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Abstract
Parallel repetition refers to a set of valuable techniques used to reduce soundness error of probabilistic
proofs while saving on certain efficiency measures. Parallel repetition has been studied for interactive
proofs (IPs) and multi-prover interactive proofs (MIPs). In this paper we initiate the study of
parallel repetition for probabilistically checkable proofs (PCPs).

We show that, perhaps surprisingly, parallel repetition of a PCP can increase soundness error,
in fact bringing the soundness error to one as the number of repetitions tends to infinity. This
“failure” of parallel repetition is common: we find that it occurs for a wide class of natural PCPs for
NP-complete languages. We explain this unexpected phenomenon by providing a characterization
result: the parallel repetition of a PCP brings the soundness error to zero if and only if a certain “MIP
projection” of the PCP has soundness error strictly less than one. We show that our characterization
is tight via a suitable example. Moreover, for those cases where parallel repetition of a PCP does
bring the soundness error to zero, the aforementioned connection to MIPs offers preliminary results
on the rate of decay of the soundness error.

Finally, we propose a simple variant of parallel repetition, called consistent parallel repetition
(CPR), which has the same randomness complexity and query complexity as the plain variant of
parallel repetition. We show that CPR brings the soundness error to zero for every PCP (with
non-trivial soundness error). In fact, we show that CPR decreases the soundness error at an
exponential rate in the repetition parameter.
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1 Introduction

Probabilistic proofs play a fundamental role in theoretical computer science, and are invaluable
tools in cryptography, facilitating applications such as delegation of computation, zero
knowledge proofs, and more. Probabilistic proofs comprise notions such as interactive proofs
(IPs), multi-prover interactive proofs (MIPs), probabilistically checkable proofs (PCPs), and
others. A central goal in this area is constructing probabilistic proofs with small soundness
error (the maximum probability that any prover convinces the verifier to accept an instance
that is not in the language).
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34:2 On Parallel Repetition of PCPs

Parallel repetition. Parallel repetition is a class of ideas aimed at reducing soundness error
without increasing key efficiency measures such as round complexity or query complexity.
Parallel repetition has been defined and studied for IPs and MIPs, as we review in more
detail in Section 1.2.

Parallel repetition for IPs is straightforward: the t-wise parallel repetition of an IP with
soundness error β is a new IP, with the same round complexity, whose soundness error
is βt.
Parallel repetition for MIPs is less understood. The t-wise parallel repetition of a 1-round
MIP with soundness error β < 1 is a new 1-round MIP, with the same number of provers,
whose soundness error βt tends to 0 as t tends to infinity. In special cases (e.g., 2 provers),
we know that βt decays exponentially in t (with certain dependencies on the MIP). The
rate of decay in the general case is a major open problem.

Parallel repetition underlies many results in hardness of approximation, which rely on custom-
made PCP constructions in which one of the steps is to apply Raz’s Theorem on parallel
repetition for MIPs [15].1

Parallel repetition for PCPs. In this paper we study parallel repetition for PCPs.
A PCP for a language L is a proof system where a verifier V, given as input an instance

x and given oracle access to a string π : [l] → Σ, probabilistically queries a few locations of π

and then decides whether to accept or reject. The soundness error β of the PCP verifier V
is a function that, given any instance x ̸∈ L, outputs (an upper bound on) the maximum
acceptance probability of V(x) across all strings π : [l] → Σ.

For t ∈ N, the t-wise parallel repetition of the PCP verifier V is a PCP verifier Vt that
receives as input an instance x and oracle access to a string Π: [l]t → Σt, and works as
follows.

VΠ
t (x): For every i ∈ [t], sample fresh randomness ρi for V and deduce the queries

(qi,j)j∈[q] that V(x; ρi) makes. For every j ∈ [q], query Π at location (qi,j)i∈[t] ∈ [l]t
to obtain an answer (ai,j)i∈[t] ∈ Σt. For every i ∈ [t], check that V(x; ρi) accepts
given query answers (ai,j)j∈[q].

The above definition is folklore (e.g., see [3]). The basic question that we study in this
paper is:

If V has soundness error β then what is the soundness error βt of Vt?

Surprisingly, the effect of parallel repetition for PCPs on soundness error has not been studied
so far. It may be natural to guess that parallel repetition for PCPs works similarly as for
MIPs: the soundness error tends to zero as the number of repetitions tends to infinity and,
in some cases (say, 2-query PCPs), one can show that the rate of decay is exponential (with
the rate depending in some way on the PCP).

In this paper we initiate a systematic study of parallel repetition for PCPs, and show that
the above natural guess is incorrect: parallel repetition for PCPs fails to work in many cases
and, in contrast, a variant of parallel repetition that we introduce always works. Overall,
our work contributes an initial set of results on a basic question about probabilistic proofs,
which we believe merits further study due to its fundamental nature.

1 Roughly, a common recipe is to transform the PCP obtained from the PCP Theorem into an MIP, then
apply parallel repetition for MIPs, then transform the resulting MIP back into a PCP (with certain
special properties), and then perform further optimizations/customizations to establish the desired
hardness of approximation result.
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1.1 Our results
Our first result shows that, in the general case, parallel repetition of a PCP does not work
as expected: there is a 2-query PCP (with non-trivial soundness error) for which parallel
repetition increases soundness error.

