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Abstract
Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction
histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be
difficult or impossible to catch. We are interested in paradigms for fraud detection that are provably
robust against any adversary, no matter how sophisticated. In other words, the detection strategy
should rely on signals in the data that are inherent in the goals the adversary is trying to achieve.

Specifically, we consider a fraud detection game centered on a random walk on a graph. We
assume this random walk is implemented by having a player at each vertex, who can be honest or
not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds
to a uniformly random neighbor at the next timestep. However, when the random walk reaches a
dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary.

The game is played between the Adversary and a Referee who sees the trajectory of the random
walk. At any point during the random walk, if the Referee determines that a specific vertex is
controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The
Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes
such mistakes with small probability of error. The goal of the adversary is to make the cover time
large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following
basic question: how much can the omniscient Adversary delay the cover time without getting caught?
Our main result is a tight upper bound on this delay factor.

We also discuss possible applications of our results to settings such as Rotor Walks, Leader
Election, and Sybil Defense.
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1 Introduction

Many modern fraud detection efforts look for statistical features of data that do not fit a known
probabilistic model, or are intrinsically implausible or internally inconsistent. The Newcomb–
Benford (“first digit”) Law [29, 30, 26, 28] is a well known filter for detecting fabricated data
in financial records, which can be applied to detecting fraud in other numerical data, e.g.,
manipulated images [14, 44]. Recently uncovered frauds in social science research [35, 36, 37]
can also be seen as distribution testing against known or unknown distributions.
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One weakness of this variety of fraud detection is that it preys on relatively unsophisticated
fraudsters, who could easily evade detection if they were just aware of the statistical tests in
advance. This critique could also be leveled against most fraud detection efforts in machine
learning and information retrieval, which treat it as a pattern-matching problem [9, 13, 40,
38, 42, 31, 39].

In this paper we advance a perspective on fraud detection that differs sharply from
all the work cited above. First, rather than begin with an application domain or a single
empirical instance of fraud, we want to build a more general theory of fraud detection. In
the most fundamental examples cited above, fraud manifests as corruption of a random
process. Thus, we focus our study on abstract random processes that can be perturbed by an
adversary. Furthermore, we adopt the norms of theoretical computer science, cryptography,
and game theory in our adversarial model. In particular, a fraud detection mechanism
should be evaluated in a worst case fashion, ideally against a computationally unbounded
and omniscient adversary. Following Kerckhoffs’ principle [23], its success should not depend
on assuming the adversary is ignorant of the statistical tests it will be subject to.

1.1 Fraud Detection for Random Walks
Let G = (V, E) be a connected, undirected graph. A random walk (vi)i≥0 is generated by
placing a token at some v0 and, in each step, letting vi pass the token to a uniformly random
neighbor vi+1 ∈ N(vi). The cover time for this walk is the time until all the vertices have
been visited by the token.

Now suppose an adversary corrupts a set B ⊆ V of up to b vertices, who may pass the
token as they like. The adversary wishes to delay the cover time as much as possible, without
being detected.

It is well known [2] that for any graph, the cover time is O(mn log n) with high probability.
So if, after this many steps, there are vertices that have not been reached, the existence of
corruption will be evident. However, we require a stronger form of fraud detection: a specific
vertex must be accused. We formalize this process as the following game.

▶ Definition 1 (The Random Walk Game). Let T be a fixed time horizon and b ≤ n a fixed
number. The game is played between two players, the Referee and the Adversary. The
Adversary picks a starting vertex v0 ∈ V and a subset B ⊆ V of (corrupt) vertices with
|B| ≤ b. A walk (v0, v1, . . . , vT ) is constructed iteratively, with each move from an honest
vertex being random, and each move from a corrupt vertex being chosen by the Adversary.
If {v0, v1, . . . , vT } = V , the Referee immediately wins (the vertex set has been covered).
Otherwise, the Referee must specify one “accused” vertex; the Referee wins if and only if this
vertex is in B.

We are interested in the threshold time, T (G, b), which is the minimum time T such that,
with best play, the Referee wins the T -step Random Walk Game with probability at least
1 − 1/n5.

We note that there is nothing particularly special about the exponent 5 in the allowed
error probability above, and could instead make the error probability 1/nC . However, for our
lower bounds, we do require that C be large enough to avoid pathological examples where
the Referee could accuse a random vertex of being in B and be correct just by chance.

When b = 0, the threshold time T (G, 0) is essentially the expected cover time. More
precisely, if τ is the maximum, over all starting locations, of the expected cover time of G,
then

τ/2 ≤ T (G, 0) ≤ (10 log n) τ

with the actual value depending on the specific graph.
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Figure 1 Comparison of the bounds on R(G, b) from our main results. All the log terms have
been dropped, and n has been set to 100. The blue curve is b, the general upper bound on R from
Theorem 3. We note that, for every b, there is a graph for which this upper bound is tight (up to
log factors). The red curve is 1 + b2/n, which is Θ(R) in the special case of the path, as stated in
Theorem 6. Note that 1 + b2/n is also the right value of R(b) in the special case of the clique, if the
referee is restricted to purely local strategies that make accusations only a function of the particular
player’s choices. The green curve gives the correct value of R(b) for the clique, when the referee is
allowed to make accusations based on the entire transcript. This result is given in Theorem 13.

We now introduce our main object of study.

▶ Definition 2. We define the price of corruption as the ratio

R(G, b) = T (G, b)
T (G, 0)

Informally, this is the factor by which an adversary with up to b corrupt vertices can increase
the cover time, before the referee will be able to reliably accuse a bad player.

Our goal in this paper is to understand how much T (G, b), and therefore R(G, b), can
depend on b. Our main result is that this dependence is at most nearly linear

▶ Theorem 3 (Price of Corruption is at most nearly linear). Let G be any graph on n vertices,
and let 0 ≤ b ≤ n. Then,

R(G, b) = O(b log n).

Moreover, there exists a family of graphs G = G(n, b) for which

R(G, b) = Ω(b/ log n).

The lower bound in Theorem 3 does not apply to all graphs. For instance, we will see
that the behavior of R(G, b) is more nuanced in the cases when G is a path or a clique; we
examine these special cases in Sections 2 and 4

This suggests a related question: for which graphs is the Price of Corruption, R(G, b),
smallest? Knowing this might be helpful in applications where we have some choice about
the graph on which the random walk takes place. Small-degree expander graphs seem like
particularly good candidates for bounds of this type.

ITCS 2024
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1.2 Related Work

Biased random walks are a mainstay of introductory courses in random processes. Azar,
Broder, Karlin, Linial, and Phillips [8] studied the adversarial biasing of random walks to
maximize the time spent among some target set. In their model the token moves randomly a
(1 − ϵ)-fraction of the time, and is controlled by the adversary an ϵ-fraction of the time. Azar
et al. [8] did not consider the problem of detecting such interventions or evading detection.

