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—— Abstract

A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability:
approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the
ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called o-smooth Nash
equilibrium, for a smoothness parameter . In a o-smooth Nash equilibrium, players only need to
achieve utility at least as high as their best deviation to a o-smooth strategy, which is a distribution
that does not put too much mass (as parametrized by o) on any fixed action. We distinguish two
variants of o-smooth Nash equilibria: strong o-smooth Nash equilibria, in which players are required
to play o-smooth strategies under equilibrium play, and weak o-smooth Nash equilibria, where there
is no such requirement.

We show that both weak and strong o-smooth Nash equilibria have superior computational
properties to Nash equilibria: when o as well as an approximation parameter ¢ and the number of
players are all constants, there is a constant-time randomized algorithm to find a weak e-approximate
o-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a
polynomial-time deterministic algorithm to find a strong e-approximate o-smooth Nash equilibrium
in a normal-form game. These results stand in contrast to the optimal algorithm for computing
e-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to
complexity-theoretic assumptions. We complement our upper bounds by showing that when either
o or € is an inverse polynomial, finding a weak e-approximate o-smooth Nash equilibria becomes
computationally intractable.

Our results are the first to propose a variant of Nash equilibrium which is computationally
tractable, allows players to act independently, and which, as we discuss, is justified by an extensive
line of work on individual choice behavior in the economics literature.
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1 Introduction

The notion of Nash equilibrium, which is a strategy profile of a game in which each player
acts independently of the other players in a way that best responds to them, has been a
mainstay in the study of game theory and economics over the last several decades [52], with
a wide range of applications in related areas. For instance, it provides a model that predicts
agents’ behavioral patterns [40], though with varying degrees of success, serves as a universal
solution concept in multiagent learning settings [27, 65], and furnishes a rich set of problems
for study of the computational aspects of equilibria [20, 5], among other applications.

Most known results pertaining to the computation of a Nash equilibrium in general-sum
normal-form games are negative. In particular, it is known to be PPAD-hard to compute
Nash equilibria, even approximately [21, 18, 20, 57], meaning that there is unlikely to be
a polynomial-time algorithm. Similar hardness results abound in other natural models of
computation, such as the query complexity model. In particular, even in 2-player normal-form
games, one has to query a nearly constant fraction of the payoff matrices’ entries to find
an approximate Nash equilibrium [25, 26, 32]. The computational intractability of Nash
equilibria casts doubt over whether it is actually a reasonable solution concept to model
agents’ play: real-world agents can only implement efficient algorithms, so should not be
expected to play Nash equilibria in all games [21, 20, 38].1 Moreover, for applications in
which Nash equilibria do yield high-utility strategies for agents, its computation nevertheless
presents significant challenges [47].

To address these issues, it is popular to consider relaxations of Nash equilibria. Given
the competitive nature of many games, one fudamental property of Nash equilibria we would
like such a relaxation to preserve is that players choose their actions independently. Second,
of course, we would like such a relaxation to be computationally tractable. We remark
that the well-known equilibrium concepts of coarse correlated equilibria [50] and correlated
equilibria [4], which are relaxations of Nash equilibria, can be computed in polynomial time,
but generally involve correlation in the actions of the players. In particular, implementing
them requires a correlation scheme, which draws a random variable and sends each player a
private signal depending on it. Such schemes with guaranteed privacy of the signals may not
be available in certain applications, motivating our requirement that players’ strategies be
independent.

Smooth Nash equilibria

In this paper we introduce smooth Nash equilibria, which meet both of the above requirements.
The inspiration for smooth Nash equilibria comes from smoothed analysis [63], which aims
to circumvent computational hardness barriers by postulating that inputs to algorithms
come from smooth distributions, which do not place too much mass on any single value.
Alternatively, one may think of smooth distributions as being perturbations of arbitrary
distributions. There are two ways to apply smoothed analysis in the context of game
theory: first, one can assume the game itself (i.e., the payoff matrices) comes from a smooth

L This perspective is well summarized by a quote by Kamal Jain: “If your laptop can’t find it then neither
can the market”.
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distribution, and second, one could assume the game is worst-case but that the players
choose their strategies according to smooth distributions. The former approach has been
well-studied, but it fails to sidestep the PPAD-hardness barrier [18, 17]. We focus on the latter
approach, which has attracted more attention in recent years, wherein players’ strategies
(usually the adversarial player’s strategies) are smoothed [35, 36, 34, 13, 11, 15, 14, 16, 54].

In particular, given a normal-form game G where each player has n actions and a
smoothness parameter o € (0, 1), we say that a strategy profile is a o-smooth Nash equilibrium
if each player cannot improve its utility by switching to any o-smooth distribution over
actions. A o-smooth distribution is one which does not place too much mass, namely, more
than 1/(on), on any single action. Further, given € € (0, 1), an e-approzimate o-smooth Nash
equilibrium is a strategy profile in which each player cannot improve its utility by more than
€ by switching to a o-smooth distribution. We refer the reader to Section 3 for the formal
definitions.

The computational properties of smooth Nash equilibrium (as well as its approximate
counterpart) depend heavily on the smoothness parameter o € (0,1). It is easy to see
that when o = 1/n, the definition of smooth Nash equilibrium coincides with that of Nash
equilibrium, whereas when o = 1, the concept is vacuous: the uniform distribution over [n] is
a smooth Nash equilibrium. Our focus is on the intermediate regime 1/n < o < 1. We also
make a distinction between two versions of (approximate) smooth equilibrium: we say that
a strong e-approximate og-smooth Nash equilibrium is one in which players are required to
play o-smooth distributions under equilibrium play; a weak e-approximate o-smooth Nash
equilibrium does not have this additional requirement.

Our contributions

We study the complexity of computing e-approximate o-smooth Nash equilibria in m-player,
n-action normal-form games, for various values of ¢, € (0,1). Our focus is on the setting
when the number of players m is a constant, though our bounds apply more generally. In
this setting, our main results are summarized below, where we let n denote the number of
actions of each player:
When €, 0 are constants, there is a poly(n)-time deterministic algorithm which finds a
strong e-approximate o-smooth Nash equilibrium (Theorem 15).
When €, 0 are constants, there is a constant-time randomized algorithm which finds a
weak e-approximate o-smooth Nash equilibrium (Theorem 14). Furthermore, the number
of queries this algorithm makes to the payoff matrices is bounded above by poly(e~!,o~1)
(Theorem 10).
There is a constant oy so that, for e = 1/poly(n), it is PPAD-hard to compute weak
e-approximate og-smooth Nash equilibrium in 2-player games (Theorem 21). Moreover,
there is a constant €y so that, for o = 1/ poly(n), there is no algorithm running in time
neogn) which computes weak ey-approximate o-smooth Nash equilibrium in 2-player
games under the Exponential Time Hypothesis for PPAD (Corollary 18).

