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Abstract
We revisit the problem of estimating the profile (also known as the rarity) in the data stream model.
Given a sequence of m elements from a universe of size n, its profile is a vector ϕ whose i-th entry
ϕi represents the number of distinct elements that appear in the stream exactly i times. A classic
paper by Datar and Muthukrishan from 2002 gave an algorithm which estimates any entry ϕi up
to an additive error of ±ϵD using O(1/ϵ2(log n + log m)) bits of space, where D is the number of
distinct elements in the stream.

In this paper, we considerably improve on this result by designing an algorithm which simul-
taneously estimates many coordinates of the profile vector ϕ up to small overall error. We give
an algorithm which, with constant probability, produces an estimated profile ϕ̂ with the following
guarantees in terms of space and estimation error:
(a) For any constant τ , with O(1/ϵ2 + log n) bits of space,

∑τ

i=1 |ϕi − ϕ̂i| ≤ ϵD.
(b) With O(1/ϵ2 log(1/ϵ) + log n + log log m) bits of space,

∑m

i=1 |ϕi − ϕ̂i| ≤ ϵm.
In addition to bounding the error across multiple coordinates, our space bounds separate the terms
that depend on 1/ϵ and those that depend on n and m. We prove matching lower bounds on space
in both regimes.

Application of our profile estimation algorithm gives estimates within error ±ϵD of several
symmetric functions of frequencies in O(1/ϵ2 + log n) bits. This generalizes space-optimal algorithms
for the distinct elements problems to other problems including estimating the Huber and Tukey
losses as well as frequency cap statistics.
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1 Introduction

Estimating basic statistics of a data set, such as the number of times each element occurs
or the number of distinct elements are fundamental problems in data stream algorithms.
In this paper, we focus on the related problem of estimating the number of elements that
occur a given number of times. Formally, given a stream x = x1, . . . , xm of m elements
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32:2 Space-Optimal Profile Estimation with Applications to Symmetric Functions

from [n] = {1, 2, . . . , n}, we define its profile to be the frequency of frequencies vector
ϕ ∈ {0, . . . , n}m where ϕi = |{j ∈ [n] : |{k ∈ [m] : xk = j}| = i}| is the number of distinct
elements in x which appear exactly i times; such elements are often referred to as “i-rare”
and were first studied in a classic paper of Datar and Muthukrishnan [15].

Any symmetric function of the frequencies of the elements in a stream (such a function is
invariant to relabeling of the domain elements) can be written as a function of the profile.
Therefore, algorithms for profile estimation in data streams can be used to estimate quantities
such as the number of distinct elements [19], frequency moments [2], capped statistics of
the stream [11], or the objective function of M -estimators such as the Huber or Tukey
objective [24]. In this paper, we develop an algorithm for estimating the profile of a data
set specified by an insertion-only stream, where elements are inserted but not deleted. As
an application, this algorithm improves upon the space complexity of estimating several
symmetric functions of frequencies.

The profile (also referred to as the fingerprint, histogram, histogram of histograms,
pattern, prevalence, or collision statistics) of a data set is a natural representation of the
distribution of elements and has been studied extensively from both computational and
statistical perspectives. Streaming algorithms that estimate the number of i-rare elements
have been used for computing degree distributions in large graphs [7], detecting malicious IP
traffic in a network [27], estimating the number of times users have been exposed to the same
ad [20], counting the number of k-mers in genetic sequences with a given abundance value for
fast k-mer size selection [10], and for applications in databases [14]. In practice, estimating
the profile is a very popular sketching problem solved by users of Apache DataSketches, a
popular open-source sketching library [16]1.

The study of the problem in the context of streaming algorithms dates back to the work
of Datar and Muthukrishan [15]. They show how to estimate the ratio of i-rare elements in
the stream to the total number of distinct elements D in the stream, i.e., the fraction ϕi/D.
The algorithm is simple and elegant: it collects a random sample j1 . . . js of s elements from
the stream, where each jt is chosen uniformly at random from the set of distinct elements
appearing in the stream. For each element jt, it calculates the element’s frequency (the
number of times jt appears in the stream) and returns the fraction of jt’s with frequency
exactly i. The algorithm can be implemented in one pass using O(s(log n + log m)) bits of
storage, and the authors show a trade-off between the quality of approximation and the
sample size s. Specifically, to approximate ϕi/D up to ±ϵ with constant probability, it
suffices that s = Θ(1/ϵ2)2. This translates into an O(1/ϵ2(log n + log m)) space streaming
algorithm which, given a particular i, finds an estimate ϕ̂i such that

|ϕi − ϕ̂i| ≤ ϵD. (1)

Other works have studied rarity estimation streaming algorithms in the context of the
sliding window model [6], time and space efficient algorithms [18] and privacy [17]. The
“layering” technique of Indyk and Woodruff [23] essentially estimates the number of items
whose frequencies are approximately equal to a given value. A pertinent line of work studies
algorithms for estimating general “concave sublinear” frequency statistics which depend on
the rarities of low frequency elements [12, 13]. These papers provide succinct sketches for
estimating several symmetric functions of frequencies but either do not account for the space

1 See this example of estimating the number of estimating the distribution of how many times users visit a
website in a month https://datasketches.apache.org/docs/Tuple/TupleEngagementExample.html.

2 The original paper provides a more refined bound with a mix of additive and multiplicative errors, see
Lemma 2 in [15]. We provide a single-parameter bound for the sake of simplicity.

https://datasketches.apache.org/docs/Tuple/TupleEngagementExample.html
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used to store hash functions or do not focus on bit complexity and require two passes over
the data. When the space used for randomness is attributed to the algorithm, our results
give improved space bounds compared to prior work for estimating several statistics that fall
into this framework (see Section 1.2).

1.1 Results for Profile Estimation
We focus on estimating several coordinates of the profile vector ϕ simultaneously with small
total error. In many applications, it is useful to calculate more than one rarity as the true
object of interest is the distribution of frequencies. In addition, estimating several coordinates
of the profile has direct applications to estimating several symmetric functions of frequencies
(see Section 1.2). Our main result is a streaming algorithm which, with constant probability,
achieves the following guarantees (Theorems 1 and 2):

For any τ = O(1), using space O(1/ϵ2 + log n), the algorithm returns a ϕ̂ such that
τ∑

i=1
|ϕi − ϕ̂i| ≤ ϵD. (2)

Using space O(1/ϵ2 log(1/ϵ) + log n + log log m), the algorithm returns a ϕ̂ such that
m∑

i=1
|ϕi − ϕ̂i| ≤ ϵm. (3)

Both results use less space than the algorithm of Datar and Muthukrishnan while bounding
error across several coordinates of the profile rather than for a single rarity. A brief remark
comparing the two guarantees: as D ≤ m, the error in Equation (2) is smaller than that of
Equation (3) but at the cost of only providing a guarantee for estimating the profile over
constant frequencies.3 On the other hand, by Equation (3) we can estimate the entire profile
in small space up to error ±ϵm. Note that in common settings where the average frequency
of the elements in the stream is small, ϵm and ϵD are of similar size. However, in general,
estimating the entire profile up to additive error in terms of D is hard. In fact, producing an
estimate such that ∥ϕ− ϕ̂∥1 ≤ D/2 would require Ω(D log m) bits of space.4

The first step in our analysis is to show that s = O(1/ϵ2 log(1/ϵ)) samples suffice to
achieve the guarantees of Equation (3) using the empirical estimation method of Datar and
Muthukrishnan (s = O(1/ϵ2) suffices for Equation (2) from the original paper). However,
this naïvely requires s(log n + log m) space to store the identities and counts of each sample.

