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Abstract
We construct sample-efficient differentially private estimators for the approximate-median and
interior-point problems, that can be applied to arbitrary input distributions over R satisfying very
mild statistical assumptions. Our results stand in contrast to the surprising negative result of Bun
et al. (FOCS 2015), which showed that private estimators with finite sample complexity cannot
produce interior points on arbitrary distributions.
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1 Introduction

A statistical estimator is an algorithm that takes data drawn from an unknown distribution
as input and tries to learn something about that distribution. While the input data is only a
conduit for learning about the distribution, many statistical estimators also reveal a lot of
information that is specific to the input data, which raises concerns about the privacy of
people who contributed their data. In response, we can try to design estimators that are
differentially private (DP) [13], which ensure that no attacker can infer much more about
any person in the input data than they could have inferred in a hypothetical world where
that person’s data had never been collected.

Differential privacy is a strong constraint that imposes significant costs even for very
simple statistical estimation tasks. In this paper we focus on two such tasks: interior point
estimation and median estimation. In the interior point problem, we have a distribution P

over R, and our goal is simply to output some point y with

inf support(P ) ≤ y ≤ sup support(P ). (1)

There is a trivial estimator for solving the interior point problem – draw a single sample
from P and output it – but this estimator is clearly not private. More generally, we can try
to find an α-approximate median of the distribution, which is a point y such that
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3:2 Differentially Private Medians and Interior Points for Non-Pathological Data

1
2 − α ≤ Pr

x←P
[x ≤ y] ≤ 1

2 + α. (2)

There is also a simple estimator for computing an approximate median – draw O(1/α2)
samples and return the median of the samples – but this estimator also fails to be private.
While these problems are nearly trivial to solve without a privacy constraint, a remarkable
result of Bun, Nissim, Stemmer, and Vadhan [9] showed that there is no differentially private
estimator that takes any finite number of samples and outputs even just an interior point
of an arbitrary distribution. Since the interior point problem is a special case of finding
an approximate median, learning threshold functions, learning halfspaces, and more, this
negative result has far reaching implications.

In light of this negative result, there have been two main approaches to privately solving
the interior point problem and its generalizations. The first is to assume the data comes
from a finite domain, such as the integers [T ] := {1, 2, . . . , T}, in which case the optimal
sample complexity is now known to be n = Θ̃(log∗ T ) [5, 9, 2, 8, 15, 10]. Of course, this
also suggests a heuristic for handling continuous domains by simply rounding points into a
discrete domain. Such an approach can be satisfactory in settings where rounding error is
tolerable, but it does not, in general, guarantee that the output is a truly valid interior point
(or approximate median).1

The second approach, which is the approach we adopt in this paper, is to assume that the
distribution satisfies some additional properties that allow us to bypass the Bun et al. lower
bound. Results along this line have considered a range of assumptions such as Gaussian
distributions [16], distributions with uniformly large density in a (pre-specified) neighborhood
around the median [12, 18, 7], and distributions with maximum density bounded above by a
known parameter [14]. These results hint at a broader theme: that, intuitively, Bun et al.’s
lower bound would seem to apply only to pathological distributions.

In this work we propose a framework for formalizing this intuition. We show that, without
knowing anything else about the distribution P , there is a very weak and broadly applicable
statistical assumption – which we call bounded normalized variance – that is sufficient to
bypass the lower bound. A distribution P with mean µ satisfies C-bounded normalized
variance if

EX←P [|X − µ|2]
EX←P [|X − µ|]2 ≤ C (3)

for some constant C ≥ 12. The way to think about distributions with O(1)-bounded
normalized variance is that these are the distributions for which standard deviation is a
meaningful value – that is, distributions for which the standard deviation σ =

√
E[|X − µ|2]

serves as a constant-factor proxy for the expected absolute deviation E[|X − µ|]. This
assumption is satisfied by most real-world inputs, as well as by essentially all natural
parametric families of distributions, both discrete and continuous (see Table 1 in Section A).

1 Depending on the distribution, it can also be difficult to decide what granularity one should round
to. Consider, for example, a distribution with 10% of its mass at −1, with 10% of its mass at 1, and
with 80% of its mass uniformly spread in [−κ, κ] for some very small κ. In this case, the value of the
approximate median is that it gives us an estimate for κ. However, if we use a rounding granularity that
is larger than κ (e.g., if the granularity is based on the standard deviation of P ), then the estimated
approximate median produces no useful information.

2 Note that by Jensen’s inequality C is at least one for any distribution.
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Our main theorem states that, if P satisfies O(1)-bounded normalized variance, then it is
possible to privately compute an interior point with a sample complexity depending only
on the privacy parameters ϵ and δ. This gives a strong formal sense in which the Bun et
al. lower bound applies only to distributions with very unusual combinatorial structure.

▶ Theorem 1 (Informal Statement of Theorem 8). There is an (ε, δ)-differentially private
algorithm that takes n = poly(Cε−1 log δ−1) samples from an arbitrary distribution P over
R satisfying C-bounded normalized variance and, with high probability, returns an interior
point of P .

To understand the technical role of C-bounded normalized variance in Theorem 1, consider
the following intuition. Roughly speaking, if we wish to privately compute an interior point,
then we want the distribution to have two competing properties. (1) We need the samples
to be concentrated together in order to reduce the impact of any one sample, for privacy
reasons. (2) We need the samples to be spread out, so that we can certify for some interior
point that there is a non-negligible amount of mass to both its left and right. A key insight
in this paper is that C-bounded normalized variance ends up being sufficient for both of these
purposes simultaneously – this is what makes Theorem 1 possible.

Next we turn to the problem of computing approximate medians. In the worst-case
setting, finding an approximate median can actually be reduced to finding an interior point,
however this reduction does not preserve the property of bounded normalized variance, so we
cannot use it directly to obtain a private median algorithm. Moreover, we will see that we can
turn any distribution on a bounded support into a distribution satisfying bounded normalized
variance without changing the median (or approximate median), so our assumption is not
sufficient to circumvent the lower bound. Nonetheless, we show that a slight (and necessary)
strengthening of this assumption is enough to find an approximate median. Intuitively, this
assumption is bounded normalized variance around the median, which means that bounded
normalized variance holds even if we condition on the part of P that lies between the 1

2 − α

and 1
2 + α quantiles.

▶ Theorem 2 (Informal Statement of Theorem 18). There is an (ε, δ)-differentially private
algorithm that takes n = poly(Cε−1α−1 log δ−1) samples from an arbitrary distribution P over
R satisfying C-bounded normalized variance around the median, and, with high probability,
returns an α-approximate median of P .

We note that there are many other richer tasks, such as privately learning halfspaces
and privately finding a point in the convex hull in Rd, where the best private algorithms for
worst-case distributions are based on reductions to interior point or closely related problems
that can be reduced to interior point [4]. Theorem 2 suggests that identifying approximate
mild distributional assumptions to make these problems tractable is a fruitful direction.