In the case that ¢ = 1/n, in which case weak and strong o-smooth Nash equilibria are
both equivalent to Nash equilibria, our results on time complexity recover well-known results
on the complexity of Nash equilibria (assuming that m is constant). In particular, in this
regime, our upper bound of n@os(1/2)/ ) becomes nOlos(m)/ 62), which recovers the classical
result of [44]. In fact, under ETH for PPAD, this is the best possible upper bound for
computing approximate Nash equilibria in 2-player games [58]. Furthermore, any algorithm
for computing approximate Nash equilibria in 2-player games must make n?~°(") queries [32]
which is in contrast with our constant-time randomized algorithm for finding weak o-smooth
Nash equilibria when ¢ is constant.
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Thus, the parameters €, o act as dials which allow us to trade off computational efficiency
for a stronger equilibrium notion. Our results are summarized in Table 1.

Table 1 Summary of our results. : These upper bounds are obtained by randomized algorithms,
and compute weak smooth Nash equilibria with probability 1 —§. %x: This upper bound is obtained by
a deterministic algorithm, and computes strong smooth Nash equilibria. All lower bounds hold with
respect to weak (and therefore also strong) Nash equilibria, and hold with respect to randomized
algorithms.

Model Upper Bound Lower Bounds
, mlogz(m/(ans»)m“ Q
Query Complexity m ( %o (exp(m)) e=Q(1), c =Q(1)
Theorem 107 Remark 12
PPAD-hard e
pO(m*log(m/a)/e?) Theorem 21 e=n"o=00)
Theorem 15* n'°e™ under ETH-PPAD

Time Complexity

of m21os(m/s0) Corollary 18

(Tn log(l/é)) €2 Q(exp(m))
¢ e=Q(1), c =Q(1)

Theorem 147 Remark 12

1.1 Further Motivation & Connections to Other Equilibrium Notions

Implicit in the definition of o-smooth Nash equilibria is the assumption that agents only
aim to compete with their best o-smooth response. It is natural to question how reasonable
this assumption is. In this section, we discuss an extensive line of work on individual choice
behavior in the economics literature which has yielded choice models that help to justify
o-smooth Nash equilibria. In doing so, we also discuss connections between o-smooth Nash
equilibria and other variants of Nash equilibria which have been previously proposed.

Quantal Response Equilibria & Logit Equilibria

A fundamental difference between o-smooth Nash equilibrium and the standard notion of
Nash equilibrium is that in the former, agents do not place all mass of their strategy on their
utility-maximizing action(s), given the strategies of others. One may wonder: Is this realistic
behavior? The theory of random utility models [48] proposes a justification for this type of
behavior. In particular, suppose that, for fixed strategies of other agents, each agent j’s
computation of its expected utilities for each action is perturbed by a random noise vector ¢;.
This noise could represent calculation errors due to imperfect information an agent has about
the game’s payoffs or other agents’ strategies. As a result of this noise, conditioned on other
agents’ strategies an agent will generally play some actions which are suboptimal. For a fixed
distribution over the agents’ noise vectors (1, ...,&m), a strategy profile in which each agent
Jj’s strategy is obtained as above by perturbing its (true) expected payoff by ¢; and then
best-responding, is known as a quantal response equilibrium [49, 31]. Moreover, the mapping
from an agent’s expected payoff vector u to its strategy obtained by best-responding to the
perturbed vector u + €; is known as its quantal response function.

We remark that an agent’s best o-smooth response yields larger utility than its quantal
response function for many choices of the perturbations €;. This observation provides further
justification for the set of o-smooth deviations as representing a reasonable deviation set with
which to define equilibria. To illustrate, consider the common setting where the perturbations
¢; are drawn according to the extreme value distribution. In this case, given an expected
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payoff vector u € R™, an agent’s quantal response function is given by a softmax function of u.
This class of response functions, known as the logistic response functions, has its origins in the
seminal work of Luce [45], and the corresponding special case of quantal response equilibrium,
called logit equilibrium, has been extensively studied since (e.g., [48, 2, 37, 30, 29]). We show
in the full version [22, Proposition G.3] that, under mild conditions on o, the utility obtained
by the logistic response function is no better than that obtained by the best o-smooth
distribution.

In light of the above connections, one might wonder if o-smooth Nash equilibria can in
fact be obtained as a special case of quantal response equilibria, for some distribution of the
noise vectors €;. As we discuss in [22, Appendix GJ, this is not the case: for any distribution
of the noise vectors ¢;, there are games for which the set of quantal response equilibria is
separated in total variation distance from the set of strong o-smooth Nash equilibria.

Finally, we mention that a key property of o-smooth Nash equilibrium which is essential
to obtaining efficient algorithms is that there is a natural notion of e-approximate smooth
equilibrium (Definition 4). All of our efficient algorithms require 1/¢ to be bounded. There
does not appear to be a correspondingly natural notion of approximation for quantal response
equilibria.

Polyhedral games

The set of strong o-smooth Nash equilibria for a given normal-form game may be viewed as
the set of Nash equilibria in the concave polyhedral game in which each player’s action set
is the polyhedron consisting of all o-smooth distributions, and the payoffs are defined by
linearity. The study of (polyhedral) concave games was initiated by [55], and has since been
studied in various contexts, including for analyzing no-regret learning algorithms [33] and
modeling extensive-form games [24], amongst others [46]. Our results on strong o-smooth
equilibria can be viewed as showing that there are efficient algorithms for computation of
approximate Nash equilibria in a certain natural class of polyhedral concave games.

Additional equilibrium notions

[56] introduced a notion of bounded rationality equilibrium in which the probability that each
player plays an action is related linearly to the suboptimality of that action. The resulting
equilibria have similar behavior to quantal response equilibria [49, 31]. [10] introduced
imperfect performance equilibria, which are Nash equilibria in an augmented game in which
each agent j intends to play a certain strategy Z;, but the strategy it actually plays, x;, is
the result of passing &; through a performance mapping. This performance mapping could
simulate the fact that “agents” in a game can represent organizations, whose actions are the
agglomeration of those of multiple individuals. As these individuals may be self-interested,
they may not always act according to the organization’s best interests (i.e., its best response).

