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Abstract
We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural
actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise
naturally in statistical data analysis and quantum information. We study two types of complexity-
theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the
complexity of the isomorphism problem over a classical group to that over the general linear group.
Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of
the isomorphism problems for different actions.

Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way
arrays, the isomorphism problems reduce to the corresponding problems over the general linear group.
Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on
3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the
3-tensor isomorphism problem for any fixed d > 3. For unitary groups, the preceding result implies
that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification
of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem
reduces to the tensor isomorphism problem over orthogonal and unitary groups.
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31:2 Isomorphism Problems over Classical Groups

1 Introduction

Previously in [13–15,17, 27], isomorphism problems of tensors, groups, and polynomials over
direct products of general linear groups were studied from the complexity-theoretic viewpoint.
In particular, a complexity class TI was defined in [15], and several isomorphism problems,
including those for tensors, groups, and polynomials, were shown to be TI-complete. The
equivalence between polynomials and 3-tensors was shown subsequently but independently
in [27]; some problems over products of general linear groups with monomial groups were
also shown to be TI-complete [7].

In this paper, we study isomorphism problems of tensors, groups, and polynomials over
some classical groups, such as orthogonal, unitary, and symplectic groups, from the computa-
tional complexity viewpoint. There are several motivations to study tensor isomorphism over
classical groups from statistical data analysis and quantum information. This introduction
section is organised as follows. We will first review d-way arrays and some natural group
actions on them in Section 1.1, and describe motivations to study these actions over classical
groups in Section 1.2. We will then present our main results in Section 1.3, and give an
overview of the proofs in Section 1.4. We conclude this introduction with a brief overview of
the series of works this paper belongs to, a discussion on the results, and some open problems
in Section 1.5.

1.1 Review of d-way arrays and some group actions on them
Let F be a field, and let n1, . . . , nd ∈ N. For n ∈ N, [n] := {1, 2, . . . , n}. We use T(n1 × · · · ×
nd,F) to denote the linear space of d-way arrays with [nj ] being the range of the jth index.
That is, an element in T(n1 ×· · ·×nd,F) is of the form A = (ai1,...,id

) where ∀j ∈ [d], ij ∈ [nj ],
and ai1,...,id

∈ F. Note that 2-way arrays are just matrices. Let M(n×m,F) := T(n×m,F),
and M(n,F) := M(n× n,F).

▶ Definition 1. Let GL(n,F) be the general linear group of degree n over F. We define an
action of GL(n1,F) × · · · × GL(nd,F) on T(n1 × · · · × nd,F), denoted as ◦, as follows. Let
g = (g1, . . . , gd), where gk ∈ GL(nk,F) over k ∈ [d]. The action of g sends A = (ai1,...,id

) to
g ◦ A = (bi1,...,id

), where bi1,...,id
=

∑
j1,...,jd

aj1,...,jd
(g1)i1,j1(g2)i2,j2 · · · (gd)id,jd

.

There are several group actions of direct products of general linear groups on d-way
arrays, based on interpretations of d-way arrays as different multilinear algebraic objects.
For example, there are three well-known natural actions on matrices: for A ∈ M(n,F), (1)
(P,Q) ∈ GL(n,F) × GL(n,F) sends A to P tAQ, (2) P ∈ GL(n,F) sends A to P−1AP , and
(3) P ∈ GL(n,F) sends A to P tAP . These three actions endow A with different algebraic or
geometric interpretations: (1) a linear map from a vector space V to another vector space
W , (2) a linear map from V to itself, and (3) a bilinear map from V × V to F.

Analogously, there are five natural actions on 3-way arrays, which we collect in the
following definition (see [15, Sec. 2.2] for more discussion of why these five capture all
possibilities within a certain natural class).

▶ Definition 2. We define five actions of (direct products of) general linear groups on 3-way
arrays. Note that in the following, ◦ is from Definition 1.
1. Given A ∈ T(l × m × n,F), (P,Q,R) ∈ GL(l,F) × GL(m,F) × GL(n,F) sends A to

(P,Q,R) ◦ A;
2. Given A ∈ T(l × l ×m,F), (P,Q) ∈ GL(l,F) × GL(m,F) sends A to (P, P,Q) ◦ A;
3. Given A ∈ T(l × l ×m,F), (P,Q) ∈ GL(l,F) × GL(m,F) sends A to (P, P−t, Q) ◦ A;
4. Given A ∈ T(l × l × l,F), P ∈ GL(l,F) sends A to (P, P, P−t) ◦ A;
5. Given A ∈ T(l × l × l,F), P ∈ GL(l,F) sends A to (P, P, P ) ◦ A.
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These five actions arise naturally by viewing 3-way arrays as encoding, respectively: (1)
tensors or matrix spaces (up to equivalence), (2) p-groups of class 2 and exponent p, quadratic
polynomial maps, or bilinear maps, (3) matrix spaces up to conjugacy, (4) algebras, and (5)
trilinear forms or (noncommutative) cubic forms. For details on these interpretations, we
refer the reader to [15, Sec. 2.2].

For a group G acting on a set S, the isomorphism problem for this action asks to decide,
given s, t ∈ S, whether s and t are in the same G-orbit. For example, Graph Isomorphism
is the isomorphism problem for the action of the symmetric group Sn on 2([n]

2 ), the power set
of the set of size-2 subsets of [n].

To help specify which of the five actions we are talking about, we use the following
shorthand notation from multilinear algebra1. Let U ∼= Fl, V ∼= Fm and W ∼= Fn. The dual
space of a vector space U is denoted as U∗. Then action (1) is referred to as U ⊗ V ⊗W , (2)
is U ⊗ U ⊗ V , (3) is U ⊗ U∗ ⊗ V , (4) is U ⊗ U ⊗ U∗, and (5) is U ⊗ U ⊗ U . Note that from
this shorthand notation, one can directly read off the action as in Definition 2 and vice versa.

1.2 Motivations for isomorphism problems of d-way arrays over classical
groups

The term “classical groups” appeared in Weyl’s classic [34], though there are multiple
competing possibilities for what this term should mean formally [20]. In this paper, we
will be mostly concerned with groups consisting of elements that preserve a bilinear or
sesquilinear form, which include orthogonal groups O, symplectic groups Sp, and unitary
groups U, among others. As subgroups of GL, they act naturally on d-way arrays. Note that
for the orthogonal group O(n,R), there are essentially three actions instead of five (because
P−t = P for P ∈ O(n,R)).

Actions of classical groups on d-way arrays have appeared in several areas of computational
and applied mathematics [24]. In this subsection we examine some of these applications from
statistical data analysis and quantum information.

Warm up: singular value decompositions. Consider the action of (A,B) ∈ U(n,C) ×
U(m,C) on C ∈ M(n × m,C) by sending C to A∗CB, where A∗ denotes the conjugate
transpose of A. The orbits of this action are determined by the Singular Value Theorem,
which states that every C ∈ M(n × m,C) can be written as A∗DB where A ∈ U(n,C),
B ∈ U(m,C), and D ∈ M(n × m,C) is a rectangular diagonal matrix. Furthermore, the
diagonal entries of D are non-negative real numbers, called the singular values of C. Similar
results hold for O(n,R) × O(m,R) acting on Rn ⊗ Rm.

This example illustrates that the orbit structure of U(n,C) × U(m,C) on M(n×m,C)
is different from the action of GL(n,C) × GL(m,C) on M(n×m,C). Indeed, the former is
determined by singular values (of which there are continuum many choices) and the latter is
determined by rank (of which there are only finitely many choices).

Orthogonal isomorphism of tensors from data analysis. The singular value decomposition is
the basis for the Eckart–Young Theorem [10], which states that the best rank-r approximation
of a real matrix C is the one obtained by summing up the rank-1 components corresponding
to the largest r singular values. To obtain a generalisation of such a result to d-way arrays,
d > 2, is a central problem in statistical analysis of multiway data [9].

1 See [24] for a nice survey of various viewpoints of tensors. For us, we have to start with the d-way array
viewpoint, because we wish to study the relations between different actions, and the constructions are
more intuitively described by examining the arrays.

ITCS 2024
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Due to the close relation between singular value decompositions and orthogonal groups
acting on matrices, it may not be surprising that the orthogonal equivalence of real d-way
arrays is studied in this context [8,9,18,28]. For example, one question is to study the relation
between “higher-order singular values” and orbits under orthogonal group actions. From the
perspective of the orthogonal equivalence of d-way arrays, such higher-order singular values
are natural isomorphism invariants, though they do not characterise orbits as in the matrix
case. In the literature, d-way arrays under orthogonal group actions are sometimes called
Cartesian tensors [31].

Unitary isomorphism of tensors from quantum information. We now turn to F = C and
consider the action of a product of unitary groups; such actions arise in at least two distinct
ways in quantum information, which we highlight here: as LU or LOCC equivalence of
quantum states, and as unitary equivalence of quantum channels.