1.1 Technical Overview
Privately finding an interior point

At a high level, our interior point algorithm follows the approach taken by Karwa and
Vadhan [16] for finding an approximate median of a Gaussian distribution, but with a much
more general analysis that allows us to rely on only weak assumptions about the distribution.
First, suppose that we know the first central absolute moment of the distribution, and have
rescaled the distribution so that

E
X←P

[|X − µ|] = 1 and E
X←P

[|X − µ|2] ≤ C,

ITCS 2024
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where µ = E[X]. In this case, by Chebyshev’s inequality, we know that most of the probability
mass for P is not too far from the mean µ. Moreover, it cannot be that the mass is almost
entirely contained in a single sub-interval of size ≤ 1/2, as this (combined with the fact that
outliers in P are relatively rare) would imply that EX←P [|X − µ|] < 1. Thus, if we divide
the real line into an infinite set of intervals

. . . , [−1,− 1
2 ), [− 1

2 , 0), [0, 1
2 ), [ 1

2 , 1), . . . ,

then there will be at least two distinct intervals that contain a significant amount of mass
(more than 1/poly(C) mass). Using standard techniques for computing differentially private
histograms, we can identify two of these intervals privately, and any boundary between them
must be an interior point of the distribution.

The next step is to resolve the fact that we do not know the first central absolute moment
EX←P [|X − µ|], and we need to privately estimate this quantity up to a small multiplicative
factor. To do this, we take a set of 2n samples x1, . . . , x2n and create a new set of n samples
yi = |x2i−1 − x2i|. Note that each of these samples yi is sampled as |X −X ′| where X, X ′

are drawn independently from P . We will use the yis to approximate E[|X −X ′|], which is
in turn a constant-factor approximation of E[|X − µ|]. Specifically, we divide [0,∞) into the
infinite set of intervals

. . . , [ 1
8 , 1

4 ), [ 1
4 , 1

2 ), [ 1
2 , 1), [1, 2), [2, 4), [4, 8), . . .

Using the bounded normalized variance condition, we argue that the largest interval that
contains a significant amount of mass is a good approximation to the first central absolute
moment (up to a poly(C) factor). As before, this largest interval can be identified privately
via techniques for computing differentially private histograms. Chaining this algorithm with
the previous algorithm gives us our complete algorithm for finding an interior point of a
distribution with bounded normalized variance.

Privately finding an approximate median

We might hope that bounded normalized variance is sufficient to also find a good α-
approximate median for small α, but that is actually false. To see why, first note that
the Bun et al. [9] lower bound says that there is no differentially private algorithm that can
find an interior point of an arbitrary distribution, even if the distribution is supported on
some bounded interval, such as [− 1

2 , 1
2 ). Given an arbitrary distribution P on this interval,

we can create a new distribution P ′ by adding mass at −1 with probability 1/4 and mass
at +1 with probability 1/4. A simple calculation shows that this new distribution will have
O(1)-bounded normalized variance. Moreover, any 1/5-approximate median for P ′ will be an
interior point of P . Since we can easily simulate access to P ′ using access to P , any private
algorithm for computing an approximate median of a distribution with bounded normalized
variance can be used to privately compute an interior point of an arbitrary distribution,
which is ruled out by Bun et al. [9].

Thus, our algorithm for finding an α-approximate median requires a stronger assumption
on the distribution P . First, observe that an α-approximate median of P is just any interior
point of the distribution Pα that consists only of the middle 2α slice of the distribution
P . That is, Pα is the distribution P restricted to the space between the 1

2 − α and 1
2 + α

quantiles of P . We now assume that the distribution Pα has bounded normalized variance.
Intuitively, our algorithm works by finding an interior point of the distribution Pα by

using a subset of our samples from P to simulate samples from Pα, but we cannot exactly
generate samples from Pα without knowing the quantiles of the distribution P itself, which
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is exactly what we are trying to estimate. To get around this issue, we instead take a
collection of n samples, then sort them to obtain x(1) ≤ x(2) ≤ · · · ≤ x(n), and then use
the middle (1− 1/k)2αn samples x0 as an approximation of samples from Pα (where k is
some well-chosen quantity). The 1− 1/k term is to ensure that the samples in x0 come from
within Pα, instead of being in a situation where a small number of them may come from
outside of it.

While this collection x0 of samples does not have the same distribution as i.i.d. samples
from Pα, we are nonetheless able to argue that they come from a distribution with O(C)-
bounded normalized variance – this is the main technical component of our approximate-
median result (see Lemma 20 and Claim 21). It follows that our interior point algorithm
will succeed in identifying an interior point of Pα, and thus in identifying an α-approximate
median of P .

1.2 Related Work

As discussed earlier, there are two lines of prior work on privately computing interior points.
The first – and most common – approach is to assume a discrete domain of size T and
make no other assumptions. After a long line of work on both lower and upper bounds
[5, 9, 2, 8, 15, 10], it is now known that the optimal private sample complexity, as a function
of T , is n = Θ̃(log∗ T ).

The most closely related prior work to ours makes distributional assumptions and otherwise
allows the data to be arbitrary real numbers. Karwa and Vadhan [16] give an estimator
which is specific to Gaussian distributions. Our work can be viewed as an extension of
their algorithmic approach, but with an analysis that extends to any distribution satisfying
the bounded normalized variance assumption. A different approach, taken by Dwork and
Lei [12], Tzamos, Vlatakis-Gkaragkounis, and Zadik [18], Avella-Medina and Brunel [7],
and Asi and Duchi [3], is to rely on some assumptions about the density of the probability
distribution around the median. Specifically, they assume that the probability density is
lower bounded at every point in some fixed-size interval around the median. Under this
assumption the empirical median is a very well-behaved estimate of the true median and, as
a result, one can privately estimate it using techniques based on local sensitivity. Finally, a
third approach, taken by Haghtalab, Roughgarden, and Shetty [14] is to assume that the
distribution has a certain smoothness property everywhere – namely, that the probability
density has some known upper bound 1/γ that holds at all points. Intuitively, this closes the
gap between continuous and discrete distributions by ensuring that there is a natural (and
known) discretization granularity (bins of size O(γ)) at which the distribution is guaranteed
to behave well.

The three directions of work discussed above combine to tell a compelling story: that,
intuitively, the distributions that Bun et al.’s Ω(log∗ T ) lower bound applies to are those
with very unusual pathological structures. At the same time, there are natural distributions
that are not captured in any of the three models.3 The main goal of our work is to offer
a single framework that captures almost all natural distributions, and that establishes a
general-purpose mechanism for bypassing the Ω(log∗ T ) lower bound.

3 Consider, for example, the distribution P obtained by: selecting a uniformly random x ∈ [0, γ2/2] (here,
γ ∈ (0, 1) is the same parameter as used earlier), and returning one of either either x + 1 or −(x + 1)
at random. It is straightforward to verify that this distribution satisfies none of the three properties
discussed above, although, of course, it does have O(1)-bounded normalized variance.

ITCS 2024



3:6 Differentially Private Medians and Interior Points for Non-Pathological Data

2 Preliminaries

Let P be a data distribution. We indicate that a data point x is drawn from P by writing
x← P . We indicate that x = (x1, . . . , xn) is a set of n i.i.d. data points drawn from P by
writing x ← P n. We refer to x as a dataset. We use Iφ to denote the indicator random
variable for the property φ.

2.1 Differential Privacy
We say that two datasets x and x′ are neighboring datasets if they differ in at most one data
point, i.e. DH(x, x′) ≤ 1 where DH denotes the Hamming distance.

