
Testing Intersecting and Union-Closed Families
Xi Chen #

Columbia University, New York, NY, USA

Anindya De #

University of Pennsylvania, Philadelphia, PA, USA

Yuhao Li #

Columbia University, New York, NY, USA

Shivam Nadimpalli #

Columbia University, New York, NY, USA

Rocco A. Servedio #

Columbia University, New York, NY, USA

Abstract
Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability
of other well-studied properties of combinatorial finite set systems, specifically intersecting families
and union-closed families. A function f : {0, 1}n → {0, 1} is intersecting (respectively, union-closed)
if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed
family) of subsets of [n].

Our main results are that – in sharp contrast with the property of being a monotone set system –
the property of being an intersecting set system, and the property of being a union-closed set system,
both turn out to be information-theoretically difficult to test. We show that:

For ε ≥ Ω(1/
√

n), any non-adaptive two-sided ε-tester for intersectingness must make 2Ω(n1/4/
√

ε)

queries. We also give a 2Ω(
√

n log(1/ε))-query lower bound for non-adaptive one-sided ε-testers
for intersectingness.
For ε ≥ 1/2Ω(n0.49), any non-adaptive two-sided ε-tester for union-closedness must make
nΩ(log(1/ε)) queries.

Thus, neither intersectingness nor union-closedness shares the poly(n, 1/ε)-query non-adaptive
testability that is enjoyed by monotonicity.

To complement our lower bounds, we also give a simple poly(n
√

n log(1/ε), 1/ε)-query, one-sided,
non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness).
We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when
ε = Θ(1/

√
n), and for one-sided testing of intersectingness when ε = Θ(1).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Combinatorics

Keywords and phrases Sublinear algorithms, property testing, computational complexity, monoton-
icity, intersecting families, union-closed families

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.33

Related Version Full Version: https://arxiv.org/abs/2311.11119

Funding Xi Chen: NSF grants IIS-1838154, CCF-2106429, and CCF-2107187.
Anindya De: NSF grants CCF-1910534 and CCF-2045128.
Yuhao Li: NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
Shivam Nadimpalli: NSF grants IIS-1838154, CCF-2106429, CCF-2211238, CCF-1763970, and
CCF-2107187.
Rocco A. Servedio: NSF grants IIS-1838154, CCF-2106429, and CCF-2211238.

Acknowledgements This work was partially completed while some of the authors were visiting the
Simons Institute for the Theory of Computing at UC Berkeley.

© Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 33; pp. 33:1–33:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xc2198@columbia.edu
mailto:de.anindya@gmail.com
mailto:yuhaoli@cs.columbia.edu
mailto:sn2855@columbia.edu
mailto:ras2105@columbia.edu
https://doi.org/10.4230/LIPIcs.ITCS.2024.33
https://arxiv.org/abs/2311.11119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Testing Intersecting and Union-Closed Families

1 Introduction

Monotonicity testing is among the oldest and most intensively studied problems in property
testing (see e.g. [30, 21, 26, 32, 9, 11, 12, 18, 17, 2, 19, 3, 34, 13, 4, 37, 5, 8] and the numerous
references contained therein). The simplicity with which the core monotonicity testing
problem can be formulated – given query access to an unknown f : {0, 1}n → {0, 1}, output
“yes” if f is monotone and “no” if f is far in Hamming distance from every monotone function
– belies the wealth of sophisticated technical ingredients and ideas (such as combinatorial
shifting [30, 21], multidimensional limit theorems [18, 17], and isoperimetric inequalities
[11, 34, 3, 37, 5, 8]) which have been deployed in both algorithms and lower bounds for this
problem. Thanks to this body of work the basic problem of monotonicity testing is now fairly
well understood: [34] gave an Õ(

√
n/ε2)-query non-adaptive testing algorithm, and [19] gave

an Ω̃(n1/3)-query lower bound which holds even for adaptive algorithms.
Monotonicity testing has several intriguing features as a property testing problem:
Since the class of all monotone functions is of doubly exponential size1, the results
mentioned above tell us that the query complexity of testing this class, which contains
N = 22Θ(n) functions, is (log log N)c for some constant 1

3 ≤ c ≤ 1
2 . This is an interesting

contrast with both the O(log N) query complexity which suffices to test any class of N

functions2 and the constant query complexity (independent of N and depending only on
the error parameter ε) of a number of other well-studied property testing problems such
as linearity testing [6], testing linear separability [36], and testing dictatorship [38].
The monotonicity of f : {0, 1}n → {0, 1} is equivalent to having all pairs of inputs x, y

satisfy a simple “pair condition,” which is that

x ≤ y =⇒ f(x) ≤ f(y). (1)

Given this, it is natural to consider “pair testers” for monotonicity which work by drawing
a pair of inputs x, y ∈ {0, 1}n with x ≤ y according to some distribution over such pairs,
and checking whether the pair violates monotonicity. Indeed, all known algorithms for
testing monotonicity, including the state-of-the-art algorithm of [34], work in this fashion.
Finally, we observe that a monotone function f : {0, 1}n → {0, 1} can alternately be viewed
as an upward-closed set system: this is a collection of subsets S ⊆ 2[n], corresponding to
the satisfying assignments of f , which has the property that for every subset S ⊆ [n], if
S ∈ S then S ∪ {i} ∈ S for every i ∈ [n].

This Work. Motivated by monotonicity testing, we propose to study other combinatorial
property testing problems of a similar flavor. In particular, we are interested in the testability
of properties which (a) are “very large” (meaning that the number of functions with the
property is doubly exponential in n); (b) are defined by a natural condition on pairs or triples
of inputs; and (c) correspond to well-studied properties of set systems. We focus on two
specific properties of this sort, namely intersecting and union-closed set systems.

1 Observe that any assignment of 0/1 values to the middle level of the Boolean hypercube {0, 1} corresponds
to at least one monotone function, and hence there are at least 2Ω(2n/

√
n) many distinct monotone

functions over {0, 1}n.
2 This follows straightforwardly from the fact that O(log N) samples suffice to properly PAC learn any

concept class of N Boolean functions [7] and the well-known reduction from proper PAC learning to
property testing given in [31].

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:3

Intersectingness. A set system S ⊆ 2[n] is said to be intersecting if any two sets S1, S2 ∈ S
have a nonempty intersection, i.e. S1 ∩ S2 ̸= ∅. Intersecting families are intensively studied
in extremal combinatorics, where they are the subject of many touchstone results, beginning
with the seminal Erdös-Ko-Rado theorem [24] and continuing to the present day. Recent
years have witnessed exciting progress on many problems dealing with intersecting families
and their generalizations via analytic techniques that are highly relevant to the study of
Boolean functions in theoretical computer science; see e.g. [28, 20, 22] and more generally [23]
for a recent and extensive survey.

Translating the above definition to the setting of Boolean functions, a function f :
{0, 1}n → {0, 1} is intersecting if the following “pair condition” holds: whenever f(x) =
f(y) = 1, there is (at least one) coordinate i ∈ [n] such that xi = yi = 1. This is equivalent to

x ≤ y =⇒ f(x) ≤ f(y), (2)

i.e. if x ≤ y, then having f(y) = 1 implies that f(x) must be 0, where y = (y1, y2, . . . , yn) is
the point in {0, 1}n that is antipodal to y. Finally, we observe that any n-variable Boolean
function whose satisfying assignments all have first bit 1 is an intersecting function, so indeed
the set of all n-variable intersecting Boolean functions is of doubly exponential size (at
least 22n−1).

Union-closedness. A set system S ⊆ 2[n] is said to be union-closed if whenever S1 and S2
belong to S then S1 ∪ S2 also belongs to S. In the Boolean function setting, this corresponds
to the “triple condition” that f : {0, 1}n → {0, 1} satisfy

z = x ∪ y =⇒ f(x)f(y) ≤ f(z), (3)

i.e. if f(x) = f(y) = 1 then f(x ∪ y) must also be 1. Union-closed families have long been
of interest in combinatorics, in part due to the well-known “union-closed conjecture” of
Frankl [27, 10], which states that in any union-closed family some element i ∈ [n] must
appear in at least half the sets in the family. Dramatic progress was recently made on the
union-closed conjecture by Gilmer [29], who proved a weaker form of the conjecture with 1/2
replaced by 0.01 (this constant was subsequently improved to 3−

√
5

2 ≈ 0.38 by [1, 15, 39, 40]).
Since every monotone function is easily seen to be union-closed, union-closedness is a “large”
property, with at least 2Ω(2n/

√
n) n-variable functions having the property.