▶ Theorem 1 (informal). There exists a 2-query PCP for an NP-complete language L with
soundness error β < 1 such that the soundness error βt of its t-wise parallel repetition tends
to 1:

for every x ̸∈ L, lim
t→∞

βt(x) = 1 .

In fact, for infinitely many x ̸∈ L, βt+1(x) > βt(x) for every t ∈ N (where β1(x) := β(x)).

Counter to intuition, Theorem 1 refutes the sensible conjecture that β(x)t ≤ βt(x) ≤ β(x).
This is in sharp contrast to the case of MIPs, where this basic relationship does hold for
parallel repetition of MIPs.

Moreover, the PCP underlying Theorem 1 is not contrived: it is the “canonical” PCP for
graph 3-coloring where the PCP string is the 3-color assignment for the given graph and
the PCP verifier checks the colors of the two vertices of a random edge of the graph. Hence
Theorem 1 tells us that, for every graph that is not 3-colorable, applying parallel repetition
to this canonical PCP leads to soundness error 1 in the limit! This includes graphs that
are far from being 3-colorable and, in particular, also those graphs generated by the PCP
Theorem (for which the soundness error β of the canonical PCP is a constant bounded away
from 1).

The failure of parallel repetition for PCPs is rather common. We show that it occurs for
a wide class of PCPs for constraint satisfaction problems (CSPs).2 We associate to any given
CSP a corresponding “canonical” PCP: the PCP string is the assignment to the variables of
the CSP, and the PCP verifier samples a random constraint of the CSP and checks if it is
satisfied (by reading from the PCP string the variables involved in that constraint). We prove
that parallel repetition fails for the canonical PCP of any symmetric CSP (informally, a CSP
where every constraint “looks the same”); the class of symmetric CSPs includes well-known
NP-complete problems such as graph 3-coloring (as above), independent set, clique, and
others.

▶ Lemma 2 (informal). Let PCP be the canonical PCP for a symmetric CSP. If the CSP
is not satisfiable (for every assignment to the variables there is at least one constraint that
is not satisfied by the assignment), then, letting βt be the soundness error for the t-wise
repetition of PCP (and β1 := β), it holds that

∀ t ∈ N , βt+1 ≥ βt and β > 0 =⇒ lim
t→∞

βt > 0 .

(If β = 0 then it is straightforward to see that βt = 0 for every t ∈ N.)

Lemma 2 does not extend to non-symmetric CSPs. One can construct a non-symmetric
instance of 3Sat (an example of a CSP) whose canonical PCP satisfies β > 0 and
limt→∞ βt = 0.

2 A constraint satisfaction problem (CSP) is a list of constraints over a list of variables. Each constraint
is a predicate over some of the variables. The CSP is satisfiable if there exists an assignment of the
variables that satisfies all constraints simultaneously.

ITCS 2024
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Since parallel repetition for PCPs does not always work, next we ask: when does it work?
We identify a criterion that characterizes when parallel repetition reduces soundness error
of a PCP to zero (in the limit). Briefly, we associate with each PCP a corresponding MIP,
which we call its MIP projection.

▶ Definition 3 (informal). The MIP projection of a PCP verifier V is an MIP verifier
V that works as follows: sample randomness ρ for V and deduce the queries (qj)j∈[q] that
V(x; ρ) makes; then, for every j ∈ [q], send qj to the j-th prover to obtain an answer bj;
finally, check that V(x; ρ) accepts given the answers (bj)j∈[q].

The number of provers in the MIP projection of a PCP equals the number of queries of
the PCP, and the MIP projection has no consistency checks. This is unlike the well-known
q-query PCP to 2-prover MIP transformation, where all queries are sent to one prover and
one of the queries at random is sent to the other prover, for consistency. The soundness
error of the MIP projection is at least the soundness error of the PCP, and it can be strictly
larger. Our result is that the soundness error of the MIP projection tells us precisely when
parallel repetition of a PCP works: parallel repetition of a PCP drives soundness error to
zero if and only if the MIP projection has non-trivial soundness error.

▶ Theorem 4 (informal). Consider a PCP for a language L, and let βt be the soundness
error of the t-wise parallel repetition of the PCP. Letting βMIP be the soundness error of the
MIP projection of the PCP,

for every x ̸∈ L, lim
t→∞

βt(x) = 0 ⇐⇒ βMIP(x) < 1 .

Theorem 4 helps us interpret Theorem 1: the PCP in Theorem 1 is such that its MIP
projection has soundness error 1, and therefore parallel repetition does not drive the soundness
error to 0. In fact, for that example, the limit achieved in Theorem 1 is 1 (not just some
constant greater than 0). Theorem 4 also explains the aforementioned 3Sat example: the
canonical PCP for that 3Sat instance has an MIP projection with soundness error less
than 1, so parallel repetition of that PCP works just fine.

More generally, our characterization is essentially tight in the following sense: if βMIP(x) =
1 then our analysis shows that limt→∞ βt(x) ∈ [1/2vr, 1], where vr is the randomness com-
plexity of the given (non-repeated) PCP verifier; and we show that there exists a PCP for
which (on infinitely many instances not in the language) parallel repetition leads, in the
limit, to soundness error 1/2vr.