▶ Definition 3. Let ε > 0, 0 < δ < 1. An algorithm A : Xn → Y is (ε, δ)-differentially
private if, for every E ⊆ Y and neighboring datasets x, x′ ∈ Xn, A satisfies
Pr[A(x) ∈ E] ≤ eε Pr[A(x′) ∈ E] + δ.

▶ Definition 4. Let f : Xn → Rd. The global sensitivity ∆ of f is defined as
∆ := sup x,x′∈X n

DH(x,x′)=1
||f(x)− f(x′)||1.

The truncated Laplace mechanism

We make use of the standard approach of adding noise proportional to the global sens-
itivity [13] to ensure differential privacy. Since we are interested in adding noise to a
histogram with infinitely many bins, we need to make use of the truncated Laplace distribu-
tion rather than the standard Laplace distribution. Given parameters λ, Zmax, we define the
truncated Laplace distribution TLap(λ, Zmax) over the support [−Zmax, Zmax] with density
f(z) ∝ e−|z|/λ.

▶ Lemma 5 (Truncated Laplace Mechanism). Let f : Xn → R be a function with global
sensitivity ∆. For every ε, δ ∈ (0, 1), if Zmax is at least ∆ ln(4/δ)/ε, then the truncated
Laplace mechanism M(x) := f(x) + Z, where Z ← TLap(∆

ε , Zmax) is (ε, δ)-differentially
private.

While the above lemma is considered folklore in the field, we include a proof in the full
version of the paper. A standard application of this mechanism is computing histograms,
possibly in infinite dimension (see e.g. [19]).

▶ Lemma 6 (Differentially Private Histograms). Let X be a domain and let X1, . . . ,Xm be
a partition of the domain into (a possibly infinite number of) bins. Define the function
f : Xn → Rm as f(x)j =

∑n
i=1 Ixi∈Xj

. Then the mechanism

M(x) := f(x) + (Z1, . . . , Zm),

where each Zj ← TLap
(

4
ε , 8 ln(8/δ)

ε

)
is (ε, δ)-differentially private.

2.2 Problem Definitions
The interior point problem

Let P be a distribution over R, and let x be an n-dimensional dataset. As noted earlier, we
define an interior point of P to be any point y satisfying inf support(P ) ≤ y ≤ sup support(P ).
Similarly, we define an interior point of x to be any point y satisfying min

xi∈x
xi ≤ y ≤ max

xi∈x
xi.
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The interior point problem is to compute an interior point of P when given access to x← P n

for an unknown P . Observe that, when x← P n, any interior point for x is guaranteed to
also be an interior point of P .

Approximate medians

For a distribution P , let FP (x) := PrX←P [X ≤ x] denote the CDF of P . We use QP (p) :=
F−1

P (p) to denote the p-th quantile of P for any p ∈ [0, 1]. That is, QP (p) = inf{x | FP (x) ≥
p} for p ∈ [0, 1]. For a dataset x, we can similarly define Qx(p) := x(⌊pn⌋) for p ∈ [1/n, 1].
We say that m̂ is an α-approximation to the median QP (0.5) if |FP (m̂)− 0.5| ≤ α.

For the interior point problem, we focus on data distributions with the following property:

▶ Definition 7. Let P be a distribution with mean µ = EX←P [X]. The distribution P has
C-bounded normalized variance for some value C if

EX←P [|X − µ|2]
EX←P [|X − µ|]2 ≤ C.

As shorthand, we will sometimes say simply that such a distribution is C-bounded.

For the approximate median problem, we will be interested in the case where the middle
2α-percentile of the distribution is C-bounded, rather than the entire distribution itself.

3 An Algorithm for Interior Points

In this section, we introduce an algorithm (Algorithm 1) that privately solves the interior
point problem when the data points are coming from a C-bounded distribution. Recall that,
given a dataset x, the goal of such an algorithm is to privately output a point y that falls
within the minimum and maximum values in x. Formally, we show that Algorithm 1 is an
(ε, δ)-differentially private algorithm that, if P is C-bounded, returns an interior point of x
with probability at least 1− β if the size of x is sufficiently large (depending on the values of
β, ε, δ, and C).

The basic idea is to apply bounded normalized variance to a private histogram. In
particular, the domain of P is partitioned into contiguous bins B of a fixed width, and each
bin counts the number of samples from x that reside in the corresponding subset of the
domain. Then, random truncated Laplace noise is added to the count of every bin to ensure
privacy. In essence, every bin keeps a noisy count of the number of points x ∈ x which land
in the bin.

To demonstrate the benefit of this private histogram, suppose that there are two bins B1
and B2 in the domain of P , each of which has a sufficiently high noisy count. In particular,
if the counts are high enough, then each of bins B1 and B2 must contain at least one x ∈ x
(i.e., the large counts cannot be created entirely by the truncated Laplace noise). Moreover,
any point in the domain between B1 and B2 must be an interior point of x. The convenience
of this observation is that, even though the exact locations of x in each of B1 and B2 are
unknown (and even the exact number of points in B1 and B2 is only known up to truncated
Laplace noise), it is still possible to return an interior point.

There are two possible failure modes that the algorithm might incur. The first is that
the points in x are so spread out that no bin contains very many samples. The second is
that the samples in x are so tightly concentrated, that only one bin contains a large number
of samples. In order for the algorithm to succeed, we need to ensure that at least two bins
contain a significant number of samples.

ITCS 2024



3:8 Differentially Private Medians and Interior Points for Non-Pathological Data

The key insight is that, if P is C-bounded, and if the bin width is chosen in the
right way, then the algorithm is guaranteed to succeed with probability at least 1− β. It
turns out that, in order to choose the appropriate bin width, one must first compute an
estimate for the first central absolute moment of P – this is performed by a subroutine
estimate-first-moment which, as we shall discuss in Section 3.1, also exploits the C-
boundedness of P . By using a bin width that is slightly smaller than the first-moment
estimate produced by estimate-first-moment, we are able to argue that at least two bins
will have high noisy counts, and hence that the algorithm will succeed.

We present the guarantees of Algorithm 1 in the following theorem, whose proof is given
at the end of the section.

▶ Theorem 8. Suppose we are given four parameters ϵ > 0, δ ∈ (0, 1), β ∈ (0, 1), and C > 2.
Algorithm 1 is (ϵ, δ)-differentially private. Furthermore, if P has C-bounded normalized
variance, and x← P n contains n data points where

n > k0C3
√

log C ·
(
ϵ−1 ln δ−1 + ln β−1) (4)

for some sufficiently large positive constant k0, then Algorithm 1 returns an interior point of
x with probability at least 1− β.

We remark that, in the statement of Algorithm 1, as well as in the analyses of the algorithm,
we have opted to give explicit constants for concreteness. Note that we have not made any
effort to optimize the constants involved, but with more careful bookkeeping, these constants
could almost certainly be made much smaller.

3.1 Privately Estimating the First Central Absolute Moment
In this section, we introduce estimate-first-moment, a private algorithm for estimating
the first central absolute moment of the data distribution P , up to a multiplicative factor
of O(C

√
log C). The first central absolute moment approximately measures how much a

random variable deviates from its mean on average. More formally, the first central absolute
moment is defined as EX←P [|X − µ|] where µ := EX←P [X].

Privately estimating first central absolute moments without estimating µ

In order to calculate the first central absolute moment of P , it would be helpful to have a good
approximation of µ. Unfortunately, it is hard to privately calculate a good approximation to
µ when the samples are unbounded; any function that averages samples together would have
unbounded sensitivity, meaning that an enormous amount of noise would need to be added
in order to maintain privacy.