In this paper we initiate the study of intersectingness and union-closedness from a property
testing perspective. Given that (like monotonicity) these are “large” properties that are
defined by a simple “pair” or “triple” property, it is natural to wonder: Is the query complexity
of testing these properties similar to the query complexity of testing monotonicity, or are
these properties harder – or easier – to test than monotonicity?

1.1 Main Results
As our main results, we show that both intersectingness and union-closedness are significantly
more difficult to test than monotonicity: We give information-theoretic lower bounds which
establish that neither of these properties admits a poly(n, 1/ε)-query non-adaptive testing
algorithm. We also give sub-exponential non-adaptive testing algorithms for each of these
properties; our algorithms have one-sided error (they never reject functions which have
the property), while most of our lower bounds are for testing algorithms that are allowed
two-sided error. We turn now to a detailed description of our main results.

ITCS 2024

33:4 Testing Intersecting and Union-Closed Families

Positive Results: Algorithms for Testing Intersectingness and Union-Closedness. As a
warm-up, and to develop intuition for these properties, we give simple testing algorithms for
intersectingness and for union-closedness which have sub-exponential query complexity:

▶ Theorem 1 (Testers for intersectingness and union-closedness). There is a

poly(n
√

n log(1/ε), 1/ε)-query

non-adaptive, one-sided3 algorithm for ε-testing whether an unknown f : {0, 1}n → {0, 1}
is intersecting versus ε-far from every intersecting function. The same is true for union-
closedness.

We defer the algorithms as well as their analyses to the full version of this paper.
Theorem 1 is proved by analyzing a “pair tester” for intersectingness and a “triple tester” for
union-closedness. The distribution of pairs (respectively, triples) used by our algorithm is
extremely simple, so it is natural to wonder whether a more sophisticated algorithm, perhaps
using a cleverer distribution over pairs or triples, could result in a tester with an improved
query complexity (indeed, this would be analogous to how the cleverer distribution over pairs
used in [11, 34] resulted in a better query complexity for testing monotonicity than the simple
distribution that was used in [30]). However, our main results – lower bounds for testing
intersectingness and union-closedness – indicate that there are strong information-theoretic
limitations on the possible performance of any non-adaptive testing algorithm for these
properties.

Negative Results: Lower Bounds for Testing. Our lower bounds show that both intersect-
ingness and union-closedness are significantly harder to test than monotonicity: Neither of
these properties has a poly(n, 1/ε)-query non-adaptive testing algorithm, even if we allow two-
sided error. (Recall that in contrast, the algorithms of [30, 11, 34] are all poly(n, 1/ε)-query
non-adaptive one-sided testing algorithms for monotonicity.) In more detail, our main lower
bound for intersectingness is the following (in all of our lower bound theorem statements,
c > 0 represents some sufficiently small absolute positive constant):

▶ Theorem 2 (Two-sided lower bound for intersectingness). For c > ε ≥ 1/
√

n, any non-
adaptive ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is intersecting
versus ε-far from intersecting must make 2Ω(n1/4/

√
ε) queries to f .

When ε = 1/
√

n, the lower bound of Theorem 2 essentially matches the performance of
our algorithm from Theorem 1, and even when ε is a constant, Theorem 2 gives a 2Ω(n1/4)

lower bound. In view of the similarity between the defining conditions for monotonicity
and intersectingness (Equation (1) and Equation (2)), we view Theorem 2 as a potentially
surprising result.

By imposing a stricter one-sided error condition, we can establish a stronger lower bound
which almost matches the one-sided algorithm from Theorem 1 even for constant ε:

▶ Theorem 3 (One-sided lower bound for intersectingness). For c > ε ≥ 2−n, any non-adaptive
one-sided ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is intersecting
versus ε-far from intersecting must make 2Ω(

√
n log(1/ε)) queries to f .

3 A tester is non-adaptive if the choice of its i-th query point does not depend on the responses received to
queries 1, . . . , i − 1. A one-sided tester for a class of functions is one which must accept every function
in the class with probability 1.

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:5

Turning to union-closedness, the lower bound we give is not as strong as for intersectingness,
but it is strong enough to rule out a poly(n, 1/ε)-query non-adaptive algorithm, again even
allowing two-sided error:

▶ Theorem 4 (Two-sided lower bound for union-closedness). For c > ε ≥ 2−n0.49 , any non-
adaptive ε-testing algorithm for whether an unknown f : {0, 1}n → {0, 1} is union-closed
versus ε-far from union-closed must make nΩ(log(1/ε)) queries to f .

As we discuss in Section 6 of the full version, an interesting goal for future work is to
narrow the gap between our algorithm and our lower bound for testing union-closed families.

1.2 Techniques
In this section, we give a technical overview of our main results, starting with the lower
bounds.

Lower Bounds. Our two-sided lower bound for intersectingness, Theorem 2, builds on a
lower bound approach for tolerant monotonicity testing which was introduced in [37] and
was recently quantitatively strengthened in [16]. As is standard for non-adaptive property
testing lower bounds, [37] and [16] use Yao’s minimax lemma and define a “yes”-distribution
Dyes and a “no”-distribution Dno over Boolean functions; in the rest of this discussion we
focus chiefly on [16]. A function f drawn from either of the [16] distributions Dyes or Dno is
defined based on a random partition of the n variables into a (large) set of “control” variables
and a (small) set of “action” variables. In both cases f ∼ Dyes or f ∼ Dno, the definition of
f involves a “Talagrand DNF,” T = T1 ∨ · · · ∨ Tm, which is essentially a random monotone
DNF formula over the control variables.4 The crucial assignments to f are the ones for which
the control variables satisfy exactly one term Ti of the Talagrand DNF; for such an input
string x, the value of f then depends on the setting of the action variables, and the difference
between f ∼ Dyes and f ∼ Dno comes from how the function is defined over the action
variables in each case. The values of the function on the action subcubes are carefully defined
in such a way as to make it impossible for a testing algorithm to distinguish a “yes”-function
from a “no”-function unless it manages to query two inputs x, x′ which (i) both have their
control variables set in such a way as to uniquely satisfy the same term Ti, but (ii) differ on
“many coordinates” among the action variables: essentially, one of x, x′ must have its vector
of action bits landing in the top portion of the action subcube while the other one must have
its vector of action bits landing in the bottom portion. The crux of the non-adaptive lower
bound of [16] is the tension between requirements (i) and (ii): if x and x′ differ in too many
coordinates then it is difficult to satisfy (i), but if they differ in too few coordinates then it is
difficult to satisfy (ii).

In the setting of monotonicity testing, the [16] construction’s yes-functions are only close
to, but not actually, monotone; their non-monotonicity essentially comes from assignments
for which the vector of action bits lands in the middle portion of the action subcube. This
is why the mildly exponential lower bound proved in that paper only holds for tolerant
monotonicity testing (indeed, the existence of highly efficient monotonicity testers [30, 19, 34]
implies that quantitatively strong lower bounds such as those of [16] are impossible for
“standard” non-tolerant monotonicity testing). The main component of our lower bound for
intersectingness in this paper is a careful modification of the [16] construction; we show that,

4 The earlier work [37] used a different function over the control variables instead of a Talagrand DNF.

ITCS 2024

33:6 Testing Intersecting and Union-Closed Families

perhaps surprisingly, for the modification that we introduce, the yes-functions have satisfying
assignments which form a perfectly intersecting family, while the no-functions are far from
intersecting. We thus obtain a quantitatively strong lower bound, similar to [16], already for
the “standard” testing problem of intersectingness rather than the more challenging tolerant
version.

Our 2Ω(
√

n log(1/ε))-query one-sided lower bound for intersectingness, Theorem 3, takes a
related but somewhat simpler approach. In a nutshell, since for one-sided lower bounds it is
not necessary to give a yes-distribution and establish indistinguishability of yes-functions
and no-functions, it turns out that we can dispense with the Talagrand DNF part of the
construction. Instead, our construction “hides” a randomly chosen “small” set of action bits
in a simpler way (see Section 3.2 for details); since we do not need to use the Talagrand
DNF, it turns out that we can have the “small” set of action bits be larger than in our
intersectingness lower bound, and this lets us obtain a quantitatively stronger lower bound.