Our main result reduces the space required to O(s) bits. The algorithm is obtained by
compressing the identity and count information of each sample into O(1) bits on average
while retaining its statistical power for estimating the profile. The algorithm is also time
efficient: it takes O(log(1/ϵ) + log log n) expected amortized time to process each stream
update and poly(1/ϵ) time to produce the final profile estimate.

3 Note that in this regime, to estimate the entire profile up to the τth coordinate, it is sufficient to have
an algorithm for estimating a single i-rarity for constant i and making a constant number of copies of
this algorithm for each i ∈ {1, . . . , τ}. Interestingly, our algorithm internally produces an estimate of
the entire profile up to i even if the goal is only to estimate the single i-rarity.

4 Let SD
N be the set of all D-sparse binary vectors of length N , and let C ⊂ SD

N be its subset such that
any pair of distinct c, c′ ∈ C have L1 distance greater than D. Standard probabilistic arguments show
that there exists such a set C of size exp(Ω(D log(N/D))). Observe that for any c ∈ C, we can generate
a stream with profile equal to c, by creating, for each nonzero ci, a distinct element appearing i times.
Given such a stream, the assumed algorithm returns ϕ̂ with L1 distance at most D/2 to c, which makes
it possible to uniquely recover c. By the pigeonhole principle, the algorithm must use space at least
Ω(log |C|) = Ω(D log(N/D)). Since the length of the generated stream m is at most ND, if we pick
N > D2, we obtain the desired bound.

ITCS 2024
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To achieve these results, we use two new techniques:
1. To compress the identities of the stream elements, we hash the sampled elements to a

domain of size O(s), allowing collisions between sampled elements in a similar manner
to Bloom filters or CountMin sketches. Our key contribution is to show that, under
the parameters of our algorithm, the empirical profile of the sampled elements can be
approximately recovered from the frequencies after hashing by an iterative “inversion”
procedure. To our knowledge, this inversion procedure is novel and requires a careful
analysis of the hashing procedure as well as an application of the “Poissonization” trick
more commonly used in distribution testing.

2. To use small space, we need to be able to make efficient use of randomness for our hash
functions. A key statistic used in our analysis is the number of buckets in the hash
table with frequency i for i ∈ [m]. Our analysis requires O(1)-wise independence of
the associated random variables, however, this does not simply follow from using an
O(1)-wise independent hash family. On the other hand, Nisan’s generator can be used in
a black-box fashion [22], but this would blow up the space bound by a logarithmic factor.
Instead, we apply Nisan’s generator to a subroutine of the streaming algorithm to ensure
that O(1)-wise independence holds for the pertinent random variables. To our knowledge,
this is a novel technique and one that seems quite versatile: since its introduction in an
earlier version of this paper, it has been already used for other streaming problems [25].

We complement our algorithmic results with the following lower bounds which show that
we achieve the optimal dependence on the error parameter ϵ (Theorems 14 and 13).

Any one-pass algorithm satisfying Equation (2) with constant probability must use at
least Ω(1/ϵ2) bits of space.
Any one-pass algorithm satisfying Equation (3) with constant probability must use at
least Ω(1/ϵ2 log(1/ϵ)) bits of space.

To the best of our knowledge, the latter is a rare example of a natural streaming problem
where the optimal dependence of the space bound on the accuracy parameter ϵ is not of the
form 1/ϵa for some integer exponent a ≥ 1.

1.2 Applications to Symmetric Functions
By itself, the profile is a useful statistic of the stream, but it is also important in that any
symmetric (invariant to relabeling) function of frequencies can be written as a function of the
profile. Therefore, the guarantees of the algorithm given in Equation (2) and Equation (3)
can be leveraged in a black-box way to give streaming algorithms for estimating a variety of
symmetric functions of the frequencies of the stream. We give several illustrative examples
where we can estimate functions in essentially the same space required to estimate the number
of distinct elements. In what follows, consider constant τ .

Distinct elements with frequency at most or at least τ . The number of distinct elements
with frequency at most τ is the sum of the first τ coordinates of the profile and can
be calculated up to ±ϵD in O(1/ϵ2 + log n) space using our algorithm. The number of
distinct elements with frequency at least τ can be calculated by subtracting those with
frequency at most τ − 1 from the total number of distinct elements which can be also be
approximated in O(1/ϵ2 + log n) space [26].
Mass of elements with frequency at most or at least τ . The mass of the distinct
elements with frequency at most τ can be expressed as

∑τ
i=1 ϕi · i which can be calculated

in space ±ϵD in O(1/ϵ2 + log n) space using our algorithm. Subtracting from the total
mass of the stream which can be approximated up to ±ϵm in space O(log log m+log(1/ϵ))
with a Morris counter [28] yields the mass of elements with frequency at least τ .
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Capped (or saturated) statistics [11]. For a given parameter τ , the corresponding
capped statistic of the stream is

τ∑
i=1

ϕi · i +
m∑

i=τ+1
ϕi,

a generalization of counting the stream length and counting the number of distinct
elements. This can be calculated using the two quantities above up to error ±ϵD in
O(1/ϵ2 + log n) space.
Tukey objective [30]. For a given parameter τ , the Tukey objective is

τ∑
i=1

ϕi ·
τ2

6

(
1−

(
1− i2/τ2)3

)
+

n∑
i=τ+1

ϕi ·
τ2

6 .

The first summation can be estimated up to ±ϵD using our algorithm in O(1/ϵ2 + log n)
space. The second summation is τ2/6 times using the number of distinct elements with
frequency at least τ + 1 and thus can also be estimated up to ±ϵD in O(1/ϵ2 + log n)
space.
Huber objective [21]. For a given parameter τ , the Huber objective is

τ∑
i=1

ϕi ·
i2

2 +
n∑

i=τ+1
ϕi · (τi− 1/2).

The first summation is can be estimated up to ±ϵD using our algorithm in O(1/ϵ2 +log n)
space. The second summation can be written as τ times the mass of elements with
frequency at least τ + 1 minus half the number of distinct elements with frequency at
least τ + 1. So, in total, the objective can be estimated up to ±ϵD in O(1/ϵ2 + log n +
log log m + log(m/D)) space.

To our knowledge, the best known previous algorithms for these problems use O(1/ϵ2 log n)
bits of space (by storing identities of sampled elements) or do not account for the space
associated with randomness [15, 11, 12, 13]. In general, we can apply the guarantees of
Equation (2) to estimate, in O(1/ϵ2 + log n) space, any symmetric function which depends
on a constant frequencies and is Lipschitz with respect to L1 error in the profile.

1.3 Technical Overview
For simplicity, we focus in this overview on the±ϵm guarantee of the algorithm in Equation (3).
The same algorithm, but with slightly different parameters, achieves the guarantee in
Equation (2). Our new analysis of the algorithm of Datar and Muthukrishnan is given in
Appendix A. Although the algorithm is suboptimal, it illustrates the core issues that the
techniques of optimal algorithm have to address. The method samples elements uniformly
from the set of distinct elements in the stream and uses the (rescaled) empirical profile of the
samples as the estimated profile ϕ̂. In the context of an L1 guarantee of ϵm additive error,
we observe that it suffices to estimate only the ϕi’s for i up to O(1/ϵ), as the remaining
values can be set to zero without incurring much error (as there cannot be many high
frequency elements). We then study the expected L1 estimation error of the first O(1/ϵ)
entries. The analysis crucially uses the specific properties of the profile function, leading
to an O(1/ϵ2 log(1/ϵ)) bound on the sample size. Naïvely, each of these sampled elements
requires log n + log m bits to store its identity and count.