In quantum information, unit vectors in T(n1 × · · · × nd,C) ∼= Cn1 ⊗ · · · ⊗ Cnd are called
pure states, and two pure states are called locally-unitary (LU) equivalent, if they are in the
same orbit under the natural action of U := U(n1,C) × · · · × U(nd,C) (where the i-th factor
of the group acts on the i-th tensor factor). By Bennett et al. [3], the LU equivalence of pure
states also captures their equivalence under local operations and classical communication
(LOCC), which means that LU-equivalent states are inter-convertible by reasonable physical
operations.

A completely positive map is a function f : M(n,C) → M(n,C) of the form f(A) =∑
i∈[m] BiAB

∗
i for some complex matrices Bi ∈ M(n,C); quantum channels are given

precisely by the completely positive maps that are also “trace-preserving”, in the sense that∑
i∈[m] B

∗
i Bi = In. Two tuples of matrices (B1, . . . , Bm) and (B′

1, . . . , B
′
m) define the same

completely positive map if and only if there exists S = (si,j) ∈ U(m,C) such that ∀i ∈ [m],
Bi =

∑
j∈[m] si,jB

′
j [26, Theorem 8.2]. And two quantum channels f, g : M(n,C) → M(n,C)

are called unitarily equivalent if there exists T ∈ U(n,C) such that for any A ∈ M(n,C),
T ∗f(A)T = g(T ∗AT ). Thus, two matrix tuples (B1, . . . , Bm) and (B′

1, . . . , B
′
m) define the

unitarily equivalent quantum channels if and only if their corresponding 3-way arrays in
T(n× n×m,C) are in the same orbit under a natural action of U(n,C) × U(m,C).

Classical groups arising from Code Equivalence. Classical groups may appear even when
we start with general linear or symmetric groups. Here is an example from code equivalence.
Recall that the (permutation linear) code equivalence problem asks the following: given
two matrices A,B ∈ M(d× n, q), decide if there exist C ∈ GL(d, q) and P ∈ Sn, such that
A = CBP . One algorithm for this problem, under some conditions on A and B, from [2] goes
as follows. Suppose it is the case that A = CBP . Then AAt = CBPP tBtCt = CBBtCt.
This means that AAt and BBt are congruent. Assuming that AAt and BBt are full-rank,
then up to a change of basis, we can set that AAt = BBt =: F , so any such C must lie
in a classical group preserving the form F . We are then reduced to the problem of asking
whether A and B are equivalent up to some C from a classical group and some P from a
permutation group. This problem, as shown in [2], reduces to Graph Isomorphism.

Some preliminary remarks on the algorithms for Tensor Isomorphism over classical
groups. Although we show that Orthogonal TI and Unitary TI are still GI-hard
( [5, Proposition 3.1]), from the current literature it seems that orthogonal and unitary
isomorphism of tensors are easier than general-linear isomorphism. There are currently two
reasons for this: the first is mathematical, and the second is based on practical algorithmic
experience, which we now discuss.
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One mathematical reason why these problems may be easier is that there are easily
computable isomorphism invariants for such actions, while such invariants are not known
for general-linear group actions. Here is one construction of a quite effective invariant in
the unitary case. From A = (ai,j,k) ∈ T(n × n × n,C), construct its matrix flattening
B = (bi,j) ∈ M(n × n2,C), where bi,j·n+k = ai,j,k. Then it can be verified easily that
| det(BB∗)| is a polynomial-time computable isomorphism invariant for the unitary group
action U(n,C) × U(n,C) × U(n,C). However, it is not known whether such isomorphism
invariants for the general linear group action exist – if they did, they would break the
pseudo-random assumption for this action proposed in [21].

Practically speaking, current techniques seem much more effective at solving tensor
isomorphism-style problems over the orthogonal group than over the general linear group.
It is not hard to formulate Tensor Isomorphism and related problems over general
linear and some classical groups as solving systems of polynomial equations. Motivated by
cryptographic applications [30], we chose a TI-complete problem Alternating Trilinear
Form Isomorphism [17], and carried out experiments using the Gröbner basis method for
this problem, implemented in Magma [4]. For some details of these experiments see our full
version [5, Appendix A]. We fixed the underlying field order as 32771 (a large prime that is
close to a power of 2). Over the general linear group for n = 7, the solver ran for about 3
weeks on a server, eating 219.7GB memory, yet still did not complete with a solution. Over
the orthogonal group for odd n, the data are shown in Table 1. In particular, the solver
returns a solution for n = 21 in about 3.6 hours, a sharp contrast to the difficulty met when
solving the problem under the general linear group action.

Table 1 The experiment results of the Gröbner basis method to solve the problem of isomorphism
of alternating trilinear forms under the action of the orthogonal group.

n 7 9 11 13 15 17 19 21
Time (in s) 0.396 5.039 37.120 140.479 524.520 1764.179 4720.129 12959.799

1.3 Our results
In this paper we study the complexity-theoretic aspects of Tensor Isomorphism under
classical groups. We focus on the following two types of questions:
1. Consider two classical groups G and H, and fix the way they act on d-way arrays. What

are the relations between the isomorphism problems defined by these groups?
2. Fix a classical group G, and consider its different actions on d-way arrays. What are the

relations between the isomorphism problems defined by these actions?

Questions of the first type were implicitly studied in [14, 15, 19] for some classes of d-way
arrays, with the groups being either general linear or symmetric groups. For example, starting
from a graph G, one can construct a 3-way array AG encoding this graph following Edmonds,
Tutte and Lovász [11, 25, 32], and it is shown in [19] that G and H are isomorphic (a notion
based on the symmetric groups Sn) if and only if AG and AH are isomorphic (under a product
of general linear groups).

Questions of the second type were studied in [13, 15] for GL. For example, one main
result in [13,15] is to show the polynomial-time equivalence of the five isomorphism problems
for 3-way arrays under (direct products of) general linear groups (cf. Section 1.1).

Still, to the best of our knowledge, these types of questions have not been studied for
orthogonal, unitary, and symplectic groups, which are the focus on this paper.

ITCS 2024
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Results on relations between different groups. Our first group of results shows that
isomorphism problems of tensors under classical groups are sandwiched between the celebrated
Graph Isomorphism problem and the more familiar Tensor Isomorphism problem under
GL. We use Sn to denote the symmetric group of degree n, and view Sn as a subgroup of
GL(n,F) naturally via permutation matrices. We use ≤ to denote the subgroup relation.
When we say “reduces”, briefly, we mean: polynomial-time computable kernel reductions [12]
(there is a polynomial-time function r sending (A,B) to (r(A), r(B)), such that the map
(A,B) 7→ (r(A), r(B)) is a many-one reduction of isomorphism problems), that are typically
polynomial-size projections (“p-projections”) in the sense of Valiant [33], functorial (on
isomorphisms), and containments in the sense of the literature on wildness. Some reductions
that use a non-degeneracy condition may not be p-projections. See [15, Sec. 2.3] for details
on these notions.

▶ Theorem 3. Suppose a group family G = {Gn} satisfies that Sn ≤ Gn ≤ GL(n,F), where
here Sn denotes the group of n × n permutation matrices. Then Graph Isomorphism
reduces to Bilinear Form G-Pseudo-isometry, that is, the isomorphism problem for the
action of G(U) × G(V ) on U ⊗ U ⊗ V .

Let Gn ≤ GL(n,F). We say that Gn preserves a bilinear form, if there exists some
A ∈ M(n,F), such that Gn = {T ∈ GL(n,F) | T tAT = A}. For example, orthogonal and
symplectic groups are defined as preserving full-rank symmetric and skew-symmetric forms.

▶ Theorem 4. Let G = {Gn | Gn ≤ GL(n,F)} be a group family preserving a polynomial-
time-constructible family of bilinear forms,2 and consider one of the five actions of GL on
3-way arrays in Definition 2. The restricted G-isomorphism problem for this action reduces
to the GL-isomorphism problem for this action.

▶ Remark 5. Recall from Section 1.2 that the orthogonal equivalence of matrices (determined
by singular values) is more involved than the general-linear equivalence of matrices (determ-
ined by ranks) over R. By a counting argument, there is unconditionally no polynomial-size
kernel reduction [12] (mapping matrices to matrices) from Orthogonal Equivalence of
Matrices to General Linear Equivalence of Matrices. In contrast, Theorem 4 shows
that for 3-way arrays, orthogonal isomorphism does reduce to general-linear isomorphism.

Results on relations between different actions. Our second group of results is concerned
with different actions of the same group on d-way arrays. Our main results are for the real
orthogonal groups and complex unitary groups; we discuss some difficulties encountered with
symplectic groups in Section 1.5, and leave open the questions for more general bilinear-form-
preserving groups.

We begin with the five actions in Definition 2.

▶ Theorem 6. Let G be either the unitary over C or orthogonal over R group family. Then
the five isomorphism problems corresponding to the five actions of G on 3-way arrays in
Definition 2 are polynomial-time equivalent to one another.