Finally, our nΩ(log(1/ε))-query two-sided lower bound for union-closedness, like our two-
sided intersectingness lower bound, uses the framework of control bits and action bits with a
Talagrand DNF over the control bits. This construction uses a somewhat different definition
of the yes- and no- functions over the action bits, which now ensures that a testing algorithm
can distinguish yes-functions from no-functions only if it manages to query two inputs whose
control variables satisfy the same term Ti but whose action variables are set to two particular
antipodal assignments in the action cube. For this construction we use many fewer action bits
than in the earlier construction (and the quantitative lower bound obtained is correspondingly
weaker than the lower bound of the earlier construction); this is because in our no-functions,
the distance to union-closedness is inverse exponential in the dimension of the action cubes.

Algorithms. Our algorithms for testing intersectingness and for testing union-closedness
are similar at a high level; for conciseness we only describe the algorithm for testing union-
closedness.

As is standard for testing algorithms, we consider the two possible scenarios. In the
“yes” case, the given function f is union-closed. In the “no” case, the function f is ε-far in
Hamming distance from any union-closed function.

At a conceputal level, the first simplification is as follows: given f , we can define a
truncated version of f , call it ftrunc as follows: for any x such that |x| ∈ [n/2 − T, n/2 + T]
where T =

√
n log(4/ε), ftrunc(x) = f(x). If |x| > n/2 + T , we set ftrunc(x) = 1 and if

|x| < n/2 − T , we set ftrunc(x) = 0. In other words, ftrunc is obtained by keeping it the same
as f in the middle 2T layers; otherwise, it is set to 1 in the layers above the middle layers
and 0 below it. Since all but ε/2 fraction of the mass of the discrete cube lies in the layers
[n/2 − T, n/2 + T], the following is immediate: (i) if f is union-closed, so is ftrunc; (ii) if f is
ε-far from union-closed, ftrunc is also ε/2-far from union-closed. The above property of ftrunc
ensures that instead of working with f , the algorithm can instead work with ftrunc.

Now, the main idea behind the algorithm is to search for violations of union-closedness. In
this sense, our algorithm is similar in spirit to algorithms for monotonicity testing [30, 11, 34]
which search for violations of monotonicity. In particular, we call a sequence (x1, . . . , xk, x1 ∪
. . . ∪ xk) a union-closed violating tuple if f(x1) = . . . = f(xk) = 1 and f(x1 ∪ . . . ∪ xk) = 0 –
we will abbreviate this as a UC-violating tuple. Note that if the algorithm finds a union-closed
violating tuple in f , then it is a certificate for f not being union-closed.

The main technical lemma we prove is that if f is ε-far from union closed, then it has
at least ε · 2n UC-violating tuples which are end-disjoint. This means that for any two
such tuples (x1, . . . , xk, x1 ∪ . . . ∪ xk) and (y1, . . . , yk, y1 ∪ . . . ∪ yk), the last coordinate

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:7

(x1 ∪ . . . ∪ xk) ̸= (y1 ∪ . . . ∪ yk). The proof of this lemma is quite simple – essentially, we show
that the function f can be changed to a union closed function by only modifying it at points
which are the last coordinate of a UC-violating tuple. Given this lemma, it follows that f

must have at least ε · 2n end-disjoint UC-violating tuples. Since f and ftrunc are ε/2-close to
each other, it follows that ftrunc also has at least ε/2 · 2n end-disjoint UC-violating tuples.

We next observe that a UC-violating tuple (x1, . . . , xk, x1 ∪ . . . ∪ xk) for ftrunc is such
that (i) for each 1 ≤ i ≤ k, ||xi| − n/2| ≤ T ; (ii) ||x1 ∪ . . . ∪ xk| − n/2| ≤ T . Let us call a
point x = x1 ∪ . . . ∪ xk a witness if there is a UC-violating tuple (x1, . . . , xk, x1 ∪ . . . ∪ xk)
satisfying the above conditions. From the fact that ftrunc also has at least ε/2 · 2n end-disjoint
UC-violating tuples, it follows that there are at least ε/2 · 2n points which are a witness.

Our algorithm now proceeds as follows: We sample a random point x ∈ {0, 1}n conditioned
on ||x| − n/2| ≤ T . Next, we query f on x as well as all the points in the set x↓ := {y ≤
x : ||y| − n/2| ≤ T}. We then check if there are any points y1, . . . , yk ∈ x↓ such that
(y1, . . . , yk, x) is a UC-violating tuple. Note that if f is union-closed, then the algorithm is
certainly not going to find a UC-violating tuple, i.e., it has perfect completeness. On the
other hand, if f is at least ε-far from union closed, then the point x sampled above is a
witness with probability ε/2. If x is a witness then since we are querying every point in x↓,
the algorithm is going to find a UC-violating tuple.

Thus, repeating the above procedure say 100/ε times, the algorithm will still have perfect
completeness. On the other hand, if f is ε-far from union-closed, it is going to find a
UC-violating tuple with probability at least 0.9. The query complexity of the algorithm is
given by O(1/ε) · |x↓|. As |x↓| is uniformly bounded by nO(

√
n log(1/ε)), this establishes the

upper bound on the query complexity of our algorithm. (While the algorithm described
above is not a “triple tester,” an easy modification of the algorithm and its analysis yields a
triple tester with similar query complexity.)

1.3 Related Work
As mentioned earlier, some of the technical specifics of our lower bound constructions build
off of the tolerant testing lower bounds of [37] and [16]; in particular, the idea, first introduced
by [37], of “hiding” a set of action variables among the entire set of input variables was a
significant influence on the lower bound constructions of the current paper. More generally,
the entire broad literature on monotonicity testing of Boolean functions (i.e. testing upward-
closed set systems) provided the conceptual backdrop for a study of the testability of other
types of combinatorial finite set systems.

We note that the recent work of Filmus et al. [25] (see also [14]) studies the problem of
“AND-testing,” which at first glance may seem to be related to the problems we consider.
The “AND-property” is that of satisfying the implication

z = x ∩ y =⇒ f(z) = f(x) ∧ f(y) (4)

for every x, y ∈ {0, 1}n; the main result of [25], roughly speaking, is that the only functions
which have a high probability of satisfying Equation (4) for uniform random x, y are functions
which are close to being either a constant-function or an AND of some subset of the n input
variables.

Despite the superficial resemblance between Equation (3) and Equation (4), it turns out
that the AND-property and the properties we consider are of quite different character from
each other. To see this, observe that the only functions f : {0, 1}n → {0, 1} which perfectly
satisfy the AND-property are constant functions and AND-functions; hence there are only

ITCS 2024

33:8 Testing Intersecting and Union-Closed Families

O(2n) many possible yes-functions, and every yes-function must have a very precise and rigid
structure (and a very simple description). This is quite different from the intersectingness and
union-closedness properties we study; each of these properties has 22Θ(n) many yes-functions,
and hence yes-functions do not need to be so highly structured (and by standard counting
arguments almost all yes-functions require highly complex descriptions). As another point of
difference, the [25] result mentioned above implies that there is an Oε(1)-query non-adaptive
one-sided tester for the AND-property. In contrast, our Theorem 4 shows that even two-sided
non-adaptive testers for the property of union-closedness must have a query complexity which
not only depends on n, but in fact is at least nΩ(log(1/ε)).

2 Preliminaries

We will write(
[n]
k

)
:=
{

S ⊆ [n] : |S| = k
}

to denote the collection of all k-element subsets of [n], and for a subset I ⊆ [n] we will
write

([n]
I

)
to denote ∪j∈I

([n]
j

)
. We will denote the 0/1-indicator of an event A by 1{A}.

All probabilities and expectations will be with respect to the uniform distribution over the
relevant domain unless stated otherwise. We use boldfaced letters such as x, f , and A

to denote random variables (which may be real-valued, vector-valued, function-valued, or
set-valued; the intended type will be clear from the context). We write x ∼ D to indicate
that the random variable x is distributed according to probability distribution D.