Our problem is inspired by the Byzantine Agreement protocols of King and Saia [24]
and Huang, Pettie, and Zhu [21, 22], which achieved polynomial latency with f = Θ(n) and
optimal f < n/3 resiliency (Byzantine corruptions), respectively. These protocols attempt
to flip a fair coin via a natural distributed coin-flipping protocol. However, the adversary
may interfere with the protocol by choosing coin-flip outcomes strategically, and by inducing
subtle disagreements among the non-corrupt players. If such an adversary continually foils
attempts to flip a fair coin, an individual Byzantine player can be identified and blacklisted,
removing its influence over the coin flipping protocol.1

The notion of fraud detection seems to be “in the air” these days. This year Alon, Gunby,
He, Shmaya, and Solan [3] also proposed a fraud detection-type game for random walks. In
their model a walk on Z begins near the origin and is run in perpetuity but never reaches
the origin, or does not reach it infinitely often. The movement of the walk is controlled by
two players, Alice and Bob, who alternate (purportedly) flipping fair coins and announcing
outcomes in {−1, 1} – but exactly one of them is a fraud. The question is how to detect
which of Alice or Bob is not behaving correctly. Their fraud detection mechanism is not an
“algorithm” per se, as it requires evaluating functions of infinitely long walks. Although our
setup and the setup of [3] have some syntactic similarities, the mathematical structure of the
two problems are different and lead, in some ways, to opposite conclusions.2

1.2.1 Random Walks and Dynamic Networks

Several recent results make use of random walks to solve classic problems in distributed
computing over dynamically changing networks in the presence of Byzantine nodes. Problems
addressed include Byzantine agreement [5]; information dissemination [34]; and leader
election [6]. See also [7] for a survey of results.

The type of random walk problem considered in these results is more general than ours
in that the network topology may change from step-to-step. The problem is more specific
than ours in that the network is assumed to always be a regular expander; and the number
of Byzantine nodes is always O(

√
n/ logk n) for some constant k.

Central to these results is a technical lemma showing that if good nodes generate random
walk tokens at a certain rate, then there is a large set of nodes that have access to many
well-mixed random-walk tokens. The random-walk algorithms are simple: no attempt is
made to detect or identify Byzantine behavior, and the algorithms are fully distributed and
scalable in terms of latency and message cost.

1 This application illustrates why it is important to distinguish between global detection – something has
gone wrong – and specific detection, namely, a specific player is corrupt w.h.p.

2 Specifically, to make the cover time infinite in our model, the corrupt vertices must have some measurable
bias, and the question is how long it takes to detect that bias. In the infinite Alice & Bob game [3], any
biases are trivially detected (in the limit); the detector must also pay attention to negative correlations
between Alice and Bob’s moves.
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1.3 Organization

In Section 1.4 we review Bernstein’s and Freedman’s concentration inequalities. In Section 2
we analyze the random walk game on the simplest topology, an n-path Pn, and obtain nearly
sharp bounds on T (Pn, b). In Section 3 we generalize the detection method to work on an
arbitrary graph G, and bound the price of corruption by R(G, b) = O(b log n). In Section 4
we design a fraud detection method specific to the n-clique Kn, and give nearly tight upper
and lower bounds on T (Kn, b). In Section 5 we discuss some possible applications of our
results. We conclude with some open problems in Section 6.

1.4 Concentration Inequalities

The Referee’s task is to observe the random walk, and identify vertices that are not behaving
as they should. In order to do this, we need a fairly accurate idea of what the local behavior
of such a random walk should look like. To get a handle on this, we will make use of the
following concentration inequalities.

The following version of Bernstein’s inequality (see [16]) will be useful in analyzing the
random walk games on the path (Section 2) and the clique (Section 4).

▶ Theorem 4 (Bernstein’s Inequality). Let X1, . . . Xn be independent random variables with
|Xi−E(Xi)| ≤ b for each i ∈ [n], and each with variance σ2

i . Let X =
∑

i Xi, and σ2 =
∑

i σ2
i

be the variance of X. Then for all t > 0,

Pr(X ≤ E(X) − t)) ≤ exp
(

− t2

2σ2 + (2/3)bt)

)
When dealing with general graphs (Section 3) we will instead need the following extension

of Freedman’s inequality for martingales.

▶ Theorem 5 ([10, Lem. 2]). Suppose X1, . . . , XT is a martingale difference sequence with
|Xt| ≤ ρ. Let Vart Xt = Var(Xt | X1, . . . , Xt−1). Let V =

∑T
t=1 Vart Xt be the sum of

conditional variances and σ̄ =
√

V . Then for any δ < 1/e and T ≥ 4,

P

(∣∣∣∣∣
T∑

t=1
Xt

∣∣∣∣∣ ≤ 2
√

ln(1/δ) max{2σ̄, ρ
√

ln(1/δ)}
)

≥ 1 − δ log T.

2 The Path

Consider the path graph G = (V, E) with vertices numbered 1 through n. Without loss of
generality we can assume the token is initially at vertex 1 and never reaches vertex n. How
long must a corrupted random walk be until we may accuse a corrupt vertex?

Theorem 6 gives nearly sharp bounds for this class of graphs and illustrates two qualitative
features of this fraud detection model. First, although one corrupt vertex can make the
cover time infinite it cannot do so without detection, and in fact any coalition of b = O(

√
n)

corrupt vertices is powerless to increase the cover time by more than a constant factor,
without detection. Second, there is a significant gap between the moment we detect likely
corruption (Θ(n2 log n) time) and the moment we can confidently level an accusation at one
vertex (Θ̃(n3) time when b = Ω(n)).

ITCS 2024
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▶ Theorem 6. Let G be the path of length n. Suppose the Random Walk Game on G is
played for T timesteps and the adversary is allowed to corrupt up to b vertices. Then
1. If T = Ω((n2 + nb2) log n), then there is a strategy that enables the Referee to win with

probability at least 1 − 1
n5 . In other words,

R(G, b) = O

(
1 + b2

n

)
2. If T < n2 + nb2, there is an adversarial strategy such that one vertex is never visited, and

no detection mechanism can identify any corrupt vertex with high probability. In other
words,

R(G, b) = Ω
((

1 + b2

n

)
/ log(n)

)
The remainder of this section constitutes a proof of Theorem 6.

Part 1 of Theorem 6. Suppose we pass the token for T time steps. For each vertex j, let
Xj denote the number of times that vertex j passes the token, and Yj the number of times
j passes the token to the left. We will accuse vertex j if the number of left passes, Yj

substantially exceeds the number of right passes, Xj − Yj , or more specifically, if

∆j
def= 2Yj − Xj ≥

√
CXj log n .

A standard application of Chernoff’s bound ensures that this criterion almost certainly does
not falsely accuse any good vertex. In other words after T timesteps, for each good player j,

∆j <
√

CXj log n (1)

holds with high probability 1 − n−Ω(C). We may assume that (1) also holds for all bad
players as well, since otherwise the algorithm will make a correct accusation.