ITCS 2024
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This algorithm can be improved using the fact that, to compute the profile, the actual
identities of the sampled elements are not important as long as we can distinguish among
them. This makes it possible to reduce the space by hashing sampled elements to a smaller
universe of size that is quadratic in the sample size (quadratic dependence being necessary
to avoid collisions). Since the sample size is polynomial in 1/ϵ, each hash can be represented
using O(log(1/ϵ)) bits. As we are only concerned with frequencies up to O(1/ϵ), the counts
of each sampled element can also be stored in O(log(1/ϵ)) bits, leading to an overall space
bound of O(1/ϵ2 log2(1/ϵ)) bits. Although this algorithm is suboptimal, we believe that its
simplicity makes it appealing in practice.

The optimal algorithm (Section 2) is much more technically involved. As with the previous
algorithm, it hashes sampled elements into a smaller universe to reduce space. However, the
size of the hash table is now linear, not quadratic, in the sample size. This removes the need
to store the hashed identities as we can store the entire hash table explicitly. Combined with
a more careful analysis of the number of bits required to represent the counts of sampled
elements, this removes the “extra” log(1/ϵ) factor. This improvement, however, comes at
the price of allowing collisions, meaning that elements with different frequencies are now
mixed together, and the profile of hashed elements does not approximate the original one5.
This necessitates inverting this mixing process to obtain frequency estimates for the original
sample.

To simplify the analysis, we use the “Poissonization” trick so that outcomes in different
buckets in the hash table are independent. Specifically, we use an additional hash function
which maps an element to a Poi(1) random variable. We create that many distinct copies of
each sampled element and add these copies to the hash table. Our goal is to use the hash
table to estimate the number of sampled elements (before Poissonization) with frequency
i for i ∈ {1, . . . , O(1/ϵ)}. We achieve this via an iterative algorithm. Letting F̂j be our
estimate for the number of distinct elements in our sample with frequency j, assume we are
given the estimates F̂1, . . . , F̂i−1 and want to estimate F̂i. We observe that there are two
types of buckets in the hash table with count i. “Good” buckets are those which contain a
single element with frequency i. “Bad” buckets are those which contain multiple elements
(due to hash collisions) which sum to i.

To estimate the number of bad buckets, we sum, over all integer partitions of i with at least
two summands, the estimated probability that that exact combination of elements hashes to
the same bucket. These estimated probabilities come from our estimates F̂1, . . . , F̂i−1 as well
as our knowledge of the sample size compared to the size of the hash table. We can then
estimate the number of good buckets by subtracting the estimated number of bad buckets
from the total number of observed buckets with count i. Finally, we estimate F̂i by inverting
the probability of getting a good bucket, i.e., of a bucket containing exactly one element.

This procedure produces the correct estimates under the assumption that the numbers of
each type of bucket described above occur according to their expectations. As this is not the
case, two types of error are introduced when calculating F̂i: random error due to deviations
of the number of buckets with count i and propagation error due to using noisy estimates
F̂1, . . . , F̂i−1 in the calculation of the number of bad buckets with count i. At first glance,
this second type of error has the potential to grow out of control as errors early on compound
through the iterative estimation procedure. However, we show that the total propagation
error across all coordinates of the estimated profile is within a constant factor of the total

5 For example, a stream of all distinct elements will be hashed to one where a constant fraction of elements
will have duplicates.
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random error. To prove this result, we carefully analyze the sensitivity of the estimation of
the number of bad buckets with count i to changes in the estimated numbers of elements
with counts less than i. Early errors can compound as they recursively affect all subsequent
estimates: error in estimating the number of elements with frequency i affects the estimate
of the number of bad buckets for all counts greater than i. However, the propagation of these
errors is limited by the fact that the probability of a large number of elements hashing to the
same bucket decays exponentially. We ultimately bound the error introduced by allowing
hash collisions to an additional O(ϵm) term in the expectation of ∥ϕ− ϕ̂∥1.

One aspect of the algorithm that we have so far swept under the rug is how the algorithm
samples elements: we need to adaptively maintain a sample of O(1/ϵ2 log(1/ϵ)) elements. In
a similar methodology to the optimal distinct elements sketch [26], we hash each element to
a random identity in [n] and sample all elements which have least significant bit at least ℓ

after hashing. The variable ℓ indicates the current sampling “level”. We track the stream
length and number of distinct elements over time in order to update the level and maintain
the correct number of samples. In order to remove the counts associated with elements that
are no longer in the sample once the level updates, in each cell of the hash table, we keep
separate counters stratified by the least significant bit of the hash of contributing elements.

The analysis of this algorithm requires pairwise independence of the counts of buckets. To
ensure this pairwise independence holds after replacing truly random bits by a pseudorandom
generator, we use Nisan’s pseudorandom generator. Since we need to preserve distributions
of the counts of pairs of buckets, which are O(log(1/ϵ))-bit long, a random seed of length
polylog(1/ϵ) suffices. (Note that we cannot use Nisan’s generator to ensure that the bucket
counts are fully independent, as that would require a random seed of length equal to the
number of buckets, the space of our algorithm, times log(1/ϵ)). We note that the technique
of employing Nisan’s generator to achieve O(1)-wise independence introduced in this paper
appears to be quite versatile, and has been since used for other streaming algorithms [25].

Our lower bound (Section 3) for algorithms achieving the guarantee of Equation (3)
proceeds via a reduction from a direct sum of multiple instances, where each instance can be
viewed as the composition of the Indexing problem with the Gap Hamming Distance problem
with different parameters. To illustrate the basic connection between profile estimation and
these communication problems, note that ϕ1 can be used to count the number of elements
which appear in exactly one of two binary strings to solve the Gap Hamming Distance
problem6 while distinguishing between there existing an element with frequency i or i− 1
can be used to solve Indexing (by Bob adding i− 1 copies of the element corresponding to
his index).

The entries ϕ1, ϕ2 . . . ϕ1/ϵ of the profile vector are split into “scales”, where each scale
contains entries ϕi for comparable (up to a constant factor) values of i. Intuitively, each
scale contributes 1/ϵ2 term to the lower bound, for a total bound of Ω(1/ϵ2 log(1/ϵ)) bits.
As there are known reductions of Gap Hamming Distance from the Indexing problem, we
ultimately are able to prove our entire lower bound via an involved reduction from Indexing
itself.

6 In fact, this simple reduction is how we prove a lower bound for algorithms achieving the guarantee of
Equation (2).

ITCS 2024
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1.4 Discussion and Open Questions
We revisit the problem of estimating the profile of a data stream, a problem that appears
commonly in practice and has applications to estimating symmetric functions of frequencies.
We give space-optimal algorithms for two types of error guarantees. Our results focus on
producing good estimates for entries of the profile corresponding to elements with small
frequency (either explicitly through the parameter τ in Theorem 1 or implicitly by letting
the error scale with the mass of the stream in Theorem 2).