▶ Notation 5. Given a string x ∈ {0, 1}n and a set A ⊆ [n], we write xA ∈ {0, 1}A to denote
the |A|-bit string obtained by restricting x to coordinates in A, i.e. xA := (xi)i∈A, and we
write |x| to denote the number of 1’s in x.

We will frequently view strings in {0, 1}n as subsets of [n] and vice versa; i.e. for
x, y ∈ {0, 1}n we refer to “x ∩ y” to mean the string in {0, 1}n which has a 1 in coordinate i

iff xi = yi = 1.

Given two Boolean functions f, g : {0, 1}n → {0, 1}, we define the distance between
f and g (denoted by dist(f, g)) to be the normalized Hamming distance between f and
g, i.e. dist(f, g) := Prx∼{0,1}n

[
f(x) ̸= g(x)

]
. A property P is a collection of Boolean

functions; we say that a function f : {0, 1}n → {0, 1} is ε-far from the property P if
dist(f, P) := ming∈P dist(f, g) ≥ ε.

2.1 Lower Bounds for Testing Algorithms
Our query-complexity lower bounds for testing algorithms are obtained via Yao’s minimax
principle [42], which we recall below. (We remind the reader that an algorithm for the
problem of ε-property testing is correct on an input function f provided that it outputs “yes”
if f perfectly satisfies the property and outputs “no” if f is ε-far from the property; if the
distance to the property is strictly between 0 and ε then the algorithm is correct regardless
of what it outputs.)

▶ Theorem 6 (Yao’s principle). To prove a q-query lower bound on the worst-case query
complexity of any non-adaptive randomized testing algorithm, it suffices to give a distribution
D on instances such that for any q-query non-adaptive deterministic algorithm A, we have

Pr
f∼D

[
A is correct on f

]
≤ 99.9%.

Here 99.9% can be replaced by any universal constant in [0, 1).

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:9

2.2 Talagrand’s Random DNF
We define a useful distribution over Boolean functions that will play a central role in the
proofs of our lower bounds. The construction is a slight generalization of a distribution
over DNF (disjunctive normal form) formulas that was constructed by Talagrand [41]. The
generalization we consider, which was also studied in [16], is that we allow a parameter ε to
control the size of each term and the number of terms; the original construction corresponds
to ε = 1.

▶ Definition 7 (Talagrand’s random DNF). Let ε ∈ (0, 1] and let L := 0.1 · 2
√

n/ε. Let
Talagrand(n, ε) be the following distribution on ordered tuples of L monotone terms: for each
i = 1, . . . , L, the i-th term is obtained by independently drawing a set Ti ⊆ [n] where each set
Ti is obtained by drawing

√
n/ε elements of [n] independently and with replacement. We use

T to denote the ordered tuple T = (T1, · · · , TL) which is a draw from Talagrand(n, ε). Then
a “Talagrand DNF” is given by

f(x) =
L∨

ℓ=1

 ∧
j∈Tℓ

xj

.

It is clear that any Talagrand DNF obtained by a draw from Talagrand(n, ε) is a monotone
function.

We will frequently view Ti ⊆ [n] as the term
∧

j∈Ti
xj , where we say Ti(x) = 1 if and

only if xj = 1 for all j ∈ Ti. We may also write T = (T1, · · · , Tk) to represent a DNF, which
is defined by the disjunction of the terms Ti. We will often be interested in the probability
of a random input x ∼ {0, 1}n satisfying a unique term Ti in a Talagrand DNF; towards
this, we introduce the following notation:

▶ Notation 8. Given a DNF T = (T1, · · · , Tk) where each Ti is a term, we define the
collection of terms of T satisfied by x, written ST (x), as ST (x) :=

{
ℓ ∈ [k] : Tℓ(x) = 1

}
.

The following claim shows that on average over the draw of T ∼ Talagrand(n, ε), an Ω(ε)
fraction of strings from {0, 1}n satisfy a unique term in the Talagrand DNF (i.e. |ST (x)| = 1
for Ω(ε)-fraction of x ∈ {0, 1}n). We note that an elegant argument of Kane [33] gives this
for ε = Θ(1), but this argument does not extend to the setting of small ε which we require.
The proof of the following appears in [16] and is repeated in the full version of this paper.

▶ Proposition 9. For ε ∈ (0, 1], let T ∼ Talagrand(n, ε) be as in Definition 7. Then

Pr
T ,x

[
|ST (x)| = 1

]
= Ω

(
max{ε, 1/

√
n}
)

.

3 Lower Bounds for Testing Intersecting Families

We now present our lower bound for two-sided non-adaptive testers for intersecting families.
As mentioned earlier, the construction builds closely on the earlier constructions of [37, 16]
which were used in those papers for tolerant testing lower bounds.

Let ε ∈ (0, c] be a parameter with c > ε ≥ c0/
√

n for some sufficiently large constant
c0 and sufficiently small constant c > 0. We start with some objects that we need in the
construction of the two distributions Dyes and Dno. We partition the variables x1, · · · , xn

into control variables and action variables as follows: Let a :=
√

n/ε and let A ⊆ [n] be
a fixed subset of [n] of size a. Let C := [n] \ A. We refer to the variables xi for i ∈ C as

ITCS 2024

33:10 Testing Intersecting and Union-Closed Families

control variables and the variables xi for i ∈ A as action variables. We first define two pairs
of functions over {0, 1}A on the action variables as follows (we will use these functions later
in the definition of Dyes and Dno):

g(+,0)(xA) =


0 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −

√
a, a

2 +
√

a];

0 |xA| < a
2 −

√
a.

g(+,1)(xA) =


1 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −

√
a, a

2 +
√

a];

1 |xA| < a
2 −

√
a.

and

g(−,0)(xA) =


1 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −

√
a, a

2 +
√

a];

0 |xA| < a
2 −

√
a.

g(−,1)(xA) =


0 |xA| > a

2 +
√

a;

0 |xA| ∈ [a
2 −

√
a, a

2 +
√

a];

1 |xA| < a
2 −

√
a.

Now we are ready to define the distributions Dyes and Dno over f : {0, 1}n+2 → {0, 1}.
We follow the convention that random variables are in boldface and fixed quantities are in
the standard typeface.

A function fyes ∼ Dyes is drawn as follows. We start by sampling a subset A ⊆ [n]
of size a uniformly at random and let C := [n] \ A. Note that there are in total n − a

control variables. We let L := 0.1 · 2
√

n−a/ε and draw an L-term monotone Talagrand
DNF T ∼ Talagrand(n − a, ε) on C as described in Definition 7. Finally, we sample L

random bits b ∈ {0, 1}L uniformly at random. Given A, T and b, fyes is defined by letting
fyes(x, 0, 0) = fyes(x, 1, 1) = 0 for all x ∈ {0, 1}n, and letting

fyes(x, 0, 1) =


0 |ST (xC)| ≠ 1;

g(+,0)(xA) ST (xC) = {ℓ} and bℓ = 0;

g(+,1)(xA) ST (xC) = {ℓ} and bℓ = 1.

fyes(x, 1, 0) =


0 |ST (xC)| ≠ 1;

g(+,1)(xA) ST (xC) = {ℓ} and bℓ = 0;

g(+,0)(xA) ST (xC) = {ℓ} and bℓ = 1.

(Recall that x is the bitwise complement of string x).
To draw a function fno ∼ Dno, we sample A, T and b exactly as in the definition of Dyes

above, but we use g(+,b) and g(−,b) functions in a different way than in the Dyes functions
described above. In more detail, fno is defined by fno(x, 0, 0) = fno(x, 1, 1) = 0 for all
x ∈ {0, 1}n, and

fno(x, 0, 1) =


0 |ST (xC)| ≠ 1;

g(−,0)(xA) ST (xC) = {ℓ} and bℓ = 0;

g(−,1)(xA) ST (xC) = {ℓ} and bℓ = 1.

fno(x, 1, 0) =


0 |ST (xC)| ≠ 1;

g(−,0)(xA) ST (xC) = {ℓ} and bℓ = 0;

g(−,1)(xA) ST (xC) = {ℓ} and bℓ = 1.

See Figures 1 and 2 for illustrations of the yes- and no- functions.