Let v∗ = arg maxv Xv be the mode vertex. Since the token is passed around for T

timesteps, by the pigeonhole principle, Xv∗ ≥ T/n. Each time v∗ receives the the token, it
passes it to a neighbor and the token makes a round-trip excursion back to v∗. We may
assume that at least 1

3 Xv∗ of these round-trip excursions are to the right of v∗, for otherwise
∆v∗ would already be large enough to justify accusing v∗. Define G and B to be the sets of
good and bad vertices among {v∗ + 1, v∗ + 2, . . . , n − 1}. Since vertex n is never reached,
every round-trip excursion from v∗ to the right entails G ∪ B passing the token one more
time to the left than the right.

Let ∆G and ∆B be the sum of this left-excess associated with G and B, respectively.
Then we know ∆G + ∆B ≥ 1

3 Xv∗ . Let XG and XB denote the total number of times the
token is passed by vertices in G and B, respectively.

Applying Chernoff’s bound to the good vertices as a group, since T ≤ nXv∗ , we have,
with high probability 1 − n−Ω(C),

∆G ≤
√

CXG log n ≤
√

CT log n ≤
√

CnXv∗ log n . (2)

To estimate ∆B =
∑

i∈B ∆i, note that each bad vertex satisfies Eqn. (1) to avoid detection.

∆B ≤
∑
i∈B

√
CXi log n ≤ |B|

√
CXv∗ log n ≤ b

√
CXv∗ log n. (3)
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Figure 2 A biased random walk on the line graph.

where the second inequality follows from the choice of v∗ as the mode. Combining Eqns.(2,3),
we have

1
3 Xv∗ ≤ ∆G + ∆B ≤

√
CXv∗ log n(

√
n + b).

Squaring and rearranging terms,

Xv∗ ≤ 9C log n(
√

n + b)2.

Finally, since (
√

n + b)2 ≤ 2(n + b2), we have

T ≤ nXv∗ ≤ 18Cn(n + b2) log n,

which completes the proof of the upper bound. ◀

Part 2 of Theorem 6. For this part it is more convenient to number the vertices in reverse
order: vertex 0 is the rightmost vertex and the token begins at vertex n − 1 and never reaches
0. See Figure 2.

In adversarial strategy S, the adversary corrupts vertices in [b] = {1, . . . , b} and gives
vertex j a left-bias of 1/j. Specifically, vertex j passes left with probability pj , where

pj =
{

1
2

(
1 + 1

j

)
if j ∈ [b]

1/2 if j > b.

This process corresponds to a reversible Markov chain on the states {n − 1, . . . , 1} where, for
j ∈ [b], the edge between j + 1 and j has weight

(
j+1

2
)

and all the edges to the left of b have
weight

(
b+1

2
)
. Note that the cover time is infinite as vertex 0 is unreachable.

It follows that, for j ∈ [b], vertex j has stationary probability proportional to j2, while
the vertices in {n − 2, . . . , b + 1} to the left of b all have probability proportional to b(b + 1).
The leftmost vertex n − 1 has stationary probability proportional to b(b + 1)/2, and vertex 0
is unreachable. See Figure 2. Summing these terms, we obtain the normalization factor N

to be

N = b
(b + 1)

2 + b(b + 1)(n − b − 2) +
b∑

j=1
j2 = b(b + 1)

(
n − b − 3

2 + 2b+1
6
)

= Θ(nb2).

Thus, for j ∈ [b], the stationary probability of vertex j is j2/N = Θ(nj2/b2).
Define S−j to be identical to strategy S except that vertex j is not corrupt, i.e., it passes

left and right with probability 1/2. We want to argue that if a corrupted random walk is too
short, the false positive rate of any detection strategy will be intolerably large. Lemma 7
lower bounds this error.

▶ Lemma 7. Assume the adversary picks a strategy from {S, S−1, . . . , S−b} uniformly at
random. Abusing notation, let S−i also refer to the event that strategy S−i is chosen.
Let W be the resulting corrupted random walk. Define q = mini∈[b] min (ρi, 1 − ρi), where
ρi = Pr(S−i | (S−i ∪ S), W ). Then,

∀i ∈ [b], Pr(S−i | W ) ≥ q2/b.

ITCS 2024
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Proof. Note that for all i ∈ [b]:

Pr(S−i | W ) = Pr(S−i | (S−i ∪ S), W ) · (Pr(S−i | W ) + Pr(S | W )) .

Letting ρi = Pr(S−i | (S−i ∪ S), W ), and solving for Pr(S−i | W ) in the above, we get

Pr(S−i | W ) = ρi

1 − ρi
· Pr(S | W ).

Note that q ≤ ρi

1−ρi
≤ 1/q. Letting i∗ = arg mini∈[b] Pr(S−i | W ), we have:

Pr(S−i∗ | W ) ≥ q Pr(S | W ),

and for all i ∈ [b]\{i∗},

Pr(S−i | W ) ≤ (1/q) Pr(S | W ).

Hence,

1 = Pr(S−i∗ | W ) + Pr(S | W ) +
∑

i∈[b],i̸=i∗

Pr(S−i | W )

≤ Pr(S−i∗ | W ) + (1/q) Pr(S−i∗ | W ) + ((b − 1)/q2) Pr(S−i∗ | W )

≤ b

q2 Pr(S−i | W ),

where the last inequality follows since 1 + 1/q ≤ 1/q2. ◀

Lemma 7 says that we can assume the detector accuses the vertex j ∈ [b] that minimizes
Pr(S−j | (S−j ∪ S), W ). In order to make the false positive rate small, we need the likelihood
ratio

Pr(W | S−j)
Pr(W | S) = (1/2)Xj

p
Yj

j (1 − pj)Xj−Yj

=
(

1 − 1
j

)Yj
(

1 + 1
j − 1

)Xj−Yj

< exp
(

− Yj

j + Xj−Yj

j−1

)
= exp

(
− ∆j

j−1 + Yj

j(j−1)

)
to be n−Ω(C). By Chernoff bounds, the likelihood ratio never gets this small until Yj ≥
Cj2 log n, so we may use this as a proxy prerequisite for accusing vertex j.

Once j is visited for the first time, the expected return time is Θ(nb2/j2), so in expectation,
the criterion Yj ≥ Cj2 log n is satisfied after another Θ(nb2 log n) steps. However, these
return times have large variances so it is not clear that this random variable is sufficiently
concentrated around its mean.3

We may assume without loss of generality that b ∈ [Ω(
√

n), n/2]. Let Wj be the length of
a random walk that begins and ends at vertex j, conditioned on moving left initially and let
Ej = E(Wj) and Vj = E(W 2

j ).4 Such a walk moves to j + 1, makes zero or more roundtrips
from j + 1, and then returns to j. The number of roundtrips from j + 1 is distributed
geometrically, so by linearity of expectation,

Ej = 2 +
(

1
1 − pj+1

− 1
)

Ej+1 =

 2 + j+2
j Ej+1 if j + 1 ≤ b,

2 + Ej+1 if j + 1 > b.