Rate of decay for parallel repetition. The above results (Theorem 1, Lemma 2, Theorem 4)
consider the limiting behavior of the soundness error of the parallel repetition of a PCP. Next
we study the rate of decay: when parallel repetition drives the soundness error of a PCP to
zero in the limit, at what rate does soundness error decrease (as the number of repetitions
increases)?

Our proof of Theorem 4 (which we outline in Section 2.2) tells us that the rate of decay
of parallel repetition for a PCP is upper bounded by the rate of decay of parallel repetition
for the corresponding MIP projection. In particular, we can use known results on the rate of
decay of parallel repetition for MIPs ([9, 15, 7, 8, 12, 14, 16, 1, 17]), if applicable to the MIP
projection.

We additionally prove that, in general, we cannot hope for a rate of decay that is better
than for the MIP projection of the PCP: if a PCP is an “evaluation of an MIP”, parallel
repetition of the PCP decreases soundness error at the same rate as parallel repetition of its
MIP projection. Understanding the rate of decay of parallel repetition for PCPs in general
(when parallel repetition does work), remains an open problem.
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▶ Definition 5 (informal). Let MIP = ((Pi)i∈[k], V) be a (one-round) k-prover MIP. The
PCP evaluation of the MIP verifier V is a PCP verifier V that works as follows: sample
randomness ρ for V and deduce the messages (aj)j∈[k] that V(x; ρ) sends to the MIP provers;
then, for every j ∈ [k], query the PCP string at (j, aj) to obtain answers bj; finally, check
that V(x, ρ, (bj)j∈[k]) = 1.

▶ Lemma 6 (informal). Consider the PCP evaluation of an MIP for a language L with
soundness error less than 1. Let βt be the soundness error of the t-wise parallel repetition of
the PCP. Let βMIP,t be the soundness error of the t-wise parallel repetition of the MIP. Then

for every x ̸∈ L and t ∈ N, βt(x) = βMIP,t(x) < 1 .

A variant that always works. Finally, we identify a natural variant of parallel repetition
for PCPs that we can prove always works, in the sense that the soundness error tends to
zero for every PCP (with non-trivial soundness error). The definition below adds a natural
consistency test across repetitions within the repeated verifier, which incurs no additional
randomness or queries.

▶ Definition 7 (informal). The consistent parallel repetition of a PCP verifier V is a
new PCP verifier V̂t that works the same as a parallel repetition verifier and, in addition, it
checks that any duplicate queries across different repetitions are answered consistently.

▶ Theorem 8 (informal). Consider a PCP for a language L with soundness error β < 1, and
let β̂t be the soundness error for the t-wise consistent parallel repetition of the PCP. Then

for every x ̸∈ L, β̂t(x) ≤ Ox(1) · β(x)t ,

where Ox(1) hides a constant determined by the PCP and x (and independent of t).

In particular, Theorem 8 implies that

for every x ̸∈ L, β(x) < 1 =⇒ lim
t→∞

β̂t(x) = 0 .

Note that, in contrast to the case of parallel repetition of MIPs, the rate of decay in Theorem 8
achieves the desired exponential decay up to a leading multiplicative constant (not in the
exponent).

Theorem 8 enables the application of (consistent) parallel repetition in new regimes. For
example consider the case of a PCP with constant soundness error β and super-constant
query complexity q = ω(1). Converting such a PCP into a 2-prover MIP via a standard
transformation leads to a large soundness error 1 − 1−β

q = 1 − o(1), which makes the use of
parallel repetition for MIPs too expensive in this case (Footnote 1). Instead, our work shows
that one can directly use parallel repetition for PCPs to reduce the soundness error β to an
arbitrary constant while preserving the query complexity q.

Open questions. Our work motivates basic questions about parallel repetition for PCPs.
1. What is the necessary and sufficient condition for parallel repetition to increase the

soundness error? Theorem 1 gives examples for which parallel repetition increases the
soundness error. Perhaps one could prove a more fine-grained version of Theorem 4 to
also characterize when parallel repetition increases the soundness error.

ITCS 2024
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2. When parallel repetition works for a given PCP (equivalently, the PCP’s MIP projection
has non-trivial soundness error), what is the rate of decay? We know that the rate of
decay is no worse than that for parallel repetition of the MIP projection, and sometimes
it equals that. But perhaps one could say more (e.g., via a direct analysis of the rate of
decay, without invoking facts about the rate of decay for MIPs).

3. Can the rate of decay for consistent parallel repetition in Theorem 8 be improved? The
hidden constant achieved in our analysis is large, and we suspect that it can be improved.
Or perhaps a different analysis may establish an alternative expression for the rate of
decay that is better for smaller values of t.

1.2 Related work

Parallel repetition for PCPs is a folklore definition but it has not been studied.3 Below we
summarize prior work on parallel repetition for IPs and MIPs, and also explain how direct
product testing considers a distinct question. Separately, parallel repetition is also studied in
a cryptographic context (e.g. for interactive arguments); we do not discuss this line of work
since our setting is information-theoretic.

Parallel repetition for IPs. An interactive proof (IP) is a protocol where a prover and a
verifier exchange messages and after that the verifier outputs a decision bit denoting whether
to accept or reject; both prover and verifier are probabilistic algorithms. The t-wise repetition
of an IP is a new IP where the prover and verifier run, simultaneously and in lockstep, t

independent executions of the given IP. One can show that if no prover can convince the
verifier to accept with probability greater than β then no prover can convince the repeated
verifier to accept with probability greater than βt. The proof for this statement is delicate
(e.g., see [10, Appendix C.1]), but otherwise parallel repetition for IPs is straightforward.

