “base-case
error” ε(0) to be as small as O(1/ log(n)). This allows us to choose base cases with small
seed length or space complexity. For the proof of Theorem 8, we choose the base case to be
the [7] PRG with error 2−

√
log(1/ε). For the proof of Theorem 7 the base cases are generated

using derandomized squaring [21, 2].

2.4 Small-space computation
Finally, before we start the formal proofs, we briefly discuss the model of space-bounded
computation. We consider the standard model which is a Turing machine with a read-
only input tape, a constant number of work tapes, and a write-only output tape. We say
an algorithm runs in space s if it uses at most s cells on the work tapes throughout the
computation. Note that the input length and output length can be larger than s.

Next we recall some basic facts that we will use in space complexity analysis. For parallel
composition of algorithms A1, . . . , At we can reuse the work tape and get the following
lemma.

▶ Lemma 13. Let A1, . . . , At be algorithms that on input x run in space s1, . . . , st respectively.
Then there exists an algorithm A that on input x outputs (A1(x), A2(x), . . . , At(x)) and runs
in space maxi∈[t](si) + O(log(t)).

Furthermore, for sequential composition A1(A2(x)), while we cannot fully store A2(x) in the
work tape, we can still simulate an input tape containing A2(x) by computing the mapping
(x, i) → A2(x)[i] instead. (See, e.g., [4, Lemma 4.15].) This implies the following lemma.

▶ Lemma 14. Let A2 be an algorithm that runs in space s2 on input x, and A1 be an
algorithm that runs in space s1 on input A2(x). Then there exists an algorithm A that on
input x outputs A1(A2(x)) in space s1 + s2 + O(log(s1 + s2 + |A2(x)|)).

5 One can also choose ε(i) = γi+1/((2K + 1) log(n)) where K is an upper bound for k. Then the proof of
Lemma 12 becomes straightforward, and it turns out that this does not affect the final results.



E. Chattopadhyay and J.-J. Liao 29:9

We also use the following lemma that can be found in [16, 1].

▶ Lemma 15. Let M1, . . . , Mt be w × w real matrices where each entry has bit length at
most T . Then

∏t
i=1 Mi can be computed in space O(log(t) log(twT )).

3 WPRG for regular ROBPs

Using the matrix notation, the weight defined in [7] can be written as follows.6

▶ Definition 16. For every vector y ∈ Rw and every i ∈ [n], define the layer-i weight on y as

W (i, y) :=
∑

u∈[w]

∑
b∈{0,1}

|(Miy)[u] − y[Bi(u, b)]| .

For every 0 ≤ ℓ < r ≤ n, the total weight between layer ℓ and r on y is defined as

W (ℓ, r, y) :=
r∑

i=ℓ+1
W (i, Mi..ry).7

▶ Remark 17. To interpret W (ℓ, r, y) with the original description in [7], consider the graph
view of ROBPs, and consider y to be the values on the nodes in layer r. Then for every
i ≤ r, Mi..ry corresponds to the values on layer i. Observe that each term in the definition of
W (i, Mi..ry) corresponds to the “weight” on an edge between layer i−1 and i. In consequence,
W (ℓ, r, y) corresponds to the total weight of the sub-program between layer ℓ and r (i.e. the
ROBP specified by transition functions (Bℓ+1, . . . , Br)).

The following identity is straightforward by definition:

▶ Fact 18. For every 0 ≤ ℓ < m < r ≤ n and every y ∈ Rw, W (ℓ, r, y) = W (ℓ, m, Mm..ry) +
W (m, r, y). This also implies max(W (ℓ, m, Mm..ry), W (m, r, y)) ≤ W (ℓ, r, y).

Given the definition of weight, the main results in [7] imply the following lemmas. Note that
Lemma 19 is the only place where regularity is required in this section.8

▶ Lemma 19. For every ℓ < r and every vector y ∈ Rw, W (ℓ, r, y) ≤ w2 ∥y∥∞.

▶ Lemma 20. For every δ > 0, there exists an explicit PRG G0 : {0, 1}d0 → {0, 1}n s.t. for
every 0 ≤ ℓ < r ≤ n,∥∥∥∥( E

s∼{0,1}d0

[
Mℓ..r(G0(s)[≤r−ℓ])

]
− Mℓ..r

)
y

∥∥∥∥
∞

≤ δW (ℓ, r, y).

In addition, the seed length is d0 = O (log(n) (log log(n) + log(w/δ))).

Now define W ∗ := w2, which by Lemma 19 implies W ∗ ≥ maxy:∥y∥∞=1 (W (0, n, y)). To
simplify notation, we define weight approximation as follows.

6 The original results in [7] only consider y ∈ [0, 1]w, but one can easily generalize them to Rw by shifting
and scaling.

8 To get Lemma 20, we use the fact that Mℓ..r(·) corresponds to the transition matrices of a ROBP of
length (r − ℓ) and width w, and one can extend it to length n by adding more identity transitions which
do not affect the total weight.
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▶ Definition 21. For every 0 ≤ ℓ < r ≤ n, we say M̃ℓ..r is a ε0-weight approximation of
Mℓ..r if

∀y ∈ Rw
∥∥∥(M̃ℓ..r − Mℓ.r

)
y
∥∥∥

∞
≤ ε0 · W (ℓ, r, y)

W ∗ .