3 (Lemma 8 implies that in any graph, the visitation rate of a vertex is, with high probability, at most
twice its stationary probability after a sufficiently long (corrupted) random walk, which on the line
would be Θ̃(bn2) steps. Since we are looking for a tight bound of Θ̃(n2 + nb2) we require a more careful
analysis.)

4 The condition that b ≤ n/2 implies that starting at a corrupt vertex, a roundtrip to the left is longer in
expectation than a roundtrip in general.
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Thus Eb = 2(n − b − 1) and writing Ej , j < b, in terms of Eb we have a telescoping
product, Ej = Θ(nb2/j2).

To bound the second moment Vj , suppose that a leftward roundtrip from j makes k

(leftward) roundtrips from j + 1 before returning to j, i.e., it has length 2 + W
(1)
j+1 + · · · W

(k)
j+1,

where the W
(·)
j+1 are independent copies of Wj+1. This would contribute kVj+1 + (k2 −

k)E2
j+1 + 2kEj+1 + 4 to Vj . Thus, we can express Vj recursively as

Vj = (1 − pj+1)
∑
k≥0

pk
j+1

(
kVj+1 + (k2 − k)E2

j+1 + 2kEj+1 + 4
)

= (1 − pj+1) pj+1

(1 − pj+1)2 · Vj+1 + Θ(E2
j+1)

=


j+2

j · Vj+1 + Θ(E2
j+1) if j + 1 ≤ b,

Vj+1 + Θ(E2
j+1) if j + 1 > b.

Then Vb = Θ(n3), and expressing Vj , j < b, in terms of Vb we have another telescoping
product with Vj = Θ(n3b2/j2).

We claim that it is not possible to reliably accuse any vertex j in less than M = n2 + nb2

steps. In particular, once j is first visited, the length of the next Yj = K = Cj2 log n leftward
roundtrips is not less than M . Let W

(i)
j be the length of the ith leftward roundtrip. In

expectation W
(1)
j + · · · + W

(K)
j is K · Ej = Θ(Cnb2 log n) = µ.

We may assume each |W (i)
j | ≤ M , for otherwise there’s nothing to prove. Thus, by

Bernstein’s inequality,

Pr
(

K∑
i=1

W
(i)
j < M

)
< exp

(
− (µ − M)2

2
∑K

i=1 E((W (i)
j )2) + (2/3)M(µ − M)

)

= exp
(

− (1 − o(1))(KEj)2

2KVj + (2/3)(1 + o(1))KEj · M

)
= exp

(
− Θ(Cnb2 log n)2

Θ(Cn3b2 log n) + Θ(Cnb2 log n · (n2 + nb2))

)
and since b = Ω(

√
n), n2b4 = Ω(n3b2),

= exp (−Ω(C log n)) = n−Ω(C). ◀

Theorem 6 gives a nearly tight characterization for the fraud detection time on paths.
Qualitatively speaking, Theorem 6 shows that tracking individual deviations suffices to
achieve near-optimal fraud detection, i.e., a vertex v is judged solely on the distribution of
token passes to N(v). Section 3 extends this type of analysis to general graphs, and obtains
strong bounds for all graphs.

However, tracking individual deviations alone is, on some graph topologies, insufficient
for optimal fraud detection. The clique is one such topology, which we analyze in detail in
Section 4.

3 Fraud Detection on General Graphs

In this section we consider the random walk game played on an arbitrary connected graph G

on n vertices. The Adversary can corrupt any set B ⊂ V consisting of up to b of the vertices.
As in the case of the path, the Referee will watch the individual vertices and track their
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apparent deviation from uniformly random behaviour. We will prove the upper bound in
Theorem 3, by showing that there is a Referee strategy that guarantees that if the Adversary
tries to delay the cover time by more than an O(b log n) factor, the Referee has a 1 − 1/n5

chance to win. To prove the lower bound we will demonstrate a family of graphs and an
Adversarial strategy for which a O(b/ log n) factor is achieved.

Although we eventually want to bound how much the adversary can delay the cover time,
it will be convenient analyze the Random Walk Game in terms of hitting times. In the next
subsection we discuss some concepts and terminology relating to random walks and hitting
times.

3.1 Notation
G is an undirected connected graph on n vertices. For a random walk on G, given vertices
v and y, the hitting time from v to y is the (random) first time at which the walk, having
started at v, arrives at y. The expected hitting times between all the pairs of vertices in G

will be of particular interest in designing our Referee strategy..
The following quantities are solely a function of the structure graph G, not strategic

considerations of the random walk game.
π is the stationary distribution, i.e., π(v) = deg(v)/2m.
H(v, y) is the expected hitting time to y starting from v. Let Hmax(y) = maxv H(v, y)
and Hmax = maxy Hmax(y) be the maximum hitting times when only y is fixed, and
when neither is fixed.
For w ∈ N(v), define hy(v, w) to be

hy(v, w) = H(w, y) − H(v, y) + 1 − 1 (v = y)
π(y) .

Here 1 (E) is the indicator variable for event E . For v ̸= w, this definition ensures that
hy(v, w) − 1 equals the change in the expected hitting time to y that results from moving
across the edge {v, w}. The definition ensures that, when w is a randomly chosen neighbor
of v, the quantity hy(v, w) − 1 has an expected value of −1, corresponding to the elapsing
of the first time step in a random walk from v to y. The extra term, 1(v=y)

π(y) , which, when
v = y, equals the expected excursion time from y, ensures that the expected value of
hy(v, w) is zero for all v ∈ V .
Let ρy(v) = maxw∈N(v) |hy(v, w)|, ρy = maxv ρy(v) and ρ = maxy ρy.
Let σ2

y(v) = 1
deg(v)

∑
w∈N(v) hy(v, w)2 be the conditional variance of H(w, y), conditioned

on v, where as before we assume that w is a randomly chosen neighbor of v.
Let Vy

π = Eπ σ2
y(v) =

∑
v σ2

y(v)π(v) be the average conditional variance when v is chosen
from the stationary distribution. Let Vπ = maxy Vy

π be the maximum of this average over
all target vertices y.

Now consider the Random Walk Game. Let G be the set of good vertices and B be the
set of bad vertices, with |B| ≤ b. Let T be the number of time steps for which the random
walk game will be played, and for t ∈ [0, T ] let vt denote the vertex holding the token at
time t. Then for each t, vt+1 is a neighbor of vt, and it is a uniformly random neighbor if vt

is a good vertex (i.e. vt ∈ G).
For each v ∈ V , let Sv denote the set of times when the token is at v, and let SG denote

the times when the token is with a good vertex in G and SB denote the times when the token
is with a bad vertex in B. Also, let Tv, TG and TB denote the sizes of the corresponding sets
of times. That is
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Sv = {t | vt = v}, Tv = |Sv|,
SG = {t | vt is a good vertex}, TG = |SG |,
SB = {t | vt is a bad vertex}, and TB = |SB|.