Trembling-hand perfect equilibria, introduced by [60], are those which are obtained as limit
points of a sequence of polyhedron games, parametrized by § \, 0, in which each player’s
polyhedron is the set of strategies which put mass at least § on each action. Note that this
polyhedron is distinct from the polyhedron of smooth strategies, which require that each
action receives mass no more than 1/(on). Trembling-hand perfect equilibria are further
refined by proper equilibria [51]. We remark that trembling-hand perfect equilibria are related
to certain limit points of control-cost equilibria [64, Chapter 4], which are equilibria in which
each player pays a cost for playing each action, which depends on the probability with which
the action is played. The above notions of equilibria are inspired by various justifications
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as to why agents might play suboptimal actions with positive probability. However, unlike
smooth Nash equilibria, none of them can be computed efficiently in general normal-form
games. In fact, trembling-hand perfect equilibria and proper equilibria are refinements
of Nash equilibria, so an efficient algorithm for computing them would imply an efficient
algorithm for computing Nash equilibria.

Regularization and equilibrium solving

Quantal response equilibria can be interpreted as Nash equilibria in a modified game where
each player’s utility has an additional regularization term that depends on the entropy of
its strategy. The idea of using entropy regularization, as well as generalizations of it, has
been exploited in recent years [42, 8, 53, 23, 62] to instill desirable properties of solutions
to multi-agent reinforcement learning problems. For instance, to find strategies which are
“human-like”, [42] does the following: for a fixed, known human strategy &, they introduce
a regularizer which minimizes the KL divergence to & (a generalization of entropy), thus
ensuring that learned strategies will be similar to &, while being close to a best response in
some sense. In a similar spirit, smooth Nash equilibria can be seen as equilibria induced by
regularization with respect to the min-entropy. Moreover, appropriate generalizations of the
min-entropy, as per Remark 6, could be used to model the task of finding equilibria which
are close to arbitrary (non-uniform) distributions, such as ones played by humans. Whereas
most of the prior work on regularization in this context (e.g., [62]) focuses on two-player
zero-sum games, our concept of smooth Nash equilibrium leads to efficient algorithms in
multi-player, general-sum games. It is an exciting question to understand if our ideas have
implications in such general-sum versions of these multi-agent RL problems.

Boosting

The best-response condition of smooth Nash equilibrium is also motivated by a connection to
boosting algorithms. The link between two-player zero-sum games and boosting is well-known
[59] and can be seen as a fundamental application of equilibrium solving. One of the key
aspects of the analysis of boosting algorithms (such as ADABoost) which allows for rates
that do not depend on the number of samples is the fact that one needs to only compete
against subsets of the dataset of size nn where n is the size of the dataset and 7 is the desired
accuracy [3, Sections 3.6 and 3.7]. This can be viewed as the best-response condition of weak
n-smooth Nash equilibrium, where the “dataset” player who places weights on the sample
set need only compete with smooth distributions. Furthermore, in several applications such
as the construction of hard-core sets [41, 43, 9], noise resilient (smooth) boosting [61] and
construction of private datasets [35], it is important that the distribution output by the
“dataset” player does not concentrate too much mass on any single point (see [3, Section 3.7]
for a further discussion). This can be viewed as the best-response condition of the strong
smooth Nash equilibrium.

Organization

In Section 3, we formally define smooth Nash equilibria and present an important structural
result in Section 3.1. In Section 4, we present our query-efficient algorithms for finding weak
smooth equilibria. In Section 5, we discuss efficient algorithms for finding smooth equilibria,
including both the weak (Section 5.1) and strong (Section 5.2) variants. Section 6 contains
our hardness results, and Section 7 contains concluding remarks and open questions.
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Due to page limits, all our formal proofs, as well as additional discussion, may be found
in the full version of this paper [22].

2 Preliminaries

Given a tuple of elements y = (y1,...,%m), we will denote by y_; the tuple
(Y1, s Yio1,Yit1,s -+, Ym). Further, for an element y}, we will use the standard game
theoretic notation of (y.,y—;) to refer to the tuple (y1,...,Yi—1, s Yi,---,Ym). In particular,
y = (yi,y—i). For i <, we write y;.o = (Yi, Yi+1,---,Yi). For n € N, we let A™ denote the

set of distributions over [n]. For i € [n], let e; € A™ denote the corresponding basis vector.

For y € A", we let supp(y) := {i: y; > 0}.

» Definition 1 (Normal Form Games). Let n and m be positive integers. A normal form game
with m players each with n actions is specified by a tuple of payoff mappings Ai,..., An :
[n]™ — [0, 1], with the interpretation that player j receives utility A; (a1, ...,am) when the
players play the actions aq, ..., a,, respectively.

A mized strategy (or simply strategy) of player j is an element z; € A™. A strategy
profile is a tuple © = (z1,...,Zm) € (A™)™. We will extend the notation A;(a1,...,an) by
linearity: for a strategy profile x = (x1, ..., %, ), we write

A](l') = Aj(l‘l,. .. ,lL’m) = Ealel .. 'EamNIm [AJ (al,. . .,am)] .

For an action a; € [n] and a strategy profile x, we will write A;(a;,z_;) to denote Aj(eq,;,z—;),
namely player j’s expected utility when it plays a; and others play according to x.

» Definition 2 (Nash equilibrium). Given € € (0,1) and a normal-form game specified
by A1,..., An, a strategy profile x = (x1,...,2m) € (A™)™ is an e-approximate Nash
equilibrium if for each j € [m],

max A; ()

max A;(@),2;) — 4;(@) < e

We will refer to a 0-approximate Nash equilibrium as simply a Nash equilibrium.

In the special case of 2-player games, we will denote the payoff functions of the game by
matrices A, B € R"*" and the players’ respective strategy profiles by x,y € A™.

3 Smooth Equilibria

First, we define the polytope of smooth distributions, which is the set of distributions that
do not concentrate too much mass on any one coordinate.

» Definition 3 (Smooth Distribution Polytope). Suppose n € N and o € R satisfy 1/n < o < 1.
The smooth distribution polytope K, ., is the set

1
KU,n:{xGA”:OSJ‘iSViE[n]}, (1)
no

We call the parameter o the smoothness parameter; for larger o, the constraints defining
Ks,n are more stringent, i.e., distributions in &, ,, are “smoother”. In particular, for o = 1/n
we have IC, , = A™ and for o = 1 we have K, ,, = {%1} where 1 is the all ones vector. With
this definition in hand, we now define smooth Nash equilibria, the key concept that we study
in this paper.
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» Definition 4 (Smooth Nash equilibria). Fiz an m-player normal-form game G with payoff
mappings A1, ..., Am : [n]™ = [0,1], and €,0 € [0,1]. A strategy profile x = (x1,...,%m) €
(A™)™ 4s an weak e-approximate o-smooth Nash equilibrium if, for each j € [m],

e Aj(afa—j) — Aj(z) < e.