Instead, we consider another strategy for estimating the first central absolute moment of
P . For independent X, X ′ ← P let Q be a random variable that indicates the difference of
X and X ′: Q := |X −X ′|. The random variable Q is advantageous for directly estimating
the first central absolute moment of P . This is in part due to the expected value E[Q] being
a good proxy to the first central absolute moment of P , as shown by Lemma 10. Moreover,
we will see that the distribution of Q enables us to privately calculate E[Q].

Overview of the algorithm

The algorithm estimate-first-moment estimates E[Q] and uses it as a proxy for the first
central absolute moment of P . It takes as input x← P n and extracts samples q← Qn/2. It
then creates a histogram over the domain of Q, consisting of contiguous bins whose widths
are increasing powers of 2. Each bin maintains a count of the number of samples q ∈ q that
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Algorithm 1 Interior Point Algorithm.

Function estimate-first-moment(x; ε, δ, C):
Set k′ = 3000 and n = |x|.
Set q = (q1, . . . , qn/2), where qi = |x2i − x2i−1|.
For all ℓ ∈ Z, set cℓ(q) = #{qi | qi ∈ (2ℓ, 2ℓ+1]} and ĉℓ(q) = cℓ(q) + Zℓ, where
each Zℓ ← TLap( 8

ε , 16 ln(16/δ)
ε ) independently.

Set S = {ℓ | ĉℓ(q) ≥ 3n/(8k′C log C)}.
if |S| ≥ 1 then

return max
ℓ∈S

2ℓ+1.

else
return ⊥.

Function find-interior-point(x; ε, δ, C, m̂):
Set k′ = 3000, k = 4096k′, and n = |x|.
For all ℓ ∈ Z, set Bℓ = [ℓm̂/

(
2k′C

√
log C

)
, (ℓ + 1)m̂/

(
2k′C

√
log C

)
).

For all ℓ ∈ Z, set cℓ(x) = #{xi | xi ∈ Bℓ} and ĉℓ(x) = cℓ(x) + Zℓ, where each
Zℓ ← TLap( 8

ε , 16 ln(16/δ)
ε ) independently.

Set S =
{

ℓ | ĉℓ(x) ≥ 3n

kC3
√

log C

}
.

if |S| ≥ 2 then

return 1
2

(
min
ℓ∈S

ℓm̂(
2k′C
√

log C
) + max

ℓ∈S

(ℓ+1)m̂(
2k′C
√

log C
)).

else
return ⊥.

Function interior-point-main(x; ε, δ, C):
m̂← estimate-first-moment(x; ε, δ, C).
if m̂ ̸= ⊥ then

return find-interior-point(x; ε, δ, C, m̂).
else

return ⊥.

land in the bin, and truncated Laplace noise is added to each count, to maintain privacy.
The algorithm then eliminates all bins with small counts. Finally, the algorithm finds the
largest of the remaining bins and outputs a fence post of this bin. Critically, the correctness
of this algorithm will again rely heavily on the fact that P is C-bounded.

To understand why estimate-first-moment returns a good estimate of the first absolute
moment of P , it helps to focus on the distribution of values for Q. We show that the larger
values of Q appear with low probability. In particular, values of Q more than tC times larger
than E[Q] have probability that drops as a function of 1/t2, as evidenced by Lemma 11. Thus,
the really wide bins (which are simultaneously the bins very far away from E[Q]) will not have
much probability mass in expectation and will be eliminated. At the same time, the bins that
live very close to E[Q] will receive a large fraction of the mass in expectation, as evidenced
by Lemma 12. Since estimate-first-moment returns the fence post of the widest bin of
those remaining after elimination, the algorithm is likely to return a point in the domain of
Q close to E[Q]. We give the exact details of the performance of estimate-first-moment
in Proposition 9.
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Notation

Assume the data distribution P is C-bounded, and let µ = EX←P [X] denote the mean of P .
Our privacy parameters are ϵ and δ. Our confidence parameter is β: that is, the algorithm
outputs the appropriate answer with probability at least 1− β.

▶ Proposition 9. Let ε > 0, δ ∈ (0, 1), and β ∈ (0, 1). Let P be a C-bounded distribution
for C > 2. Let x← P 2n be a dataset of 2n data points from P where n satisfies

n ≥ k C log(C)
(

ln (2/β) + 16 ln(16/δ)
ε

)
,

for a sufficiently large constant k. Then, there exists a constant k′ such that
estimate-first-moment(x; ε, δ, C) returns an estimate m̂ for which the following guarantee
holds with probability at least 1− β:

E
X←P

[|X − µ|] ≤ m̂ ≤
(

2k′C
√

log C
)

E
X←P

[|X − µ|] . (5)

To prove Proposition 9, we first need to introduce three useful lemmas. The first lemma
(Lemma 10) states that E[Q] is within a multiplicative factor of 2 of the first central absolute
moment. The proof of this lemma is deferred to the full version of the paper.

▶ Lemma 10. Let X and X ′ be two random variables independently drawn from P with mean
µ, and let Q be a random variable that indicates the difference of X and X ′: Q := |X −X ′|.
Then, we have

E
X←P

[|X − µ|] ≤ E[Q] ≤ 2 E
X←P

[|X − µ|] .

As previously mentioned, the bins in the private histogram that are very far away from
E[Q] are highly likely to be eliminated by estimate-first-moment. We demonstrate this
with the second lemma (Lemma 11), whose proof is deferred to the full version of the paper.

▶ Lemma 11. Let X and X ′ be two random variables independently drawn from a distribution
P , and let Q be a random variable that indicates the absolute difference of X and X ′. Suppose
P is C-bounded for some C ≥ 1. For any t > 0, we have

Pr [Q− E[Q] ≥ tC E[Q]] ≤ 4
t2C

.

For the third lemma (Lemma 12), consider the interval I =
[ 1

2 E[Q], k′C
√

log C E[Q]
]

which surrounds E[Q] (k′ is a constant). We show that there exists a bin in this range that
receives a high count in expectation. The proof of this lemma is deferred to the full version
of the paper.

▶ Lemma 12. Let k′ = 3000, C > 2. If P is C-bounded, then there is some ℓ satisfying

(2ℓ, 2ℓ+1] ⊆ I and Pr
[
Q ∈ (2ℓ, 2ℓ+1]

]
≥ 1

k′C log C
.

We now give the proof of Proposition 9.

Proof (Proposition 9). Recall that estimate-first-moment first creates points q1, . . . , qn

and then uses these points to realize a noisy histogram over intervals of the form (2ℓ, 2ℓ+1].
It then identifies all intervals with ĉℓ(q) larger than the threshold 3n/(8k′C log C). Of these
intervals, it chooses the largest ℓ and outputs m̂ = 2ℓ+1 for this ℓ. If this largest interval
(2ℓ, 2ℓ+1] satisfies (2ℓ, 2ℓ+1] ⊆ I, then by Lemma 10, m̂ = 2ℓ+1 satisfies (5).
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We now turn our attention towards the two ways in which estimate-first-moment can
fail to output an estimate m̂ satisfying (5). The first mode of failure occurs if there is no
such ℓ such that (2ℓ, 2ℓ+1] ⊆ I and ĉℓ(q) ≥ 3n/(8k′C log C). In particular, we can define
E1 to be the event that for all ℓ such that (2ℓ, 2ℓ+1] ⊆ I, ĉℓ(q) < 3n/(8k′C log C). The
second mode of failure occurs if the output 2ℓ+1 is too large; in particular, we can define
E2 to be the event that there exists an ℓ such that (2ℓ, 2ℓ+1] ⊆ [k′C

√
log C E[Q],∞) and

ĉℓ(q) > 3n/(8k′C log C). The following two lemmas bound the probability of these bad
events occurring.