For a target vertex y ∈ V , we want to track the evolution of the values H(vt, y). Let

∆t = H(vt+1, y) − H(vt, y)

be the change in expected hitting time at step t. Observe that E (∆t | vt ̸= y, vt ∈ G) = −1
and E (∆t | vt = y, vt ∈ G) = 1/π(y) − 1. This motivates the definition of the sequence Dy

t :

Dy
t = ∆t + 1 − 1 (vt = y)

π(y) = hy(vt, vt+1)

It follows that if v ∈ G is any fixed good vertex and y ∈ V any target, that E (Dy
t | vt = v) = 0

and moreover,
The subsequence (Dy

t : vt = v) is a martingale difference sequence with step sizes bounded
by ρy(v),
The subsequence (Dy

t : vt ∈ G) is a martingale difference sequence with step sizes bounded
by ρy.

The above sequences are martingale difference sequences because, at timesteps when the
token is controlled by good players, the next player is chosen fairly, and cannot be predicted
in advance by the Adversary. The specific martingale difference sequence depends on the
Adversary’s strategy for the bad players’ moves.

3.2 Referee Strategy
The referee’s strategy will be based on Theorem 5 ([10, Lemma 2]), which is a version of
Freedman’s inequality for martingales.

Since (Dy
t : vt = v) is a martingale difference sequence with step sizes bounded by ρy(v)

whenever v is a good vertex, applying Freedman’s inequality with δ = 1/nC , we know that
for each good vertex v and target y,

Pr
(∣∣∣∣∣∑

t∈Sv

Dy
t

∣∣∣∣∣ ≥ max
{

4
√

Cσ2
y(v)Tv ln n, 2Cρy(v) ln n

})
≤ log Tv

nC
. (4)

With this in mind, we will accuse vertex v if
∣∣∑

t∈Sv
Dy

t

∣∣ is suspiciously large. Specifically,
we will accuse v if

∃y ∈ V.

∣∣∣∣∣∑
t∈Sv

Dy
t

∣∣∣∣∣ ≥ max
{

4
√

Cσ2
y(v)Tv ln n, 2Cρy(v) ln n

}
By a union bound over all v, y, the probability any good vertex is mistakenly accused is at
most n−C+2 log T .

3.3 Analysis
Suppose the token passing game is played for T time steps and no player is accused by the
referee of Section 3.2. Let v∗ be the “stationary mode,” i.e., the vertex that is visited most
frequently relative to its stationary probability. In particular, for all v,

Tv

π(v) ≤ Tv∗

π(v∗) .
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We will denote by α the ratio between the number of times v∗ is visited and the number of
times it expects to be visited at stationarity. That is

α = Tv∗

Tπ(v∗) .

Since v∗ has been chosen to maximize the right hand side, and some vertex must be visited
at least as often as expected, it follows that α ≥ 1. Also, we have for all v,

Tv ≤ αTπ(v) (5)

Note that both v∗ and α depend on the actual run of the game, so that they depend on
T , the good players’ randomness and the adversarial strategy. Nevertheless, we can show
that when T is sufficiently large, the adversary has only a limited ability to skew who gets
the token. Recall that b is the number of bad players.

▶ Lemma 8. If T ≥ max{6Hmax, 144CVπ(1 + b) ln n, 12Cρ(1 + b) ln n} then α ≤ 2. That
is, for every vertex y,

Ty ≤ 2Tπ(y).

Proof. Since the bad vertices want to avoid getting accused, based on the referee’s strategy,
we may assume that:

∀v, y ∈ V.

∣∣∣∣∣∑
t∈Sv

Dy
t

∣∣∣∣∣ ≤ max
{

4
√

Cσ2
y(v)Tv ln n, 2Cρy(v) ln n

}
. (6)

Consider the sum
∑T −1

t=0 Dy
t . As

∑T −1
t=0 ∆t telescopes to H(vT , y) − H(v0, y) we have

T −1∑
t=0

Dy
t =

T −1∑
t=0

(
∆t + 1 − 1 (vt = y)

π(y)

)
= H(vT , y) − H(v0, y) + T − Ty

π(y)

so that

T − Ty

π(y) ≤ H(v0, y) − H(vT , y) +
T −1∑
t=0

Dy
t . (7)

On the other hand, we can write∣∣∣∣∣
T −1∑
t=0

Dy
t

∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑
t∈SG

Dy
t

∣∣∣∣∣∣+

∣∣∣∣∣∑
v∈B

∑
t∈Sv

Dy
t

∣∣∣∣∣ .
Of the two sums on the right, we can deal with the first one by directly applying Freedman’s
inequality, since the subsequence (Dy

t : vt ∈ G) is actually a martingale difference sequence
with step sizes bounded by ρy = maxv ρy(v). Thus, by Theorem 5, with error probability
(log T )/nC , we have:∣∣∣∣∣∑

t∈SG

Dy
t

∣∣∣∣∣ ≤ max
{

4
√

CVy
G ln n, 2Cρy ln n

}
(8)

≤ 4
√

CVy
G ln n + 2Cρy ln n, (9)
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where Vy
G is the sum of the conditional variances of the steps of the martingale. It is bounded

by

Vy
G =

∑
t∈SG

Vart Dy
t =

∑
v∈G

∑
t∈Sv

Var(Dy
t |vt = v)

=
∑
v∈G

∑
t∈Sv

σ2
y(v)

=
∑
v∈G

σ2
y(v)Tv ≤ αT

∑
v∈G

σ2
y(v)π(v),

where the last line follows from equation (5). Plugging this back into (9), we get∣∣∣∣∣∣
∑
t∈SG

Dy
t

∣∣∣∣∣∣ ≤ 4
√

2αT ln n
∑
v∈G

σ2
y(v)π(v) + 4ρy ln n. (10)

To bound the corresponding term of the bad players we use apply Eqns. (5) and (6).∣∣∣∣∣∑
v∈B

∑
t∈Sv

Dy
t

∣∣∣∣∣ ≤
∑
v∈B

max
{

4
√

Cσ2
y(v)Tv ln n, 2Cρy(v) ln n

}
≤
∑
v∈B

(
4
√

Cσ2
y(v)Tv ln n + 2Cρy(v) ln n

)
≤
∑
v∈B

(
4
√

Cσ2
y(v)Tαπ(v) ln n + 2Cρy(v) ln n

)
≤ 4

√
CαT ln n

(∑
v∈B

√
σ2

y(v)π(v)
)