It is moreover a strong e-approximate o-smooth Nash equilibrium if z; € K, for each
j € [m].

We refer to weak (resp., strong) O-approximate o-smooth Nash equilibria as simply weak
(resp., strong) o-smooth Nash equilibria. Intuitively, Definition 4 says that in o-smooth
Nash equilibria, no player can gain more than e utility by deviating to a distribution that is
o-smooth. Furthermore, in strong o-smooth Nash equilibria, the mixed strategies of each
player are themselves o-smooth.

The set of strong o-smooth Nash equilibria of a normal-form game is equal to the set of
Nash equilibria in the polyhedral concave game [55] where each player’s action set is Ky p,
and the payoffs are given by x — A,(x), for j € [m], € (K,,,)™. Since the sets K, ,, are
compact and convex, [55, Theorem 1] implies that strong o-smooth Nash equilibria always
exist.

» Proposition 5 (Existence of Equilibria; [55]). For any o € (0,1), every normal-form game
has a strong og-smooth Nash equilibrium.

» Remark 6 (Generalizing the smooth distribution polytope). The smooth polytope K,
may alternatively be defined as the set of distributions on [n] whose Radon-Nikodym
derivative with repsect to the uniform distribution on [n] is bounded by 1/¢. In particular,

Ko = {r e 81|

ditn || oo
smoothed analysis (e.g., [13, 15, 14, 16]), one may generalize the notion of smooth distributions

< %} , where p,, is the uniform measure on [n]. As is common in

and thereby smooth equilibria by allowing p,, to be an arbitrary distribution on [n] or even
a more general probability space. Essentially all of our results remain unchanged under
appropriate compactness assumptions.

3.1 Structure of Smooth Nash Equilibria

Next, we discuss a key structural result underlying our upper bounds, which states that there
are weak approximate smooth Nash equilibria for which the players’ strategy profiles are
supported on a small number of actions (Corollary 9). In fact, we prove a slightly stronger
statement, namely that a smooth Nash equilibrium can be approximated by sampling.

» Lemma 7. Let Ay,..., Ay @ [n]™ — [0,1] denote the payoff matrices of an m-player
normal-form game G. Let e, € (0,1) be fived. Let k = M where Cy is a
sufficiently large constant. Given a weak o-smooth Nash equilibrium x© = (x1,...,Ty), let
& = (&1,...,%m) be the random strategy profile where &; is the uniform average over k
actions Bj1,...,Bj, sampled i.i.d. from x;. Then, with probability 1 — 3§, we have, for all
Jj € [ml],

|Aj(l‘1, e ,l'm) — Aj(.f‘l,. .. 7=%m)| S 5 sup ’Aj(:v( L%,j) - AJ(Z‘

N N
H\
m
g
Q
3
DN

and & satisfying Equation (2) is a weak e-approzimate o-smooth Nash equilibrium.
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The main technical lemma driving the sampling result of Lemma 7 is a generalization of
Massart’s finite class lemma to the case when the supremum is over the set of smooth
distributions on [n] (namely, [22, Lemma A.1]). At a high level, this lemma allows us to
bound the sampling error in each player’s deviation to a best-response smooth strategy
without incurring a log(n) factor in the number & of samples.

We capture the sparsity of strategy profiles such as & produced by the sampling procedure
in Lemma 7 with the following definition.

» Definition 8. For k € N, we say that a distribution y € A™ is k-uniform if for each i € [n],
yi s an integral multiple of 1/k. We say that a strategy profile x = (x1,...,Zm) € (A™)™ is
k-uniform if each of its constituent strategies x; is.

Thus, we see from Lemma 7 that k-uniform weak approximate smooth Nash equilibria
exist for k£ that is independent of the number of actions of the game.

» Corollary 9 (Existence of k-uniform weak smooth Nash). Let m € N, ¢,0 € (0,1), be given
and set k = %W. Then any m-player normal-form game G has a weak k-uniform

e-approrimate o-smooth Nash equilibrium.

Corollary 9 generalizes the result of [44], as well as the follow-up of [39], which treat the
case of approximate Nash equilibrium, corresponding to the case of 0 = 1/n. The parameter
k needed by [44, 39], which governs the sparsity of the equilibrium, thus grows logarithmically
in n. As we show in Section 5, the fact that the sparsity is only logarithmic in 1/0 is key to

getting a polynomial-time algorithm for computing smooth Nash equilibria when 1/0 = O(1).

4 Query Complexity of Smooth Nash Equilibria

In this section, we prove an upper bound on the randomized query complexity of computing
weak smooth Nash equilibria. This result comprises the bulk of our proof in Section 5.1 that
there is a randomized constant-time algorithm for computing weak e-approximate o-smooth
Nash equilibria. Beside the application to computational complexity, query complexity of
equilibria is of interest in its own right, as a tool to understand the amount of information
that needs to be shared in order to find an equilibrium [5]. It is also closely related to the
analysis of uncoupled dynamics converging to equilibrium [19, 38, 32].

We briefly review the query complexity model. The payoff mappings A, ..., Ay : [n]™ —
[0,1] are assumed to be unknown, but the algorithm can repeatedly query single entries
Aj(ar,...,am) (for j € [m],ai,...,an € [n]) of these matrices. Randomness is allowed
in choosing the queries. After making at most ) queries, for Q € N denoting the query
complezity, the algorithm is required to output a strategy profile. Our main result in this
model is Theorem 10 below, which states that we can find a smooth Nash equilibrium with a
number of queries that is independent of the number of actions n.

» Theorem 10. Let A;,...,A, : [n™ — [0,1] denote the payoff
matrices of an m-player mnormal-form game G. Let €,0,6 € (0,1) be
fized. Then  QueryEquilibrium((Ai,...,An),0,€6,0) (Algorithm 2) makes

1o} mlog?(m/(dce)) m+l . ¢ i tri G M
m- (gl queries to entries of payoff matrices of G. oreover,

it outputs a strategy profile & which is a weak e-approximate o-smooth Nash equilibrium of G
with probability at least 1 —§.
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Algorithm 1 OptimizeDeviation(R, A, j,z,0): compute optimal smooth deviation using few
queries.

1. Write R ={rj1,...,7jn}, forrjq1,...,m N € [n].

2: for i € [N] do

3: Set 0; = A(rm-,x_j).