▶ Lemma 13. Let ε > 0, δ ∈ (0, 1), β ∈ (0, 1), and let C > 2 be parameters. Let k′ = 3000
and k = 8k′. Let x← P 2n be the samples fed into the algorithm estimate-first-moment.
If we have both that P is C-bounded and that n ≥ kC log(C) (ln(2/β) + 16 ln(16/δ)/ε) , then
Pr[E1] ≤ β/2, where the probability is taken over both the randomness of the samples x and
the truncated Laplace mechanism.

Proof. Let ℓ∗ be the arg max ĉℓ(q) over all choices of ℓ such that (2ℓ, 2ℓ+1] ⊆ I. Lemma 12
implies that

E
q

[cℓ∗(q)] = n Pr
[
Q ∈ (2ℓ∗

, 2ℓ∗+1]
]
≥ n

k′C log C
. (6)

Thus, one can bound the probability of E1 as follows:

Pr
q,Zℓ

[E1] = Pr
[
ĉℓ∗(q) <

3n

8k′C log C

]
= Pr

[
cℓ∗(q) + Zℓ∗ <

3n

8k′C log C

]
≤ Pr

[
cℓ∗(q) <

3n

8k′C log C
+ 16 ln(16/δ)

ε

]
≤ Pr

[
cℓ∗(q) <

3n

8k′C log C
+ n

8k′C log C

]
(by assumption on n)

≤ Pr
[
cℓ∗(q) <

E[cℓ∗(q)]
2

]
. (by (6))

Let Qj be the indicator random variable for whether qj ∈ (2ℓ∗
, 2ℓ∗+1] and note that cℓ∗(q) =∑n

j=1 Qj . Thus, by a Chernoff bound, we get:

Pr
[
cℓ∗(q) <

E[cℓ∗(q)]
2

]
≤ exp

(
−E[cℓ∗(q)]

8

)
≤ exp

(
− n

8k′C log C

)
(by (6))

≤ exp (− ln(2/β)) = β/2 . (by assumption on n)

◀

▶ Lemma 14. Let ε > 0, δ ∈ (0, 1), and β ∈ (0, 1) be parameters. If P is C-bounded for
some parameter C > 2, and n ≥ kC log C

(
ln(2/β) + 16ε−1 ln(16/δ)

)
, then Pr[E2] ≤ β/2,

where the probability is taken over both the randomness of the samples x and the truncated
Laplace mechanism.

We prove this lemma via an approach analogous to Lemma 13. For the proof of this
lemma, see the full version of the paper.

The algorithm estimate-first-moment fails to output the desired estimate m̂ if either
E1 and/or E2 occur. Lemma 13 tells us that Pr[E1] ≤ β/2, and Lemma 14 tells us that
Pr[E2] ≤ β/2. Thus, by a union bound,

Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] ≤ β

which implies the proposition. ◀
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3.2 Finding an Interior Point, Given a Fixed Bin Width
In this section, we give a guarantee on the success probability of find-interior-point.
Recall that the algorithm instantiates a histogram, counting the number of samples in x
that fall into sets of contiguous bins (where the width of each bin is slightly smaller than the
output of estimate-first-moment). The algorithm adds truncated Laplace noise to the
count of each bin, ensuring that the histogram is private. Then, the algorithm isolates all
bins with large counts. Of all the isolated bins, the algorithm picks two and finally returns a
value which falls between the domains of each of the two bins.

Bounded normalized variance induces multiple full bins

If the algorithm is able to identify multiple bins that each have samples from x, then the
algorithm is guaranteed to succeed. The C-boundedness assumption on the data distribution
guarantees the existence of at least two such bins with high probability (at least 1− β) over
the samples.

The basic idea behind the analysis is as follows. If there is a large probability mass
concentrated in a single bin (but not in any others), then we would be able to use C-
boundedness in order to deduce that the true first central absolute moment of P is actually
much smaller than our bin size – this would contradict Lemma 14. On the other hand, if P ’s
probability mass is so spread out that no bin is expected to contain a large noisy count, then
we could use C-boundedness in order to argue that P violates Chebyshev’s inequality, again
leading to a contradiction. Thus we are able to conclude (in Lemma 17) that at least two
bins should have large noisy counts (with high probability). The full guarantees provided by
find-interior-point are laid out in Proposition 15.

▶ Proposition 15. Let ε > 0, δ ∈ (0, 1), β ∈ (0, 1), k′ = 3000, k = 4096k′. Let P be a
C-bounded distribution for C > 2 and mean µ, and let x ∼ P n for

n ≥ kC3
√

log C

(
log(2/β) + 16 ln(16/δ)

ε

)
.

If EX←P [|X − µ|] ≤ m̂ ≤
(
2k′C

√
log C

)
EX←P [|X − µ|], then the algorithm

find-interior-point(x; ε, δ, C, m̂) returns an interior point of x with probability at least
1− β.

Proof (Proposition 15). To simplify notation, we let Z = |X − µ| for X ← P . We start
by turning our attention to the set S, introduced in find-interior-point, which stores
the indices to bins with counts above a desirable threshold. Observe that S branches
find-interior-point into two cases: either |S| ≥ 2 or |S| < 2. To analyze these two cases,
we must begin by making the following claim about S and consequently cℓ(x), the non-noisy
count of each bin:

▷ Claim 16. For all ℓ ∈ S, we have that cℓ(x) > 0.

Proof (Claim 16). By construction, ℓ ∈ S if ĉℓ(x) > 3n

kC3
√

log C
. Since ĉℓ(x) = cℓ(x) + Zℓ, this

implies that

cℓ(x) >
3n

kC3√log C
− Zℓ ≥

3n

kC3√log C
− 16 ln(16/δ)

ε
> 0

by the assumption on n. ◁
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In the case where |S| ≥ 2, the algorithm will always return an interior point. This is
because the algorithm picks two ℓ1, ℓ2 ∈ S and outputs a point p in the domain that lies
between Bℓ1 and Bℓ2 . By Claim 16, we know that Bℓ1 and Bℓ2 each receive at least one
sample each from x, and so p must be an interior point of x.

In the case where |S| < 2, the algorithm will always fail to output an interior point (since
the algorithm defaults to ⊥ in this case). Thus, we prove the proposition by showing that
|S| < 2 with probability at most β.