One direction for future work is to study profile estimation guarantees that put more
emphasis on estimating large entries of the profile. What is the optimal space complexity
of estimating the profile up to ±ϵD on the first τ coordinates for superconstant τ? Recall
that if τ > D2, Ω(D log m) bits of space are required. Estimation in terms of L1 error of the
profile requires that we approximate the number of elements appearing exactly i times (for
many i). If we allow for approximating the number of elements appearing approximately i

times, can we use less space? Answering these questions may imply improved algorithms for
a broader class of symmetric functions.

The profile also appears in literature on distribution testing. Several works use the profile
of a sample from a distribution to give sample-optimal testers for a broad class of symmetric
properties (e.g., testing uniformity or estimating entropy) [31, 1, 9, 3]. For the right notion
of error, a streaming algorithm for profile estimation may be able to be used to process a
sample in sublinear space while retaining the performance of the testing algorithms. We
leave the study of this as an intriguing open question.

Paper Organization

The paper is organized as follows. In Section 2, we present and analyze our space-optimal
algorithm. In Section 3, we present the lower bounds, showing the optimality of our algorithm.
Finally, in Appendix A, we include the analysis of a simpler but suboptimal algorithm based
on that of Datar and Muthukrishnan. Due to page limits, we defer many of the proofs to
the full version.

2 Profile Estimation Algorithm

▶ Theorem 1 (±ϵD). For any ϵ > 0 and τ = O(1), with input parameters B = Θ(1/ϵ2)
and errortype = D, Algorithm 1 uses O(1/ϵ2 + log n) bits of space, O(log(1/ϵ) + log log n)
expected amortized update time, O(1) post-processing time, and returns an estimated profile
ϕ̂ that satisfies

τ∑
i=1
|ϕi − ϕ̂i| ≤ ϵD

with probability 9/10.

▶ Theorem 2 (±ϵm). For any ϵ > 0, with input parameters B = Θ(1/ϵ2 log(1/ϵ)), τ =
O(1/ϵ), and errortype = m, Algorithm 1 uses O(1/ϵ2 log(1/ϵ) + log n + log log m) bits of
space, O(log(1/ϵ)) expected amortized update time, O(1/ϵ3 log(1/ϵ)) post-processing time,
and returns an estimated profile ϕ̂ that satisfies

m∑
i=1
|ϕi − ϕ̂i| ≤ ϵm

with probability 9/10.
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Before we describe and analyze Algorithm 1, we will give a few remarks on its inputs.
In addition to the stream, the algorithm takes as input several parameters: the domain
size n of the stream elements, a frequency threshold τ (we will ignore counts that exceed
this threshold), a number of buckets B for the core hash table, an error parameter ϵ, and a
variable errortype indicating whether the error guarantee will be ±ϵD or ±ϵm.

For the input parameter n, only an upper bound on the domain size is required to set
the domain and range of the hash function g1 which is used to sample elements. As our
bounds depend logarithmically in n, any poly(n) upper bound suffices and we will assume for
simplicity it is a power of two. We will assume that B = Ω(log n). If this is not the case, we
can pick a smaller ϵ so that B = Θ(log n), paying an additive term of O(log n) in space and
leaving the asymptotic complexity unchanged. We also assume that B = O(D): otherwise
we have almost enough space to store the entire frequency histogram of the stream.

Algorithm Description

The algorithm is decomposed into four parts: the main algorithm EstimateProfile (Al-
gorithm 1), the sampling procedure Sample (Algorithm 2), the update procedure
IncrementCounters (Algorithm 3), and the post-processing procedure InvertCounts (Al-
gorithm 4). The core data structure maintained by the algorithm is an array A of B buckets.
Each bucket will contain, as necessary, pairs of (level, counter) indicating the summed
frequency of items which hash to that bucket with a certain sampling “level”.

Elements are sampled using the hash function g1 and the Sample subroutine. The main
algorithm maintains a current level ℓcur and a stream element x is sampled if the position
of the least significant 1 bit in the binary representation of g1(x) is at least ℓcur. The level
of the sampled element is the position of its least significant bit minus ℓcur. Poi(1) copies
of sampled elements are made and assigned to random locations in the hash table using
hash functions g2, z, h1, . . . , hH . The main algorithm periodically updates ℓcur to reduce the
sampling probability based on constant factor estimates of the number of distinct elements
and stream length to ensure that the number of samples is correct.

For each copy of a sampled element, we update the bucket count in the corresponding
bucket in the hash table via IncrementCounters. If a (level, counter) pair already exists in
that bucket for the level of our sample, we increment the counter; otherwise, we create a
new (level, counter) pair. If a counter ever exceeds τ , we stop incrementing that counter.
When the current level ℓcur is incremented, we update all (level, counter) pairs in all buckets
of the array by decrementing the level (remember the level of a sample is the position of
the least significant bit relative to ℓcur). Any time the level goes below zero, we remove the
corresponding pair from its bucket.

At the end of the stream, we observe the number of buckets with total counts (summed
over all counters in the bucket) 1, . . . , τ , i.e., the profile of the array. In InvertCounts, we
estimate the profile of the sampled elements (which have been corrupted by hash collisions)
in an iterative process using dynamic programming. Using the number of nonempty bins,
we estimate the probability that a bucket receives a single element. We call these “good”
buckets as their counts correspond to a single sampled item of that frequency. Using this
estimated probability, we can estimate the number of items with a given frequency from
the number of observed good buckets with that count. Unfortunately, there also exist “bad”
buckets with multiple items whose count is the sum of the frequency of those items. As there
cannot be a bad bucket with count 1, we first estimate the number of sampled elements
with frequency 1 and use that to estimate the number of bad buckets of frequency 2. These
estimates are then used to estimate the number of bad buckets of frequency 3, and so on. The
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Algorithm 1 EstimateProfile.

Input: stream x = x1, . . . , xm, domain size n, frequency threshold τ , number of buckets B,
error parameter ϵ, errortype (either D or m)
Output: estimated profile ϕ̂ = ϕ̂1, . . . ϕ̂τ

1: T ← Θ(B2), H ← Θ(log B), K ← Θ(1)
2: Initialize a distinct elements sketch with relative error ϵ/10 [26] and, if errortype = D,

also initialize a strong tracking distinct elements sketch with relative error 1/10 [5]
3: Initialize the main array A of B buckets as a variable-bit-length array [4] which will

store in each bucket a string of (level, counter) pairs
4: Initialize hash functions g1 : [n]→ [n], g2 : [n]→ [T ], h1, . . . , hH : [T ]→ [B]
5: Initialize hash function z : [T ]→ N ∪ {0} that maps values in [T ] to the outcome of a

Poi(1) random variable
6: Initialize current level ℓcur ← 1
7: for xt ∈ x do ▷ Processing stream updates
8: Update distinct elements sketches
9: Let D̃t be the estimate of the tracking sketch and let t be the stream length so far

10: if (errortype = m and 2ℓcur < min{tK/B, n}) or
11: (errortype = D and 2ℓcur < D̃tK/B) then ▷ Decrease sampling probability
12: ℓcur ← ℓcur + 1
13: For each (level, counter) pair in A, decrement the level
14: If any level falls below 0, remove the corresponding pair from A

15: end if
16: ℓ, a1, . . . , aH ← Sample(xt, H, g1, g2, z, h1, . . . , hH)
17: if ℓ ≥ ℓcur then
18: IncrementCounters(A, a1, . . . , aH , ℓ− ℓcur, τ)
19: end if
20: end for
21: D̂ ← distinct elements estimate with error ϵ/10 ▷ Post-processing to estimate profile
22: G← the number of nonempty buckets in A

23: Ŝ ← −B ln
(
1− G

B

)
estimate of the number of elements which hash to 1 under g1

24: bi ← number of buckets in A with total count i for i ∈ {1, . . . , τ}
25: F̂1, . . . , F̂τ ← InvertCounts(B, Ŝ, b1, . . . , bτ ) ▷ Estimate the profile of the sampled

elements
26: ϕ̂i ←

(
D̂
Ŝ

)
F̂i for i ∈ {1, . . . , τ}

27: return ϕ̂1, . . . , ϕ̂τ

dynamic program allows us to efficiently compute these iterative estimates without having to
exhaustively list all integer partitions. Our final profile estimate in EstimateProfile comes
from renormalizing the estimates of the empirical sample profile returned by InvertCounts.