4: Let 1,...,7n € [N] denote a permutation of [N] so that 9, > --- > 9, .
5: return 9 := L N b,

Note that when m, o, €, are constant, the query bound obtained by Theorem 10 is also
a constant. This is in constrast to the query complexity of e-approximate Nash equilibria,

2—o0(1)

even for two players, which requires at least n queries even for constant € and constant

probability of error § [25, 26, 32].

The main idea behind the algorithm QueryEquilibrium can be summarized in two steps.
The first is the following strengthening of the existence of k-uniform approximate smooth
Nash equilibria from Corollary 9. In particular, Lemma 11 below shows that not only do
k-uniform approximate smooth Nash equilibria exist for small k£, but also that they can
found in small subsets that are uniformly sampled from the set of actions.

» Lemma 11. Let Ay,..., A, : [n]™ — [0,1] denote the payoff matrices of an m-player
normal-form game G. Lete,0 € (0,1) be fized, and t = C“mloggﬁm/ég) A= log(QZm/é) and set
k=tl. Forj € [m], let X7 € A" denote the uniform measure over k uniformly random (with
replacement) elements selected from [n]. Then, with probability 1 — ¢, there is a t-uniform
e-approximate o-smooth Nash equilibrium suported on supp(Xl) X ... supp(X'm),

Given Lemma 7, the main ingredient in the proof of Lemma 11 is the coupling lemma from
[36] ([22, Lemma B.1]), which implies that, for any k¥ € N,o € (0,1) and any o-smooth
distribution p, the following holds: there is a coupling between an i.i.d. sample S of size k
from p and an i.i.d. sample S’ of size roughly k/c from the uniform distribution, so that
with high probability under the coupling we have S C S’. To prove Lemma 11, this coupling
lemma is applied for each player j, with the sample S corresponding to a sample from a
o-smooth Nash equilibrium as in Lemma 7, and the sample S’ corresponding to Xi.

Given Lemma 11, QueryEquilibrium proceeds in the natural way. It samples random
k-uniform measures X7 as in Lemma 11 (Algorithm 2), and iterates over all ¢-uniform
strategy profiles & supported on them (Algorithm 2). The key challenge, however, is to
test whether each such strategy profile £ is in fact an e-approximate o-smooth equilibrium,
in a query-efficient way. In particular, for each player j, we must estimate the value of
its best o-smooth response to £_;. The naive way to compute this best response is too
query-expensive, requiring more than (n) queries: it would, for each player j € [m], iterate
over all n actions of player j, and average the best on. Instead, we settle for an approximation
to the best o-smooth deviation, computed as follows: we sample a subset R; of sufficiently
large size N (which is nevertheless independent of n) in Algorithm 2 uniformly at random.
Then, we average estimates of player j’s values for the best /N sampled actions in R;
(Algorithm 2, which calls OptimizeDeviation, Algorithm 1). This subset R; is reused
amongst all t-uniform strategy profiles Z that are considered in QueryEquilibrium; reusing
the samples R; as such allows us to avoid having the query complexity scale exponentially
in log(1/(60))/€%. If no player j can improve its utility by Q(e), then the algorithm returns
the strategy profile & (Algorithm 2).
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Algorithm 2 QueryEquilibrium((Ai,...,Am),0,¢€,d): compute weak smooth Nash equilibrium
using few queries.

1: Set t = Coml‘()f/(f;l/é”) = log(42m/6), and k = t£, where Cj is the constant of Lemma 7

2: Set N := 1601:7”27;25(16/6)7 for a sufficiently large constant Cj.

3: For j € [m], initialize A;, A; : [n]™ — [0, 1] arbitrarily.

4: for j € [m] do

5: Let X ; € A™ denote the uniform measure over k elements of [n], chosen uniformly at
random with replacement.

6: Let S; := supp(X;) C [n].

7. for j € [m] do
Let R; be a set consisting of N uniformly random elements of [n], chosen with
replacement.
9: for j € [m] and each (bj,b_;) € R;j x [[,/4; Sj do
10: Query A;(b;j,b_;) and let A;(b;,b_;) be the result of the query.
11: for j € [m] and b € [[;/¢(,, Sj do
12: Query A;(b) and let A;(b) be the result of the query.

13: for each t-uniform strategy profile & = (Z1,...,2,,) supported on S; x --- X S, do

14:  for j € [m] do

15: Set ¥; < OptimizeDeviation(R,, Aj,a?,a). > Algorithm 1
16: Set 1~1j — AJ(JA?)

17: if max;cpm{9; — 05} < €/2 then

18: return the strategy profile Z.

19: return an arbitrary strategy profile. > We will show this happens w.p. < §.

Strong smooth Nash equilibria

It is straightforward to see that an analogue of Theorem 10 cannot hold for strong o-smooth
Nash equilibria: even in the case m = 1, there is a constant ¢ > 0 so that cn queries are
needed to find a strong c-approximate 1/4-smooth Nash equilibrium.? That said, sampling
variants of a constant query strong Nash equilibria algorithm are not ruled out and we discuss
some these questions in Section 7.

» Remark 12 (Query Complexity Lower Bounds). As mentioned earlier, the query and commu-
nication complexity of finding Nash equilibria in games is well-studied. In particular, it is
known that finding an ¢y approximate Nash equilibrium, for some constant €y, in a 2-player
game requires Q(n?~°(M)) queries [25, 26, 32]. Further, for m-player games with two actions
per player the query complexity of finding an eg-approximate Nash equilibrium is known to
be 2™ (see [7] and references therein). This implies that for constant o and €, the result of
Theorem 10 is tight up to logarithmic factors in the exponent. Getting tighter lower bounds
that fully elucidate the required dependence on o, € is an interesting avenue for future work.

2 In particular, a 1-player game is described by a vector A1 € R™: suppose that A; is chosen randomly
with each entry drawn independently from Ber(1/2). Consider any randomized algorithm which makes
at most n/8 queries to A1 and outputs a distribution & € Ky 4,,,. Conditioned on the set Q@ C [n] of
entries queried by the algorithm, all values of (A1), for ¢ € Q, are uniform and independent bits. Thus,
conditioned on any set Q with |Q| < n/8, with at least constant probability, a constant fraction of the
mass of & is on entries of A; which are 0, and thus the suboptimality of & with respect to the best
1/4-smooth deviation (which has value 1 with high probability) is Q(1).
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5 Efficient Algorithms for Finding Smooth Nash Equilibria

In this section, we introduce algorithms to compute e-approximate o-smooth Nash equilibria.
First, in Section 5.1, we show that, as a relatively straightforward consequence of the results
of Sections 3.1 and 4, weak smooth Nash equilibria can be efficiently computed when the
approximation and smoothness parameters are constants. Then, we show that a similar
conclusion also applies to strong smooth Nash equilibria in Section 5.2, though the proof
requires some new ideas.