Note that M̃ℓ..r being a δ-weight approximation of Mℓ..r also implies
∥∥∥M̃ℓ..r − Mℓ..r

∥∥∥
∞

≤ δ.

Now fix a parameter γ > 0 to be specified later, and define ε(i) = γi+1

10(i+1)2 log(n) as in
Lemma 12. Let G0 be the PRG in Lemma 20 with parameter δ = ε(0)/(3W ∗), and for every
(ℓ, r) ∈ BSn such that r − ℓ > 1, define

M(0)
ℓ..r := E

s∼{0,1}d0

[
Mℓ..r(G0(s)[≤r−ℓ])

]
,

which is a (ε(0)/3)-weight approximation by Lemma 20. Then define M(k)
ℓ..r recursively as in

Equation (1). The following is our main lemma for proving Theorem 8:

▶ Lemma 22 (main). For every k ∈ N, every y ∈ Rw and every (ℓ, r) ∈ BSn, M(k)
ℓ..r is a

Ctε
(k)-weight approximation of Mℓ..r, where t = log(r − ℓ) and Ct = (1 + 1/ log(n))t/3.

Proof. We prove the lemma by induction over t and k. The first base case t = 0 is trivial
since M(k)

ℓ..r = Mℓ..r. The second base case k = 0 is also true by definition. For the general
case, first we note that the lemma also implies

∥∥∥∆(k)
ℓ.r

∥∥∥
∞

≤ Ctε
(k) ≤ ε(k). Then observe that

by Lemma 11 and sub-additivity/sub-multiplicativity of infinity norm, we have∥∥∥∆(k)
ℓ..ry

∥∥∥
∞

≤
∑

i+j∈{k−1,k}

∥∥∥∆(i)
ℓ..m∆(j)

m..ry
∥∥∥

∞
+
∥∥∥Mℓ..m∆(k)

m..ry
∥∥∥

∞
+
∥∥∥∆(k)

ℓ..mMm..ry
∥∥∥

∞

≤
∑

i+j∈{k−1,k}

∥∥∥∆(i)
ℓ..m

∥∥∥
∞

∥∥∥∆(j)
m..ry

∥∥∥
∞

+
∥∥∥∆(k)

m..ry
∥∥∥

∞
+
∥∥∥∆(k)

ℓ..mMm..ry
∥∥∥

∞

≤
∑

i+j∈{k−1,k}

(
C2

t−1ε(i)ε(j) · W (m, r, y)
W ∗

)

+Ct−1ε(k) · W (m, r, y) + W (ℓ, m, Mm..ry)
W ∗ (induction)

≤ Ctε
(k) · W (ℓ, r, y)

W ∗ .

(by Lemma 12 and Fact 18)

In other words, M(k)
ℓ..r is a Ctε

(k)-weight approximation of Mℓ..r. ◀

Lemma 22 shows that M(k)
0..n is a ε(k)-weight approximation, which also implies that∥∥∥M(k)

0..n − M0..n

∥∥∥
∞

≤ ε(k). It remains to construct a WPRG that actually “implements”

M(k)
0..n. This step is rather standard and is essentially the same as the corresponding step

in [9]: to get the seed length as claimed in Theorem 8, we need to further “derandomize”
M(k)

0..n using the technique in [11, 19]. In short, we expand the recursive formula for M(k)
0..n

and get an “error reduction polynomial” over matrices M(0)
i..j . One can show that there are

at most K = nO(k) terms in the polynomial, and each term has at most h = k log(n) factors.
Then we can use the INW generator [13] for length h and width w to approximate each term
with error ε/2K, which gives us a ε/2-approximation to M(k)

0..n. We discuss the details in
Section 3.1.
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▶ Remark 23. Note that our construction and proof also works for “small-weight ROBPs” in
general, if we define W ∗ = maxB,y:∥y∥∞=1 (W (0, n, y)) instead. This only costs additional
O(log(n) log(W ∗)) bits of seed length. We note that this generality is important in some
applications, such as the WPRG for width-3 ROBP in [9].

3.1 Final WPRG construction
To simplify notation, we assume without loss of generality that the first output bit of G0
is unbiased, i.e. Prs∈{0,1}d0

[
G0(d0)[1] = 1

]
= 1/2.9 Then we can merge the two different

base cases by defining M(0)
r−1..r := Mr = M(k)

r−1..r = Es∈{0,1}d0

[
Mr−1..r(G0(s)[≤1])

]
. Now

consider the following notation.

▶ Definition 24. For every 0 ≤ ℓ < r ≤ n, let ISℓ..r denote the set of increasing sequences
sq = (i0, i1 . . . , ih) s.t. ℓ = i0 < i1 < . . . < ih = r. We say h is the length of s. For every
sq ∈ ISℓ..r, define

M(0)
sq :=

h∏
j=1

M(0)
ij−1..ij

.