Our second result in this group is a reduction from d-way arrays to 3-way arrays.

▶ Theorem 7. Let G be the unitary over C or orthogonal over R group family. For any fixed
d ≥ 1, d-Tensor G-Isomorphism reduces to 3-Tensor G-Isomorphism.

2 That is, the function Φ: N → M(n,F) giving a matrix for the form preserved by Gn is computable in
polynomial time. We note that no such restriction was needed in Theorem 3.
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An application in quantum information. As introduced in Section 1.2, LU equivalence,
characterises the equivalence of quantum states under local operations and classical commu-
nication (LOCC). We refer the interested reader to the nice paper [6] for the LOCC notion,
as well as the classification of three-qubit states based on LOCC [1].

By the work of Bennett et al. [3], LOCC equivalence of pure quantum states is the same
as the equivalence of unit vectors in V1 ⊗ V2 ⊗ · · · ⊗ Vd where Vi are vector spaces over C.
Our Theorem 7 can then be interpreted as saying that classifying tripartite quantum states
under LOCC equivalence is as difficult as classifying d-partite quantum states. This may
be compared with the result in [35], which states that classifying d-partite states reduces to
classifying tensor networks of tripartite or bipartite tensors. (We note that the analogous
result for SLOCC, via the general linear group action, was shown in [15]; in the next section
we discuss how our proof here differs from the one there.)

1.4 Overview of the proofs of main results
In the following, we present proof outlines for Theorems 3, 4, 6, and 7. While their proofs
are inspired the strategies of previous results [13,15,23], new technical ingredients are indeed
needed, such as the Singular Value Theorem, and a certain Krull–Schmidt type result for
matrix tuples under unitary group actions. We also wish to highlight that, Theorem 7
requires not only using a quiver different from that in the proof of [15, Theorem 1.2], but
also a completely new and much simpler argument.

About Theorem 3. For Theorem 3, we start with Directed Graph Isomorphism (DGI),
which is GI-complete. We then use a natural construction of 3-way arrays from directed
graphs as recently studied in [23], which takes an arc (i, j) and constructs an elementary
matrix Ei,j . By [23, Observation 6.1, Proposition 6.2], DGI reduces to the isomorphism
problem of U ⊗ U ⊗W under GL(U) × GL(W ). Theorem 3 is shown by observing that the
proofs of [23, Observation 6.1, Proposition 6.2] carry over to all subgroups of GL(U) and
GL(W ) that contain the corresponding symmetric groups; see our full version [5, Section 3]
for a detailed proof.

About Theorem 4. For Theorem 4, let us consider the isomorphism problem of U ⊗V ⊗W

under O(U) × O(V ) × O(W ). Let a = dim(U), b = dim(V ), and c = dim(W ). That is, given
A, B ∈ T(a× b× c,F), we want to decide if there exists (R,S, T ) ∈ O(a,F) × O(b,F) × O(c,F),
such that (R,S, T ) ◦ A = B. Our goal is to reduce this problem to an isomorphism problem
of U ′ ⊗ V ′ ⊗W ′ under GL(U ′) × GL(V ′) × GL(W ′). The idea is to encode the requirements
of R,S, T being orthogonal by adding identity matrices. We then construct tensor systems
(A, I1, I2, I3) and (B, I1, I2, I3) where I1 ∈ M(a,F), I2 ∈ M(b,F), and I3 ∈ M(c,F) are the
identity matrices, and the goal is to decide if there exists (R,S, T ) ∈ GL(a,F) × GL(b,F) ×
GL(c,F) such that (R,S, T ) ◦ A = B, RtR = I1, StS = I2, and T tT = I3. Such a problem
falls into the tensor system framework in [13]; a main result of [13, Theorem 1.1] can be
rephrased as a reduction from Tensor System Isomorphism to 3-Tensor Isomorphism;
see our full version [5, Section 4] for a detailed proof.

About Theorem 6. For Theorem 6, polynomial-time reductions for the five actions under
GL were devised in [13,15]. The main proof technique is a gadget construction, first proposed
in [13], which we call the Furtony–Grochow–Sergeichuk gadget, or FGS gadget for short.
Roughly speaking, this gadget has the effect of reducing isomorphism over block-upper-
triangular invertible matrices to that over general invertible matrices. We will explain why
this is useful for our purpose, and the structure of this gadget, in the following.

ITCS 2024



31:8 Isomorphism Problems over Classical Groups

First, let us examine a setting when we wish to restrict to consider only block-upper-
triangular matrices. Suppose we wish to reduce isomorphism of U ⊗ V ⊗ W to that of
U ′ ⊗U ′ ⊗W ′. One naive idea is to set U ′ = U ⊕ V and W ′ = W , and perform the following
construction. Let A ∈ T(ℓ × m × n,F), and take the frontal slices of A as (A1, . . . , An) ∈

M(ℓ×m,F). Then construct (A′
1, . . . , A

′
n) ∈ M(ℓ+m,F), where A′

i =
[

0 Ai

−At
i 0

]
, and let

the corresponding 3-way array be A′ ∈ T((ℓ+m) × (ℓ+m) × n,F). Similarly, starting from
B ∈ T(ℓ × m × n,F), we can construct B′ in the same way. The wish here is that A and B
are unitarily isomorphic in U ⊗ V ⊗W if and only if A′ and B′ are unitarily isomorphic in
U ′ ⊗ U ′ ⊗W ′. It can be verified that the only if direction holds easily, but the if direction is
tricky. This is because, if we start with some isomorphism (R,S) ∈ U(U ′) × U(W ′) from A′

to B′, R may mix the U and V parts of U ′.
This problem – more generally, the problem of two parts of the vector space potentially

mixing in undesired ways – is solved by the FGS gadget, which attaches identity matrices of
appropriate ranks to prevent such mixing. Figure 1 is an illustration from [15]. It can be

ℓ

n

A
Im+1

ℓ

m −At

m
Im+1

. . .
Im+1

I3m+2

. . . I3m+2
. . .
I3m+2

. . .

Figure 1 Pictorial representation of the reduction for Theorem 6; credit for the figure goes to the
authors of [15], reproduced here with their permission.

verified that, because of the identity matrices Im+1 and I3m+2, an isomorphism R in the U ′

part has to be block-upper-triangular, and the blocks would yield the desired isomorphism
for the U and W parts.

This was done for the general linear group case in [15]. For the unitary group case,
this almost goes through, because if a unitary matrix is block-upper-triangular, then it is
actually block-diagonal, and the blocks are unitary too. Still, some technical difficulties
remain. For example, now the gadgets cause some problem for the only if direction (which
was easy in the GL case), so we must verify carefully that the added gadgets allow for
extending the original orthogonal or unitary transformations to bigger ones. As another
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example, the proof in [13] relies on the Krull–Schmidt theorem for quiver representations
(under general linear group actions). Fortunately, in our context we can replace that with a
result of Sergeichuk [29, Theorem 3.1] so that the proof can go through. Finally, we also
require the use of the Singular Value Theorem to handle certain degenerate cases.

About Theorem 7. For Theorem 7, at a high level we follow the strategy of reduction
from d-Tensor Isomorphism to 3-Tensor Isomorphism from [15], but we find that the
construction there does not quite work in the setting of orthogonal or unitary group actions.
As in [15], we shall reduce d-Tensor Isomorphism to Algebra Isomorphism, which
reduces to 3-Tensor Isomorphism by Theorem 6. As in [15], we also use path algebras.
However, they use Mal’cev’s result on the conjugacy of the Wedderburn complements of
the Jacobson radical, and this result seems not to hold if we require the conjugating matrix
to be orthogonal or unitary. To get around this, our main technical contribution is to
develop a related but in fact simpler path algebra construction, that avoids the use of the
aforementioned deep algebraic results, and works not only in the GL setting, but extends to
the orthogonal and unitary settings as well. This then gives us the reduction from d-Tensor
Orthogonal Isomorphism to Orthogonal Algebra Isomorphism, and similarly in
the unitary case.

1.5 Summary and future directions
Context within recent developments on the complexity of Tensor Isomorphism. Fol-
lowing [14,15], this paper contributes to building up the complexity theory around Tensor
Isomorphism and closely related problems. That is, [15] introduced TI-completeness and
showed that many isomorphism problems, under the action of a product of general linear
groups, were TI-complete. Then [14] focused on applications of tensor techniques for re-
ductions around p-Group Isomorphism. Several recent works further enrich this theory,
such as [7,17] showing more problems to be TI-complete, and [16] providing more efficient
reductions between the five actions by general linear groups.