+ 2Cbρy ln n

≤ 4
√

CαT ln n

√
b
∑
v∈B

σ2
y(v)π(v) + 2Cbρy ln n (11)

where (11) follows from the Cauchy-Schwarz inequality. By Cauchy-Schwarz again,√∑
v∈G

σ2
y(v)π(v) +

√
b
∑
v∈B

σ2
y(v)π(v) ≤

√
(1 + b)

∑
v

σ2
y(v)π(v) =

√
Vy

π(1 + b). (12)

Combining (10), (11), and (12), we obtain∣∣∣∣∣
T −1∑
t=0

Dy
t

∣∣∣∣∣
≤ 4
√

CαT ln n
∑
v∈G

σ2
y(v)π(v) + 2Cρy ln n + 4

√
CαTb ln n

∑
v∈B

σ2
y(v)π(v) + 2Cbρy ln n

≤ 4
√

CαTVy
π(1 + b) ln n + 2Cρy(1 + b) ln n. (13)

Now, plugging Eqn. (13) back into (7), and noting that |H(v0, y) − H(vT , y)| ≤ Hmax(y), we
have that for every target y,∣∣∣∣T − Ty

π(y)

∣∣∣∣ ≤ |H(v1, y) − H(vT +1, y)| +

∣∣∣∣∣
T −1∑
t=0

Dy
t

∣∣∣∣∣
≤ Hmax(y) + 4

√
CαTVy

π(1 + b) ln n + 2Cρy(1 + b) ln n. (14)
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Recall that for the stationary mode vertex v∗, Tv∗ = αTπ(v∗), where α > 1. Dividing by T

and fixing y = v∗, we have

α − 1 ≤ Hmax(v∗)
T

+ 4
√

CαVv∗
π (1 + b) ln n

T
+ 2Cρv∗(1 + b) ln n

T

≤ Hmax

T
+ 4
√

CαVπ(1 + b) ln n

T
+ 2Cρ(1 + b) ln n

T

≤ 1
6 +

√
α

3 + 1
6 (15)

where (15) follows because T ≥ max{6Hmax, 144CVπ(1 + b) ln n, 12Cρ(1 + b) ln n}. Thus α

satisfies the quadratic inequality

α −
√

α

3 − 4
3 ≤ 0,

which implies
√

α ≤ 4/3 and hence α ≤ 16/9 < 2. Substituting this back into Eqn. (5) proves
the lemma. ◀

The proof of Lemma 8 shows that for sufficiently large T we can drive α arbitrarily close
to 1. Moreover the proof actually shows something even stronger. Let π̂ denote the empirical
distribution of how often each vertex is visited. By definition, for all y,

π̂(y) = Ty

T
.

Using the fact that α < 2 in Eqn. (14), we see that for all y,∣∣∣∣T − Ty

π(y)

∣∣∣∣ ≤ Hmax(y) + 4
√

2CTVy
π(1 + b) ln n + 2Cρy(1 + b) ln n

Dividing by T ,∣∣∣∣1 − π̂(y)
π(y)

∣∣∣∣ ≤ Hmax(y)
T

+ 4
√

2CVy
π(1 + b) ln n

T
+ 2Cρy(1 + b) ln n

T
.

We restate this as a Corollary of Lemma 8.

▶ Corollary 9. If T ≥ max{6Hmax, 144CVπ(1 + b) ln n, 12Cρ(1 + b) ln n} then for every
vertex y,∣∣∣∣1 − π̂(y)

π(y)

∣∣∣∣ ≤ Hmax(y)
T

+ 4
√

2CVy
π(1 + b) ln n

T
+ 2Cρy(1 + b) ln n

T
.

Corollary 9 actually implies that it is impossible for the adversary to prolong the game
for this many time steps without detection. If some vertex x ∈ V has never passed the
token, then π̂(x) = 0 and 1 − π̂(x)/π(x) = 1. By Corollary 9, if no accusations yet have been
leveled, then

1 ≤ Hmax(x)
T

+ 4
√

2CVy
π(1 + b) ln n

T
+ 2Cρy(1 + b) ln n

T

≤ 1
6 +

√
2

3 + 1
6

< 1.

which is a contradiction. Thus we have shown that
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▶ Theorem 10. If T = Ω (Hmax + b(Vπ + ρ) log n) then the Referee of Section 3.2 wins
with probability at least 1 − 1/n5. In other words,

T (G, b) = O (Hmax + b(Vπ + ρ) log n)

We can simplify the expression of Theorem 10 as follows. Since for all y, ρy ≤ Hmax(y)
it follows that ρ ≤ Hmax. Furthermore, for any y the stationary conditional variance can
be bounded by Vy

π ≤ 2Eπ H(·, y) ≤ 2Hmax(y). (For completeness, these last inequalities are
proved in Appendix A.) Thus, Vπ + ρ ≤ 3Hmax. Also, for any graph, Hmax = O(mn). This
establishes the following Corollary.

▶ Corollary 11. For any graph G and any number b of bad players,

T (G, b) = O(bHmax log n) = O(bmn log n).

The following corollary also follows directly from the above bounds and Corollary 9.

▶ Corollary 12. For any graph G, any number b of bad players, and a walk that lasts for T

steps with no accusations, if

T = Ω(mnb log n)

then, for every vertex y,∣∣∣∣1 − π̂(y)
π(y)

∣∣∣∣ = O

(√
mnb log n

T

)
.

To relate these results back to the price of corruption, we note that the maximum expected
cover time is clearly at least Hmax, and therefore T (G, 0) ≥ Hmax. Moreover, repeatedly
applying Markov’s inequality shows that regardless of the starting vertex, after 6Hmax log n

steps, the probability that a particular vertex is unreached, is at most 1/n6. Taking a union
bound over all the vertices, after 6Hmax log n steps, the probability that there is an unreached
vertex is at most 1/n5 and therefore T (G, 0) = O(Hmax log n), and R(G, b) = O(b log n).

This bound on R(G, b) is close to tight, as witnessed by the class of Ball & Chain graphs.
Let BCn,b consist of an (n − b)-clique attached to a b-path; we assume b ≤ n/2. Starting
from a vertex in the “ball,” the cover time is Hmax = Θ(n2b), thus, the zero-corruption game
threshold is T (BCn,b, 0) = Θ(n2b log n). We now need to lower bound T (BCn,b, b) = Ω(n2b2).
The corrupt vertices will lie only on the chain, and bias the walk slightly towards the ball,
as in the proof of Theorem 6. Let u be the common vertex of the ball and chain. By
Theorem 6, the walk restricted to the chain takes Ω(b3) time steps, with high probability.
Vertex u sees the token at least as often as in a truly random walk, which would be at least
Ω(b2) times. Each time u takes the token from the chain, it returns it to the chain after
Θ(n2) steps, in expectation, walking around the ball. Hence T (BCn,b, b) = Ω(n2b2) and
R(BCn,b, b) = Ω(b/ log n).

Putting this all together, we have established Theorem 3.