Parallel repetition for MIPs. A multi-prover interactive proof (MIP) is a protocol where
multiple provers exchange messages with a single verifier and after that the verifier outputs a
decision bit denoting whether to accept or reject; the provers are allowed to share randomness
but otherwise are not allowed to communicate during the interaction. The t-wise repetition
of an MIP is similarly defined to the case of an IP: it is a new MIP where the prover and
verifier run, simultaneously and in lockstep, t independent executions of the given MIP (with
the same provers). Parallel repetition for MIPs has been studied in a line of work leading to
notable progress, but a comprehensive understanding remains a challenging open problem.

Briefly, parallel repetition of any MIP decreases the soundness error to zero as the number
of repetitions tends to infinity (provided that the initial soundness error is strictly less than 1)
[18]; however the analysis only shows a slow rate of decay. The rate of decay is known to not
be βt [9]; in fact, sometimes parallel repetition yields a soundness error that is exponentially
larger than the “ideal” βt [7, 8, 16]. That said, parallel repetition of 2-prover MIPs (with
non-trivial soundness error) does decrease soundness error exponentially fast, at a rate that
depends on certain aspects of the MIP [15]; the rate of decay is studied and optimized in a
line of works [12, 14, 1, 17].

3 Parallel repetition for PCPs is occasionally mentioned in the literature (e.g., see [3]) but only informally,
and giving the impression that it behaves the same as parallel repetition for MIPs. Our results show
that this is not the case.
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Direct product tests. A direct product test is a proximity test for the set of functions that
can be expressed as tensors of another function: for a given t ∈ N, all functions Π: [l]t → Σt

for which there exists π : [l] → Σ such that Π = ((π[q1], . . . , π[qt]))(q1,...,qt)∈[l]t . Introduced
in [11], direct product tests are useful in PCP constructions, and they have been studied in
a line of works [5, 6, 2, 13, 4].

Parallel repetition and direct product tests are different notions, and in some applications
direct product tests and parallel repetition are used in combination: either the function is
far from a tensor, in which case the direct product test accepts with small probability; or
the function is close to a tensor, in which case parallel repetition needs to “work” only for
functions that are close to a tensor (a much weaker goal).

2 Techniques

We summarize the main ideas behind our results. Each subsection below outlines the ideas
contained in the corresponding technical section.

2.1 Parallel repetition for PCPs does not always work
We comment on the proof of Theorem 1.

Consider the NP-complete language graph 3-coloring, which consists of graphs G = (V, E)
whose vertices can be labeled via colors in {0, 1, 2} such that every edge in the graph has
vertices labeled with different colors. Moreover, consider a simple PCP for this language:

A PCP string π : V → {0, 1, 2} is a coloring of the vertices of the given graph G.
The PCP verifier, given the graph G, samples a random edge {u, v} of the graph G and
checks that π[u] ̸= π[v] (by querying π at locations u and v). We assume that the edge
is sampled so that u < v according to, e.g., a lexicographic order on the vertices of the
graph G.

If G is 3-colorable then setting π to any 3-coloring of G makes the PCP verifier accept with
probability 1. If G is not 3-colorable then, for every PCP string π, the probability that the
PCP verifier accepts π is at most |E|−1

|E| (at least one edge is not satisfied in any coloring);
in fact, the probability is at most val(G), the maximum fraction of valid edges across any
coloring of G (which can be less than |E|−1

|E| ).

The soundness error tends to 1. For every graph G that is not 3-colorable, the soundness
error of the parallel repetition of the above PCP tends to 1.

Consider for example the 2-wise parallel repetition. We argue that there is a PCP
string Π̃2 : V 2 → {0, 1, 2}2 that convinces the 2-wise repeated PCP verifier to accept with
probability at least 1 −

(
|E|−1

|E|

)2
.

For every query (q1, q2) ∈ V 2, set Π̃2[(q1, q2)] to be (0, 0) if q1 or q2 is the smallest non-
isolated vertex in G (with respect to the lexicographic order of V ) and (1, 1) otherwise. (A
smallest non-isolated vertex always exists because G is not 3-colorable.) Let Q1 = (q1,1, q1,2)
and Q2 = (q2,1, q2,2) be the two queries of V2. By construction of V, we know that q1,1 < q2,1
and q1,2 < q2,2. Hence at least one of Π̃2[Q1] and Π̃2[Q2] is (1, 1). Thus V2 rejects if and
only if both Π̃2[Q1] and Π̃2[Q2] are (1, 1), which happens only when V2 queries an edge
that is not adjacent to the smallest non-isolated vertex in both repetitions, which in turn
happens with probability at most

(
|E|−1

|E|

)2
.

ITCS 2024
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In Figure 1 we give an example of Π̃2 for the 4-clique graph K4, which is not 3-colorable.
The smallest non-isolated vertex is v1. Thus, in Π̃2 only query pairs that include v1 have the
answer (0, 0), and all other queries are answered with (1, 1); see Table 1. As long as one of
q1,1 and q1,2 is v1, V2 accepts because it receives the answers (0, 0) and (1, 1).

v1 v2

v3 v4

Figure 1 The 4-clique graph K4.