Some remarks on our results and techniques for more matrix groups. In this paper, we
examine isomorphism problems of d-way arrays under various actions of different subgroups
of the general linear group from a complexity-theoretic viewpoint. We show that for 3-way
arrays, the isomorphism problems over orthogonal and symplectic groups reduce to that
over the general linear group. We also show that for orthogonal and unitary groups, the
five isomorphism problems corresponding to the five natural actions are polynomial-time
equivalent, and d-Tensor Isomorphism reduces to 3-Tensor Isomorphism.

As seen in Section 1.4, the proof strategies of our results are adapted from previous
works [13,15, 23], although certain non-trivial adaptations were necessary, especially for the
proofs of Theorem 6 and 7, beyond careful examinations of previous proofs. Interestingly,
in extending the proof strategies from these previous works to our main results, we also
encountered some obstacles that would seem are more generally obstacles to reaching a
uniform result for all classical groups. For example, the reduction from orthogonal and
symplectic to general linear seems not work for unitary – the standard linear-algebraic
gadgets have no way to force complex conjugation – and the reductions between the five
actions on 3-way arrays seem not work for symplectic. One stumbling block (pun intended)
in the symplectic case is that even a symplectic block-diagonal matrix (let alone a symplectic
block-triangular matrix) need not have its individual blocks be symplectic. For example, the
matrix A⊕B, with A,B both n× n, is symplectic iff ABt = I.
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Complexity classes TIG. To put some of these remaining questions in a larger framework,
we introduce a notation that highlights the role of the group doing the acting. Previously
in computational complexity, the most studied isomorphism problems are over symmetric
groups (such as Graph Isomorphism) and over general linear groups (such as tensor, group,
and polynomial isomorphism problems). The former leads to the complexity class GI [22],
and the latter leads to the complexity class TI [15]. Based on Theorems 6 and 7, it may be
interesting to define TIG , where G is a family of matrix groups, consisting of all problems
polynomial-time reducible to the 3-tensor isomorphism problem over G. Let S, GL, O, U,
Sp be the symmetric, general linear, orthogonal (over R), unitary (over C), and symplectic
group families. Then TIGL = TI by definition, and TIS = GI, as asking if two 3-tensors are
the same up to permuting the coordinates is just the colored 3-partite 3-uniform hypergraph
isomorphism problem, a GI-complete problem (by the methods of [36]). Then a special case
of Theorem 3 can be reformulated as TIS ⊆ TIO ∩ TIU, and special cases of Theorem 4 can
be reformulated as TIO,TISp ⊆ TIGL. It may be interesting to investigate TIG with G being
other subgroups of GL, such as special linear, affine, and Borel or parabolic subgroups.

Open questions. With this notation in hand, we highlight the following questions left open
by our work:

▶ Open Question 8. Which, if any, of TIO,TIU,TISp are equal to TI?

As a warm-up in this direction, one may ask which of these classes is not only GI-hard,
but contains Code Equivalence (permutational or monomial).

We suspect that GI ⊆ TISp∩TISL as well, for the following reason. Although the symplectic
groups Spn and the special linear groups SLn do not contain the symmetric group Sn given
by n× n permutation matrices, they do contain isomorphic copies of Sn′ for n′ ≥ Ω(n). In
particular, Sp2n contains Sn as the subgroup {A⊕AT : A ∈ Sn}, and SLn ∩ Sn = An (and
contains an isomorphic copy of Sn−2, where even π ∈ Sn−2 get embedded as Pπ ⊕ I2 and

odd π get embedded as Pπ ⊕ τ , where τ =
[
0 1
1 0

]
).

▶ Open Question 9. Is TISL contained in TI? Are they equal?

▶ Open Question 10. Is TIU ⊆ TI? And the same question for unitary versus general linear
group actions over finite fields.

▶ Open Question 11. What is the complexity of various problems in TI when restricted
from GL to other form-preserving groups? A notable family of such groups is the mixed
orthogonal groups O(p, q), defined over R by preserving a real symmetric form of signature
(p, q). But more generally, what about form-preserving groups for forms that are neither
symmetric nor skew-symmetric?

Paper organisation. After presenting some preliminaries in Section 2, we prove the main
results: Theorem 6 in Section 3, and Theorem 7 in Section 4. For detailed proofs of Theorem 3
and Theorem 4, we refer the reader to our full version [5, Section 3, Section 4].

2 Preliminaries

Fields. All our reductions are constant-free p-projections (that is, the only constants they
use other than copying the ones already present in the input are {0, 1,−1}). When the fields
are representable on a Turing machine, our reductions are logspace computable. For arbitrary
fields, the reductions are in logspace in the Blum–Shub–Smale model over the corresponding
field.



Z. Chen, J. A. Grochow, Y. Qiao, G. Tang, and C. Zhang 31:11

Linear algebra. All vector spaces in this article are finite dimensional. Let V be a vector
space over a field F. The dual of V , V ∗, consists of all linear or anti-linear forms over F. In
this case when anti-linear is considered, F is a quadratic extension of a subfield K, there is
thus an automorphism α ∈ AutK(F) of order two, and anti-linear means f(λv) = α(λ)f(v).
An example is F = C and K = R, and α=complex conjugation. Whether V ∗ denotes linear
or antilinear maps should be evident from context.

Some subgroups of general linear groups. Let V be a vector space over a field F. Let
GL(V ) be the general linear group over V , which consists of all invertible linear maps on V .
Let ϕ : V ×V → F be a bilinear or sesquilinear form on V . In the case when ϕ is sesquilinear,
F is a quadratic extension of a subfield K; sesquilinear means that it is linear in one argument
and anti-linear in the other. Then GL(V ) acts on ϕ naturally, by M ∈ GL(V ) sends ϕ to
ϕ ◦M , defined as (ϕ ◦M)(v, v′) = ϕ(M(v),M(v′)). The subgroup of GL(V ) that preserves
ϕ is denoted as G(V, ϕ) := {M ∈ GL(V ) | ϕ ◦M = ϕ}.

It is well-known that some classical groups arise as G(V, ϕ).
1. Let F = C. Let ϕ be the sesquilinear form on V = Cn defined as ϕ(u, v) =

∑
i∈[n] u

∗
i vi,

where u∗
i is the complex conjugate of ui. Then G(V, ϕ) is the unitary group U(n,C).

2. Let F = R. Let ϕ be the symmetric bilinear form on V = Rn defined as ϕ(u, v) =∑
i∈[n] uivi. Then G(V, ϕ) is the orthogonal group O(n,R).

3. Let ϕ be the skew-symmetric bilinear form on V = F2n, defined as ϕ(u, v) =∑
i∈[n](uiv2n−i+1 − un+ivn−i+1). Then G(V, ϕ) is the symplectic group Sp(2n,F).

Depending on the underlying fields, orthogonal groups may indicate some families of
groups preserving different (non-congruent) symmetric forms. In this paper we always use
orthogonal groups and unitary groups w.r.t. the standard bilinear or sesquilinear form as
defined above.

Matrices. Let M(l × m,F) be the linear space of l × m matrices over F, and M(n,F) :=
M(n× n,F). Given A ∈ M(l ×m,F), denote by At the transpose of A. Given A ∈ GL(n,F),
denote by A−1 the inverse of A and by A−t the inverse transpose of A.

We use In to denote the n × n identity matrix, and if it is clear from the context, we
may drop the subscript n. For (i, j) ∈ [n] × [n], let Ei,j ∈ M(n,F) be the elementary matrix
where the (i, j)th entry is 1, and the remaining entries are 0. For i ≠ j, the matrix Ei,j − Ej,i

is called an elementary alternating matrix.

3-way arrays and some group actions on them. Let T(ℓ×m× n,F) be the linear space
of ℓ × m × n 3-way arrays over F. Given A ∈ T(ℓ × m × n,F), the (i, j, k)th entry of A is
denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several matrices,
which are called slices. For example, slicing along the third coordinate, we obtain the frontal
slices, namely n matrices A1, . . . , An ∈ M(l ×m,F), where Ak(i, j) = A(i, j, k). Similarly, we
also obtain the horizontal slices by slicing along the first coordinate, and the lateral slices by
slicing along the second coordinate.

A 3-way array allows for group actions in three directions. Given P ∈ M(ℓ,F) and
Q ∈ M(m,F), let PAQ be the ℓ × m × n 3-way array whose kth frontal slice is PAkQ.
For R = (ri,j) ∈ M(n,F), let AR be the ℓ × m × n 3-way array whose kth frontal slice is∑

k′∈[n] rk′,kAk′ .

Tensors. Let V1, . . . , Vc be vector spaces over F. Let ai, bi, i ∈ [c] be non-negative integers,
such that for each i, ai + bi > 0. A tensor T of type (a1, b1; a2, b2; . . . ; ac, bc) supported by
(V1, . . . , Vc) is an element in V ⊗a1

1 ⊗ V ∗⊗b1
1 ⊗ V ⊗a2

2 ⊗ V ∗⊗b2
2 ⊗ · · · ⊗ V ⊗ac

c ⊗ V ∗⊗bc
c . We say
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that Vi’s are the supporting vector spaces of T , and ai (resp. bi) is the multiplicity of T at
Vi (resp. V ∗

i ). (By convention V ⊗0 := F; note that U ⊗ F ∼= U , since our tensor products
are over F.)