Given the notation above, we get the following lemma regarding the expansion of M(k)
0..n,

which is not hard to prove by induction. For completeness we include a proof in Appendix B.

▶ Lemma 25. For every k ∈ N and every (ℓ, r) ∈ BSn, there is a (multi)set S ⊆ ISℓ..r ×
{−1, +1} which satisfies that

M(k)
ℓ..r =

∑
(sq,σ)∈S σM(0)

sq .

|S| ≤ (r − ℓ)2k

For every (sq, σ) ∈ S, the length of sq is at most k log(r − ℓ) + 1
In addition, we would need to derandomize each term M(0)

sq using the following matrix view
of INW generator [13], which can be found in, e.g., [6]:

▶ Lemma 26. Let Σ be a finite set of symbols. Suppose for every i ∈ [h], there is a matrix-
valued function Ai : Σ → Rw×w which on every input in Σ outputs a stochastic matrix. Then
for every εINW > 0 there exists an explicit function GINW : {0, 1}d → Σh such that∥∥∥∥∥ E

s∈{0,1}d

[
h∏

i=1
Ai(GINW(s)[i])

]
−

h∏
i=1

E
x∈Σ

[Ai(x)]

∥∥∥∥∥
∞

≤ εINW,

and d = O(log |Σ| + log(h) log(hw/εINW)).

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let S ⊆ IS0..n × [−1, 1] be the set defined in Lemma 25 s.t. M(k)
0..n =∑

(sq,σ)∈S σM(0)
sq . Without loss of generality we can assume that S has size exactly 22k log(n)

by adding dummy sequences with weight σ = 0. In addition, note that there is a enumeration
function ES : {0, 1}2k log(n) → S that can be implemented in space O(log(k) log(n)) following

9 To get such a PRG, we can simply take a PRG G′
0 from [7] with (n − 1)-bit output and define

G0(b ◦ s) = b ◦ G′
0(s), where b is the first bit.
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recursive formula (1).10 Then consider GINW : {0, 1}dINW → Σh in Lemma 26 with Σ =
{0, 1}d0 , h = k log(n) + 1 and εINW = ε/(2|S|), then define d = 2k log(n) + dINW. The final
WPRG construction (ρ, G) : {0, 1}d → R × {0, 1}n is as follows. On any input s,
1. Parse s as (senum, sINW) ∈ {0, 1}2k log(n) × {0, 1}dINW

2. Define ((i0, i1, . . . , ih), σ) := ES(senum).
3. For j ∈ [h], define rj := G0(GINW(y)[j]) ∈ {0, 1}n.
4. Output (ρ(s), G(s)) := (σ|S|, (r1)[≤i1−i0] ◦ (r2)[≤i2−i1] ◦ . . . ◦ (rh)[≤ih−ih−1]).
Next we prove the correctness of G. Observe that

E
s

[ρ(s)M0..n(G(s))] =
∑

((i0,...,ih),σ)∈S

σ · E
sINW

 h∏
j=1

Mij−1..ij (G0(GINW(sINW)[j]))

 .

For every term in the above equation, consider the matrix-valued functions Aj : {0, 1}d0 →
Rw×w s.t. Aj(r) = Mij−1..ij

(G0(r)[≤ij−ij−1]). Note that Er [Aj(r)] = M(0)
ij−1..ij

. Then by
Lemma 26 we have∥∥∥∥∥∥ E

sINW

 h∏
j=1

Mij−1..ij
(GINW(sINW)j)

− M(0)
(i0,i1,...,ih)

∥∥∥∥∥∥
∞

≤ ε/(2|S|),

which by the sub-additivity of ∥·∥∞ implies∥∥∥E
s

[ρ(s)M0..n(G(s))] − M(k)
0..n

∥∥∥
∞

≤ ε/2.

We pick suitable γ, k (to be specified later) so that ε(k) ≤ ε/2. Then by Lemma 22 we have∥∥∥E
s

[ρ(s)M0..n(G(s))] − M(k)
0..n

∥∥∥
∞

≤ ε.

Then consider the vectors vst, ved ∈ Rw corresponding to the start and end states as discussed
in Section 2. Observe that ∥vst∥1 = 1 and ∥ved∥∞ ≤ 1 by definition. Therefore we have∣∣∣∣ E

s∈{0,1}d
[ρ(s)B(G(s))] − E

x∈{0,1}n
[B(x)]

∣∣∣∣ =
∣∣∣v⊤

st

(
E
s

[ρ(s)M0..n(G(s))] − E
x

[M0..n(x)]
)

ved

∣∣∣
≤ ∥vst∥1

∥∥∥(E
s

[ρ(s)M0..n(G(s))] − M0..n

)
ved

∥∥∥
∞

≤ ε.

Finally we analyze the seed length with an unspecified parameter 0 < γ < 1/ log(n). Take
k to be the minimum integer s.t. ε(k) ≤ ε/2. Observe that log(1/ε(0)) = O(1/γ) and
k = O(log(1/ε)/ log(1/γ)). This implies

d = d0 + O(log(h) log(hw/ε) + k log(n)) = d0 + Õ(log(w/ε) + k log(n)).