Table 1 The PCP string Π̃2 for the 4-clique graph.

q1

q2
v1 v2 v3 v4

v1 (0, 0) (0, 0) (0, 0) (0, 0)
v2 (0, 0) (1, 1) (1, 1) (1, 1)
v3 (0, 0) (1, 1) (1, 1) (1, 1)
v4 (0, 0) (1, 1) (1, 1) (1, 1)

The above idea extends to the case of t-wise parallel repetition, where there is a PCP
string Π̃t : V t → {0, 1, 2}t that convinces the t-wise repeated PCP verifier to accept with
probability at least 1 −

(
|E|−1

|E|

)t

.
We conclude that, for every graph x = G that is not 3-colorable, limt→∞ βt(x) = 1.

The soundness error strictly increases. Next we outline how we show that βt+1(x) > βt(x)
for infinitely many graphs x = G that are not 3-colorable.

First we explain why β2(K4) > β1(K4) = β(K4) for the 4-clique graph K4 = (V, E)
(which is not 3-colorable). Let n := |V | = 4 and m := |E| = 6. Consider the coloring
χ := {(v1, 0), (v2, 1), (v3, 2), (v4, 2)} for K4, shown in Figure 2. The coloring χ is a 3-coloring
of K ′

4 := (V, E \ {{v3, v4}}). Define Π̃2 to be ((min{χ(u), χ(v)}, min{χ(u), χ(v)}))(u,v)∈V 2

(see Table 2). Let Q1 = (q1,1, q1,2) and Q2 = (q2,1, q2,2) be the two queries made by
V2. By construction of V, q1,1 < q2,1 and q1,2 < q2,2. Therefore, min{χ(q1,1), χ(q2,1)} ≤
min{χ(q2,1), χ(q2,2)} by definition of χ. Note that V2 rejects only when q1,1 = q1,2 = v3 and
q2,1 = q2,2 = v4 (which implies min{χ(q1,1), χ(q2,1)} = min{χ(q2,1), χ(q2,2)}). Therefore, we
deduce that β2(K4) ≥ 1 − 1/m2 = 35/36. Since β1(K4) ≤ 1 − 1/m = 5/6, we conclude that
β2(K4) > β1(K4).

v1 v2

v3 v4

Figure 2 The 4-clique graph colored by χ.

Table 2 The PCP string Π̃2 for the 4-clique
graph.

q1

q2
v1 v2 v3 v4

v1 (0, 0) (0, 0) (0, 0) (0, 0)
v2 (0, 0) (1, 1) (1, 1) (1, 1)
v3 (0, 0) (1, 1) (2, 2) (2, 2)
v4 (0, 0) (1, 1) (2, 2) (2, 2)

More generally, via similar ideas, for every m ∈ N with m ≥ 6, we construct a graph G

such that βt(G) = 1 − 1/mt for every t ∈ N, concluding the first part of Theorem 1. The
graph G consists of a 4-clique and m − 6 connected components of size 2; this amounts to
4 + 2 · (m − 6) = 2m − 8 vertices and 6 + (m − 6) = m edges (a 4-clique has 6 edges).



A. Chiesa, Z. Guan, and B. Yıldız 34:9

We sketch why βt(G) ≥ 1 − 1/mt. While the graph G is not 3-colorable (it contains a
4-clique), deleting one edge from the 4-clique makes the new graph G′ 3-colorable. In
particular, possibly after renaming the vertices, we obtain a 3-coloring χ such that:

1. for every u, v ∈ V such that u < v, χ(u) ≤ χ(v); and
2. the size of the set S := {{u, v} ∈ (E \ {vn−1, vn}) : χ(u) = χ(v)} is minimized.
The rest of the argument is analogous to the case of the 4-clique graph.
We argue that βt(G) < 1 for every t, which implies that βt(G) ≤ 1 − 1/mt because the
number of random choices for Vt is mt (as each repetition of the verifier V samples one
out of m edges). This follows from the (general) fact that, for every PCP = (P, V) and
instance x, βt(x) = 1 implies that β(x) = 1.
Indeed, suppose by way of contradiction that βt(x) = 1. Let Π̃t be a PCP string for the
t-wise repetition such that VΠ̃t

t (x) always accepts. Define the PCP string π̃ := (Π̃t[it])i∈[l]

for V. For every randomness ρ for V, VΠ̃t
t (x; ρt) queries (qi)t for every i ∈ [q] where

(q1, . . . , qq) is the query list of Vπ̃(x; ρ). Thus, for every randomness ρ for V, Vπ̃(x; ρ) = 1
because VΠ̃t

t (x; ρt) = 1, which implies that β(x) = 1.

2.2 When does parallel repetition for PCPs work?
We comment on the proof of Theorem 4, which characterizes the limiting behavior of parallel
repetition of a PCP in terms of the soundness error of its MIP projection.

It is straightforward to show that the soundness error of the MIP projection of a PCP is
at least the soundness error of the PCP. Hence, if the PCP has soundness error 1 then its
MIP projection has soundness error 1. On the other hand, if the PCP has soundness error
less than 1, then its MIP projection may or may not have soundness error less than 1. For
example, the PCP for graph 3-coloring described above has soundness error less than 1 but
its MIP projection has soundness error 1 (the first MIP prover always answers color 0 and
the second MIP prover always answers color 1, regardless of the messages sent by the MIP
verifier).