Notation

To introduce some notation, let Dt = |{x ∈ (x1, . . . , xt)}| be the number of distinct elements
in the stream up to time t ∈ [m] with the shorthand D = Dm. Let D̃t be the estimate of the
tracking sketch at time t. Let ℓt be the value of ℓcur, the current level of the algorithm, at
time t.
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Algorithm 2 Sample.

Input: stream element x, max copies H, hash functions g1, g2, z, h1, . . . , hH

Output: sampling level, buckets to update a1, . . . , aH

1: ℓ← least significant nonzero bit of g1(x)
2: x′ ← g2(x) ▷ Smaller ID
3: for i ∈ [H] do
4: if i ≤ z(x′) then ▷ Checking number of copies from Poissonization
5: ai ← hi(x′)
6: else
7: ai ← 0
8: end if
9: end for

10: return ℓ, a1, . . . , aH

Algorithm 3 IncrementCounters.

Input: Array A, buckets a1, . . . , aH to increment, level ℓ, max frequency τ

1: j ← smallest i ∈ [H] s.t. ai = 0 ▷ The number of buckets to update
2: for i = 1, . . . , j − 1 do
3: if there exists a (level, counter) pair with level ℓ in A[ai] then
4: Increment the corresponding counter unless it exceeds τ

5: else
6: Add a new pair (ℓ, 1) to A[ai]
7: end if
8: end for

Algorithm 4 InvertCounts.

Input: number of buckets B, estimated number of sampled elements Ŝ, number of buckets
bi with count i for i ∈ {1, . . . , τ}
Output: estimated counts F̂1, . . . F̂τ

1: Initialize τ × τ array DP
2: DP[1, 1]← b1eŜ/B

3: for i ∈ {2, . . . , τ} do
4: DP[i, i]← max{bie

Ŝ/B −
∑⌊i/2⌋

x=1 DP[i, x], 0}
5: for x ∈ {1, . . . , ⌊i/2⌋} do
6: DP[i, x]←

∑⌊i/x⌋−1
k=1

∑i−kx
x′=x+1 DP[i− kx, x′]

(
DP[x,x]

B

)k
1
k!

7: if i = 0 mod x then
8: DP[i, x]← DP[i, x] + DP[x,x]i/x

Bi/x−1(i/x)!
9: end if

10: end for
11: end for
12: F̂i ← DP[i, i] for i ∈ {1, . . . , τ}

ITCS 2024



32:12 Space-Optimal Profile Estimation with Applications to Symmetric Functions

Let S = {x ∈ x : g1(x) = 1} be the set of elements sampled by our algorithm at the
end of the stream. Let mS =

∑m
i=1 1[g1(xi) = 1] be the mass of elements sampled by our

algorithm. Let Fi = |{x ∈ S : |{j : xj = x}| = i}| be the number of sampled elements with
frequency i. Let G be the number of nonempty buckets in the array A at the end of the
stream. We use log(x) to denote the logarithm of x base 2.

In the rest of this section, we start by bounding several quantities used by our algorithm.
Then, the bulk of the analysis in Section 2.1 focuses on the estimation error introduced by
the post-processing procedure in Algorithm 4. To begin, we analyze our algorithm under the
assumption that all of our hash functions are fully random and at the end in Section 2.2
show that our analysis only required limited randomness.

By the guarantees of [5] and [26], the estimate of D̃t is correct up to relative error 1/10
at all points in the stream and the estimate of D̂ is correct up to relative error ϵ/10 at the
end of the stream with small constant failure probability and using independent randomness
from the rest of the algorithm. In what follows, we will condition on the success of these
estimators.

▶ Lemma 3. With constant probability, over all points in the stream t ∈ [m], it holds that
the space used to store A is O(B).

▶ Lemma 4. With constant probability, the size of the final sample is bounded as follows:
(a) If errortype = m, |S| = Θ (max{DB/m, D/n}).
(b) If errortype = D, |S| = Θ(B).

▶ Lemma 5. With constant probability, the number of elements with frequency i in a given
bucket is distributed as Poi(Fi/B).

Recall that Ŝ = −B ln
(
1− G

B

)
is our estimate of |S|.

▶ Lemma 6. With constant probability, |Ŝ − |S|| = O(
√
|S|).

We will now prove that the L1 profile estimation error is small if we rescale the empirical
profile of the sampled elements F1, . . . , Fτ . Recall that in the algorithm we only estimate this
empirical profile (the bulk of the later analysis will focus on the quality of that estimation).

▶ Lemma 7. For errortype = m if B = Θ
(

log τ
ϵ2

)
,

τ∑
i=1

∣∣∣∣ϕi −
D

|S|
Fi

∣∣∣∣ = O(ϵm),

and for errortype = D and τ = O(1) if B = Θ
( 1

ϵ2

)
,

τ∑
i=1

∣∣∣∣ϕi −
D

|S|
Fi

∣∣∣∣ = O(ϵD),

both holding with constant probability.

2.1 Inverting Counts
Let bi be the number of buckets with count exactly i. Let ri be the number of buckets with
count i that are formed by collisions of elements with smaller frequencies. Let si be the
number of buckets with count i that are formed by a single element with frequency i falling
in that bucket and no other elements falling in that bucket. Note that bi = ri + si.
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The core idea of our post-processing procedure is to recursively estimate Fi for i = 1, . . . , τ

by relating the expectation of Fi to the expectation of si. Using prior estimates F̂1, . . . , F̂i−1,
we will approximate E[ri]. Then, using bi as an estimate of E[bi], we will plug in all of these
estimates to solve for Fi. Along the way, errors will be introduced both due to random
deviations as well as error which propagate from the fact that we do not know the true Fj ’s
for j < i. The core technical challenge of our analysis is to bound these errors.

Let Xi,k ∼ Poi(Fi/B) be a random variable corresponding to the number of elements
with count i in bucket k. By Poissonization, Xi,k is mutually independent of all Xi′,k′ for
(i, k) ̸= (i′, k′). Let Xk =

∑m
i=1 Xi,k ∼ Poi(|S|/B) be the random variable associated with

the number of elements in bucket k.