To analyze the probability that |S| < 2, we need to look at the distribution P . It turns
out that, if P is C-bounded for some known C > 1, we are guaranteed that there exists
two disjoint regions, at most a distance E[Z]/2 apart, that each contain support in P . In
particular, we have the following lemma, whose proof is deferred to the full version of the
paper:

▶ Lemma 17. Suppose P is C-bounded for some known C ≥ 1. Let k1 ≥ 2. Then

Pr
[
X ∈

(
µ + E[Z]

2k1
, µ + 16C E[Z]

)]
≥ 1

128C
(7)

and

Pr
[
X ∈

(
µ− 16C E[Z], µ− E[Z]

2k1

)]
≥ 1

128C
. (8)

This implies that, there exists two disjoint intervals Bℓ1 and Bℓ2 with support in P . If
|S| < 2, then at least one of these two intervals did not receive any samples from x, and
either ℓ1 /∈ S or ℓ2 /∈ S. We begin by lower bounding the expected number of samples in
Bℓ1 , i.e. E[cℓ1(x)]. Lemma 17 tells us that

Pr
X←P

[
X ∈

(
µ + E[Z]

2k1
, µ + 16C E[Z]

)]
≥ 1

128C
.

The size of each interval Bℓ is m̂/
(
2k′C

√
log C

)
, and the size of the interval(

µ + E[Z]
2k1

, µ + 16C E[Z]
)

is at most 16C E[Z]. Thus, the number of intervals Bℓ within(
µ + E[Z]

2k1
, µ + 16C E[Z]

)
is at most

16C E[Z]
m̂/
(
2k′C

√
log C

) ≤ 16C E[Z]
(
2k′C

√
log C

)
E[Z] ≤ 16C

(
2k′C

√
log C

)
.

This implies that there exists an ℓ1 such that Bℓ1 ⊆
(

µ + E[Z]
2k1

, µ + 16C E[Z]
)

and

E[cℓ1(x)] ≥ n

128C
· 1

16C
(
2k′C

√
log C

) = n

kC3√log C
.

Thus, it follows that

Pr
x←P n,Zℓ

[
ĉℓ1(x) <

3n

kC3√log C

]
= Pr

[
cℓ1(x) + Zℓ <

3n

kC3√log C

]
≤ Pr

[
cℓ1(x) <

3n

kC3√log C
+ 16 ln(16/δ)

ε

]
≤ Pr

[
cℓ1(x) <

3n

kC3√log C
+ n

kC3√log C

]
(by the assumption on n)
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3:14 Differentially Private Medians and Interior Points for Non-Pathological Data

≤ Pr
[
cℓ1(x) <

E[cℓ1(x)]
2

]
≤ exp

(
−E[cℓ1(x)]

8

)
(by a Chernoff bound)

≤ exp
(
− ln(2/β)

8

)
(by the assumption on n)

≤ β

2 .

By symmetry, we can also show that there exists an ℓ2 satisfying both

Bℓ2 ⊆
(

µ− 16C E[Z], µ− E[Z]
2k1

)
and Pr

[
ĉℓ2(x) < 3n

kC3
√

log C

]
≤ β/2. Putting the pieces

together, we have that

Pr[|S| < 2] = Pr[Bℓ1 /∈ S ∪Bℓ2 /∈ S]

≤ Pr
[
ĉℓ1(x) <

3n

kC3√log C

]
+ Pr

[
ĉℓ2(x) <

3n

kC3√log C

]
≤ β/2 + β/2
= β

which completes the proof. ◀

Proof (Theorem 8). We begin by establishing differential privacy. By Lemma 6, the func-
tions estimate-first-moment and find-interior-point each satisfy (ε/2, δ/2)-differential
privacy. In the full algorithm, the output of estimate-first-moment is used as an input for
find-interior-point. It follows by the standard composition lemma (see, e.g., [17]) that
interior-point-main satisfies (ε, δ)-differential privacy.

Next we turn our attention to the probability of interior-point-main returning an
interior point. Let P be a C-bounded distribution for some C > 2 and let µ = EX←P [X].
Finally, let x← P n where n satisfies (4). Critically, the fact that n satisfies (4) will allow for
us to apply Proposition 9 and Proposition 15. By Proposition 9, we have with probability at
least 1− β/2 that estimate-first-moment(x; ε, δ, C) returns a value m̂ satisfying

E
X←P

[|X − µ|] ≤ m̂ ≤
(

6000C
√

log C
)

E
X←P

[|X − µ|]. (9)

Conditioned on (9), it follows by Proposition 15 that find-interior-point returns an
interior point of x with probability at least 1− β/2. Thus, with probability at least 1− β,
interior-point-main(x; ε, δ, C) returns an interior point of x. ◀

4 An Algorithm for Approximate Medians

In this section, we introduce a private algorithm (Algorithm 2) for finding an α-approximate
median of a distribution. We show that, if the middle 2α-percentile of the data distribution
is C-bounded, then the algorithm returns an α-approximation of the median with probability
at least 1− β.

As a convention in this section, we shall use P to refer to the data distribution from
which x is sampled. We will then use Pα to refer to the middle 2α-percentile of P , that
is, Pα = P | P ∈ (QP (0.5 − α), QP (0.5 + α)). Note that, rather than requiring that P is
C-bounded, we require that Pα is C-bounded.
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Overview of Algorithm 2

Suppose we had direct sample access to the data distribution Pα. An interior point of Pα is
trivially an α-approximation to the median of P . If Pα is C-bounded, then by Theorem 8,
we could obtain a private α-approximation to the median. Unfortunately, we cannot assume
direct sample access to Pα without infinitely-many samples. Thus, Algorithm 2 instead takes
as input the dataset x← P n, isolates samples x0 ⊆ x which make up almost the middle 2α

fraction of x, and runs Algorithm 1 on this smaller dataset x0. While x0 is not sampled
i.i.d. from Pα, we prove that, with high probability, x0 comes from a family of distributions
similar to Pα that are C ′-bounded for some C ′ = O(C).

To construct x0, we isolate the middle (2α− 1/k)-percentile of x, for some parameter k

that ends up being a function of C and α. The parameter k plays a critical role here, as it
guarantees that x0 ends up coming from a distribution that is contained in Pα, rather than
from a distribution that contains Pα. As we shall see in the analysis, this distinction allows
for us to establish that the distribution P ′ from which x0 is sampled is O(C)-bounded.

We now introduce Theorem 18 which gives the formal guarantees of Algorithm 2:

Algorithm 2 Median Algorithm.

Function main(x; ε, δ, α, C):
Let k = 1024Cα−1.
Let x0 =

{
xi | xi ∈

(
Qx
(
0.5− α + 1

2k

)
, Qx

(
0.5 + α− 1

2k

))}
.

return interior-point-main(x0; ε, δ, 64C).

▶ Theorem 18. Let β, ε, δ ∈ (0, 1), and α ∈ (0, 0.25). Suppose P is a data distribution such
that the conditional distribution on the middle 2α-percentile of P has C-bounded normalized
variance for some C > 2. If x contains n datapoints where

n ≥ k0 max
(

C3√log C(ε−1 ln δ−1 + ln β−1)
α

,
C2 ln β−1

α2

)
for a sufficiently large positive constant k0, then Algorithm 2 returns an α-approximation of
the median with probability at least 1− β. In addition, for any ϵ, δ ∈ (0, 1) and C > 2, we
have that Algorithm 2 is (ϵ, δ)-differentially private.

We remark that, in the following analysis, as well as in the statement of Algorithm 2, we
have not made any effort to optimize the constants involved. We have opted to give explicit
constants for concreteness, but with more careful bookkeeping, these constants could almost
certainly be made much smaller.