A key property is that performing an MIP projection and performing parallel repetition
“commute”: given a PCP, the MIP projection of the parallel repetition of the PCP is the
same as the parallel repetition of the MIP projection of the PCP.

The MIP projection has soundness error < 1. Suppose that the MIP projection of the
PCP has soundness error less than 1. Recall that parallel repetition of an MIP with soundness
error less than 1 drives the soundness error to 0 [18]. Therefore, for every PCP whose MIP
projection has soundness error less than 1, parallel repetition of the MIP projection drives
soundness error to 0. Hence, the MIP projection of the parallel repetition of the PCP also
has soundness error that tends to 0, which is an upper bound on the soundness error of the
parallel repetition of the PCP.

The MIP projection has soundness error = 1. Conversely, for a given instance x ̸∈ L,
suppose that the MIP projection has soundness error 1 (i.e., it has no soundness at all). Let
(P̃i)i∈[q] be optimal malicious provers for the MIP projection. Let vr be the randomness
complexity of the (non-repeated) PCP verifier V. For every t > 1, we construct a PCP string
Π̃t that convinces the t-wise parallel repeated PCP verifier Vt to accept x with probability
at least 1/2vr (a lower bound independent of t).

An initial guess would be to construct a PCP string Π̃t for the repeated PCP verifier Vt

as follows.
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1. Initialize a repeated PCP string Π̃t to be a string with an arbitrary symbol everywhere.
2. For every possible randomness choice ρ = (ρ1, . . . , ρt) of the repeated PCP verifier Vt:

a. Compute the query list Q, where for every i ∈ [q], Q[i] is a t-tuple such that Q[i][j] is
the i-th query made by the PCP verifier V given instance x and randomness ρj .

b. For every i ∈ [q] and j ∈ [t], compute the answer ansi,j := P̃i(x, Q[i][j]) to the query
Q[i][j].

c. For every i ∈ [q], set Π̃t[Q[i]] := (ansi,j)j∈t.
It is tempting to conclude that Π̃t convinces the repeated PCP verifier with probability 1
because (P̃i)i∈[q] convince the MIP projection verifier with probability 1. However, this is
not true as we now explain.

We say that two (not necessarily distinct) randomness choices ρ1 and ρ2 are incompatible
if there exist distinct i, j ∈ [q] such that Q1[i] = Q2[j], where Q1, Q2 are the query lists of
the repeated PCP verifier Vt when given instance x and randomness ρ1, ρ2, respectively.

Intuitively, constructing a PCP string Π̃t by considering answers from the MIP provers
across incompatible randomness choices may lead to distinct answers for the same location
in Π̃t, which hinders arguing that the repeated verifier Vt would accept on both randomness
choices.

Consider the following example. Let ρ1, ρ2, ρ3 be three distinct randomness choices
for a 2-query PCP verifier. Let Q1 := (1, 2), Q2 := (2, 3), Q3 := (4, 1) be the query lists
corresponding to ρ1, ρ2, ρ3. For the 2-wise parallel repeated PCP verifier, the randomness
choice ρ1 := (ρ1, ρ2) has query list Q1 := ((1, 2), (2, 3)) and the randomness choice ρ2 :=
(ρ3, ρ1) has query list Q2 := ((4, 1), (1, 2)). Note that ρ1 and ρ2 are incompatible because
Q1[1] = Q2[2]. In particular, in the construction of Π̃t outlined above, P̃1 separately gives
some answers to query 1 and query 2, and P̃2 may separately give different answers to query
1 and query 2. Hence we do not have a single value that we can assign to entry (1, 2) in
Π̃t, so we cannot conclude that the 2-wise parallel repeated PCP verifier V2 accepts on ρ1
and ρ2.

One subtlety we neglect in the above discussion is: what happens if Q1[i] = Q2[i] for
some i ∈ [q]? For any query list Q of the repeated PCP verifier, the i-th query Q[i] is
answered by the i-th MIP prover P̃i as in the construction above. Therefore, Q1[i] = Q2[i]
does not lead to clashing answers in the PCP string Π̃t.

To avoid incompatibility, we find a “large” set S of randomness for the repeated PCP
verifier such that S does not contain incompatible randomness choices. Let S be the set
of repeated verifier randomness where the randomness for the last repetition is fixed to be
some arbitrary string ρ∗ ∈ {0, 1}vr. Consider any ρ1, ρ2 ∈ S and any distinct i, j ∈ [q]. Let
Q1, Q2 be the query lists of Vt corresponding to ρ1, ρ2. Since the PCP verifier V does not
make duplicate queries (within the same query list), we know that Q1[i][t] ̸= Q2[j][t], and
therefore Q1[i] ̸= Q2[j]. Hence the set S does not contain incompatible randomness choices.

We construct a PCP string Π̃t similarly to the above procedure, by going over all
randomness choices in the set S. Since the MIP projection has soundness error 1, Π̃t

convinces the repeated PCP verifier with probability at least |S| /(2vr)t = 1/2vr, as desired.