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:11

0

0

Tℓ

If bℓ = 1:

1

0

1

If bℓ = 0:

0

0

0

xC

0

0
Tℓ

If bℓ = 1:

0

0

0

If bℓ = 0:

1

0

1

xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

10 01

11

00

(y1, y2) ≡ {0, 1}2

Figure 1 A draw of fyes ∼ Dyes. All our hypercubes adopt the convention that the bottom-most
point is (0, . . . , 0) and the topmost point is (1, . . . , 1), and horizontal lines denote Hamming levels.
Given an input (x, y1, y2) ∈ {0, 1}n × {0, 1}2 we follow the arrows starting with {0, 1}2 in the center.
The cross-hatched region in the control cube {0, 1}C corresponds to inputs satisfying a unique
Talagrand DNF term Tℓ. The pink regions correspond to 0 assignments and blue regions to 1
assignments.

ITCS 2024

33:12 Testing Intersecting and Union-Closed Families

0

0

Tℓ

If bℓ = 1:

0

0

1

If bℓ = 0:

1

0

0

xC

0

0
Tℓ

If bℓ = 1:

0

0

1

If bℓ = 0:

1

0

0

xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

10 01

11

00

(y1, y2) ≡ {0, 1}2

Figure 2 A draw of fno ∼ Dno. Our conventions are as in Figure 1.

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:13

The proofs of the following lemmas are deferred to the full version:

▶ Lemma 10. Every function fyes in the support of Dyes is intersecting.

▶ Lemma 11. With probability at least 0.01, fno ∼ Dno is Ω(ε)-far from intersecting.

3.1 Indistinguishability of Dyes and Dno

In this section we establish the indistinguishability of the distributions Dyes and Dno.
Specifically, for any nonadaptive deterministic algorithm A with query complexity q =
20.1n1/4/

√
ε, we show that

Pr
fyes∼Dyes

[A accepts fyes] ≤ Pr
fno∼Dno

[A accepts fno] + on(1). (5)

Our arguments closely follow the approach for proving indistinguishability that was used
in [16].

We begin with some simplifying assumptions: for any point u ∈ {0, 1}n+2 that is queried
by the algorithm A we assume that un+1 ̸= un+2 (since otherwise the answer to the query
must be 0), and we assume that for each point u ∈ {0, 1}n+2 that is queried by A the point u

is also queried as well (since this only affects the query complexity by at most a factor of two).
So the set of q query points of A can be characterized by a set QA := {x1, · · · , xq} ⊆ {0, 1}n,
where both (xi, 0, 1) and (xi, 1, 0) are queried for each i ∈ [q].

A crucial step of the argument is that the only way for A to distinguish Dyes and Dno is to
query two points xi, xj with ST (xi

C) = ST (xj
C) = {ℓ} for some ℓ ∈ [L] such that one is in the

top region and the other is in the bottom region of the action cube, namely |xi
A| > a

2 +
√

a

and |xj
A| < a

2 −
√

a. We let Bad denote this event (that QA contains two points xi, xj

satisfying the above conditions).
Formally, let us write A(f) to denote the sequence of q answers to the queries made by

A to f . We write viewA(Dyes) (respectively viewA(Dno)) to be the distribution of A(f) for
f ∼ Dyes (respectively f ∼ Dno). The following claim asserts that conditioned on Bad not
happening, the distributions viewA(Dyes|Bad) and viewA(Dno|Bad) are identical.

▶ Lemma 12. viewA(Dyes|Bad) = viewA(Dno|Bad).

Proof. The distributions of the partition of [n] into control variables C and action variables
A are identical for Dyes and Dno. So fix an arbitrary partition C and A. As the distribution
of the Talagrand DNF T ∼ Talagrand(m, ε) is also identical, we fix an arbitrary T .

We divide the points QA into disjoint groups according to xC . More precisely, for every
ℓ ∈ [L], let QA(ℓ) = {xi | ST (xi

C) = {ℓ}}. The points outside
⋃

ℓ∈[L] QA(ℓ) are not important
as f will be identically 0 for both Dyes and Dno.

Let fℓ(x) denote the function f(x, 0, 1) restricted to points in QA(ℓ), and let f ′
ℓ(x)

similarly denote the function f(x, 1, 0) restricted to inputs x ∈ QA(ℓ). Note that for a fixed
ℓ ∈ [L], the functions fℓ(x) and f ′

ℓ(x) only depend on the random bit bℓ. As a result, the
distributions of functions fℓ(x) and f ′

ℓ(x) for different ℓ are independent.
So fix an arbitrary ℓ ∈ [L]. The condition that Bad does not happen implies that either

|xA| > a/2 +
√

a for all x ∈ QA(ℓ) or |xA| < a/2 −
√

a for all x ∈ QA(ℓ), which holds for
both Dyes and Dno. So we have f ′

ℓ(x) = 1 − fℓ(x) for all x ∈ QA(ℓ), which also holds for
both Dyes and Dno.

Finally, noticing that the distribution of fℓ(x) is simply a uniform random bit bℓ for both
Dyes and Dno, this finishes the proof. ◀

ITCS 2024

33:14 Testing Intersecting and Union-Closed Families

Next, we show that the probability that Bad happens is small (recall that q = 20.1n1/4/
√

ε):

▶ Lemma 13. For any set of points QA = {x1, · · · , xq} ⊆ {0, 1}n, Pr[Bad] = on(1).

Proof. Fix any two points x, y ∈ {0, 1}n. We will upper bound the probability that ST (xC) =
ST (yC) = {ℓ} for some ℓ ∈ [L] and |xA| < a

2 −
√

a and |yA| > a
2 +

√
a. Call this specific

event Badxy.
Let I01 be the set of indices i such that xi = 0 and yi = 1. On the one hand, to have

Badxy happen, we must have that

|I01 ∩ A| ≥ 2
√

a. (⋄)

On the other hand, to have ST (xC) = ST (yC) = {ℓ}, we must have that

There exists an ℓ ∈ [L] such that ST (x) = ST (y) = {ℓ}. (⋆)

So we have Pr[Badxy] ≤ min(Pr[⋄], Pr[⋆]); we will show that min(Pr[⋄], Pr[⋆]) ≤
2−0.05n1/4/

√
ε. Let t = |I01|. Then by the random choice of the coordinates defining the action

cube A, we have

Pr[⋄] ≤ Pr
[

Bin
(

a,
t

n − a

)
≥ 2

√
a

]
≤
(

a

2
√

a

)
·
(

t

n − a

)2
√

a

≤
(

ea

2
√

a

)2
√

a

·
(

t

n − a

)2
√

a

≤

(
et

√
a

2(n − a)

)2
√

a

≤

(
et

√
a

2(1 − 1
c0

)n

)2
√

a

.

To bound Pr[⋆], we use

Pr[⋆] = Pr[ST (x) = ST (y) & ∃ℓ ∈ [L] such that ST (y) = {ℓ}]
≤ Pr[ST (x) = ST (y) | ∃ℓ ∈ [L] such that ST (y) = {ℓ}]
≤ max

ℓ∈[L]
Pr[ST (x) = ST (y) | ST (y) = {ℓ}]

≤
(

1 − t

n − a

)√
n−a/ε

≤ e−t/(ε
√

n−a) ≤ e−t/(ε
√

n),

where the last line above is by the definition of the random process T ∼ Talagrand(n − a, ε).
When t ≤ 1

4 n3/4/
√

ε, we have Pr[⋄] ≤ 2−n1/4/
√

ε. When t ≥ 1
4 n3/4/

√
ε, we have Pr[⋆] ≤

2−0.25n1/4/
√

ε.

So overall we have

Pr[Badxy] ≤ min(Pr[⋄], Pr[⋆]) ≤ 2−0.25n1/4/
√

ε.

By a union bound for all pairs of points of QA, we know that

Pr[Bad] ≤ 2−0.25n1/4/
√

ε ·
(

20.1n1/4/
√

ε
)2

= on(1),

and the lemma is proved. ◀

Now we are ready to prove Theorem 2.