4 The Clique

In this section, we analyze the Random Walk Game on the clique Kn. Here, every starting
vertex is equivalent, and the hitting time to any vertex is a geometric random variable with
mean n − 1. Thus Hmax = n − 1. Moreover, the cover time for the clique is essentially the
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coupon collector problem, and therefore the maximum expected cover time is O(n log n),
and the cover time is at most βn log n with probability 1 − 1/nβ−1. The results of Section 3
tell us that T (Kn, b) = O(bn log n). When b = Ω(n), that is an upper bound of O(n2 log n).
In this section, we show that in fact, we can use the structure of the clique to get a much
better bound. To get a sense of why fraud detection is faster for the clique, consider the
game from the Adversary’s perspective, and suppose the adversary wants to select a vertex
that will not be reached. In a graph where there are low degree vertices, the adversary can
surround such a vertex with corrupted vertices, all of whom always pass the token to one
of their other neighbors. But in the clique, unless the Adversary takes over n − 1 vertices,
every vertex has some good neighbors, who will pass it the token every nth time they get it,
on average. This makes the Adversary’s task much more difficult.

Theorem 13 gives near-tight bounds on the fraud detection time for cliques. The Referee’s
strategy differs from the strategy for the path or for a general graph, in that we take the
entire trajectory of the walk into account when judging how a vertex v passes the token.

▶ Theorem 13. Consider the Random Walk Game played on an n-clique, in which the
adversary controls b vertices.
1. There is a Referee strategy that enables the Referee to win with high probability after

T (Kn, b) = O( n2 log n log(n/(n−b))
n−b ) steps.

2. Moreover, there is an adversarial strategy for b corrupted players such that any accusation
within O(n2 log n

n−b ) steps cannot be correct with probability 1 − n−5, so that T (G, b) =
Ω( n2 log n

n−b ).

The remainder of this section constitutes a proof of Theorem 13.

Let C be a sufficiently large constant and G, B be the sets of good and bad players. If
the G-players collectively pass the token Cn ln n times then the game will end naturally with
high probability 1 − n−C+1, regardless of what other actions are taken by B.

Suppose the path taken by the token in T steps is P = (v1, v2, . . . , vT ). When the token
is at vi, define Li (“low” vertices) to be the set of vertices that have passed the token less
than 2C|G|−1n ln n times. In the beginning |L1| = n and once |Li| ≤ |G|/2 at least |G|/2
vertices are not in L and the game has already ended, with high probability.

We partition time into stages, where stage j ∈ [0, log(2n/|G|)] covers the time that
|Li| ∈ (n/2j+1, n/2j ]. Fix some stage j and let Xv be the number of times v passes the token
in stage j and Yv be the number of times v passes it to an L-vertex. Note that if v is good,
Yv is the sum of Xv indicator variables each with mean at least 2−(j+1) and variance less
than 2−j . By Bernstein’s inequality, Pr(Yv < 2−(j+1)Xv − t) < exp(− t2

2·2−jXv+(2/3)t ). We
will accuse v whenever Yv ≤ 2−(j+1)Xv −

√
C2−(j+1)Xv ln n. Thus, with probability n−Ω(C)

no good vertex is accused. Suppose that stage j lasts for Tj = 4C|G|−1n2 ln n steps without
any vertex being accused. Then:∑

v∈V

Yv ≥
∑
v∈V

(
2−(j+1)Xv −

√
C2−(j+1)Xv ln n

)
≥ 2−(j+1)Tj −

√
2−(j+1)Tj · Cn ln n (Cauchy-Schwarz)

≥ 2−(j+2)Tj (Since: Cn ln n = Tj |G|/(4n) ≤ Tj2−(j+1)/4)
= (n/2j+1) · (2C|G|−1n ln n).
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However, if this were true then the number of L-vertices would have already shrunk
to less than n/2j+1, ending stage j. Thus, stage j cannot last for 4Cn2|G|−1 ln n steps
without accusing a vertex of corruption. In total the number of steps before an accusation is
O( n2 log n log(n/|G|)

|G| ) = O( n2 log n log(n/(n−b))
n−b ).

Turning to the lower bound, suppose we are aiming to make a correct accusation with
probability 1 − n−C . Suppose the adversary picks a set B ⊆ V uniformly at random with
|B| = b. Under strategy S it corrupts B and under strategy S−j , j ∈ B, it corrupts B − {j}.
In either case, whenever a corrupt vertex v has the token it passes it to a neighbor in
B uniformly at random. The adversary chooses its strategy uniformly at random from
{S} ∪ {S−j}j∈B . Let E be the event that, after a walk of length T = n2 ln n/(n − b), every
vertex in B has only passed the token to others in B. Since, by Chernoff bounds, each vertex
in B sees the token less than 3n ln n/(n − b) times with probability 1 − o(1), we have

Pr(E) ≥ (1 − o(1))(1 − (n − b)/n)3n log n/(n−b) = Ω(n−3).

Moreover, Pr(S−j | (S−j ∪ S), E) = q = 1/2 since once we condition on E , S−j and S behave
identically. By Lemma 7, the probability of error is at least q2/b = 1/(4b) after conditioning
on E , hence at least Ω(n−3b−1) with no conditioning. For C > 4 this bound does not meet
the desired n−C error bound.

This concludes the proof of Theorem 13. It says that a coalition of (1 − ϵ)n bad vertices
can delay the hitting time by Ω(ϵ−1n ln n) and O(ϵ−1 log ϵ−1n ln n), i.e., no asymptotic delay
at all when ϵ is constant. This is quite different than the line graph, in which a tiny minority
of ω(

√
n) bad vertices can asymptotically delay the hitting time.

5 Applications

5.1 Rotor Walks and Derandomization
Our results show that if all nodes pass the token in a way that is locally balanced across their
neighbors, then the resulting global random walk has good cover time. The local balance
condition can be ensured even without making any random choices. For example, in the
rotor walk algorithm [32, 17, 20], every node passes the token to each of its neighbors in a
round-robin fashion whenever it receives the token. A rotor walk ensures that every node
satisfies the referee of Section 3.2.

Thus, Corollaries 11 and 12 directly apply to rotor walks when we set b = n. They
give results analogous to Theorems 2 and 3 of [20]. In particular, Corollary 11 bounds
the cover time of rotor walks, and Corollary 12 bounds the occupation frequencies. Our
results are weaker than Theorems 2 and 3 of [20] in that they only apply to walks on
unweighted, undirected graphs. But, they are stronger in that they apply to a broader class
of derandomization techniques: for example, any routing works that ensures token passing is
locally balanced across neighbors as specified by the referee of Section 3.2.