Our next lemma establishes that the endpoints of x0 are guaranteed to (1) be contained
within the middle 2α-percentile of P ; and (2) be very close to the endpoints of that middle
2α-percentile.

▶ Lemma 19. Let β ∈ (0, 1), α ∈ (0, 0.25), and k ≥ 1. Let P be a distribution, and let
x← P n for n ≥ 108k2 log(4/β). With probability at least 1− β,

Qx

(
0.5− α + 1

2k

)
∈
(

QP (0.5− α), QP

(
0.5− α + 1

k

))
and

Qx

(
0.5 + α− 1

2k

)
∈
(

QP

(
0.5 + α− 1

k

)
, QP (0.5 + α)

)
.

ITCS 2024



3:16 Differentially Private Medians and Interior Points for Non-Pathological Data

Proof. Let X1, . . . , Xn be n i.i.d. samples from P , and define Yi for all i ∈ {1, . . . , n} as

Yi =
{

1 if Xi < QP (0.5− α)
0 otherwise.

Define Y :=
∑n

i=1 Yi. Note that E[Y ] =
∑n

i=1 Pr[Xi < QP (0.5− α)] = (0.5− α)n. Thus,

Pr
[
Qx

(
0.5− α + 1

2k

)
≤ QP (0.5− α)

]
= Pr

[
Y ≥

(
0.5− α + 1

2k

)
n

]
= Pr

[
Y ≥ (0.5− α)n

(
1 + 1

2k(0.5− α)

)]
≤ Pr

[
Y ≥ E[Y ]

(
1 + 1

k

)]
≤ exp

(
−E[Y ]

3k2

)
(by a Chernoff bound)

≤ β/4. (by the assumption on n)

Likewise, for all i ∈ {1, . . . , n}, let

Zi =
{

1 if Xi > QP

(
0.5− α + 1

k

)
0 otherwise.

Let Z :=
∑n

i=1 Zi. Note that E[Z] =
∑n

i=1 Pr
[
Xi > QP

(
0.5− α + 1

k

)]
=
(
0.5− α + 1

k

)
n.

Thus,

Pr
[
Qx

(
0.5− α + 1

2k

)
≥ QP

(
0.5− α + 1

k

)]
= Pr

[
Z ≤

(
0.5− α + 1

2k

)
n

]
= Pr

[
Z ≤

(
0.5− α + 1

k

)
n

(
1− 1

2k(0.5− α + 1
k )

)]
= Pr

[
Z ≤ E[Z]

(
1− 1

2k(0.5− α + 1
k )

)]
≤ Pr

[
Z ≤ E[Z]

(
1− 1

3k

)]
≤ exp

(
−E[Z]
27k2

)
(by a Chernoff bound)

= exp
(
−
(
0.5− α + 1

k

)
n

27k2

)
≤ exp

( n

108k2

)
≤ β/4. (by the assumption on n)

Thus, by a union bound, we have that, with probability at most β/2, Qx(0.5− α + 1
2k ) /∈

(QP (0.5 − α), QP (0.5 − α + 1/k)). By symmetry, it follows that Qx(0.5 + α − 1
2k ) /∈

(QP (0.5 + α − 1/k), QP (0.5 + α)) with probability at most β/2. Thus by another union
bound, the lemma holds. ◀

Our next lemma shows that, if we take a C-bounded distribution Pα and condition
on being in its first 1 − 1/k percentile for large enough k, then the resulting conditional
distribution P ′α will be O(C)-bounded. Note that the complement of this is not true: if the
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conditional distribution P ′α is C-bounded, then the larger distribution Pα need not be O(C)-
bounded. This is why it is critical that x0 is constructed in such a way that it is contained
within the middle 2α-percentile of P (rather than containing the middle 2α-percentile).

▶ Lemma 20. Let C > 1, and let Pα be a C-bounded distribution. Fix any number k ≥ 128C.
Define P ′α := Pα | Pα ∈ [QPα

(0), QPα
(1 − 1/k)] to be Pα conditioned on being in the first

1− 1/k percentile. It follows that P ′α is 8C-bounded.

Proof. We introduce notation which will be used throughout the proof. Let P ′′α be the
distribution Pα conditioned on being in the last 1/k percentile, i.e. P ′′α := Pα | Pα ∈
[QPα

(1− 1/k), QPα
(1)]. Finally, let X ← Pα, X ′ ← P ′α, and X ′′ ← P ′′α ; let µ := EX←Pα

[X],
µ′ := EX′←P ′

α
[X ′], and µ′′ := EX′′←P ′′

α
[X ′′].

To show that P ′α is 8C-bounded, we must show that

EX′ [|X ′ − µ′|2]
EX′ [|X ′ − µ′|]2 ≤ 8C.

By the C-boundedness of Pα, it suffices to show

EX′ [|X ′ − µ′|2]
EX′ [|X ′ − µ|]2 ≤ 8 · EX [|X − µ|2]

EX [|X − µ|]2 . (10)

We break the proof into two pieces by showing

E
X′

[|X ′ − µ′|2] ≤ 2E
X

[|X − µ|2] (11)

and

E
X′

[|X ′ − µ′|]2 ≥ 1
4 E

X
[|X − µ|]2. (12)

To prove (11), note that E[|X ′ − µ′|2] ≤ E[|X ′ − µ|2] since µ′ minimizes the expectation. It
follows that

E
X

[
|X − µ|2 · IX<QPα (1−1/k)

]
= E

X

[
|X − µ|2 | X < QPα(1− 1/k)

]
· Pr

X
[X < QPα(1− 1/k)]

= E
X′

[
|X ′ − µ|2

]
(1− 1/k)

which rearranges to

E
X′

[|X ′ − µ|2] =
EX

[
|X − µ|2 · IX<QPα (1−1/k)

]
1− 1/k

≤ 2E
X

[
|X − µ|2 · IX<QPα (1−1/k)

]
(by assumption on k)

≤ 2E
X

[|X − µ|2],

and so indeed (11) is true. To prove (12), we begin by expanding EX [|X−µ|] in the following
way:

E
X

[|X − µ|] = Pr
X

[X < QPα
(1− 1/k)] · E

X
[|X − µ| | X < QPα

(1− 1/k)]

+ Pr
X

[X ≥ QPα
(1− 1/k)] · E

X
[|X − µ| | X ≥ QPα

(1− 1/k)]

= k − 1
k
· E

X′
[|X ′ − µ|] + 1

k
· E

X′′
[|X ′′ − µ|]

≤ k − 1
k
· E

X′
[|X ′ − µ′|] + k − 1

k
· |µ′ − µ|+ 1

k
· E

X′′
[|X ′′ − µ|]
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which rearranges to

E
X′

[|X ′ − µ′|] ≥ k

k − 1

(
E
X

[|X − µ|]− k − 1
k
|µ′ − µ| − 1

k
E

X′′
[|X ′′ − µ|]

)
. (13)

To lowerbound EX′ [|X ′ − µ′|] as in (12), we seek to upperbound |µ′ − µ| and E[|X ′′ − µ|] in
terms of EX [|X − µ|]. As an intermediate step, we can express |µ′ − µ| and E[|X ′′ − µ|] in
terms of (µ′′ − µ) and then upperbound (µ′′ − µ) in terms of EX [|X − µ|]. It is not difficult
to show that |µ− µ′| = 1

k−1 (µ′′ − µ) and E[|X ′′ − µ|] = µ′′ − µ using both Chebyshev’s and
the C-boundedness of Pα (the proofs are deferred to the full version of the paper).