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:15

Proof of Theorem 2. Let D = 1
2 {Dyes + Dno}. Then we have

Pr
f∼D

[A is correct on f] = 1
2

(
Pr

fyes∼Dyes
[A is correct on fyes] + Pr

fno∼Dno
[A is correct on fno]

)
= 1

2

(
Pr

fyes∼Dyes
[A accepts fyes] + Pr

fno∼Dno
[A is correct on fno]

)
(6)

≤ 1
2

(
Pr

fyes∼Dyes
[A accepts fyes] + 0.99 + 0.01 Pr

fno∼Dno
[A rejects fno]

)
(7)

= 1
2

(
Pr

fyes∼Dyes
[A accepts fyes] + 1 − 0.01 Pr

fno∼Dno
[A accepts fno]

)
≤ 199

200 + 1
200

(
Pr

fyes∼Dyes
[A accepts fyes] − Pr

fno∼Dno
[A accepts fno]

)
= 199

200 + Pr[Bad]
200

(
Pr

fyes∼Dyes|Bad
[A accepts fyes] − Pr

fno∼Dno|Bad
[A accepts fno]

)
(8)

≤ 199
200 + Pr[Bad]

200

≤ 199
200 + on(1), (9)

where Equation (6) is because of Lemma 10, Equation (7) is because fno is not ε-far
from intersecting with probability at most 0.99 thanks to Lemma 11, Equation (8) is from
Lemma 12, and Equation (9) follows from Lemma 13. Theorem 2 now follows from Yao’s
minimax principle (Theorem 6). ◀

3.2 A 2Ω(
√

n log(1/ε)) Lower Bound for One-Sided Non-adaptive Testers
of Intersectingness

In this section we prove Theorem 3, by giving a 2Ω(
√

n log(1/ε))-query complexity lower
bound against any non-adaptive and one-sided algorithm testing ε-intersectingness. This
almost matches the query complexity of our nO(

√
n log(1/ε))/ε-query one-sided non-adaptive

algorithm even for constant ε.
Since we are working against one-sided algorithms, it suffices for us to describe a dis-

tribution Dno over f : {0, 1}n+2 → {0, 1} of “no”-functions (functions that are far from
intersecting). Let K =

√
n ln(1/ε). A draw from our Dno distribution is obtained as follows:

first, we sample a subset A ⊆ [n] of size a = n/100 uniformly at random (looking ahead,
100 will be an important constant later in the proof). Then fno ∼ Dno is defined by letting
fno(x, 0, 0) = fno(x, 1, 1) = 0 for all x ∈ {0, 1}n, and

fno(x, 0, 1) = fno(x, 1, 0) =



0 |x| ̸∈ [n/2 − 10K, n/2 + 10K];

0 |xA| > n/200 + K;

0 |xA| ∈ [n/200 − K, n/200 + K];

1 |xA| < n/200 − K.

The constant “10” above will also be important vis-a-vis the “100” in the definition of the
size of A.

We first show that every fno ∼ Dno is εO(1)-far from intersecting (observe that this
suffices for our claimed lower bound, since the difference between ε and εO(1) is swallowed
up by the log and the big-Omega):

ITCS 2024

33:16 Testing Intersecting and Union-Closed Families

▶ Lemma 14. Every fno in the support of Dno is εO(1)-far from intersecting.

Proof. Fix an arbitrary A ⊆ [n] with size a = n/100, which determines a function fno in the
support of Dno. For the convenience of notations, we use C := [n] \ A.

By the same argument as Claim 12 from the full version, we know for any 0 ≤ w < n/200,
the bipartite graph (Pw, Pn/100−w) with poset relations as edges has a perfect matching.
Next, we use the Chernoff bound (which upper bounds the lower tail of the Binomial
distribution) and a “reverse Chernoff bound” (which lower bounds the lower tail of the
Binomial distribution) to show that

|{x ∈ {0, 1}A | |x| ∈ [n/200 − 5K, n/200 − K]}| ≥ (ε1800 − ε5000)2a = Ω(ε1800) · 2a.

To this end, for w ∈ [0, n/200], let P≤w to denote {x ∈ {0, 1}A | |x| ≤ w}. Then it suffices
to show that

|P≤n/200−5K | ≤ ε5000 · 2a,

which follows from the standard Chernoff bound, and

|P≤n/200−K | ≥ ε1800 · 2a,

which follows from the following “reverse Chernoff bound:”

▶ Lemma 15 ([35], Lemma 4). Let X be the sum of k independent 0/1 random variables.
For any K ∈ (0, pk/2] and p ∈ [0, 1/2] such that K2/(pk) ≥ 3, if each random variable is 1
with probability at most p, then

Pr[X ≤ pk − K] ≥ exp(−9K2/(pk)).

Next, consider any x ∈ {0, 1}n such that |x| ∈ [n/2 − 10K, n/2] and |xA| ∈ [n/200 −
5K, n/200 − K]. Let y ∈ {0, 1}n be such that yC = xC and yA is the matched point
of xC in the perfect matching. Then we have |y| ∈ [n/2 − 10K, n/2 + 10K] and |yA| ∈
[n/200 + K, n/200 + 5K].

Note that for any such pair (x, y) we have x ≤ y, f(x, 0, 1) = 1 and f(y, 1, 0) = 1,
which serves as an I-violating pair. Since the edges in a perfect matching are vertex-disjoint,
we have the number of I-violating pairs is at least the number of x ∈ {0, 1}n such that
|x| ∈ [n/2 − 10K, n/2] and |xA| ∈ [n/200 − 5K, n/200 − K].

We have shown that

|{x ∈ {0, 1}A | |x| ∈ [n/200 − 5K, n/200 − K]}| = Ω(ε1800) · 2a.

Note also that

|{x ∈ {0, 1}C | |x| ∈ [99n/200 − 5K, 99n/200]}| = Ω(1) · 2n−a.

This finishes the proof. ◀

Below we show that for any nonadaptive deterministic query algorithm A with query
complexity q = 20.9

√
n log(1/ε) the probability that A succeeds in finding a violation of

intersectingness is on(1); this proves Theorem 3.

Proof of Theorem 3. We establish the following lemma, from which the theorem follows by
a straightforward union bound:

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:17

▶ Lemma 16. For any two points x, y ∈ {0, 1}n such that |x|, |y| ∈ [n/2 − 10K, n/2 + 10K]
and x ≤ y,

Pr
A

[|x ∩ A| < n/200 − K and |y ∩ A| > n/200 + K] ≤ 2−2K .

Proof. Let I be the indices i such that xi = 0 and yi = 1 and let t = |I|. Then we know
0 ≤ t ≤ 20K. On the other hand, in order for the event |x ∩ A| < n/200 − K and |y ∩ A| >

n/200 + K to happen, the set A has to hit at least 2K many indices in I. So

Pr
A

[|x ∩ A| < n/200 − K and |y ∩ A| > n/200 + K]

≤ Pr
[

Bin
(

n/100,
20K

0.99n

)
≥ 2K

]
≤
(

n/100
2K

)
·
(

20K

0.99n

)2K

≤
(

en/100
2K

)2K

·
(

20K

0.99n

)2K

≤
(

10e

99

)2K

≤ 2−2K ,

completing the proof. ◀

By a union bound over all pairs of query strings where q = 20.9K = 20.9
√

n log(1/ε), it follows
that the probability that A succeeds in finding a violation of intersectingness is on(1). Since
a one-sided tester must find such a violation in order to reject, this finishes the proof. ◀

4 Lower bounds for Testing Union-Closed Families

In this section, we prove a nΩ(log(1/ε))-query lower bound against non-adaptive algorithms
for testing union-closedness (with either one-sided or two-sided error). We describe the hard
distributions in Section 4.1 and then prove Theorem 4 in Section 4.2.

4.1 The Dyes and Dno Distributions
Our construction of the hard distributions Dyes and Dno are inspired by the constructions
for the lower bound against intersectingness testing in Section 3; in particular, our hard
functions will also comprise of a truncated Talagrand random DNF on a set of “control bits”
C, and then a function tailored to the union-closedness property on a set of “action bits” A.
We illustrate both Dyes and Dno in Figure 3, and start by describing the Dyes distribution:

▶ Definition 17. Given ε > 0, a draw of a Boolean function fyes : {0, 1}n → {0, 1} from the
distribution Dyes := Dyes(n, ε) is obtained as follows:
1. Draw a random set of a := log(1/ε) coordinates A ⊆ [n], i.e.