By Lemma 20, we have

d0 = O(log(n) log(wW ∗/γ) + log(n) log log(n)) = Õ(log(n) log(w/γ)).

10 That is, we use the first ⌈log(2k + 1)⌉ bits as index to determine a term in the recursive formula, then
discard these ⌈log(2k + 1)⌉ bits and recurse. If there’s any undefined index, simply return a dummy
sequence with weight 0.
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Therefore,

d = Õ

(
log(n) log(w/γ) + log(n) log(1/ε)

log(1/γ) + log(1/ε)
)

.

Taking γ = 2−
√

log(n), we get

d = Õ
(

log(n)
(

log(w) +
√

log(1/ε)
)

+ log(1/ε)
)

.

Finally, observe that the space complexity is O(d0 + log(k) log(n) + dINW) = O(d). Therefore
the WPRG is explicit. ◀

4 Non-black-box Derandomization for Regular ROBPs

We prove Theorem 7 in this section. Inspired by [9], we use the notion of SV approximation
to capture the “amount of mixing”. To simplify notation, we define the function D :
Rw×w × Rw → R to be D(A, y) := ∥y∥2 − ∥Ay∥2, which plays the same role as the weight
measure in the proof of Theorem 8. The following fact is straightforward from the definition.

▶ Fact 27. D(B, y) + D(A, By) = D(AB, y).

The notion of singular value approximation (SV approximation) is defined as follows.

▶ Definition 28 (SV approximation [2]). Let W ∈ Rw×w be a doubly stochastic matrix. We
say W̃ is a ε-SV approximation of W if for every x, y ∈ Rw,∣∣∣x⊤(W̃ − W)y

∣∣∣ ≤ ε ·
(

D(W⊤, x) + D(W, y)
2

)
.

Equivalently, for every x, y ∈ Rw,∣∣∣x⊤(W̃ − W)y
∣∣∣ ≤ ε ·

(√
D(W⊤, x) · D(W, y)

)
.

The proof of Theorem 7 is very similar to our proof of Theorem 8 in the previous section.
First we also need a base case for the different approximation notion. As proved in [2, 9],
there is a space-efficient implementation of SV approximation of random walk matrices based
on derandomized squaring [21]:

▶ Lemma 29 ([2, 9]). For every (ℓ, r) ∈ BSn, there is an algorithm that computes a
δ-SV approximation of Mℓ..r in space Õ(log(nw) log(1/δ)). Further, each entry of this
approximation matrix has bit length at most O(log(n) log(1/δ)).

We also need the following simple lemma, which can be found in [9]. We include its (short)
proof for completeness.

▶ Lemma 30. Suppose W̃ is a δ-SV-approximation of W, and let ∆ = W̃ − W. Then

∥∆y∥2 ≤ δ
√

D(W, y).

Proof. Observe that

∥∆y∥2
2 = (∆y)⊤∆y ≤ δ

√
D(W, y) · (∥∆y∥2

2 − ∥W⊤∆y∥2
2) ≤ δ

√
D(W, y) · ∥∆y∥ . ◀
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Now for every (ℓ, r) ∈ BSn, define M(0)
ℓ..r to be a (ε(0)/3)-SV approximation of Mℓ..r, and

define M(k)
ℓ..r using the recursion (Equation (1)). We prove the following lemma which is

analogous to Lemma 22:

▶ Lemma 31 (main). For every k ∈ N and every (ℓ, r) ∈ BSn, M(k)
ℓ..r is a Ctε

(k)-SV
approximation of Mℓ..r, where t = log(r − ℓ) and Ct = (1 + 1/ log(n))t/3.

Proof. We again prove the lemma by induction. The base cases t = 0 or k = 0 are trivial by
definition. For the general case, observe that by Lemma 11, for every x, y ∈ Rw we have

x⊤∆(k)
ℓ..ry =

∑
i+j=k

x⊤∆(i)
ℓ..m∆(j)

m..ry −
∑

i+j=k−1
x⊤∆(i)

ℓ..m∆(j)
m..ry

+ x⊤Mℓ..m∆(k)
m..ry + x⊤∆(k)

ℓ..mMm..ry. (2)

To bound the first two summations in Equation (2), observe that∑
i+j=k

x⊤∆(i)
ℓ..m∆(j)

m..ry −
∑

i+j=k−1
x⊤∆(i)

ℓ..m∆(j)
m..ry

≤
∑

i+j∈{k−1,k}

∥∥∥(∆(i)
ℓ..m)⊤x

∥∥∥
2

∥∥∥∆(j)
m..ry

∥∥∥
2

(Cauchy-Schwarz)

≤ C2
t−1

∑
i+j∈{k−1,k}

ε(i)ε(j)
√

D
(
M⊤

ℓ..m, x
)

D (Mm..r, y) (Lemma 30)

≤ C2
t−1 · ε(k)

log(n) ·
D
(
M⊤

ℓ..m, x
)