The order of T is
∑

i∈[c](ai + bi). We say that T is plain, if a1 = · · · = ac = 1
and b1 = · · · = bc = 0. The group GL(V1) × · · · × GL(Vc) acts naturally on the space
V ⊗a1

1 ⊗V ∗⊗b1
1 ⊗V ⊗a2

2 ⊗V ∗⊗b2
2 ⊗· · ·⊗V ⊗ac

c ⊗V ∗⊗bc
c . Two tensors in this space are isomorphic

if they are in the same orbit under this group action.

From tensors to multiway arrays. For i ∈ [c], let Vi be a dimension-di vector space over F.
Let T be a tensor in V ⊗a1

1 ⊗ V ∗⊗b1
1 ⊗ V ⊗a2

2 ⊗ V ∗⊗b2
2 ⊗ · · · ⊗ V ⊗ac

c ⊗ V ∗⊗bc
c . After fixing the

basis of each Vi, T can be represented as a multiway array RT ∈ T(d×(a1+b1)
1 ×· · ·×d×(ac+bc)

c )
and the elements in GL(Vi) ∼= GL(di,F) can be represented as invertible di × di matrices.
The action of (A1, . . . , Ac) on RT can be explicitly written following Definition 1, using Ai

for ai directions and A−t
i for bi directions.

3 Proof of Theorem 6

Recall that we need to show the polynomial-time equivalence between the isomorphism
problems of U ⊗ V ⊗ W , U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V , U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ under
orthogonal and unitary groups. We present the proofs for unitary groups, and the proofs for
orthogonal groups follow the same line.

The equivalences for GL were proved in [13,15]. We follow their proof strategies, but as
mentioned in Section 1.4, certain technical difficulties need to be dealt with.

In Section 3.1, we reduce U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V , U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ to
U ⊗ V ⊗ W . This is done through the tensor system framework with the adaptation to
unitary isomorphism.

In Section 3.2, we reduce U ⊗ V ⊗W to U ⊗ U ⊗W . This requires a careful check due
to the introduction of the gadget.

In Section 3.3 we reduce U ⊗ V ⊗W to U ⊗ U∗ ⊗W . This requires the Singular Value
Theorem as a new ingredient.

In Section 3.4, we reduce U ⊗ U ⊗W to U ⊗ U ⊗ U∗ and U ⊗ U ⊗ U .

3.1 Reduction to plain Unitary 3-Tensor Isomorphism
In this section, we will reduce unitary isomorphism problems of U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V ,
U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ to U ⊗ V ⊗ W with a polynomial dimension blow-up. This
requires rephrasing [13, Theorem 1.1], as in our full version [5, Theorem 4.1], and then
proving the following new result in the unitary setting.

▶ Theorem 12 (Unitary version of [13, Theorem 1.1]). Let S = {S1, . . . , Sc} and T =
{T1, . . . , Tc} be two tensor systems supported by {V1, . . . , Vm}, where every Si and Ti is
of order ≤ 3. Then there exists an algorithm r that takes S and T and outputs two
3-tensors r(S) and r(T ) supported by vector spaces {U, V,W}, such that S and T are
isomorphic as tensor systems under U(V1) × · · · × U(Vm) if and only if r(S) and r(T ) are
isomorphic under U(U) × U(V ) × U(W ). The algorithm r runs in time polynomial in
the maximum dimension over U, V,W , and this maximum dimension is upper bounded by
poly(

∑
i∈[m] dim(Vi), 2poly(c)).

This follows the same proof as [13, Theorem 1.1], outlined in our full version [5, Ap-
pendix B], with one change, based on the following result.
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We say that two matrix tuples (C1, . . . , Cm) ∈ M(l × n,F)m and (D1, . . . , Dm) ∈ M(l ×
n,F)m are unitarily equivalent, if there exist unitary matrices L ∈ U(l,F) and R ∈ U(n,F),
such that for any i ∈ [m], LCiR = Di.

▶ Theorem 13 (Sergeichuk [29, Theorem 3.1]). Let C = (C1, . . . , Cm) ∈ M(l×n,F). Suppose
C is unitarily equivalent to D = (D1, . . . , Dm), such that each Di is block-diagonal with
k blocks, with the jth block of size dj × dj. Furthermore, let Dj = (D1,j , . . . , Dm,j) be the
m-tuple of dj × dj matrices consisting of the jth block from each Di, and suppose Dj is not
unitarily equivalent to a block-diagonal tuple. Then the isomorphism types of Di’s and the
multiplicities of each isomorphism type are uniquely determined by C, that is, they are the
same regardless of the choice of decomposition.

From the above theorem, the following corollary is immediate:

▶ Corollary 14. If
([
A1 0
0 B1

]
, . . . ,

[
Am 0
0 Bm

])
and

([
A1 0
0 C1

]
, . . . ,

[
Am 0
0 Cm

])
are

unitarily equivalent, then (B1, . . . , Bm) and (C1, . . . , Cm) are unitarily equivalent.

Proof of Theorem 12. With Corollary 14, the proof of [13, Theorem 1.1] goes through
for this unitary setting, by replacing the use of the Krull–Schmidt theorem for quiver
representations ( [13, pp. 20]) with Theorem 13.

The case of orthogonal groups follows similarly by using [29, Theorem 4.1] instead. ◀

We utilize the tensor system to construct reductions to plain 3-tensor unitary isomorphism,
and then prove their correctness by Theorem 12.

▶ Proposition 15. The unitary isomorphism problems on V ⊗V ⊗W,V ⊗V ∗ ⊗W,V ⊗V ⊗V

and V ⊗ V ⊗ V ∗ are polynomial-time reducible to Unitary 3-Tensor Isomorphism on
U ′ ⊗ V ′ ⊗W ′ where dim(U ′),dim(V ′) and dim(W ′) are at most polynomial in dim(V ) and
dim(W ).

Proof. The reduction is based on the observation that tensor systems can encode these
isomorphism problems. For example, for A ∈ V ⊗ V ⊗W , we can construct a tensor system
consisting of one tensor A and two vector spaces {V,W}, with two arcs from V to A, and
one arc from W to A. Starting from two tensors A1, A2 ∈ V ⊗ V ⊗ W , we consider the
corresponding tensor systems, and ask for unitary isomorphism of these tensor systems.
Then by Theorem 12, they can be reduced to the plain 3-tensor unitary isomorphism in time
poly(dim(V ),dim(W )), as these are tensor systems with only 1 tensor each. It can be seen
that this works for V ⊗ V ∗ ⊗W , V ⊗ V ⊗ V , and V ⊗ V ⊗ V ∗. This concludes the proof. ◀

3.2 Reduction from Unitary 3-TI to Bilinear Form Unitary
Psuedoisometry (V ⊗ V ⊗ W )

We mainly follow the construction in [15] to show that there is a reduction from Unitary
3-Tensor Isomorphism (U ⊗ V ⊗ W ) to Bilinear Form Unitary Pseudoisometry
(V ′ ⊗ V ′ ⊗ W ′). In addition, we prove that the reduction from [15] preserves the unitary
property in both directions.

▶ Proposition 16. Given two 3-tensors A, B ∈ U ⊗V ⊗W , where dim(U) = l ≤ dim(V ) = m

and dim(W ) = n. There is a reduction r : U⊗V ⊗W → V ′⊗V ′⊗W ′ with dim(V ′) = l+5m+3
and dim(W ′) = n + l(m + 1) + m(3m + 2) such that A and B are unitarily isomorphic if
and only if r(A) and r(B) are unitarily isomorphic, where frontal slices of r(A) and r(B) are
skew-symmetric matrices.
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Proof.

The reduction. We use the gadget in [13] and [15] to present this reduction. Here we use
matrix format to illustrate our construction, and the picture of this construction is shown in
Figure 1. Denote the ith frontal slice of A by Ai ∈ M(l ×m,C), where i ∈ [n]. Let the ith
frontal slice of r(A) be Âi ∈ M(l + 5m+ 3,C), where i ∈ [n+ l(m+ 1) +m(3m+ 2)]. Then
Âi is constructed as follows:

For i ∈ [n], Âi is of the form

 0 Ai 0
−At

i 0 0
0 0 0

.

For i ∈ [n+ 1, n+ l(m+ 1)], let Âi be the elementary alternating matrix Es,l+m+t −
El+m+t,s, where s = ⌈(i− n)/(m+ 1)⌉ and t = i− n− (s− 1)(m+ 1).
For i ∈ [n+ l(m+ 1), n+ l(m+ 1) +m(3m+ 2)], let Âi be the elementary alternating
matrix El+s,l+m+m+1+t − El+m+m+1+t,l+s, where s = ⌈(i− n− l(m+ 1))/(3m+ 2)⌉ and
t = i− n− l(m+ 1) − (s− 1)(3m+ 2).