The most technically challenging piece is upperbounding µ′′ − µ. We introduce the
following claim which gives an upperbound on µ′′−µ (the proof is deferred to the full version
of the paper):

▷ Claim 21. If k ≥ 128C, then µ′′ − µ ≤ 3
√

Ck EX [|X − µ|].

Putting the pieces together, we see that

E
X′

[|X ′ − µ′|] ≥ k

k − 1

(
E
X

[|X − µ|]− k − 1
k
|µ′ − µ| − 1

k
E

X′′
[|X ′′ − µ|]

)
= k

k − 1

(
E
X

[|X − µ|]− 1
k

(µ′′ − µ)− 1
k

(µ′′ − µ)
)

≥ k

k − 1

(
1− 2

k
· 3
√

Ck

)
E
X

[|X − µ|] (by Claim 21)

≥ 1
2 E

X
[|X − µ|]. (by assumption on k)

This implies EX′ [|X ′ − µ′|]2 ≥ 1
4 EX [|X − µ|]2, proving (12) and thus completing the proof

of the lemma. ◀

Applying Lemma 20 twice, one arrives at the two-sided version of it that we use in the
proof of the theorem:

▶ Lemma 22. Let C > 1, and let Pα be a C-bounded distribution. Define Pm := Pα | Pα ∈
[QPα(1/k1), QPα(1− 1/k2)] for some k1, k2. If k1, k2 ≥ 2048C, then Pm is 64C-bounded.

Proof. Define P ′α = Pα | Pα ∈ [QPα(0), QPα(1 − 1/k2)]. As Pα is C-bounded and k2 ≥
128C, we have by Lemma 20 that P ′α is 8C-bounded. Next note that Pm = Pα | Pα ∈
[QPα

(1/k1), QPα
(1− 1/k2)] = P ′α | P ′α ∈

[
QPα

(
1

k1(1−1/k2)

)
, QPα

(1)
]
. As P ′α is C ′-bounded

and k1(1− 1/k2) ≥ k1/2 ≥ 128C ′, we have by Lemma 20 that Pm is 8C ′-bounded and thus
Pm is 64C-bounded. ◀

Proof (Theorem 18). We begin by establishing differential privacy. Suppose x and x′ differ
only in one data point. Note that to obtain x0, we sort the elements in x and take all
the elements that have ranks between ⌊n · (0.5 − α + 1

2k )⌋ and ⌊n · (0.5 + α − 1
2k )⌋. It is

straightforward to show that if we change one data point in x, at most one data point in x0 will
be changed. Moreover, previously in Theorem 8, we have shown that the procedure for finding
the interior point is (ϵ, δ)-differentially private. Hence, Algorithm 2 is (ϵ, δ)-differentially
private.

Now we analyze the accuracy guarantee of Algorithm 2. By Lemma 19, we have that
with probability at least 1− β/2 that

Qx

(
0.5− α + 1

2k

)
∈
(

QP (0.5− α), QP

(
0.5− α + 1

k

))
(14)
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and

Qx

(
0.5 + α− 1

2k

)
∈
(

QP

(
0.5 + α− 1

k

)
, QP (0.5 + α)

)
(15)

For the rest of the proof, we condition on some arbitrary fixed outcome for the values of
Qx(0.5− α + 1

2k ) and Qx(0.5 + α− 1
2k ) such that (14) and (15) are satisfied.

Note that, once we condition on the outcomes of Qx(0.5− α + 1
2k ) and Qx(0.5 + α− 1

2k ),
then x0 consists of i.i.d. samples from the distribution Pm := P | P ∈ (Qx(0.5 − α +
1

2k ), Qx(0.5 + α− 1
2k )). By (14) and (15), this distribution Pm can be expressed as

Pm = P |P ∈
(

QP

(
0.5− α + 1

k1

)
, QP

(
0.5 + α− 1

k2

))
for some k1, k2 ≥ k.

Finally, since k = 2048C/(2α), we can apply Lemma 22, which says that Pm is 64C-
bounded. Also note that, by assumption on n,

|x0| =
(

2α− 1
k

)
n > k0C3

√
log C ·

(
ε−1 ln δ−1 + ln β−1) .

Thus, we can apply Theorem 8, which says that, with probability at least 1− β/2, the return
value of interior-point-main(x0; ε, δ, 64C) will be an interior point to x0. This, in turn,
is an α-approximation of the median of P with probability at least 1− β. ◀
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A Appendix

In Table 1 we give some examples of distributions with C-bounded normalized variance, with
explicit values of C. Lemmas 23 and 24 show that combinations of these distributions also
have bounded normalized variance.

Table 1 Examples of C for various natural families of distributions.

Distribution PDF CCC

Uniform distribution over U [a, b]: p(x) = 1
b − a

4
3

Normal distribution: N (µ, σ) p(x) = e(x−µ)2/(2σ2)/
(
σ

√
2 π
) π

2

Exponential distribution Exp[λ] p(x) = λe−λ x e2

4

Laplace distribution Lap[µ, β] p(x) = e
− |x−µ|

β /(2β) 2

Binomial distribution Bin(n, q), 1≤nq ≤n−1 p(k) =
(

n
k

)
qk(1 − q)n−k 2 [6]

Poisson distribution Pois(λ), λ ≥ 1 p(k) = e−λ λk

k! 14 [11]
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▶ Lemma 23. Let X and Y be independent random variables. Assume X has C1-bounded
normalized variance and Y has C2-bounded normalized variance. Then X + Y has (C1 + C2)-
bounded normalized variance.

Proof. Without loss of generality, we may assume E[X] = E[Y ] = 0. Thus

E[(X + Y )2] = E[X2 + 2XY + Y 2] = E[X2] + E[Y 2] ≤ C1 E[|X|]2 + C2 E[|Y |]2.

By Jensen’s inequality,

E[|X + Y |] = E
X

[E
Y

[|X + Y |]] ≥ E
X

[|E
Y

[X − Y ]|] = E[|X|].

Similarly, E[|X + Y |] ≥ E[|Y |]. Now

E[(X + Y )2]
E[|X + Y |]2 ≤

C1 E[|X|]2 + C2 E[|Y |]2

max{E[|X|]2,E[|Y |]2} = min
{

C1 + C2
E[|Y |]2

E[|X|]2 , C1
E[|X|]2

E[|Y |]2 + C2

}
,

which is at most C1 + C2 as required. ◀

▶ Lemma 24. Let X be a random variable that has C-bounded normalized variance. Let
a, b ∈ R. Then aX + b has C-bounded normalized variance.

Proof. Let µ = E[X]. Let µ′ = E[aX + b] = aµ + b. Then

E[(aX + b− µ′)2] = E[(a(X − µ) + b− b)2] = E[a2(X − µ)2] = a2 E[(X − µ)2]

and

E[|aX + b− µ′|]2 = E[|a(X − µ) + b− b|]2 = E[a|X − µ|]2 = a2 E[|X − µ|]2.

So

E[(aX + b− µ′)2]
E[|aX + b− µ′|]2 = a2 E[(X − µ)2]

a2 E[|X − µ|]2 = E[(X − µ)2]
E[|X − µ|]2 ≤ C,

as required. ◀
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