5.1 Finding Weak Smooth Equilibria in Games

Recall that, in Corollary 9, we showed that, in any normal-form m-player game, there
exists an e-approximate o-smooth Nash equilibrium which is k-uniform (per Definition 8)

for k = O (%), which is constant when €,0,m are constants. Since the number

k and since it can be

of k-uniform strategies of any player can be enumerated in time n
efficiently tested whether a k-uniform strategy profile is an e-approximate o-smooth Nash
equilibrium, it follows that we can compute such an equilibrium in time n™*, which is poly(n)

when k, m, o are constants.

» Theorem 13 (Polynomial-time algorithm for weak smooth Nash). Let Ay, ..., Ay : [n]™ —
[0,1] denote the payoff matrices of an m-player normal-form game G. Then, for any

m?2 log(m/o)

2

of=temen)
o,e € (0,1), there is an algorithm running in time n which finds a weak

e-approrimate o-smooth Nash equilibrium.

The algorithm and proof for Theorem 13 are analogous to the well-known result of [44],
where a quasipolynomial-time algorithm was established for computing e-approximate Nash
equilibrium in m-player games, when ¢, m are constants. Theorem 13 improves this result
to polynomial-time for 2(1)-smooth equilibria since the parameter k from Corollary 9 as
discussed above is constant when o = Q(1), whereas for (non-smooth) equilibria, [44] requires
k = O(logn).

5.1.1 Sublinear-time algorithms

Is it possible to beat polynomial-time, i.e., obtain sublinear-time algorithms for approxim-
ating o-smooth equilibria? It is straightforward to see that if we restrict our attention to
deterministic algorithms, this is not possible, even for € = 1/2,0 = 1/4,m = 1. To see this,
note that in the case m = 1, the game is described simply by a vector A; € R™. For any
deterministic algorithm running in time at most n/2, it must make at most n/2 queries to
Ay. Then there is a fixed sequence iy, 2, ...,i,/2 of the n/2 indices at which it queries A;
when all queries return 0. No matter which fixed distribution in A™ the algorithm outputs,
there is a subset S C [n]\{i1,... 4,2} of size |S| = on = n/4, so that, setting (A1); = 1
for i € S (and (A;); = 0 otherwise) ensures that the algorithm’s output distribution yields
utility at most 1/2, whereas deviating to play uniformly on S yields utility of 1.

One may nevertheless wonder about randomized algorithms; surprisingly, the answer
turns out to be vastly different. In particular, it follows from the techniques used to prove our
query complexity upper bounds in Section 4 that, in the setting where m, o, € are constants,
there is a randomized constant time® algorithm that computes e-approximate o-smooth
equilibria in m-player games, with arbitrarily small constant failure probability.

3 Note that here we work with the O(log(n/€))-word RAM model. This model allows the algorithm to
specify the indices of actions and to access entries of the payoffs in constant time. Note that the payoffs
are only needed up to precision poly(e) if our goal is to find e-approximate smooth equilibria.
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» Theorem 14 (Constant-time randomized algorithm for weak smooth Nash). Let A;,..., A, :
[n]™ — [0,1] denote the payoff matrices of an m-player normal-form game G. Then for
any o,¢,0 € (0,1), there is an algorithm running in time (ml%(el/é)) which
outputs a strategy profile which is a weak e-approximate o-smooth equilibrium with probability
at least 1 — 4.

The proof of Theorem 14 follows from Theorem 10 by bounding the running time of
QueryEquilibrium.

5.2 Finding strong smooth Nash equilibria

The strategy profiles in the equilibria found by the search procedures used to establish
Theorems 13 and 14 are k-sparse with k& = poly(m,o~!,e~1). For small values of m, ¢, o
(which is the main regime of interest), these strategies are certainly not o-smooth, and thus
the equilibria found are not strong smooth equilibria. In order to find strong equilibria, we
need to implement an additional “smoothening” step. As we shall see, we can do so using
linear programming, leading to the following result.

» Theorem 15 (Polynomial-time algorithm for strong smooth Nash, multi-player). Let
Ay, ... A [n]™ = [0,1] denote the payoff matrices of an m-player normal-form game G.

m% log(m /o)

2

) which finds a

o
Then for any o > 0, there is an algorithm running in time n
strong e-approzimate o-smooth Nash equilibrium.

We first describe the proof of Theorem 15 in the case of m = 2 players, for which the
claimed algorithm is given by BimatrixStrongSmooth (Algorithm 3). In this case, for ease
of notation, we denote the payoff matrices by A, B € [0,1]"*™ and the two players’ strategies

by z,y € A™. Set ¢y = €¢/4, and k = %’%(2”), where Cj is the constant of Lemma 7.

BimatrixStrongSmooth proceeds as follows. It iterates over all k-uniform strategy profiles
(2,9). For each one which is a weak ep-approximate o-smooth Nash equilibrium, it solves
a linear program (namely, Equation (3)) which aims to find a o-smooth strategy profile
(z,y) which approximates (£, 9) in terms of each player’s utility with respect to all o-smooth
deviations of the other player. If such a program is feasible, realized by (z,y), then the
program returns such (z,y). Intuitively, the constraints of this program ensure that the fact
that the smooth Nash equilibrium constraints are satisfied for (£, ) implies that the smooth
Nash equilibrium constraints are satisfied for (x,y).

To complete the proof of the theorem (for m = 2), we need to establish two facts. First,
that for some k-uniform strategy profile (&, §) which is a weak smooth Nash equilibrium, the
program Equation (3) will be feasible. Second, that any feasible solution of Equation (3)
(given that (#,9) is a weak smooth Nash equilibrium) is in fact a strong smooth Nash
equilibrium. The proof of the first fact uses Lemma 7 with input a strong o-smooth Nash
equilibrium (z,y) (which exists by Proposition 5). The conclusion Equation (2) of Lemma 7
can be used to show that (x,y) is a feasible solution to Equation (3) for an appropriate
choice of (&, 7). The proof of the second fact follows by using the constraints of Equation (3)

to derive that any feasible solution must be an approximate strong smooth Nash equilibrium.