+ D (Mm..r, y)
2

(by Lemma 12 and AM-GM)

≤ Ct−1 · ε(k)

log(n) ·
D
(
M⊤

ℓ..r, x
)

+ D (Mℓ..r, y)
2

(Ct−1 ≤ 1 and ∥Mℓ..m∥2 ,
∥∥M⊤

m..r

∥∥
2 ≤ 1)

To bound the last two terms in Equation (2), observe that

x⊤Mℓ..m∆(k)
m..ry + x⊤∆(k)

ℓ..mMm..ry

≤ Ct−1 · ε(k) · D(Mm..r, y) + D(M⊤
m..r, M⊤

ℓ..mx) + D(Mℓ..m, Mm..ry) + D(M⊤
ℓ..m, x)

2

= Ct−1 · ε(k) · D(Mℓ..r, y) + D(M⊤
ℓ..r, x)

2 . (Fact 18)

By summing up the two inequalities, we can conclude that

x⊤∆(k)
ℓ..ry ≤ Ct · ε(k) · D(Mℓ..r, y) + D(M⊤

ℓ..r, x)
2 .

Because negating y does not change the bound above, we get∣∣∣x⊤(M(k)
ℓ..r − Mℓ..r)y

∣∣∣ ≤ Ct · ε(k) · D(Mℓ..r, y) + D(M⊤
ℓ..r, x)

2 ,

i.e. M(k)
ℓ..r is a Ctε

(k)-SV approximation of Mℓ..r. ◀

Finally, let γ = 1/ log(n) and k = O(log(1/ε)/ log(1/γ)) be the minimum integer s.t.
ε(k) ≤ ε. We claim that M(k)

0..n can be implemented in space Õ(log(k) log(nw)), which implies
the following result:

▶ Theorem 32. There is an algorithm which can compute an ε-SV approximation of the
random walk matrix M0..n in space Õ(log(nw) log log(1/ε)).
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Note that Theorem 7 is also a direct corollary of this theorem:

Proof of Theorem 7. Compute a (ε/
√

w)-SV approximation of M0..n, denoted by M̃0..n.
By Theorem 32 this takes space Õ(log(nw) log log(1/ε)). Then consider vst, ved as defined
in Section 2, and output v⊤

st M̃0..nved. To prove the correctness, recall that v⊤
st M0..nved =

Ex [B(x)], which implies∣∣∣∣v⊤
st M̃0..nved − E

x∈{0,1}n
[B(x)]

∣∣∣∣ =
∣∣∣v⊤

st (M̃0..n − M0..n)ved

∣∣∣ ≤ ε/
√

w ∥vst∥ ∥ved∥ ≤ ε

by the fact that ∥vst∥ = 1 and ∥ved∥ ≤
√

w. ◀

▶ Remark 33. Note that M(k)
0..n does not satisfy the original definition of SV approximation

in [2] because it is not necessarily doubly stochastic. While every row and column in M(k)
0..n

does sum up to 1, some of its entries might be negative.

4.1 Space-efficient implementation
Finally we prove that M(k)

0..n can be implemented in space Õ(log(k) log(nw)). Note that
a naive implementation of the recursion (Equation (1)) takes at least O(log(n) log(wk))
space. Furthermore, we cannot naively enumerate each term of M(k)

0..n in its expansion
(Lemma 25) either, because there are nO(k) terms in total, which takes at least O(k log(n))
bits to enumerate.

To reduce the space complexity, we will compute M0..n with a different recursive formula.
The intuition of the new recursion is as follows. First observe that each term in the expansion
of M(k)

0..n corresponds to a way to put k balls into 2n − 1 bins (indexed by [2n − 1]), under
the constraint that each odd-indexed bin contains at most one ball. To see why this is the
case, observe that the original recursion corresponds to the following way to recursively
enumerate all the ball-to-bin combinations: first we put b ∈ {0, 1} ball in the middle bin
(which corresponds to the sign (−1)b), then choose i, j s.t. i + j = k − b, and then recursively
put i balls in the left (n − 1) bins (which corresponds to M(i)

0..n/2) and j balls in the right
(n − 1) bins (which corresponds to M(j)

n/2..n).
Then observe that there is a different way to enumerate all the combinations with only

⌈log(k)⌉ levels of recursion as follows. First decide where the h-th ball is located, where
h = ⌈k/2⌉. If it is in an even-indexed bin, also decide how many balls are on the left and
how many balls are on the right. Otherwise, there can be only one ball in the selected
odd-indexed bin, and the numbers of balls on the left and right are fixed. Then for each
choice, recursively enumerate the combinations on the left and right respectively. We claim
that there is a corresponding recursive formula for M(k)

0..n which can be implemented in only
Õ(log(k) log(nw)) space.

To define this recursive formula, first we generalize the definition of M(k)
ℓ..r to (ℓ, r) ̸∈ BSn.