E[si] =
B∑

k=1
Pr(bucket k contains a unique element which has count i)

=
B∑

k=1
Pr(Xi,k = 1)

∏
j∈[m]:j ̸=i

Pr(Xj,k = 0)

=
B∑

k=1

Fi

B

(
e−Fi/B

) ∏
j∈[m]:j ̸=i

e−Fj/B

= B

(
Fi

B

)
e−|S|/B

= Fie
−|S|/B

As si = bi − ri, we can express Fi as

Fi = E[bie
|S|/B ]− E[rie

|S|/B ]. (4)

As the expectations of the bi’s and ri’s depend on the true values F1, . . . , Fi, we cannot
calculate them exactly. Rather, our estimate F̂i will be formed by plugging into Equation (4)
the empirical count of bi and the approximation r̂i of E[ri] formed using our previous estimates
F̂1, . . . , F̂i−1 in place of the true Fj ’s. Further, as we do not know |S|, we will need to plug
in an estimate Ŝ wherever it appears.

We will now show that we can express E[ri] as a function of F1, . . . Fi−1. Let Yi ∼
Poi(Fi/B) be a random variable corresponding to the number of elements with count i in a
given bucket. Let y = y1, . . . , ym denote a vector corresponding to a specific assignment of
how many distinct elements of counts 1, . . . , m appear in a given bucket.

E[ri] = B Pr(a bucket has summed count i and at least two distinct elements)

= B
∑

y:(
∑m

j=1
yj≥2)∧(

∑m

j=1
yj ·j=i)

m∏
j=1

Pr(Yj = yj)

= B
∑

y:(
∑m

j=1
yj≥2)∧(

∑m

j=1
yj ·j=i)

m∏
j=1

(
Fj

B

)yj e−Fj/B

yj !

= Be−|S|/B
∑

y:(
∑m

j=1
yj≥2)∧(

∑m

j=1
yj ·j=i)

i−1∏
j=1

(
Fj

B

)yj 1
yj !
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Let r̂i(F̂1, . . . F̂i−1) be the quantity we get by calculating E[rie
|S|/B ] under estimated para-

meters F̂1, . . . F̂i−1:

r̂i(F̂1, . . . F̂i−1) = B
∑

y:(
∑i−1

j=1
yj≥2)∧(

∑i−1
j=1

yj ·j=i)

i−1∏
j=1

(
F̂j

B

)yj

1
yj ! (5)

Then, our final estimate for F̂i will be:

F̂i = max{bie
Ŝ/B − r̂i(F̂1, . . . , F̂i−1), 0}. (6)

2.1.1 Dynamic Programming
Calculating these estimates naïvely requires exp(τ) time as r̂i(·) in Equation (5) is a summa-
tion over integer partitions of i. Therefore, we use a dynamic program in Algorithm 4 to
calculate this expression efficiently.

Given positive integral parameters j, x, the quantity of interest will be the expected
number of buckets under F̂1, . . . , F̂i−1 which have total (summed) count j and minimum
frequency element with frequency x. We will use the following description of the dynamic
program which is expressed equivalently in pseudocode in Algorithm 4:

DP[j, x] =



F̂j if x = j and j < i∑⌊j/x⌋−1
k=1

∑j−kx
x′=x+1 DP[j − kx, x′]

(
F̂x

B

)k
1
k! if x ≤ ⌊j/2⌋ and j ̸= 0 mod x∑⌊j/x⌋−1

k=1
∑j−kx

x′=x+1 DP[j − kx, x′]
(

F̂x

B

)k
1
k!

+
(

F̂ j/x
x

Bj/x−1

)
1

(j/x)! if x ≤ ⌊j/2⌋ and j = 0 mod x

0 otherwise

(7)

▶ Lemma 8. r̂i(F̂1, . . . , F̂i−1) =
∑⌊i/2⌋

x=1 DP[i, x].

2.1.2 Error Analysis
Let ζi be a random variable for the error introduced by using our old estimates to evaluate
r̂i:

ζi = |r̂i(F1, . . . , Fi−1)− r̂i(F̂1, . . . , F̂i−1)|. (8)

Let γ be a random variable for the rest of the error in estimating Fi due to randomness
deviations in bi as well as due to our error in approximating |S| as Ŝ,

γi = |E[bi]e|S|/B − bie
Ŝ/B |. (9)

Note that as Fi ≥ 0, thresholding our estimate F̂i to always be at least zero only reduces the
error:

|Fi − F̂i| ≤ γi + ζi.

▶ Lemma 9.
∑τ

i=1 ζi ≤
∑τ

i=1 γi.

As the errors propagate (via composition of the f i
j ’s), their magnitudes diminish geomet-

rically, allowing us to bound the total propagated error by the initial errors.
Now, we will bound the γi terms which, via Lemma 9, bound

∑τ
i=1 |F̂i − Fi| up to

constant factors.
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▶ Lemma 10. If errortype = m and B = Θ(log τ/ϵ2),

τ∑
i=1

γi = O

(
log τ

ϵ

)
,

and if errortype = D, τ = O(1), and B = Θ(1/ϵ2),

τ∑
i=1

γi = O

(
1
ϵ

)
,

both holding with constant probability.

This completes the analysis of inversion procedure, showing that Algorithm 4 returns
a set of frequencies F̂1, . . . F̂τ close in L1 distance to the empirical profile of our samples
F1, . . . , Fτ .

2.2 Pseudorandomness
So far, in our analysis, we have assumed that our hash functions are fully random. In order to
bound the space required to store the hash functions, we will now argue that the guarantees
of the algorithm only require limited independence. We will require a lemma from prior work
on applying Nisan’s PRG to streaming algorithms.

▶ Lemma 11 (Lemma 3 from [22]). Consider an algorithm A that, given a stream S of
elements x, and a function f : [n]× {0, 1}R → [poly(M)]× [poly(M)], does the following:

Set O = (0, 0); Initialize length-R chunks R0, . . . , Rn of independent random bits
For each new element x, perform O = O + f(x, Rx)
Output A(S) = O

Assume that the function f(·, ·) is computed by an algorithm using O(C + R) space and O(T )
time. Then there is an algorithm A′ producing output A′(S), that uses only O(C + R +
log(Mn)) bits of storage and O([C + R + log(Mn)]log(nR)) random bits, such that

Pr[A(S) ̸= A′(S)] ≤ 1/poly(n)

over some joint probability space of randomness of A and A′. Then, the algorithm A′ uses
O(T + log(nR)) arithmetic operations per each element x.

Note several minor changes from the lemma as it appears in [22]: the original lemma includes
a parameter for the size of stream updates which we omit as all of our updates are increments,
the original lemma considers a one dimensional output while we consider a two dimensional
output, and the original lemma bounds the bias by 1/n while the bias can in fact by bounded
by 1/poly(n) without changing the asymptotic result.

▶ Lemma 12. O
(
log3(B) + log n

)
bits of randomness suffice for the hash functions used in

Algorithm 1.

Proof. The randomness of Algorithm 1 is realized through the following hash functions g1,
g2, z, h1, . . . , hH . The hash function g1 : [n]→ [n] is used to sample elements based on the
least significant bit of their hashed values. The randomness of this hash function is used in
analysis of the space needed to store A as well as |S| and F1, . . . , Fm. The analysis of those
quantities only use first and second moments, so pairwise independence suffices for g1.
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The hash function g2 : [n]→ [T ] maps the sampled elements down to a domain of size
Θ(B2). We only require that with constant probability, there are no collisions between
sampled elements. As with constant probability |S| = O(

√
T ) (see Lemma 4), this holds

under pairwise independence.
The hash function z : [T ]→ N ∪ {0} maps sampled stream elements to the outcome of a

Poi(1) random variable.7 As long as z is pairwise independent, the total number and mass
of (copied) samples will be concentrated about their expectation.