5.2 Leader Election
Leader election is a fundamental problem in distributed computing [12, 11, 27, 33, 25,
45]. Consider a simple communication model common to blockchains: there is a public
key infrastructure (PKI) over the players, and communication occurs synchronously via
a broadcast primitive that enables any player to send to all other players in the network
(See [18, 15, 19]). Further, assume there is a publicly-known connected and regular graph G

that has m edges and n nodes.
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Corollary 12 enables us to perform repeated leader elections such that after T =
O(mn2 log n) elections, the fraction of good players elected approximates the fraction of good
players, or else at least one bad player is caught.

The algorithm to achieve this is simple. First, the player with the token is the leader for
that turn. This leader chooses one of its neighbors in G to pass the token to, and broadcasts
a cryptographically signed message giving their choice. The PKI prevents equivocation, and
synchronous communication forces some choice to be made, or else the current leader is
known to be bad. Since all players learn all choices of the other players, each player can
individually enforce the referee strategy of Section 3.2.

5.3 Sybil Defense

Consider a graph G with n nodes and m = Θ(n) edges, where (1) the bad and good nodes
are separated by a cut with only α crossing edges; and (2) the subgraph induced by the
good nodes is an expander. We want for almost all good nodes v, that node v learns a set of
players Sv such that (1) Sv contains almost all of the good nodes; and (2) Sv contains “few”
bad nodes. A simple algorithm is for each node to start a random walk at each of its edges,
and for each of these walks to continue for Θ(

√
n ln n) steps. Then, for each node v, Sv is

the set of all nodes w such that there is some node in the intersection of the nodes visited by
walks starting at v and the nodes visited by walks starting at w.

This problem and algorithm is inspired by random-walk based Sybil defenses prevalent in
the academic literature [43, 41, 4, 1], particularly the work of Yu, Kaminsky, Gibbons and
Flaxman [43]. The graph represents a social network where the good nodes and the Sybil
nodes are typically separated by a “small” number of crossing edges.

We can extend our referee and Corollary 12 to handle the algorithm described here that
creates many random walks. Each edge has probability 1/m in the stationary distribution,
and the initial steps in the algorithm above are also distributed uniformly over the edges.
Thus, as the number of steps increases, each edge is visited Θ(

√
n ln n) times. This is true

no matter what choices are made by the Sybil nodes, provided none of them are caught by
the referee.

Thus, the total number of steps on the α crossing edges should be Θ(α
√

n ln n). Call
a random walk bad if it crosses one of the crossing edges and good otherwise. Then, there
are at most Θ(α

√
n ln n) bad walks. In particular, assuming α = o(

√
n/ log(n)), the vast

majority of the random walks starting on good nodes visit only good nodes.
Since the graph induced by the good nodes is an expander, with high probability, each

pair of good random walks starting at two good nodes will intersect. Let G be the set of
good nodes and B be the set of bad nodes. Then, by the above, there is a set G′ ⊆ G such
that |G′| = Ω(n − α

√
n ln n) and for all v ∈ G′, G′ ⊆ Sv and |Sv ∩ B| = O(α

√
n ln n).

Thus, if α = o(
√

n/ ln n), and we say that node u trusts node v if v ∈ Su, we can say
the following. There is a set, G′ of all but a o(1) fraction of the good nodes such that: all
nodes in G′ mutually trust each other; and every node in G′ has a o(1) fraction of Sybil nodes
among the nodes it trusts.

6 Conclusion and Open Problems

It is well known that real-world fraud can sometimes be discovered by looking for statistical
anomalies in data sets or transaction records. However, these statistical tests [29, 30, 26, 28,
35, 36, 37] work best on unsophisticated fraudsters, and may not work against adversaries
who operate with full knowledge of the specific statistical tests.
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In this paper we advocated for an approach to fraud detection that is abstract, robust
against sophisticated adversaries, and rigorous in its quantitative guarantees.5 We illustrated
how rigorous fraud detection against powerful adversaries can work in a simple abstract
setting, namely random walks on undirected graphs in which vertices can be corrupted by
the adversary; cf. [3, 22]. There are several directions for future research.

One of our findings is that there can be a large delay between the time to detect the
existence of fraud, w.h.p., and the time to make an accurate accusation, w.h.p. One could
explore less strict notions of “accurate” accusation. In some contexts it may be fine to
accuse a set S ⊆ V , such that 90% of S is corrupt, w.h.p.
Given a specific graph G, we may be interested in the gap between its cover time and
the fraud detection time against an adversary controlling b vertices. Up to log-factors we
understand this gap on the path and clique, and know the extremal bound for arbitrary
graphs, which is attained by the Ball and Chain graph. However, it is an open problem
to efficiently compute this gap-factor for a specific G, or to bound it in terms of natural
parameters of G, e.g., diameter.
There are several algorithmic problems from the adversary’s perspective. Given a graph
G and budget b, which b vertices should be corrupted to maximize the time of detection?
To lower bound the detection time, we considered adversaries that corrupt vertices by
simply changing the transition probabilities for their incident edges; such adversarial
strategies are Markovian. Is there a specific graph for which all Markovian strategies are
suboptimal? If so, it would be interesting to see what a superior non-Markovian strategy
would look like.
A natural direction is to consider random walks on directed, strongly connected graphs.

In general, the fraud detection paradigm can be introduced into the analysis of essentially
any random process where it is conceivable that some or all of the randomness is being
controlled by an adversary to achieve an unlikely outcome.
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A Stationary Conditional Variances

Fix any target y and let H(v) be short for H(v, y). The stationary conditional variance Vy
π is

Vy
π =

∑
v∈V

π(v)

 1
deg(v)

∑
w∈N(v)

(H(w) − H(v))2 −

 1
deg(v)

∑
w∈N(v)

H(w) − H(v)

2
 .

This is a centered second moment, and is therefore always less than the corresponding
uncentered second moment, which is better known as the Dirichlet form.

E(H, H) =
∑
v∈V

∑
w∈N(v)

π(v)
deg(v) (H(v) − H(w))2.

Since what we are about to say applies to arbitrary reversible Markov chains, we will switch
notations accordingly. Let P be the transition matrix for any reversible Markov chain on
state space V , with stationary distribution π. Reversible means that every pair of states v, w

satisfies the detailed balance condition,

π(v)P (v, w) = π(w)P (w, v).

In this setting, the Dirichlet form E can be defined by either of the expressions below. Here,
f, g : V → R.

E(f, g) =
∑

v,w∈V

π(v)P (v, w)(f(v) − f(w))2 = 2 ·
∑

v,w∈V

π(v)P (v, w)f(v)(f(v) − f(w)).

Specializing to the case where f = g = H, where recall that H is the hitting time to a fixed
target state y ∈ V , we find that

E(H, H) = 2
∑

v,w∈V

π(v)P (v, w)H(v)(H(v) − H(w))

= 2
∑
v∈V

π(v)H(v)
(

1 − 1 (v = y)
π(y)

)
= 2

∑
v∈V

π(v)H(v) since H(y) = 0

= 2Eπ H.

Hence, for any y, Vy
π ≤ 2Eπ H, and so Vπ ≤ 2Hmax.
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