Finally, we need to ensure that BimatrixStrongSmooth can be implemented in the claimed
time. The most nontrivial part of this claim is ensuring that the ellipsoid algorithm can
efficiently solve Equation (3), in light of the fact that Equation (3) has exponentially many
constraints. We discuss this issue in detail in the appendix.
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Algorithm 3 BimatrixStrongSmooth((A, B),n, o, €): compute strong smooth equilibria of 2-player

games.

1: Set ¢g = ¢/4 and k = %%(zm, where Cj is the constant of Lemma 7.

2: for Each k-uniform strateggl profile (£, ) do

3: if (Z,9) is a weak ¢p-approximate o-smooth Nash equilibrium then

4: Solve the following feasilibity LP for z,y € R", using the ellipsoid algorithm:

Find z,y e R": z,y € Ko (3a)

leT Ay — 2" Aj| < eo (3b)
()T Ay — (") TAj| < eo Vo' € Ko (3¢c)
2By — 3 "By | <e VY €Kon (3d)
12" By — 2" Bj| < «. (3e)

5: if SolveLPFeasibility outputs that above LP is feasible, realized by (z,y) then

6 return (z,y).

Multiplayer games

The main challenge in extending the above arguments to the case of m-player games, for
general m > 2, is generalizing the program Equation (3) to the m-player case. At first glance
this may seem problematic if it turns out to be necessary to have, say, constraints of the
form |A;(z}, 2_;) — Aj(2, %) < € for all 2; € Ko,,,. Such a constraint is not linear in the
program variables x = (21, ..., ;) when m > 2, since A;(z}, z_;) is a polynomial of degree
(m — 1) in z. Fortunately, such constraints are avoidable. We will use a hybrid argument to
show, over the course of m steps, that satisfiability of a certain linear program yields a strong
smooth equilibrium from a weak smooth equilibrium Z. To apply this hybrid argument, we
will need a stronger version of Lemma 7, stated below as Lemma 16. In the lemma statement,
we generalize the notation C, ,,. For any finite set S and o > 0, we let K, s denote the set
of distributions P € A(S) so that P(s) < ﬁ for all s € S. In particular, below we have
S = [n]* for £ € N. We denote elements of K, ¢ by 21,,; note that such #/,, is in general
not a product distribution; neverthelss, we will slightly abuse notation by writing, for a fixed
sequence Tyyi.n = (Tog1,...,Tm) € (A™)™E

Aj (@ Tertm) = By bpy~al Ebima, vizer1[Aj(b1, o b))

Similarly, if p > £+ 1, we write A; (w’M,p, Zp+1:m,—p) to denote the corresponding expectation
where the pth coordinate is included in the distribution 7., , € A([n]**") and excluded from

Tl4+1:m-

» Lemma 16. Let Ay,..., A, : [n]™ — [0,1] denote the payoff matrices of an m-player
normal-form game G. Let €,0 € (0,1) be fized. Set k = %Qg(m/"), for a sufficiently large
constant Cig. Given a strong 0-approximate o-smooth Nash equilibrium x = (x1,...,%m),
there is a strategy profile & = (&1,...,2Tm) satisfying the following properties:

1. All entries of each &;, j € [m], are k-uniform;

2. % is a weak e-approximate o-smooth Nash equilibrium.

3. The following inequalities hold for each j € [m]:

max Aj (2101, By Bos1im) — Aj(xll:E—lvml75@€+1:m)| <e Vee[m] (4)
(Ell:I,ilGK:a[—l_'[n]é—l
max ’Aj (@101, E0s Begrim,—5) — Aj(xllzlfldwxbijﬂ»l:m,fj)’ <e Veelj—1]. (5)

€K e e

,
Tre—1,j
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The inequalities Equations (4) and (5) generalize Equation (2) in that a maximum is taken over
all o®-smooth distributions on [n]*, for various ¢ € [m]. To prove Theorem 15 given Lemma 16,
we use GeneralStrongSmooth [22, Algorithm 4], which is similar to BimatrixStrongSmooth,
except that the program Equation (3) is replaced by [22, Eq. (22)], whose constraints
mirror those in Equations (4) and (5). The proof uses these constraints together with a
hybrid argument to show that a solution of [22, Eq. (22)] is an approximate smooth Nash
equilibrium.

6 Hardness Results for Smooth Equilibria

In the previous sections, we showed that computing e-approximate o-smooth Nash equilibria
is tractable when both €, o are constants. In this section, we show that this result is optimal in
the sense that when either € or ¢ is an inverse polynomial, then an efficient algorithm is ruled
out by standard hardness assumptions for the complexity class PPAD. PPAD is a subclass of
the class TFNP of total search problems consisting of those problems in TFNP which have a
polynomial-time reduction to the End-of-the-Line problem.* PPAD-hardness of a problem
is typically taken as strong evidence that a problem is intractable; this perspective is supported
by the fact that under cryptographic assumptions, PPAD does not have polynomial-time
algorithms (see [12, 28] and references therein).

Throughout the section, we restrict to 2-player, n-action games, and show PPAD hardness
for various regimes of €, 0. (Analogous lower bounds for games with a constant number m of
players immediately follow, being a generalization of the former.)

6.1 Polynomially small smoothness parameter

First, we establish lower bounds for the setting that ¢ is an inverse polynomial in n and e is
a constant. The main ingredient for such lower bounds is the following lemma, which gives a
polynomial-time reduction between the problems of finding e-approximate o-smooth Nash
equilibria in 2-player games for differing values of €, 0 whose dependence on n differs by a
polynomial.

» Lemma 17. Let e : N — (0,1),0 : N — (0,1) be non-increasing real-valued functions of
natural numbers. Then for any ¢ € (0,1), the problem of finding weak e(n)-approzimate o(n)-
smooth Nash equilibrium in 2-player, n-action games has a polynomial-time reduction (in the
sense of [22, Definition D.1]) to the problem of finding weak e(n®)-approzimate o(n)-smooth
Nash equilibrium in 2-player, n-action games.

Moreover, the same conclusion holds if “weak” is replaced by “strong”.

The proof of Lemma 17 proceeds via a padding argument: given an n-action normal-form
game G, it constructs a game G’ with N := n'/¢ actions which consists of n(1=9/¢ copies of
G. Given a o(N)-smooth e¢(N)-approximate Nash equilibrium of G’, the proof shows how
to construct (roughly speaking) a o(2N)-smooth e(NV)-approximate Nash equilibrium of G.
Recalling that N = n'/¢, we get the result after reparametrizing the functions €(-), o(-).