A ∼
(

[n]
a

)
, and set C := [n] \ A.

Let c := |C| = n − a.
2. Let L := 0.1 · 2

√
c and draw an L-term monotone Talagrand DNF T ∼ Talagrand(c, 1) as

defined in Definition 7 on {0, 1}C .
3. For each ℓ ∈ [L], independently draw a uniformly random a-bit string sℓ ∈ {0, 1}A.

ITCS 2024

33:18 Testing Intersecting and Union-Closed Families

0

1

Tℓ

sℓ
xC

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

(a) A draw of fyes ∼ Dyes

0

1

Tℓ

If bℓ = 1:

rℓ

rℓ

If bℓ = 0:

0

{0, 1}C ≡ {0, 1}m {0, 1}A ≡ {0, 1}a

xC

(b) A draw of fno ∼ Dno

Figure 3 An illustration of the yes- and no-distributions for the union-closedness lower bound.
Our conventions are as in Figure 1. In (b), if bℓ = 1 then as long as rℓ /∈ {0a, 1a} the action cube
{0, 1}A will contain a single violation of union-closedness.

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:19

4. Output the function

fyes(xC , xA) :=


1 |ST (xC)| ≥ 2
1{xA = sℓ} ST (xC) = {ℓ}
0 |ST (xC)| = 0

where ST is as defined in Notation 8.

It is straightforward to verify that functions drawn from Dyes are indeed union-closed:

▷ Claim 18. Every function fyes in the support of Dyes is union-closed.

We now turn to a description of the Dno distribution.

▶ Definition 19. Given ε > 0, a draw of a Boolean function fno : {0, 1}n → {0, 1} from the
distribution Dno := Dno(n, ε) is obtained as follows:
1. Draw a random set of a := log(1/ε) coordinates A ⊆ [n], i.e.

A ∼
(

[n]
a

)
, and set C := [n] \ A.

Let c := |C| = n − a.
2. Let L := 0.1 · 2

√
c and draw an L-term monotone Talagrand DNF T ∼ Talagrand(c, 1) as

defined in Definition 7 on {0, 1}C .
3. For each ℓ ∈ [L], independently draw a uniformly random a-bit string rℓ ∈ {0, 1}A as

well as a uniformly random bit bℓ ∈ {0, 1}.
4. Output the function

fyes(xC , xA) :=


1 |ST (xC)| ≥ 2
bℓ · 1

{
xA ∈ {rℓ, rℓ}

}
ST (xC) = {ℓ}

0 |ST (xC)| = 0

where rℓ := 1a − rℓ is the antipode of rℓ.

As illustrated by Figure 3, we associated each Talagrand term Ti with a uniformly random
bit bℓ. If bℓ = 1 then the action cube comprises a single union-closedness violation,5 and if
bℓ = 0 then the action cube has zero satisfying assignments. This ensures that in expectation,
the measure of a function drawn from Dno is indistinguishable from that of a function drawn
from Dyes. The proof of the following is deferred to the full version:

▷ Claim 20. With probability at least 0.001, a function fno ∼ Dno := Dno(n, ε) satisfies
dist(fno, g) ≥ Ω(ε) for every union-closed function g : {0, 1}n → {0, 1}.

4.2 Indistinguishability of the Hard Distributions
In this section, we establish the indistinguishability of the distributions Dyes and Dno and
prove Theorem 4. Our proof will closely follow the approach used in Section 3.1 to prove a
lower bound against intersectingness testers.

5 This is with the exception of rℓ = 0a or 1a; in this case rℓ ∪ rℓ = 1a and so the function on the action
bits will indeed be union-closed. Note, however, that this only happens with probability 1/2a.

ITCS 2024

33:20 Testing Intersecting and Union-Closed Families

As before, we will write QA := {x1, . . . , xq} ⊆ {0, 1}n for the set of points queried by the
algorithm. The argument will crucially rely on the fact that the only way for A to distinguish
Dyes and Dno is to draw two antipodal points from the same action cube, i.e. if there exist
xi and xj such that ST (xi

C) = ST (xj
C) = {ℓ} for some ℓ ∈ [L] and xi

A and xj
A are antipodes;

as before, we write Bad to denote this event. With viewA defined as in Section 3.1, we have
the following:

▶ Lemma 21. We have viewA(Dyes|Bad) = viewA(Dno|Bad).

Proof. As before the distributions of the partition of [n] into C ⊔ A are identical for both
Dyes and Dno, so we may fix an arbitrary partition. As the distribution of the Talagrand
DNF T ∼ Talagrand(c, 1) is also identical, we can fix an arbitrary T . We define

QA(ℓ) :=
{

xi : ST (xi
C) = {ℓ}

}
.

Note that the points outside
⋃

ℓ∈[L] QA(ℓ) do not matter as the the function is identically 0
or 1 for both Dyes and Dno. We will abuse notation and view QA(ℓ) as a subset of the action
cube {0, 1}a corresponding to the Talagrand term Tℓ.

We will write fℓ for the function restricted to inputs in QA(ℓ), and will write A(fℓ) for
the sequence of answers to the queries made by A to fℓ (i.e. the sequence of answers to
queries by A on inputs in QA(ℓ)). We will write viewA,ℓ(Dyes) (respectively viewA,ℓ(Dno)) to
be the distribution of A(fℓ) for fℓ ∼ Dyes (respectively fℓ ∼ Dno). Since QA is partitioned
as QA =

⊔
ℓ∈[L] QA(ℓ), note that in order to show that viewA(Dyes|Bad) = viewA(Dno|Bad),

it suffices to show that viewA,ℓ(Dyes|Bad) = viewA,ℓ(Dno|Bad); this is what we will establish
below.

Fixing an action cube {0, 1}a (which is indexed by ℓ ∈ [L]), note that the actions cubes
in the yes- and no-distributions can be equivalently described as follows:
1. Draw a uniformly random pair of points (y, y) from the 2a−1 pairs (x, x) for x ∈ {0, 1}a,

and draw a uniformly random bit bℓ.
2. We consider the “yes” and “no” cases separately:

a. In the “yes” case, if bℓ = 1, then set sℓ = y; otherwise set sℓ = y.
b. In the “no” case, set (rℓ, rℓ) = (y, y); and if bℓ = 0, then the function f |ℓ is defined to

be identically zero on the action cube (cf. Definition 19 and Figure 3).
Note that conditioned on Bad not happening, we have that none of the query points in QA(ℓ)
are antipodes of each other. We now split into two cases depending on whether either y or y

is in the query set QA(ℓ):
1. If y, y /∈ QA(ℓ), then note that viewA,ℓ(Dyes|Bad) = viewA,ℓ(Dno|Bad) since fℓ is identically

0 on QA(ℓ) in both the “yes” and the “no” cases.
2. Otherwise, since we conditioned on Bad, only one of y, y can be in QA(ℓ); without loss of

generality, suppose that it is y. In both the “yes” and the “no” cases, y is a 1-input if and
only if bℓ = 1, and the function is identically 0 on all other points. (Recall that we view
points of QA(ℓ) as a subset of the action cube {0, 1}a corresponding to the Talagrand
DNF term Tℓ.)

It follows that viewA,ℓ(Dyes|Bad) = viewA,ℓ(Dno|Bad), and since QA is partitioned by the
indices ℓ ∈ [L], we have viewA(Dyes|Bad) = viewA(Dno|Bad), completing the proof. ◀

Next, we will show that Bad happens with on(1) probability:

▶ Lemma 22. For any set of points QA = {x1, . . . , xq} ⊆ {0, 1}n where q := n0.001 log(1/ε),
we have Pr[Bad] = on(1).

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:21

Proof. For x, y ∈ {0, 1}n, let Badxy be the event that ST (xC) = ST (yC) = {ℓ} for some
ℓ ∈ [L] and xA = yA. We will upper bound the probability of Badxy in what follows.