Denote lateral slices of r(A) by Li, where i ∈ [l + 5m+ 3]. Then we check the ranks of
these lateral slices:

For the first l slices, the lateral slice Li is a block matrix with two non-zero blocks. One
block is −Im+1, and another block of size m× n is the transpose of the ith horizontal
slice of −A. Thus, m+ 1 ≤ rank(Li) ≤ 2m+ 1.
For the following m slices, Li is a block matrix with two non-zero blocks. One block is
−I3m+2 and the other one is the (i − n)th lateral slice of A with size l × n. Therefore,
3m+ 2 ≤ rank(Li) ≤ 3m+ 2 + l ≤ 4m+ 2.
For the next m+ 1 slices, Li has a block Il after rearranging the columns, so rank(Li) =
l ≤ m.
For the last 3m+ 2 slices, similarly, Li has a block Im after rearranging the columns, so
rank(Li) = m.

Now we consider the ranks of linear combinations of the above slices. There are four
observations that help prove the correctness of the reduction:

If the combination contains Li for 1 ≤ i ≤ l, since the resulting matrix has at least one
identity matrix Im+1 in the (l +m+ 1)th row to (l + 2m+ 1)th row, it has the rank at
least m+ 1.
If the combination doesn’t contain Li for l + 1 ≤ i ≤ l +m+ 1, the resulting matrix has
rank at most 3m+ 1, because there are at most l + 5m+ 3 − 3m− 2 ≤ 3m+ 1 non-zero
rows.
If the combination involves Li for l + 1 ≤ i ≤ l +m+ 1, the resulting matrix has rank at
least 3m+ 2, because there is at least one identity matrix I3m+2 in the last 3m+ 2 rows.
If the combination involves Li for 1 ≤ i ≤ l and Li for l + 1 ≤ i ≤ l + m + 1, the
resulting matrix has rank at least 4m+ 3, because there are at least one identity matrix
I3m+2 in the last 3m+ 2 rows and one identity matrix Im+1 in the (l +m+ 1)th row to
(l + 2m+ 1)th row.

The if direction. Assume there are P ∈ U(l+ 5m+ 3,C) and Q ∈ U(n+ l(m+ 1) +m(3m+

2),C) such that P tr(A)P = r(B)Q. Then we write P as P =

P1,1 P1,2 P1,3
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

, where

P1,1 ∈ M(l,C), P2,2 ∈ M(m,C) and P3,3 ∈ M(4m+ 3,C). By ranks of lateral slices of r(B)
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and the above observations, it’s easy to have that P2,1 = 0, P1,2 = 0, P1,3 = 0 and P2,3 = 0.

Therefore, P is of the form

P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

. As P is a block-lower-trianglular unitary

matrix, P1,1, P2,2 and P3,3 are unitary matrices. Since the aim is to check if A and B are
isomorphic, we only consider the first n frontal slices of r(A) and r(B), which contains A and
B respectively. After applying P on lateral slices and horizontal slices of r(A), we have the
first n frontal slices as follows:P t

1,1 0 P t
3,1

0 P t
2,2 P t

3,2
0 0 P t

3,3

  0 Ai 0
−At

i 0 0
0 0 0

 P1,1 0 0
0 P2,2 0

P3,1 P3,2 P3,3

 =

 0 P t
1,1AiP2,2 0

−P t
2,2At

iP1,1 0 0
0 0 0

 .

Then we apply the unitary matrix Q on the frontal slices of r(B), and have P tr(A)P = r(B)Q.
Note that only the block (1, 2) and (2, 1) are non-zero blocks in the first n slices of r(B) and
P tr(A)P , so we have that only the first n× n submatrix Q1,1 of Q is non-zero in the first n
columns, which implies that Q1,1 is unitary from the fact that Q is unitary. Therefore, it is
enough to give the isomorphism P t

1,1AP2,2 = BQ1,1 where P t
1,1, P2,2 and Q1,1 are unitary.

The only if direction. Assume PAQ = BR for some P ∈ U(l,C), Q ∈ U(m,C) and R ∈
U(n,C). We claim that there are two unitary matrices P̂ = diag(P,Q, S1, S2) ∈ U(l + 5m+
3,C) and Q̂ = diag(R, T1, T2) ∈ U(n+ l(m+ 1) +m(3m+ 2),C) such that P̂ tr(A)P̂ = r(B)Q̂,
where S1 ∈ U(m+ 1,C), S2 ∈ U(3m+ 2,C), T1 ∈ U(l(m+ 1),C) and T2 ∈ U(m(3m+ 2),C).

Due to the fact that PAQ = BR, it’s straightforward to check the first n frontal slices of
P̂ tr(A)P̂ and r(B)Q̂ are equal. Then we consider the remaining gadget slices. Let r(A) and
r(B) be tensors constructed by the (m+ 1)th frontal slice to (m+ l(m+ 1))th frontal slice of
r(A) and r(B), respectively. Consider r(A) and r(B) from the frontal view:

0 0 E 0
0 0 0 0

−E 0 0 0
0 0 0 0

 ,
where E ∈ T(l× (m+ 1) × l(m+ 1),C). Then we apply P̂ on the lateral and horizontal slices
of r(A),P t

Qt

St
1

St
2


 0 0 Ei 0

0 0 0 0
−Ei 0 0 0

0 0 0 0


P

Q

S1

S2

 =

 0 0 P tEiS1 0
0 0 0 0

−St
1EiP 0 0 0
0 0 0 0

 ,

where Ei ∈ M(l × (m + 1),C). Observe that P t acts on the horizontal direction of E, so
it requires designing proper S1 and T1 to remove the effect of P . Let the lateral slice of E
to be Li ∈ M(l × l(m + 1),C) where i ∈ [m + 1]. Apply a proper permutation π on the
columns of Li and have the matrix L′

i = LiTπ =
[
0 . . . Il . . .0

]
where Tπ ∈ M(l(m+ 1),C) is

the permutation matrix and the ith block of L′
i is the identity matrix Il ∈ M(l,C). After left

multiplying L′
i by P t, we have P tL′

i =
[
0 . . . P t . . .0

]
. Now we define a diagonal matrix T ′

1
as diag(P t, . . . , P t), which gives us P tL′

i = L′
iT

′
1 ⇐⇒ P tLi = LiTπT

′
1T

t
π. Then we set S1

to be the identity matrix and T1 to be TπT
′
1T

t
π, and it yields P tES1 = ET1 , where S1 and T1

are unitary.
It remains to check the last m(3m+ 2) frontal slices, which uses the similar method as

above, and this produces unitary matrix S2 and T2. Now we have the unitary matrix S and
T as desired. ◀
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3.3 Reduction from Unitary 3-Tensor Isomorphism to Unitary
Matrix Space Conjugacy (V ⊗ V ∗ ⊗ W )

A 3-way array A ∈ T(l ×m× n,F) is non-degenerate if along each direction, the slices are
linearly independent.

▶ Lemma 17. For any 3-way array A ∈ T(l × m × n,C), there are unitary matrices
T1 ∈ U(l,C), T2 ∈ U(m,C) and T3 ∈ U(n,C) such that

(T1AT2)T3 =
[
Ã 0
0 0

]
,

where Ã is a non-degenerate array of size l′ ×m′ × n′.

Proof. First, we consider the horizontal slices of A. Let (A1, . . . , An) be the corresponding
matrix tuple of frontal slices of A. Then we construct the l ×mn matrix

A′ =
[
A1 . . . An

]
.

We denote the maximum number of linearly independent horizontal slices of A by l′; it follows
that the rank of A′ is l′. Applying a singular value decomposition on A′, we have

A′ = UΣV ∗,

where U and V are unitary matrices of size l × l and mn×mn, respectively, and Σ =
[
Σ̂
0

]
for a full-rank rectangular diagonal matrix Σ̂ of size l′ ×mn. Multiplying A′ by T1 = U−1,
we have

T1A
′ = ΣV ∗,

where the first l′ rows of ΣV ∗ are linearly independent and the last l − l′ rows are zero. It
follows that acting T1 on the horizontal slices of A sends A to

T1A =
[
Â
0

]
,

where the horizontal slices of Â ∈ T(l′ ×m× n,C) are linearly independent.
We can similarly find unitary matrices T2, T3 for the other two directions. ◀

▶ Lemma 18. Given two 3-tensors A, B ∈ U ⊗ V ⊗W where l = dim(U),m = dim(V ) and
n = dim(W ), there is a reduction r such that A and B are unitarily isomorphic if and only if
r(A) and r(B) are unitarily isomorphic, where r(A) and r(B) are non-degenerate.

We note that this reduction is one of the few in the paper that is explicitly not a p-
projection (similar to how the reduction of a matrix to row echelon form is not a p-projection).

