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Abstract
Generalizing work of Künnemann, Paturi, and Schneider [ICALP 2017], we study a wide class of
high-dimensional dynamic programming (DP) problems in which one must find the shortest path
between two points in a high-dimensional grid given a tensor of transition costs between nodes in
the grid. This captures many classical problems which are solved using DP such as the knapsack
problem, the airplane refueling problem, and the minimal-weight polygon triangulation problem. We
observe that for many of these problems, the tensor naturally has low tensor rank or low slice rank.

We then give new algorithms and a web of fine-grained reductions to tightly determine the
complexity of these problems. For instance, we show that a polynomial speedup over the DP
algorithm is possible when the tensor rank is a constant or the slice rank is 1, but that such a
speedup is impossible if the tensor rank is slightly super-constant (assuming SETH) or the slice rank
is at least 3 (assuming the APSP conjecture).

We find that this characterizes the known complexities for many of these problems, and in some
cases leads to new faster algorithms.
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1 Introduction

Dynamic programming (DP) is one of the most common algorithmic paradigms, used
throughout the theory and practice of diverse computational domains. See [16] chapter 14
for a detailed introduction.

When one solves a problem using DP, a natural question arises: is this the fastest
algorithm to solve the problem? Recently, fine-grained complexity has been used to show that
for many important problems, the answer is yes. For instance, researchers have established
conditional lower bounds for the longest common subsequence [1, 13], edit distance [6],
Fréchet distance [12], and regular expression matching [7], showing that there is no algorithm
(whether or not it uses DP) that is faster than the standard DP algorithm by a polynomial
factor.
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4:2 Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

On the other hand, there are some notable examples where a natural DP formulation is not
the fastest known way to solve a problem. Consider, for instance, the polygon triangulation
problem from computational geometry. In this problem, we are given as input a convex
polygon with n nodes, where each node i has a weight wi. For each triple i, j, k of nodes, a
triangle with those nodes as vertices has weight wi · wj · wk. The weight of a triangulation of
the polygon is the sum of the weights of its constituent triangles. The goal in the problem is
to find the triangulation of the polygon with minimum weight. This problem has applications
in point visibility [23], mesh generation [8], computer graphics [38], and even in visual
cryptography [41].

Polygon triangulation has a natural DP formulation as follows. Let T [i, j] denote the
minimum weight of a triangulation of the polygon consisting of just nodes i, i + 1, i + 2, . . . , j

with an edge drawn between nodes i and j. Thus our goal is to compute T [1, n], and these
values satisfy the recurrence

T [i, j] = min
i<k<j

{
T [i, k] + T [k, j] + wi · wj · wk

}
.

(Since there is an edge from i to j in the polygon, there must be a triangle involving those
two nodes and a third node k; the recurrence corresponds to iterating over the choices of
that third node.)
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Figure 1 An example polygon triangulation problem. The polygon P (i, j) is partitioned into 3
parts by choosing k and forming a triangle (i, j, k) whose weight is wi · wj · wk.

This recurrence leads to a DP algorithm which solves the problem in time O(n3). However,
Hu and Shing showed in [26, 27] that the problem can actually be solved much faster, in
time O(n log n). This is a surprising example where geometric techniques lead to a faster
algorithm than the natural DP formulation.

1.1 Least Weight Subsequence Problems
Künnemann, Paturi, and Schneider [33] initiated a general study of these phenomena. They
studied a general class of problems intended to capture many one-dimensional DP problems
called Least Weight Subsequence (LWS) problems: Given as input a positive integer n and
an n × n matrix w, compute the value T [n] defined by the recurrence:

T [j] =

0 if j = 0
min

0≤i<j

{
T [i] + w[i, j]

}
otherwise. (1)
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LWS was first introduced by Hirschbert and Lamore [24] to capture many known DP prob-
lems, including longest increasing subsequence [19], airplane refueling [24], coin change [33],
nested boxes [33], pretty printing [31], and various knapsack problems.

For illustration purposes, consider the longest increasing subsequence (LIS) problem: given
an array of n integers X = [x1, . . . , xn], return the length of the longest strictly increasing
subsequence in X [19]. LIS can be formulated as an LWS problem by setting

w[i, j] =
{

−1 if xi < xj

∞ otherwise.