2.3 Rate of decay of parallel repetition for PCPs
We sketch the proof of Lemma 6: if a PCP is the evaluation of an MIP (Definition 5) then
the rate of decay of parallel repetition for this PCP is the same as the rate of decay of
parallel repetition for the MIP. Let MIP be an MIP for a language L and let PCP be its PCP
evaluation. Below:

βMIP is the soundness error of MIP;
βMIP,t is the soundness error of the t-wise parallel repetition of MIP;
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β is the soundness error of PCP; and
βt is the soundness error of the t-wise parallel repetition of PCP.

Throughout, we fix an instance x /∈ L.

βMIP(x) < 1 implies βt(x) < 1. It is not hard to show that β(x) = βMIP(x) (any prover
strategy for MIP can be converted to an equally effective prover strategy for PCP, and vice
versa). Therefore, if βMIP(x) < 1 then β(x) < 1. In Section 2.1, we explained that βt(x) = 1
implies β(x) = 1. Hence we conclude that β(x) < 1 implies βt(x) < 1.

βt(x) ≤ βMIP,t(x). In Section 2.2 we mentioned that performing an MIP projection and
performing parallel repetition “commute”. In other words,

β′
MIP,t(x) = β′′

MIP,t(x)

where β′
MIP,t is the soundness error of the parallel repetition of the MIP projection of PCP

and β′′
MIP,t is the soundness error of the MIP projection of the parallel repetition of PCP.

Moreover, since the soundness error of the MIP projection of a PCP is at least the soundness
error of the PCP,

βt(x) ≤ β′′
MIP,t(x) .

On the other hand, performing an MIP projection and a PCP evaluation are “inverses”
of each other: MIP is essentially the same proof system as the MIP projection of PCP, up to
a minor syntactic difference in the verifier alphabet that does not affect the soundness error.
By Definition 3 and Definition 5, if MIP is a k-prover MIP with verifier alphabet ΣV , then
the MIP projection of PCP has verifier alphabet [k] × ΣV . This “almost equivalence” still
holds after parallel repetition, which implies that

βMIP,t(x) = β′
MIP,t(x) .

Therefore, we conclude that βt(x) ≤ β′′
MIP,t(x) = β′

MIP,t(x) = βMIP,t(x).

βt(x) ≥ βMIP,t(x). Consider malicious provers (P̃t,i)i∈[k] for the parallel repetition of MIP.
We construct a malicious proof string Π̃ for the parallel repetition of PCP such that, for
every verifier randomness ρ = (ρ1, . . . , ρt),

⟨(P̃t,i)i∈[k], Vt(x, ρ)⟩ = 1 =⇒ VΠ̃
t (x; ρ) = 1 ,

which implies that βt(x) ≥ βMIP,t(x) as desired.
For every i ∈ [k], Qi denotes the i-th query of Vt(x; ρ). Let Qj be the query list of the

verifier V(x; ρj) for PCP for every j ∈ [t]. By the definition of parallel repetition,

Qi = (Q1[i], . . . , Qt[i]), where Qj [i] = (i, V(x, ρj)[i]) for all j ∈ [t] .

By the definition of MIP projection, Vt(x, ρ) sends the message (V(x, ρj)[i])j∈[t] to the i-th
prover and receives bi := P̃t,i((V(x, ρj)[i])j∈[t]). Therefore, if VΠ̃

t (x; ρ) gets bi as answer for
its i-th query Qi, Vt(x, ρ, (bi)i∈[q]) = 1 implies VΠ̃

t (x; ρ) = 1.
With the above argument, we construct a malicious proof string Π̃ for the parallel

repetition of PCP:
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1. Initialize a repeated PCP string Π̃ to be a string with an arbitrary symbol everywhere.
2. For every possible query Q of the repeated PCP verifier Vt:

a. Parse Q as ((ij , aj))j∈t).
b. Set Π̃[Q] := P̃t,i1((aj)j∈t).

Observe that

Π̃[Qi] = P̃t,i((V(x, ρj)[i])j∈[t]) = bi .

Therefore, we conclude that if the parallel repeated MIP verifier Vt accepts, then the parallel
repeated PCP verifier Vt with oracle access to Π̃ also accepts.

2.4 Parallel repetition for the canonical PCP for CSPs
We discuss the proof of Lemma 2.

Fix a CSP instance x that is not satisfiable, which means that for every assignment to
the variables there exists (at least) one constraint that is not satisfied by the assignment.
This means that the canonical PCP for this CSP instance x has soundness error β(x) < 1,
because, no matter the PCP string, there is some probability that the PCP verifier checks a
constraint that is not satisfied by the PCP string.

Suppose that the CSP instance x is symmetric. In other words, consider two constraints,
C1 over variables X1 and C2 over variables X2 in x; any assignment to X1 that satisfies C1
directly induces an assignment to X2 that satisfies C2 (the i-th variable in X2 is assigned the
value of the i-th variable in X1). We outline why β(x) > 0 implies that limt→∞ βt(x) > 0,
that is, parallel repetition fails to reduce the soundness error to 0 in the limit.4 By our
Theorem 4, it suffices to argue that βMIP(x) = 1, namely, that the MIP projection of the
canonical PCP has soundness error 1 for the (unsatisfiable) CSP instance x. Since β(x) > 0,
there exist an assignment a and PCP verifier randomness ρ such that Va(x; ρ) = 1; let Sρ

be the locations of a queried by V with randomness ρ. Now consider the malicious MIP
provers (P̃i)i where each P̃i always answers with a[Sρ[i]] (we assume there is an implicit
ordering of elements in Sρ). Let V be the verifier for the MIP projection of the canonical
PCP. Since the x is symmetric, Va(x; ρ) = 1 implies V(x, ρMIP, (a[Sρ[i]])i) = 1 for every MIP
verifier randomness ρMIP.