Proof. By Lemma 17, we can find unitary matrices S1 ∈ U(l,C), S2 ∈ U(m,C) and S3 ∈
U(n,C) to extract the l′ ×m′ × n′ non-degenerate tensor Ã of A. There are similar unitary
matrices T1 ∈ U(l,C), T2 ∈ U(m,C) and T3 ∈ U(n,C) for B as well. Then we claim A and B
are unitarily isomorphic if and only if r(A) = Ã and r(B) = B̃ are unitarily isomorphic.

For the if direction, assume P̃ ÃQ̃ = B̃R̃ where P̃ ∈ U(l′,C), Q̃ ∈ U(m′,C) and R̃ ∈

U(n′,C). It yields that P ′A′Q′ = B′R′ where A′ =
[
Ã 0
0 0

]
and B′ =

[
B̃ 0
0 0

]
, and P ′ =
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diag(P̃ , Il−l′), Q′ = diag(Q̃, Im−m′) and R′ = diag(R̃, In−n′). Then we set P to be T−1
1 P ′S1,

Q to be S2Q
′T−1

2 and R to be T3R
′S−1

3 , where P,Q and R are unitary matrices. It’s easy
to check that PAQ = BR.

For the only if direction, suppose PAQ = BR for P ∈ U(l,C), Q ∈ U(m,C) and R ∈

U(n,C), which follows that P ′A′Q′ = B′R′ for A′ =
[
Ã 0
0 0

]
and B′ =

[
B̃ 0
0 0

]
, and P ′ =

T1PS
−1
1 , Q′ = S−1

2 QT2, and R′ = T−1
3 RS3. Write P ′ as

[
P1,1 P1,2
P2,1 P2,2

]
where P1,1 is of size

l′ × l′. Observe that the last l − l′ horizontal slices of A′Q′ and B′R′ are 0 and the first l′
slices of A′Q′ are linearly independent, so we derive that P2,1 = 0. We can conclude that
Q′ and R′ are block-lower-trianglular matrices in the same way. Therefore, P̃ , Q̃ and R̃ are
unitary, where P̃ is the first l′ × l′ submatrix of P ′, Q̃ is the first m′ ×m′ submatrix of Q′

and R̃ is the first n′ × n′ submatrix of R′. Thus, P̃ , Q̃ and R̃ form a unitary isomorphism
between Ã and B̃ by P̃ ÃQ̃ = B̃R̃. ◀

▶ Corollary 19. Given two 3-tensors A, B ∈ V ⊗ V ⊗W , there is a reduction r such that A, B
are unitarily isomorphic if and only if r(A), r(B) ∈ V ⊗V ⊗W ′ are unitarily pseudo-isometric
bilinear forms, and such that the frontal slices of r(A) and r(B) are linearly independent.

Based on Lemma 18, we will show that the Unitary 3-Tensor Isomorphism (U⊗V ⊗W )
can be reduced to Unitary Matrix Space Conjugacy (V ′ ⊗ V ′∗ ⊗W ′).3

▶ Proposition 20. There is a reduction r : U ⊗ V ⊗W → V ′ ⊗ V ′∗ ⊗W where dim(U) =
l,dim(V ) = m,dim(W ) = n and dim(V ′) = l +m such that two tensors A, B ∈ U ⊗ V ⊗W

are unitarily isomorphic if and only if r(A), r(B) ∈ V ′ ⊗ V ′∗ ⊗ W are unitarily conjugate
matrix spaces.

Proof.

The reduction. Denote the ith frontal slice of A by Ai. We construct the reduction in the
following way:

Âi =
[
0 Ai

0 0

]
,

where Âi ∈ M(l +m,C) is the ith frontal slice of r(A).
Without loss of generality, we can always assume A and B are non-degenerate. Then we

will show that A and B are isomorphic if and only if r(A) and r(B) are isomorphic.

For the if direction. We assume that r(A) and r(B) are unitarily isomorphic, so there are
P ∈ U(l +m,C) and Q ∈ U(n,C) such that P−1r(A)P = r(B)Q. Let P be a block matrix:[

P1,1 P1,2
P2,1 P2,2

]
,

3 We note that there is some ambiguity in the name here, which where the notation helps. Namely,
“unitary conjugacy of matrix spaces” could mean either the action of U(V ′) × U(W ′) on V ′ ⊗ V ′∗ ⊗ W ′

or the action of U(V ′) × GL(W ′) on the same space. In this paper we do not consider such “mixed”
actions, though they are certainly interesting for future research. As a mnemonic, if we think of the
matrix space itself as “unitary”, in the sense of having a unitary structure, this lends itself to the
interpretation of U(V ′) × U(W ′) acting.
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where P1,1 is of size l × l. Let r(B)Q be r(B)′ and the ith frontal slice of r(B)′ be B′
i. Since

r(A)P = Pr(B)′, we have that[
AiP2,1 AiP2,2

0 0

]
=

[
0 P1,1B

′
i

0 P2,1B
′
i

]
,

where AiP2,1 = 0 and AiP2,2 = P1,1B
′
i for all i ∈ [n]. It follows that every row of P2,1 is

in the intersection of right kernels of Ai. Since A is non-degenerate, P2,1 must be a zero
matrix. Thus, P is a block-upper-trianglular matrix, which results in P1,1 and P2,2 are
unitary. Therefore, we have that P−1

1,1 AP2,2 = BQ for P1,1 ∈ U(l,C), P2,2 ∈ U(m,C) and
Q ∈ U(n,C).

For the only if direction. Suppose PAQ = BR where P ∈ U(l,C), Q ∈ U(m,C) and
R ∈ U(n,C). Then we define P ′ and Q′ as follows

P ′ =
[
P−1 0

0 Q

]
and Q′ = R,

where P ′ and R′ are unitary. We can straightforwardly check that P ′−1
r(A)P ′ = r(B)Q′ . ◀

We can similarly apply the strategy in this section to construct the reduction from
Unitary 3-Tensor Isomorphism (U ⊗ V ⊗W ) to Bilinear Form Unitary Pseudo-
isometry (V ⊗ V ⊗W ). We record this as the following result.

▶ Proposition 21. There is a reduction r : U ⊗ V ⊗ W → V ′ ⊗ V ′ ⊗ W where dim(U) =
l,dim(V ) = m,dim(W ) = n and dim(V ′) = l +m such that two tensors A, B ∈ U ⊗ V ⊗W

are unitarily isomorphic if and only if r(A), r(B) ∈ V ′ ⊗V ′ ⊗W are unitarily pseudo-isometric
bilinear forms.

3.4 Reduction from Unitary 3-Tensor Isomorphism to Unitary
Algebra Iso. (V ⊗ V ⊗ V ∗) and Unitary Equivalence of
Noncommutative Cubic Forms (V ⊗ V ⊗ V )

▶ Proposition 22. There is a reduction from Bilinear Form Unitary Pseudo-isometry
to Unitary Algebra Isomorphism and to Unitary Equivalence of Noncommutative
Cubic Forms.

In symbols, there are reductions

r : V ⊗ V ⊗W → V ′ ⊗ V ′ ⊗ V ′∗ and r′ : V ⊗ V ⊗W → V ′ ⊗ V ′ ⊗ V ′

where dim(V ′) = dim(V ) + dim(W ) such that two bilinear forms A, B ∈ V ⊗ V ⊗ W are
unitarily pseudo-isometric if and only if r(A) and r(B) are unitarily isomorphic algebras, if
and only if r′(A) and r′(B) are unitarly equivalent noncommutative cubic forms.

Proof.

The construction. Given a tensor A ∈ V ⊗ V ⊗W whose frontal slices are Ai, construct an
array A′ ∈ T((l +m) × (l +m) × (l +m),C) of which the frontal slices are

A′
i = 0 for i ∈ [l] and A′

i =
[
Ai−l 0

0 0

]
for i ∈ [l + 1, l +m] .
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Let Â represent the tensor in V ′ ⊗V ′ ⊗V ′∗ corresponding to entries defined by A′, and denote
Ã by the tensor in V ′ ⊗V ′ ⊗V ′ corresponding to entries defined by A′. Note that by Corollary
19, we can always assume that the frontal slices of A are linearly independent, so the last
m slices of A′ are linearly independent as well. We will show that A, B ∈ V ⊗ V ⊗ W are
isomorphic if and only if Â, B̂ ∈ V ′ ⊗ V ′ ⊗ V ′∗ are isomorphic, and A, B are isomorphic if and
only if Ã, B̃ ∈ V ′ ⊗ V ′ ⊗ V ′ are isomorphic.

The only if direction. Given P ∈ U(l,C) and Q ∈ U(m,C) such that P tAP = BQ, set P̂
and P̃ to be diag(P,Qt) and diag(P,Q−1) respectively, where P̂ and P̃ are unitary. Then
we can straightforwardly derive that P̂ tÂP̂ = B̂P̂ t and (P̃ tÃP̃ )P̃ = B̃.