The hash functions h1, . . . , hH : [T ]→ [B] map sampled stream elements to a bucket in
the array A. These hash functions (as well as z) affect bi, the number of buckets with count
exactly i (as well as their sum, G, the number of nonempty buckets).

In our analysis, we use the first and second moments of the bi’s to bound the error of our
algorithm. Let Xk be a random variable for the count in bucket k. The first two moments
of bi depend only on the joint distribution of (Xk, Xk′). We will use Lemma 11 to show
that limited randomness suffices to simulate this distribution up to small bias. Consider the
following setting of the parameters in Lemma 11 where the algorithm A computes the pair
(Xk, Xk′) given fully random hash functions:

n = O(B2 log2 τ) as we are conditioning on the outcomes of g1, g2 which have generated
S distinct items for our stream coming from a domain of size O(B2 log2 τ).
R = O(log2 B) is the number of random bits required to generate fully random z(x),
h1(x), . . ., hH(x) as the range of these hash functions is B and there are H = O(log B)
such hash functions.
M = τ as the counts of a bucket Xk is at most τ .
f(x, Rx) is computed by A as follows. Set the algorithm’s output to be O = (a, b) = (0, 0).
A uses the initial bits of Ri to generate z(x). Then, A uses each of the next chunks of
O(log(B)) bits in Ri to generate h1(x), . . . , hH(x). On generating hi(x), A first checks if
z(x) < i and if so, stops early and returns (a, b). Otherwise, A checks if hi(x) = k and if
so increments a by one (unless the count exceeds τ). Finally, A checks if hi(x) = k′ and
if so increments b by one (unless the count exceeds τ). Via this process, A will recover
the true counts of (Xk, Xk′).
C, the space used by A, is O(log B). In processing a given stream element, A stores the
outcome of z(x), the current hi(x), O, and the current increment to O. In total, these
are a constant number of quantities, each taking up at most O(log B) space.

It follows from application of Lemma 11 that the algorithm A′ using Nisan’s PRG requires
only

O(C + R + log(Mn)) log(nR) = O
(
log B + log2(B) + log B) log B

)
= O(log3 B)

random bits to approximate the joint distribution of (Xk, Xk′) up to bias poly(ϵ):

Pr[A(S) ̸= A′(S)] ≤ 1/poly(B).

For large enough poly(B), this implies that the expectations and variances of the bi’s using
limited randomness will be correct up to a small factor of ϵ, which is enough for our analysis.

As the hash functions g1 and g2 only require constant independence, they can be stored
and queried in O(log n) bits [8]. So, the total space required for storing randomness is
O(log3(B) + log n). ◀

7 For example via inverse transform sampling https://en.wikipedia.org/wiki/Inverse_transform_
sampling.

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Inverse_transform_sampling
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2.3 Putting it all together
We are now ready to prove the main theorems. In the interest of space, we present the
proof for only for the ±ϵm guarantee. The proof of the ±ϵD guarantee follows a very similar
argument and appears in the full version.

Proof of Theorem 2.
Correctness. Recall that our estimator is

ϕ̂i = D̂

Ŝ
F̂i.

From Lemmas 9 and 10, with constant probability,
τ∑

i=1
|Fi − F̂i| = O

(
log τ

ϵ

)
.

Also, recall that by Lemma 7, with constant probability,
τ∑

i=1

∣∣∣∣ϕi −
D

|S|
Fi

∣∣∣∣ = O(ϵm). (10)

With constant probability, |S| = Ω
(

D log τ
mϵ2

)
by Lemma 4, |Ŝ − |S|| = O(

√
|S|) by Lemma 6,

and |D̂ − D| ≤ ϵD/10 by the correctness of the distinct elements sketch (e.g., [26]). In
addition, log τ/ϵ = O(ϵB) = o(ϵm). Under these conditions,

τ∑
i=1

∣∣∣∣∣ D

|S|
Fi −

D̂

Ŝ
F̂i

∣∣∣∣∣ ≤
τ∑

i=1

D

|S|

∣∣∣Fi − F̂i

∣∣∣+

∣∣∣∣∣ D

|S|
− D̂

Ŝ

∣∣∣∣∣ F̂i

≤ D

|S|
·O
(

log τ

ϵ

)
+

τ∑
i=1

ϵD

5Ŝ
F̂i

= O

(
mϵ2

log τ

(
log τ

ϵ

))
+ ϵD

5
= O(ϵm). (11)

Recall that τ = O(1/ϵ). Implicitly, we will predict ϕ̂i = 0 for all i > τ . As there are
at most m/τ elements with frequency greater than or equal to τ , this contributes error at
most O(ϵm). So, with appropriately chosen constants and with constant probability, triangle
inequality with Equation (10) and Equation (11) gives

m∑
i=1

∣∣∣ϕi − ϕ̂i

∣∣∣ ≤ ϵm,

as required.

Space. Now, we will analyze the space used by the algorithm while processing stream
updates. By Lemma 3, the array A can be maintained in O(B) = O(log(1/ϵ)/ϵ2) bits of
space. By Lemma 12, it suffices to store O(log3(B) + log n) = O(log3(1/ϵ) + log n) bits of
randomness. As each stream update occurs, we must store its identity in O(log n) bits of
space. Storing the length of the stream naïvely takes O(log m) bits. Given a poly(m) upper
bound on the stream length, this can be reduced to O(log log m) bits using the Morris+
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algorithm of [29] to maintain a small constant approximation to the stream length (which is
all we require) at all times with small constant failure probability. The distinct elements
sketch can be maintained in O(1/ϵ2 + log n) bits of space [26]. Therefore, the total space
usage of our algorithm is, with constant probability, O(log(1/ϵ)/ϵ2 + log n + log log m) bits.

Update time. Each time a stream element appears, hashing it for sampling and to com-
press its ID each require a constant number of operations. Without accounting for the
pseudorandom generator, Poissonization and incrementing bucket counts takes O(1) expected
amortized time as each element is copied O(1) times in expectation and array updates can be
done in expected amortized constant time [4] (by also storing the (level, counter) dictionaries
in cells of the array A as variable-bit-length dictionaries). Deletions of (level, counter) pairs
take constant amortized time: they take O(B) time each time the size of the stream doubles
relative to B. Then, by Lemma 11 and the parameters used in Lemma 12, these updates
take O(1 + log

(
B2 log2 B log2 τ

)
) = O(log(1/ϵ)) time accounting for Nisan’s PRG. Finally,

updating the distinct elements sketch takes O(1) time [26]. So, the total update time is
O(log(1/ϵ)).

Post-processing. The dynamic program for post-processing maintains O(1/ϵ2) cells, and
the computation takes time polynomial in 1/ϵ. Furthermore, all entries in the DP table are
positive. It follows that performing the computation with O(log(1/ϵ)) bits of precision per
cell suffices to calculate the answer with a multiplicative error of 1 + ϵO(1). So, the total
space usage is O(log(1/ϵ)/ϵ2).