Next we outline why βt+1(x) ≥ βt(x) (the first part of Lemma 2). This is rather counter-
intuitive: the (t + 1)-wise repetition should be harder to win compared to t-wise repetition.
However, because the CSP instance x is symmetric, we can design a PCP string Π̃t+1 for the
(t + 1)-wise repetition using a PCP string Π̃t for the t-wise repetition without decreasing the
winning probability. For simplicity, we outline the proof for β2(x) ≥ β1(x) = β(x), which
can be directly extended to work for every t ∈ N.

If β(x) = 0 then the claim holds trivially so assume that β(x) > 0, which means that
there exist a PCP string (i.e., an assignment) π̃ and PCP verifier randomness ρ such that
Vπ̃(x; ρ) = 1. Since the CSP instance x is symmetric, we can use the answers used for the
first PCP randomness ρ1 also for the second PCP randomness ρ2: we define Π̃2 by setting
Π̃2[(q1, q2)] := (π̃[q1], π̃[q1]) for every (q1, q2).

Let ρ = (ρ1, ρ2) be a randomness for V2 such that Vπ̃(x; ρ1) = 1. We know that
V(x; ρ1, π̃[q1], π̃[q2]) = 1 where q1 and q2 are the two queries made by V under randomness
ρ1. Since every constraint in x checks the same function, V(x; ρ, π̃[q1], π̃[q2]) = 1 for every
verifier randomness ρ. Hence VΠ̃2

2 (x; ρ) = 1.

4 If β(x) = 0 (no assignment satisfies any constraint) then one can show that βt(x) = 0 for every t ∈ N.
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There are at most β(x) · 2vr · 2vr choices of randomness ρ = (ρ1, ρ2) for V2 such that
Vπ̃(x; ρ1) = 1. Hence, we conclude that β2(x) ≥ β(x)·2vr·2vr

(2vr)2 = β(x).
We exemplify the above reasoning in the case of the canonical PCP (P, V) for graph

3-coloring. Fix a graph G that is not 3-colorable. Given any PCP string π̃ for the canonical
PCP, define Π̃2 := ((π̃[q1], π̃[q1]))(q1,q2). Fix a randomness ρ = (ρ1, ρ2). Let (q1,1, q1,2)
and (q2,1, q2,2) be the two queries of V2(G; ρ). Let (ans1,1, ans1,2) := Π̃2[(q1,1, q1,2)] and
(ans2,1, ans2,2) := Π̃2[(q2,1, q2,2)]. By construction of Π̃2, we know that ans1,1 = ans1,2 and
ans2,1 = ans2,2. Since the PCP verifier V for graph 3-coloring always checks whether the two
colors it gets are different, we know that V(G; ρ1, ans1,1, ans1,2) = V(G; ρ2, ans2,1, ans2,2).
Therefore, if ρ1 is an accepting randomness with respect to π̃, ρ is an accepting randomness
with respect to Π̃2. The same counting argument as above gives us the desired result.

2.5 Consistent parallel repetition always works

We discuss the proof of Theorem 8.
In Section 2.1 the malicious PCP string for the parallel repetition of the canonical PCP

for graph 3-coloring exploits inconsistent answers across different repetitions. If the repeated
PCP verifier were to check consistency of the answers to the same queries across repetitions,
then that PCP string would fail to convince the repeated PCP verifier with such high
probability.

This inspires the variant of parallel repetition for PCPs in Definition 7, where the repeated
PCP verifier additionally checks that any duplicate queries are answered consistently (which
means that the repeated PCP verifier no longer is the conjunction of independent “games”
as is usually the case in parallel repetition). Theorem 8 tells us that consistent parallel
repetition works for every PCP. Note that, in stark contrast, parallel repetition for MIPs
always works (brings the soundness error to zero if the MIP has non-trivial soundness error)
without the need for any consistency checks across repetitions [18].

In this overview we only briefly discuss the limiting behavior of consistent parallel
repetition: we outline why if a PCP has soundness error β(x) < 1 then limt→∞ β̂t(x) = 0,
where β̂t is the soundness error of the t-wise consistent parallel repetition of the PCP.

The winning set of a PCP string is the set of randomness strings that lead the PCP
verifier to accept. For the t-wise repeated PCP verifier, a choice of randomness is a list
ρ = (ρ1, . . . , ρt), where each ρi is a choice of randomness for the given PCP verifier.

We argue that, given a PCP string Π̃ for the repeated PCP verifier, for every ρ in the
winning set of Π̃, we can construct a malicious PCP string π̃ from Π̃ such that every ρi is in
the winning set of π̃.

The soundness error of the PCP gives an upper bound on the size of the winning set of
π̃. On the other hand, the maximum number of distinct elements for every ρ = (ρ1, . . . , ρt)
in the winning set of Π̃ is a lower bound on the size of winning set of π̃. By a counting
argument, we can deduce that if β(x) < 1 then the size of the winning set of Π̃ grows slower
than the size of the set of all repeated PCP verifier randomness choices. This enables us to
conclude that limt→∞ β̂t(x) = 0.
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