The if direction. We first consider the V ′ ⊗ V ′ ⊗ V ′∗ case. Assume there is a matrix P ∈

U(l +m,C) such that P tÂP = B̂P t . Then we write P as
[
P1,1 P1,2
P2,1 P2,2

]
, where P1,1 ∈ M(l,C).

Consider the first l slices B′′
i of B̂P t ,

B′′
i = P tÂiP = 0.

Since the last m slices of Â are linearly independent, we will have that P2,1 = 0. It follows
that P1,1 and P2,2 are unitary. The equivalence of the last m slices of P tÂP and B̂P t yields
that P t

1,1AP1,1 = BP t
2,2 , which completes the proof of the if direction for V ′ ⊗ V ′ ⊗ V ′∗.

The proof for the if direction of V ′ ⊗ V ′ ⊗ V ′ case is similar to the above. ◀

4 Proof of Theorem 7

We present the proof for unitary groups, and the argument is essentially the same for
orthogonal groups.

Let A, B be two d-way arrays in T(n1 × · · · × nd,F). We will exhibit an algorithm T such
that T (A) is an algebra on Fm where m = poly(n1, . . . , nd), and such that A and B are unitarily
isomorphic as d-tensors if and only if T (A) and T (B) are unitarily isomorphic as algebras.
We can then apply Theorem 6 to reduce to Unitary 3-Tensor Isomorphism. Therefore,
in the following we focus on the step of reducing Unitary d-Tensor Isomorphism to
Unitary Algebra Isomorphism.

Background on quivers and path algebras. A quiver is a directed multigraph G =
(V,E, s, t), where V is the vertex set, E is the arrow set, and s, t : E → V are two maps
indicating the source and target of an arrow.

A path in G is the concatenation of edges p = e1, e2, . . . , en, where ei ∈ E for i ∈ [n],
such that s(ei+1) = t(ei) for i ∈ [n− 1]. s(p) = s(e1) is the source of p, t(p) = t(en) is the
target of p and l(p) = n is the length of p. For a consistent notation including the vertex,
we define the source s(v) and target t(v) for each vertex v ∈ V by s(v) = t(v) = v, and we
regard the length l(v) of every vertex v as 0. Note that V consists of paths of length 0, and
E consists of paths of length 1.

Let F be a field. The path algebra of G, denoted as PathF(G), is the free algebra generated
by V ∪ E modulo the relations generated by:
1. For v, v′ ∈ V , vv′ = v if v = v′, and 0 otherwise.
2. For v ∈ V and e ∈ E, ve = e if v = s(e), and 0 otherwise. And ev = e if v = t(e), and 0

otherwise.
3. For e, e′ ∈ E, ee′ = 0 if t(e) ̸= s(e′).
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In this paper we make use of the following quiver. Note that this is different from the
quiver used in [15]; this difference leads to some significant simplifications in the argument,
and allows the argument to go through for unitary and orthogonal groups (it is unclear to us
whether the original argument in [15] does so).

v1 //

x1,1

��
x1,2

  ... //
x1,n1

55 v2 //

x2,1

��
x2,2

  ... //
x2,n2

55 v3 //

x3,1

��
x3,2

  ... //
x3,n3

44 · · · //

xd−1,1

��
xd−1,2

!!... //
xd−1,nd−1

55 vd
//

xd,1

��
xd,2

""... //
xd,nd−1

33 vd+1

Figure 2 The quiver G we use in this paper.

Note that G = (V,E, s, t) where V = {v1, . . . , vd+1}, E = {xi,j | i ∈ [d], j ∈ [ni]}, s(xi,j) = vi

and t(xi,j) = vi+1.

Proof of Theorem 7. Let f, g ∈ U1 ⊗ U2 ⊗ · · · ⊗ Ud be two tensors, where Ui = Fni for
i ∈ [d]. We can encode f in PathF(G) as follows. Recall that ei denotes the ith standard
basis vector. Suppose f =

∑
(i1,...,id) αi1,...,id

ei1 ⊗ · · · ⊗ eid
, where the summation is over

(i1, . . . , id) ∈ [n1] × · · · × [nd] and αi1,...,id
∈ F. Then let f̂ ∈ PathF(G) be defined as

f̂ =
∑

(i1,...,id) αi1,...,id
x1,i1x2,id

. . . xd,id
, where (i1, . . . , id) ∈ [n1] × · · · × [nd].

Let Rf := PathF(G)/(f̂) and Rg := PathF(G)/(ĝ). We will show that f and g are
unitarily isomorphic as tensors if and only if Rf and Rg are unitarily isomorphic as algebras.

Tensor isomorphism implies algebra isomorphism. Let (P1, . . . , Pd) ∈ U(n1,C) × · · · ×
U(nd,C) be a tensor isomorphism from f to g. Then Pi naturally acts on the linear space
⟨xi,1, . . . , xi,ni⟩, and together with the identity matrix Id+1 acting on ⟨v1, . . . , vd+1⟩. It’s
straightforward to show that they form an algebra isomorphism from Rf to Rg, which is
essentially the same as [15]; see our full version [5, Section 6] for a detailed proof.

Algebra isomorphism implies tensor isomorphism. This part of the proof is new, compared
to the corresponding part in [15].

Let ϕ : PathF(G)/(f̂) → PathF(G)/(ĝ) be an algebra isomorphism, which is determined
by the images of vi, xj,k under ϕ.

Note that PathF(G) is linearly spanned by paths in G, so it is naturally graded, and we
use PathF(G)ℓ denotes the linear space of PathF(G) spanned by paths of length exactly ℓ.

First, note that ϕ(f̂) = α · ĝ + a linear combination of quiver relations, where α ∈ F.
Second, we claim that the coefficient of vi in ϕ(xj,k) must be zero for any i, j, k. If not,

suppose ϕ(xj,k) = γ · vi + M where γ ̸= 0, and M denotes other terms not containing vi.
On the one hand, ϕ(x2

j,k) = 0 because x2
j,k = 0 by the quiver relations. On the other hand,

ϕ(xj,k)2 = (γ · vi +M)2 = γ2 · v2
i +M ′ = γ2 · vi +M ′ where M ′ denotes other terms, which

cannot contain vi. So ϕ(xj,k)2 is nonzero, contradicting ϕ(x2
j,k) = 0 and ϕ being an algebra

isomorphism.
By the above, it follows for any path P (a product of xi,j ’s) of length ℓ ≥ 1, ϕ(P ) is a

linear combination of paths of length ≥ ℓ. This implies that, if we express ϕ in the linear
basis of PathF(G)/(f̂), (v1, . . . , vd+1, xi,j ,paths of length 2, . . . ,paths of length d), then ϕ is
a block-lower-triangular matrix, where the each block is determined by the path lengths.
That is, the first block is indexed by (v1, . . . , vd+1), the second block is indexed by (xi,j),
the third block is indexed by paths of length 2, and so on.
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Third, we claim that for 1 ≤ i < j ≤ d + 1, the coefficient of xi,k in ϕ(xj,k′) must
be zero. If not, then let P be a path of length d − i starting from vi+1. Because of the
block-lower-triangular matrix structure and that ϕ is an isomorphism, we know that there
exists a path P ′ of length d − i, such that the coefficient of P in ϕ(P ′) is nonzero. Then
ϕ(xj,k′ ·P ′) = ϕ(xj,k′) · ϕ(P ′) = (β · xi,k +M) · (γ ·P +N) = β · γ · xi,k ·P +L, where M , N
and L denote appropriate other terms, and β, γ ∈ F are non-zero. Note that xi,k · P cannot
be cancelled from other terms. This implies that ϕ(xj,k′ · P ′) is non-zero. However, xj,k′ · P ′

has to be zero because P ′ is of length d − i, so it starts from some variable xi+1,k′′ . This
leads to the desired contradiction.

By the above, if we restrict ϕ to the linear subspace ⟨xi,j⟩ in the linear basis

(x1,1, . . . , x1,n1 , . . . , xd,1, . . . , xnd
),

then ϕ is again in the block-lower-triangular form, where the blocks are determined by the
first index of xi,j . That is, the first block is indexed by x1,j for all j, the second block is
indexed by x2,j for all j, and so on.

We now can take the diagonal block of ϕ on (xi,1, . . . , xi,ni
), and let the resulting

(invertible) matrix be Pi. These matrices P1, . . . , Pd together determine a linear map ψ on
⟨xi,j⟩. By comparing degrees, we see that ψ(f̂) = α · ĝ. Now suppose F contains dth roots.
We can then obtain (1/α1/d · P1, 1/α1/d · P2, . . . , 1/α1/d · Pd) · f = g.

Getting back to our original goal, we see that if ψ is unitary, then the block-lower-
triangular form of ψ implies that it is actually block-diagonal, and the diagonal blocks are all
unitary as well. This shows that Pi’s are unitary, and f and g are unitarily isomorphic. ◀
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