For any (ℓ, r) s.t. 0 ≤ ℓ < r ≤ n, define LCA(ℓ, r) as follows. Let t be the largest integer such
that there exists a multiple of 2t in the range (ℓ, r). Then we define LCA(ℓ, r) to be the unique
multiple of 2t in (ℓ, r).11 Observe that for (ℓ, r) ∈ BSn s.t. r − ℓ > 1, LCA(ℓ, r) = (ℓ + r)/2.
Therefore, we can generalize the recursion (Equation (1)) to any r − ℓ > 1 by defining
m = LCA(ℓ, r). We also generalize the same recursion to k = 0, (ℓ, r) ̸∈ BSn, so that
M(0)

ℓ..r = M(0)
ℓ..mM(0)

m..r.12 For the degenerate case ℓ = r we define M(k)
ℓ..r = Iw. Next we want

11 If there are two consecutive multiples of 2t in (ℓ, r), then 2t+1 divides one of them, which violates the
definition of t.

12 There is an empty summation term
∑

i+j=−1 which should be treated as 0.
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to prove the following identity which naturally gives a recursive algorithm for M0..n. This
identity is essentially the recursive enumeration we described above, except that we utilize
M(k)

s−1..s = Ms to get some cancellation which simplifies the recursion.

▶ Lemma 34. For every (ℓ, r) s.t. r > ℓ and every h, k ∈ N s.t. h ≤ k, we have the following
identity:

M(k)
ℓ..r =

r∑
s=ℓ+1

M(h−1)
ℓ..s−1MsM(k−h)

s..r −
r−1∑

s=ℓ+1
M(h−1)

ℓ..s M(k−h)
s..r . (3)

Surprisingly, this new recursion coincides with the recursion of Richardson iteration from the
inverse Laplacian perspective. This shows that the construction in [9] is actually equivalent
to the [8] construction that we use in this paper. We briefly discuss this equivalence in
Appendix D.

Before we prove the identity, we show that the new recursion does imply an algorithm
that runs in space Õ(log(k) log(nw)). Consider the algorithm which recursively computes
M(k)

ℓ..r using the formula in Lemma 34 with h = ⌈k/2⌉. Observe that the right hand side of
Equation (3) involves at most O(n) matrices. In addition, given all the matrices on the right
hand side, the computation of M(k)

ℓ..r takes only O(log(nkwT )) additional bits, where T is the
maximum bit length of all the matrix entries. From Lemma 25 and Lemma 29 we can see
that T is at most Õ(k log2(n)), so O(log(nwkT )) = Õ(log(nwk)). Finally, observe that each
matrix on the right hand side has precision parameter at most max(h − 1, k − h) ≤ ⌊k/2⌋.
Therefore the recursion reaches the M(0)

ℓ..r base cases after at most ⌈log(k)⌉ levels. By
repeatedly applying Lemma 14 and Lemma 13 we can conclude that the space complexity
is at most Õ(log(k) log(nw)) + O(sbase), where sbase is the maximum space complexity of
computing M(0)

ℓ..r. The base case complexity sbase is indeed Õ(log(nw)), which we prove in
Appendix C.

Finally, we prove the identity in Lemma 34.

Proof of Lemma 34. We prove the claim by induction on r − ℓ. Let m = LCA(ℓ, r). For
the base case r − ℓ = 1, the lemma says M(k)

ℓ..r = M(h−1)
ℓ..ℓ MrMr..r, which is trivially

true. Next we prove the general case by induction. For each matrix M(k′)
ℓ′..r′ on the right

hand side s.t. ℓ′ < m < r′, we expand M(k′)
ℓ′..r′ using (1). Note that LCA(ℓ′, r′) is also m. In

addition, for the s = m term in the first summation we apply the dummy expansion M(k−h)
m..r =∑

a+b=k−h M(a)
m..mM(b)

m..r−
∑

a+b=k−h−1 M(a)
m..mM(b)

m..r. Similarly, for the s = m+1 term in the
first summation we also expand M(k−h)

ℓ..m =
∑

a+b=h−1 M(a)
ℓ..mM(b)

m..m−
∑

a+b=h−2 M(a)
ℓ..mM(b)

m..m.
After rearranging we get that the right hand side equals to

m∑
s=ℓ+1

∑
a+b=k−h

M(h−1)
ℓ..s−1MsM(a)

s..mM(b)
m..r −

m−1∑
s=ℓ+1

∑
a+b=k−h

M(h−1)
ℓ..s M(a)

s..mM(b)
m..r

−
m∑

s=ℓ+1

∑
a+b=k−h−1

M(h−1)
ℓ..s−1MsM(a)

s..mM(b)
m..r +

m−1∑
s=ℓ+1

∑
a+b=k−h−1

M(h−1)
ℓ..s M(a)

s..mM(b)
m..r

+
r∑

s=m+1

∑
a+b=h−1

M(a)
ℓ..mM(b)

m..s−1MsM(k−h)
s..r −

r∑
s=m+1

∑
a+b=h−1

M(a)
ℓ..mM(b)

m..sM(k−h)
s..r

−
r∑

s=m+1

∑
a+b=h−2

M(a)
ℓ..mM(b)

m..s−1MsM(k−h)
s..r +

r∑
s=m+1

∑
a+b=h−2

M(a)
ℓ..mM(b)

m..sM(k−h)
s..r

− M(h−1)
ℓ..m M(k−h)

m..r .
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Note that the first summation in Equation (3) expands to the terms on the left, and the
second summation in Equation (3) expands to the terms on the right.