For a given cell in the dynamic program in Algorithm 4, calculating DP[i, x] requires O(i2/x)
operations due to the nested sum. As we are only concerned with cells where x ≤ i, filling the
row in the table corresponding to a fixed i takes

∑
x O(i2/x) = O(i2 log i) time. Summing

over all i ∈ {1, . . . , τ}, the total post-processing time is bounded by O(log(1/ϵ)/ϵ3). ◀

3 Lower Bounds

For the two estimation guarantees we consider, we give lower bounds, showing that the space
used by our algorithms is necessary. The proofs of these theorems utilize reductions from the
IND problem in communication complexity and are deferred to the full version.

▶ Theorem 13. Any single pass streaming algorithm which outputs an additive ϵD approx-
imation to ϕ1 with success probability at least 9/10 requires Ω(1/ϵ2) bits of memory.

▶ Theorem 14. Any single pass streaming algorithm which outputs an additive ϵm L1
approximation to the profile with success probability at least 99/100 requires Ω(log(1/ϵ)/ϵ2)
bits of memory.
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A Re-analyzing the Algorithm of Datar and Muthukrishnan

In this section, we re-analyze the Datar-Muthukrishnan algorithm in the case where the
error function is measured using the L1 norm according to Equation (3) where our goal is to
estimate the profile up to error ±ϵm.

Recall that the algorithm selects the set S of s samples uniformly at random from the
support of the stream and computes exact frequencies of each element sampled. Let D be
the number of distinct elements in the stream and let Fi be the number of samples with
frequency i. The algorithm then estimates the ratio ϕi/D by 1

s Fi.
In our case, we make the following small modifications. First, since our goal is to estimate

ϕi as opposed to ϕi/D, we run a distinct elements streaming algorithm [26] in parallel to get
an estimate D̂ of the number of distinct elements up to a (1± ϵ) multiplicative factor. This
requires O(1/ϵ2 + log n) space, which is subsumed by the overall space bound. Then, our
estimate of ϕi will be ϕ̂i = D̂

s Fi. Since replacing D by D̂ changes the estimates by only a
(1 ± ϵ) multiplicative factor, in the rest of this section we assume the algorithm knows D

exactly.
Second, for all i > 2/ϵ, we set ϕ̂i to zero instead of D

s Fi. (As we note below, this
adds only O(ϵm) to the total error bound). We refer to this procedure as the modified
Datar-Muthukrishan algorithm.

▶ Theorem 15. The modified Datar-Muthukrishan algorithm, with sample size s =
O(1/ϵ2 log(1/ϵ)), returns an estimated profile vector ϕ̂ such that ∥ϕ− ϕ̂∥1 ≤ ϵm with constant
probability (say, at least 2/3).
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Proof. First, we note that estimating all ϕi for i > 2/ϵ as zero contributes at most ϵm/2 to
the L1 error of the estimate. This is because the total number of elements with frequency at
least 2/ϵ is at most ϵm/2.

Lemma 7 bounds the L1 error of the reweighted empirical profile. In particular, if
s = Ω

(
D log(1/ϵ)

mϵ2

)
,

⌈2/ϵ⌉∑
i=1

∣∣∣∣ϕi −
D

s
Fi

∣∣∣∣ = O(ϵm).

As D ≤ m, s = Θ(1/ϵ2 log(1/ϵ)) suffices to achieve expected error of, say, ϵm/6. Markov’s
inequality completes the proof. ◀

We note that the above algorithm, for each sample, stores log n+log m bits to maintain the
identity of the sample as well as its count for a total space complexity O(1/ϵ2 log(1/ϵ) log(nm))
bits. In the following section, we present an algorithm which uses O(1/ϵ2 log2(1/ϵ) + log n)
bits, avoiding this multiplicative log(nm) dependence.

Improving Storage through Hashing
In this section we outline an improved algorithm with a reduced space bound of
O(1/ϵ2 log2(1/ϵ) + log n), i.e., replacing log(nm) with log(1/ϵ). Although this bound is
still not optimal, the algorithm in this section will help us illustrate the challenges in
obtaining the optimal bound.

First, recall from the analysis in the previous section that a more fine-tuned bound on
the number of required samples is s = O(1/ϵ2 log(1/ϵ) ·D/m), so as the number of distinct
elements decreases, we need fewer samples. Let C, C ′ > 1 be sufficiently large constants.
Consider the following algorithm for processing a stream element xi given ϵ, m and two hash
functions g and h:
1. Sampling: Hash xi using g to the universe [ m

C′/ϵ2 log(1/ϵ) ] uniformly at random.
If g(xi) = 1, continue to step 2.
Else, ignore xi.

2. Compression: Hash xi using h to the universe [C(1/ϵ2 log(1/ϵ))2]
Insert/increment the count of h(xi) in a dictionary (sparse hash table) H

If the count of h(xi) exceeds 2/ϵ, marks its count as N/A and ignore it going forward
Call S the set of unique stream elements that hash to 1 under g. After all items are inserted,
we use the dictionary H to compute an empirical estimate ϕ̂ of the profile (rescaled by D/|S|),
as in the previous algorithm. In what follows, we show that the resulting estimated profile ϕ̂

is within an L1 distance of ϵm from the true profile vector ϕ, with constant probability.
First, we will show that with high constant probability, |S| is at least 1/ϵ2 log(1/ϵ)D/m.

The probability that any element lands in S is C′/ϵ2 log(1/ϵ)
m and there are D elements, so the

expected number of samples is as desired. As the distribution of |S| is binomial, the variance
is at most the expectation and therefore the size of the sample is correct up to constant
factors with constant probability via Chebyshev’s inequality.

Now, consider the hash table H. If there are no collisions in the hash table, its nonzero
entries (those stored in the dictionary) will contain the true counts of each element in
S (ignoring elements with counts exceeding 2/ϵ, which is fine since we are not counting
those). Note that |S| < 10C ′/ϵ2 log(1/ϵ) with a large constant probability as D ≤ n, so
|H| = C/(10C ′)2|S|2. For large enough constant C, it is unlikely for there to be any collisions,
and H contains the appropriate number of samples along with their true counts.
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Space

It takes log n bits to store xi. The rest of the space is taken up by the hash table. There are
|S| elements in the hash table, which we have already argued is at most O(1/ϵ2 log(1/ϵ)).
For each element, we must store its identity h(xi) as well as the corresponding count, both of
which take up O(log(1/ϵ)) bits. In our analysis, we only ever require pairwise independence,
so the hash functions can be stored in O(log n) space. Therefore, the total space in bits of
this construction is

O(1/ϵ2 log2(1/ϵ) + log n)

Improving the bound

It can be seen that the “extra” log(1/ϵ) factor in the O(1/ϵ2 log2(1/ϵ)) bound is mostly
due to the need for avoiding collisions of the sampled elements S under the hash function
h (i.e., ensuring that h is perfect) 8. This requires storing O(log(1/ϵ)) bits per sample, to
disambiguate distinct elements in S. The algorithm presented in Section 2 achieves the
optimal space by hashing elements in S to a hash table of size O(|S|), not O(|S|2), removing
the need to store hashed IDs. This, however, comes at the price of allowing collisions, which
means that elements with different frequencies are mixed together. Iteratively “inverting”
this mixing process to obtain frequency estimates is the most technically challenging part of
our algorithm.

8 In addition, we also need to maintain the count of each sampled element, which also takes O(log(1/ϵ))
bits per sample. However, this issue can be solved more easily.
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