Let J ⊆ [n] be the coordinates in which x and y differ, i.e. J := {i ∈ [n] : xi ̸= yi}.
Define the event ⋄ as:

A ⊆ J. (⋄)

We also define the event ⋆ as before as

There exists an ℓ ∈ [L] such that ST (x) = ST (y) = {ℓ}. (⋆)

By definition of Badxy, we have that Pr[Badxy] ≤ min
{

Pr[⋆], Pr[⋄]
}

. In the rest of the
proof, we will establish that

min
{

Pr[⋆], Pr[⋄]
}

≤ Θ
(

1
n

)0.01a

, (10)

from which the lemma follows immediately by taking a union bound over all q2 pairs
(x, y) ∈ QA ×QA. Note that Pr[⋄] = Pr [A ⊆ J] ≤

(
e|J|

n

)a

via standard bounds on binomial
coefficients. On the other hand, proceeding as in the proof of Lemma 13, we have

Pr[⋆] ≤ max
ℓ∈[L]

Pr
[
ST (x) = ST (y) | ST (y) = {ℓ}

]
≤
(

1 − 1√
c

)|J|

≤ exp
(

−|J |√
c

)
where the final line follows from the definition of Talagrand(c, 1). In particular, note that if
|J | ≤ n0.5, then

Pr[⋆] ≤
(

e

n0.5

)a

,

and if |J | > n0.5 then we have

Pr[⋄] ≤ exp
(

−n0.5√
n − log(1/ε)

)
≪
(

1
n

)Θ(a)

where the final inequality uses the fact that ε ≥ Θ
(

1
2n0.49

)
. Putting everything together

establishes Equation (10) which in turn completes the proof. ◀

Theorem 4 follows from Lemmas 21 and 22 mutatis mutandis as Theorem 2 follows from
Lemmas 12 and 13.

References
1 Ryan Alweiss, Brice Huang, and Mark Sellke. Improved Lower Bound for Frankl’s Union-Closed

Sets Conjecture. Available at arXiv:2211.11731, 2022.
2 A. Belovs and E. Blais. A polynomial lower bound for testing monotonicity. In Proceedings of

the 48th ACM Symposium on Theory of Computing, 2016.
3 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d) · polylog n Monotonicity

Tester for Boolean Functions over the Hypergrid [n]d . In Artur Czumaj, editor, Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 2133–2151. SIAM, 2018.

ITCS 2024

https://arxiv.org/pdf/2211.11731.pdf

33:22 Testing Intersecting and Union-Closed Families

4 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain Reduction for Monotonicity
Testing: A o(d) Tester for Boolean Functions in d-Dimensions. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1975–1994. SIAM, 2020.

5 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Directed Isoperimetric Theorems
for Boolean Functions on the Hypergrid and an Õ(n

√
d) Monotonicity Tester. In Proceedings

of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 233–241. ACM, 2023.

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47:549–595, 1993. Earlier
version in STOC’90.

7 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(84):929–965, October 1989.

8 Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonicity
testers via hypercube embeddings. In 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume
251 of LIPIcs, pages 25:1–25:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

9 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Comb., 32(1):35–53, 2012.

10 Henning Bruhn and Oliver Schaudt. The journey of the union-closed conjecture. Graphs and
Combinatorics, 31:2043–2074, 2015. doi:10.1007/s00373-014-1515-0.

11 Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions
over the hypercube. In Proceedings of the 45th ACM Symposium on Theory of Computing,
pages 411–418, 2013.

12 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz
testing over hypercubes and hypergrids. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419–428. ACM, 2013.

13 Deeparnab Chakrabarty and C. Seshadhri. Adaptive boolean monotonicity testing in total
influence time. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 20:1–20:7.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

14 Gilad Chase, Yuval Filmus, Dor Minzer, Elchanan Mossel, and Nitin Saurabh. Approximate
polymorphisms. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages
195–202. ACM, 2022.

15 Zachary Chase and Shachar Lovett. Approximate union closed conjecture. Available at
arXiv:2211.11689, 2022.

16 Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Mildly exponential
lower bounds on tolerant testers for monotonicity, unateness, and juntas. SODA 2024, To
appear, 2024. doi:10.48550/arXiv.2309.12513.

17 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean Function Monotonicity
Testing Requires (Almost) n1/2 Non-adaptive Queries. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 519–528, 2015.

18 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for testing
monotonicity. In Proceedings of the 55th IEEE Symposium on Foundations of Computer
Science, pages 286–295, 2014.

19 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds
for testing monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 523–536, 2017.

20 Irit Dinur and Ehud Friedgut. Intersecting families are essentially contained in juntas. Combin-
atorics, Probability and Computing, 18(1-2):107–122, 2009. doi:10.1017/S0963548308009309.

https://doi.org/10.1007/s00373-014-1515-0
https://arxiv.org/abs/2211.11689
https://doi.org/10.48550/arXiv.2309.12513
https://doi.org/10.1017/S0963548308009309

X. Chen, A. De, Y. Li, S. Nadimpalli, and R. A. Servedio 33:23

21 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonocity. In Proceedings of RANDOM,
pages 97–108, 1999.

22 D. Ellis, N. Keller, and N. Lifshitz. Stability versions of Erdös-Ko-Rado type theorems, via
isoperimetry. J. Eur. Math. Soc, 21:3857–3902, 2019.

23 David Ellis. Intersection Problems in Extremal Combinatorics: Theorems, Techniques and
Questions Old and New, pages 115–173. Cambridge University Press, 2022.

24 P. Erdös, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math.
Oxford (Series 2), 12:313–320, 1961.

25 Yuval Filmus, Noam Lifshitz, Dor Minzer, and Elchanan Mossel. AND testing and robust
judgement aggregation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
222–233. ACM, 2020.

26 E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proc. 34th Annual ACM Symposium on
the Theory of Computing, pages 474–483, 2002.

27 Pt́er Frankl. Extremal set systems. In Handbook of combinatorics, pages 2:1293–1329, 1995.
28 E. Friedgut. On the measure of intersecting families, uniqueness and stability. Combinatorica,

28:503–528, 2008.
29 Justin Gilmer. A constant lower bound for the union-closed sets conjecture. Available at

arXiv:2211.09055, 2022.
30 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing

monotonicity. Combinatorica, 20(3):301–337, 2000.
31 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. Journal of the ACM, 45:653–750, 1998.
32 S. Halevy and E. Kushilevitz. Distribution-Free Property Testing. SIAM J. Comput.,

37(4):1107–1138, 2007.
33 Daniel M. Kane. A monotone function given by a low-depth decision tree that is not an

approximate junta. Theory Comput., 9:587–592, 2013.
34 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-

type theorems. SIAM J. Comput., 47(6):2238–2276, 2018.
35 Philip N. Klein and Neal E. Young. On the number of iterations for dantzig-wolfe optimization

and packing-covering approximation algorithms. SIAM J. Comput., 44(4):1154–1172, 2015.
doi:10.1137/12087222X.

36 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing halfspaces.
SIAM Journal on Computing, 39(5):2004–2047, 2010.

37 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating
the distance to monotonicity of boolean functions. Random Struct. Algorithms, 60(2):233–260,
2022.

38 M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae. SIAM J. Disc.
Math., 16:20–46, 2002. URL: https://citeseer.ifi.unizh.ch/parnas02testing.html.

39 Luke Pebody. Extension of a Method of Gilmer. Available at arXiv:2211.13139, 2022.
40 Will Sawin. An improved lower bound for the union-closed set conjecture. Available at

arXiv:2211.11504, 2022.
41 M. Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243–

258, 1996.
42 A. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc.

Seventeenth Annual Symposium on Foundations of Computer Science (STOC), pages 222–227,
1977.

ITCS 2024

https://arxiv.org/abs/2211.09055
https://doi.org/10.1137/12087222X
https://citeseer.ifi.unizh.ch/parnas02testing.html
https://arxiv.org/abs/2211.13139
https://arxiv.org/abs/2211.11504

	1 Introduction
	1.1 Main Results
	1.2 Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Lower Bounds for Testing Algorithms
	2.2 Talagrand's Random DNF

	3 Lower Bounds for Testing Intersecting Families
	3.1 Indistinguishability of D_{yes} and D_{no}
	3.2 A 2^{Omega(sqrt{n log(1/epsilon)})} Lower Bound for One-Sided Non-adaptive Testers of Intersectingness

	4 Lower bounds for Testing Union-Closed Families
	4.1 The D_{yes} and D_{no} Distributions
	4.2 Indistinguishability of the Hard Distributions