Lower bounds for constant € under ETH for PPAD

We observe that Ky, ,, = A"; thus, comparing Definitions 2 and 4, we see that weak (and
strong) e-approximate 1/n-smooth Nash equilibria are equivalent to e-approximate Nash

4 Recall that total search problems are those for which a solution exists given any input.
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equilibria. Moreover, we remark that under the exponential time hypothesis for PPAD, it is
known [58] that, for some constant €g, there is no algorithm that computes ey-approximate
Nash equilibria in 2-player n-action games in time plog' ™" ™ for any constant § > 0. Lemma 17
tells us that computing ep-approximate Nash equilibria (or, equivalently, ey-approximate
1/n-smooth Nash equilibria) is polynomial-time reducible to computing ep-approximate
1/n°-smooth Nash equilibria, for any constant ¢ € (0,1). Thus, we obtain the following as a
corollary:

» Corollary 18. For some € € (0,1), the following holds assuming the ETH for PPAD: for
any 6,c¢ € (0,1) there is no algorithm that computes weak €y-approximate n~°-smooth Nash
equilibrium in 2-player n-action games in time nlos' ™’ n,

6.2 Constant smoothness parameter

Next, we establish lower bounds for the setting that ¢ is a constant and € is an inverse
polynomial in n. One might hope that the same technique used to establish Corollary 18
might apply in this setting, by using Lemma 17 for ¢ = 0. However, this approach fails
since in the limit ¢ — 0, the size of the game G’ used to prove Lemma 17, which is ©(n'/¢),
diverges. Indeed, to establish hardness of finding weak og-approximate n~°-smooth Nash
equilibrium in 2-player, n-action games, for constant oy (stated formally in Theorem 21
below), we require additional techniques.

Generalized matching pennies game

Our approach proceeds by showing that it is hard to find approximate smooth Nash equilibria
in a certain class of games known as approximate generalized matching pennies games. To
do so, we first show that all approximate smooth Nash equilibria in generalized matching
pennies games have a certain structure (formalized in Lemma 20) that allows us to relate
them to approximate Nash equilibria in such games. We will then apply a result of [1§]
which shows that it is PPAD-hard to compute approximate Nash equilibria in this subclass
of games.

To define generalized matching pennies games, fix an integer K € N and write N = 2K.
Let M := 2K?3. Let A* € RV*N denote the K x K block matrix where the 2 x 2 blocks
along the main diagonal have all entries equal to M, and all other entries are 0. (Note that
we have A* = M - Ix ® Ja 2, where Ja 2 denotes the 2 x 2 matrix of 1s and ® denotes the
Kronecker product.) Let B* = —A*.

» Definition 19. Given K € N and N := 2K, a 2-player N -action game (A, B) is defined to
be an approximate K-generalized matching pennies (K-GMP) game if all entries of A — A*
and of B — B* are in [0,1], where A*, B* € RN*N are defined in terms of K above.

For ease of notation, we have departed from our convention that all payoffs of the game are
in [0, 1]; this setting is equivalent to the former by rescaling. Moreover, we have suppressed
the dependence of A*, B* on K in our notation.

Let (A, B) denote an approximate K-GMP game and let z,y € AN be strategy vectors.
We use the following convention: Z,y € AX denote vectors defined by Zj = xox_1 + 2ok and
Uk = Yok—1 + Yok, for k € [K].

» Lemma 20. Suppose K, M € N, o € (0,1), and € > 8‘3\5[(2 are given. If G = (A, B) is a

K approzimate K-GMP game, then a weak 1-approzimate o-smooth Nash equilibrium (z,y)
must satisfy the following for all k € [K]:

szl/Kﬂ:G, ngI/K:tE.
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As a result of Lemma 20, any e-approximate o-smooth Nash equilibrium (z,y) in an approx-
imate K-GMP game must in fact be an eK-approximate Nash equilibrium. The intuition
behind this implication is as follows: if some player (say the z-player) had a useful devi-
ation from their strategy x to any fixed action i, they could instead deviate to the strategy
whereby they play ¢ with probability 1/K and x with the remaining probability. Since
max; z; < maxy Tr < 1/K + € (by Lemma 20), as long as 2/K + € < ﬁ = ﬁ (which will
hold if o < 1/6), the resulting strategy is o-smooth. Moreover, the player would gain a 1/K
fraction of their utility gain for deviating to i. By combining this observation and the fact
that computing approximate Nash equilibria in K-GMP games is PPAD-hard (from [18]), we
can show the following theorem.

» Theorem 21 (PPAD-hardness for constant o). For any constant ¢y € (0,1), the problem of

computing weak n -approximate 1/6-smooth Nash equilibria in 2-player n-action games is
PPAD-hard.

7 Discussions and Open Problems

In this paper we introduced the notion of smooth Nash equilibria and showed that they

satisfy many desirable computational properties, namely that they have polynomial time

and query algorithms. Our results open numerous avenues for future work, listed below.
Improving Dependence on the number of players: Note that the dependence on m in
the exponent of the running time of Theorem 15, namely (j(m4)7 is worse than that in the
corresponding result for finding weak smooth Nash equilibrium (Theorem 13), where the
dependence is ON(mQ). It is an interesting question if this dependence can be improved.
In fact, we expect even the O~(m2) dependence can be improved to O(mlogm) using the
techniques of [6].
Sampling from strong smooth equilibrium: In Section 4, we gave a constant time
algorithm for computing a weak o-smooth Nash equilibrium and argued that an analogous
algorithm for strong o-smooth Nash equilibrium could not run in sublinear time. One
could ask if, instead of outputting a strong o-smooth Nash equilibrium, we can output a
sample from a strong o-smooth Nash equilibrium in sublinear time.
General Notions of Smoothness: In this paper, we focus on smoothness defined using
the Lo, norm of the Radon-Nikodym derivative (see Remark 6). However, one could
consider other notions of smoothness corresponding to other notions of distance from a
fixed measure, such as x? divergence or KL divergence. We expect that our techniques can
be extended to general settings with the appropriate changes (for example, [22, Lemma
B.1] would need to be generalized as in [14]). Exploring this direction is an interesting
avenue for future work.
General Complexity of Polyhedral and Concave Games: One perspective on our result
obtaining algorithms for smooth Nash equilibria in 2-player games is through the lens of
covering numbers of matrices [1]. That is, the proof of Lemma 7 via [22, Lemma A.1]
can be viewed as bounding the appropriate covering numbers of the polytope induced
by the game matrix acting on the set of smooth distributions. A natural question is
whether this notion of covering number can be used to prove a general characterization
of complexity of finding Nash equilibria in polyhedral games. In particular, can the lower
bound from [58] be generalized to provide a characterization of the complexity of finding
Nash equilibria in general settings?
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