Now we classify all the terms in the first line by b, and take out the right factor M(b)
m..r.

For any fixed b ≤ k − h we get the sum(
m∑

s=ℓ+1
M(h−1)

ℓ..s−1MsM(k−b−h)
s..m −

m−1∑
s=ℓ+1

M(h−1)
ℓ..s M(k−b−h)

s..m

)
M(b)

m..r.

Observe that this is exactly M(k−b)
ℓ..m M(b)

m..r by induction. Therefore, we can see that
the first line is exactly

∑k−h
b=0 M(k−b)

ℓ..m M(b)
m..r. Similarly, we can get that the second line

is −
∑k−h−1

b=0 M(k−b−1)
ℓ..m M(b)

m..r. For the third and fourth lines, we can also classify the
terms by a and take out the left factor M(a)

ℓ..m to get to get
∑h−1

a=0 M(a)
ℓ..mM(k−a)

m..r and
−
∑h−2

a=0 M(a)
ℓ..mM(k−a−1)

m..r respectively. Finally, collect all the simplified terms (including
the only term in the fifth line in the expansion), and we get

k−h∑
b=0

M(k−b)
ℓ..m M(b)

m..r +
h−1∑
a=0

M(a)
ℓ..mM(k−a)

m..r

−
k−h−1∑

b=0
M(k−b)

ℓ..m M(b)
m..r −

h−2∑
a=0

M(a)
ℓ..mM(k−a−1)

m..r − M(h−1)
ℓ..m M(k−h)

m..r

=
∑

a+b=k

M(a)
ℓ..mM(b)

m..r −
∑

a+b=k−1
M(a)

ℓ..mM(b)
m..r

= M(k)
ℓ..r. ◀
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A Proof of Lemma 12

Proof.

∑
i+j∈{k−1,k}

ε(i)ε(j) = (k + 1)2ε(k)

10 log(n) ·

γ
∑

i+j∈{k−1,k}

1
(i + 1)2(j + 1)2


= (k + 1)2ε(k)

10 log(n) ·

γ
∑

i+j∈{k−1,k}

1
(i+1)2 + 1

(j+1)2

(i + 1)2 + (j + 1)2


≤ (k + 1)2ε(k)

10 log(n) ·

γ
∑

i+j=k

1
(i+1)2 + 1

(j+1)2

(k + 2)2/2 +
∑

i+j=k−1

1
(i+1)2 + 1

(j+1)2

(k + 1)2/2


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≤ ε(k)

10 log(n) ·

(
4(1 + γ)

k∑
i=0

1
(i + 1)2

)

≤ ε(k)

log(n) . ◀

B Proof of Lemma 25

Proof. For sqℓ = (i0, . . . , ihℓ
) ∈ ISℓ..m and sqr = (j0, . . . , jhr

) ∈ ISm..r, define

sqℓ∥sqr = (i0, . . . , ihℓ
= j0, . . . , jhr

).

Observe that sqℓ||sqr has length hℓ + hr, and that M(0)
sqℓ||sqr

= M(0)
sqℓ

· M(0)
sqr

.
With the notation above, we prove the lemma by induction over t := log(r − ℓ) and k.

The base cases t = 0 or k = 0 are trivial. Consider the recursive formula (1), and let S
(i)
ℓ , S

(j)
r

denote the corresponding sets of M(i)
ℓ..m and M(j)

m..r respectively. By distributive law, we get

M(k)
ℓ..r =

∑
b∈{0,1}

∑
i+j=k−b

∑
(sqℓ,σ)∈S

(i)
ℓ

∑
(sqr,σ)∈S

(j)
r

(−1)bσℓσrM(0)
sqℓ∥sqr

.

Therefore, we can define

S =
⋃

b∈{0,1}0,1,i+j=k−b

{(sqℓ∥sqr, (−1)bσℓσr) : (sqℓ, σ) ∈ S
(i)
ℓ ∧ (sqr, σ) ∈ S(j)

r },

which satisfies the first condition. Based on the induction hypothesis, the length of each
sqℓ∥sqr is at most (i + j)(t − 1) + 2 ≤ k(t − 1) + 2 ≤ kt + 1, and the size of S is at most∑

i+j∈{k−1,k}

∣∣∣S(i)
ℓ

∣∣∣ ∣∣∣S(j)
r

∣∣∣ ≤ (2k + 1)22k(t−1) ≤ 22kt. ◀

C Base-case space complexity

In this section we prove the following claim.

▶ Lemma 35. There is an algorithm which for every ℓ < r can compute M(0)
ℓ..r in space

Õ(log(nw)).

Proof. We claim that it is possible to output the indices (ℓ0, r0) ∈ BSn of all the factors
M(0)

ℓ0..r0
in the expansion of M(0)

ℓ..r in space O(log(n)), and there are only 2 log(n) factors. The
claim then follows by Lemma 29, Lemma 14 and Lemma 15.

For the base cases (ℓ, r) ∈ BSn the claim is straightforward. For (ℓ, r) ̸∈ BSn, first
compute m = LCA(ℓ, r), and note that M(0)

ℓ..r = M(0)
ℓ..mM(0)

m..r. For the factors of M(0)
ℓ..m, while

(ℓ, m) ̸∈ BSn, we repeatedly compute m′ = LCA(ℓ, m), then output (m′, m), and replace m

with the value of m′. Eventually when (ℓ, m) ∈ BSn we output (ℓ, m).
Note that M(0)

ℓ..m = M(0)
ℓ..m′M(0)

m′..m, so if we can prove that (m′, m) ∈ BSn, then what
we output is exactly the indices of the expansion (except that the output order is reversed,
which is easy to deal with). To prove that (m′, m) ∈ BSn, assume that m′ = c′ · 2t′ and
m = c · 2t, for some odd integers c′, c. In our algorithm, we always have m′ = LCA(ℓ, m) and
m = LCA(ℓ, r′) for some r′ > m. Because ℓ < m′ < m < r′, by definition of LCA we must
have t > t′. We claim that we must have m = m′ + 2t′ , which implies (m′, m) ∈ BSn.
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If this is not the case, then we must have m′ < m′ + 2t′
< m because m is also a multiple

of m. Then observe that m′ + 2t′ is a multiple of 2t′+1, which contradicts to the fact that
m′ = LCA(ℓ, m).

Now we have proved how to output the expansion indices of M(0)
ℓ.m, and for M(0)

m..r the
proof is basically the same. Finally, to prove that there are at most 2 log(n) factors, observe
that every time we replace m with m′, the exponent t strictly decreases. Because we always
have 0 ≤ t < log(n), the procedure above can repeat at most log(n) iterations. Therefore
both M(0)

ℓ.m and M(0)
m..r have at most log(n) factors. ◀

D Equivalence between the constructions in [9] and [8]

The construction in [9] is based on the inverse Laplacian perspective of derandomization [1]
and preconditioned Richardson iteration, which we briefly recap as follows. Consider the
block matrix W = (Rw×w)(n+1)×(n+1) s.t. W[i − 1, i] = Mi for every i ∈ [n], and other
entries of W are 0. The Laplacian is defined as L := I − W, which is an invertible matrix. It
can be shown that each entry L−1[i, j] in the inverse Laplacian L−1 is exactly Mi..j (where
Mi..i = Iw and Mi..j = 0 if i > j).

To approximate M0..n within error ε, [9] followed the preconditioned Richardson iteration
approach, which first constructs a “mild approximation” of L−1 denoted by L̃−1. Their
construction of L̃−1 is based on the shortcut graph structure, and one can verify that their
L̃−1[i, j] is actually the same as M(0)

i..j defined in this paper.
Given L−1, the construction based on Richardson iteration is defined as (L−1)(k) =

L̃−1∑k
i=0(I − LL̃−1)i, and (L−1)(k)[0, n] is the final output. Observe that this formula

satisfies the recursion (L−1)(k) = L̃−1 + (L−1)(k−1)(I − LL̃−1). In addition, observe that for
every i < j, (I − LL̃−1)[i, j] = Mi+1M(0)

i+1..j − M(0)
i..j ,13 and other entries of I − LL̃−1 are 0.

Therefore, for every ℓ ≤ r we have

(L−1)(k)[ℓ, r] = M(0)
ℓ..r +

r∑
s=ℓ+1

(L−1)(k−1)[ℓ, s − 1]
(

MsM(0)
s..r − M(0)

s−1..r

)
.

Comparing it with the special case h = k of Lemma 34:

M(k)
ℓ..r =

r∑
s=ℓ+1

M(k−1)
ℓ..s−1MsM(0)

s..r −
r−1∑

s=ℓ+1
M(k−1)

ℓ..s M(0)
s..r.

Using the fact that (L−1)(k−1)[ℓ, ℓ] = I, it is relatively easy to prove via induction that
(L−1)(k)[ℓ, r] = M(k)

ℓ,r .

13 This is in fact the local consistency error defined in [10], as observed in [12].


	1 Introduction
	1.1 Weighted PRGs
	1.2 Regular branching programs
	1.3 Error reduction for regular branching programs
	1.4 Our contribution
	1.5 Organization

	2 General Setup and Proof Overview
	2.1 ROBPs and matrices
	2.2 Recursion
	2.3 Proof overview
	2.4 Small-space computation

	3 WPRG for regular ROBPs
	3.1 Final WPRG construction

	4 Non-black-box Derandomization for Regular ROBPs
	4.1 Space-efficient implementation

	A Proof of 
	B Proof of 
	C Base-case space complexity
	D Equivalence between the constructions in [Chen et al., 2023] and Chattopadhyay et al., 2020