Notice that w[i, j] equals negative one when xi can be added to a subsequence which ends
in xj , thus increasing the length of a strictly increasing subsequence by 1. Since LIS is a
maximization problem and LWS is a minimization problem, the weights are −1, not 1, and
the solution is given by −T [n]. Many algorithmic problems can be formulated as an LWS
instance by appropriately setting the weight matrix w.

Straightforward DP solves the LWS problem in O(n2) time. Since the input matrix w

has Ω(n2) entries, it requires quadratic time to read the input, so a faster algorithm isn’t
possible in general. However, if the w matrix is given in a smaller, compressed form, then
one may hope for subquadratic-time algorithms.1

One example that [33] focuses on is the case when w is a low-rank matrix. If w has rank
r < no(1), then one can be given as input matrices A, B ∈ Rn×r such that w = A × BT , so
the input size to the problem is only n1+o(1).

Interestingly, Künnemann showed via fine-grained reductions that this problem is
subquadratic-time equivalent to the well-studied Min-IP problem for vectors of dimension
r: Given as input x1, . . . , xn, y1, . . . , yn ∈ Rr, find the xi, yj minimizing the inner product
⟨xi, yj⟩. This problem can be solved in time O(n2−1/r) using geometric techniques [50, 36, 2],
and thus has a truly-subquadratic time algorithm whenever r is a constant. On the other
hand, it is known that assuming the Strong Exponential Time Hypothesis (SETH), the
Min-IP problem requires time n2−o(1) even when r is slightly super-constant r = 2log∗ n [14],
and thus the DP algorithm is essentially optimal. (Here log∗ denotes the very slowly-growing
iterated logarithm function.)

In this paper, we investigate the optimality of higher-dimensional DP formulations. We
focus especially on generalizing LWS with low-rank matrices. As we will see, the known
one-dimensional reductions do not generalize in a straightforward way, leading to a variety
of generalizations and an intricate landscape of results. We will find that many classical
higher-dimensional DP problems like the polygon triangulation problem are captured by our
generalizations.

There are two choices to be made when generalizing LWS with low-rank matrices to
higher dimensions: what is the higher-dimensional generalization of matrix rank (Section 1.2)
and what is the higher-dimensional generalization of the LWS recurrence (Section 1.3).

1 There has also been prior work on algorithms which assume w has some additional structure which does
not mean w is compressible, but which lets one solve the problem without looking at most entries of w.
For instance, [24] and [46] give O(n log n) and O(n) time algorithms, respectively, for solving LWS with
concave weights, i.e., when the entries of the matrix w are promised to satisfy a quadrangle inequality.
See also [20, 29, 37].
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4:4 Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

1.2 Generalizations of matrix rank

The rank of a matrix has many equivalent definitions. However, when these definitions are
generalized to higher-dimensional tensors, they lead to different notions. Prominent examples
with applications in algebra, combinatorics, algorithm design, and complexity theory include
the rank, subrank, border rank, slice rank, flattening rank, analytic rank, and geometric
rank (see, e.g., [40, 32]). It is thus not clear, in general, which notion to use when generalizing
results involving low-rank matrices.

We focus here on the two notions which arise naturally in known DP problems: tensor
rank and slice rank.

1.2.1 Tensor Rank

A d-dimensional (order-d) tensor w ∈ Rn1×n2×···×nd has rank 1 if there are vectors x1 ∈
Rn1 , . . . , xd ∈ Rnd such that, for all i1 ∈ [n1], . . . , id ∈ [nd] we have w[i1, . . . , id] = x1[i1] ·
x2[i2] · · · xd[id]. More generally, the rank of tensor w is the minimum non-negative integer k

such that there are rank 1 tensors w1, . . . , wk for which w = w1 + · · · + wk. This notion is
sometimes also called canonical polyadic decomposition (CPD) rank.

For instance, in the polygon triangulation discussed earlier, the tensor w whose entry
w[i, j, k] gives the weight of triangle (i, j, k) has rank 1 because the weight of the triangle
(i, j, k) is w[i, j, k] = xi · xj · xk.

For another example, consider the airplane refueling problem: an airplane is traveling on
a grid with dimension k such that each point in the grid is a refueling airport. The airplane
starts at location (1, . . . , 1) and wants to arrive at location (n, . . . , n). The cost of flying
from (i1, . . . , iℓ−1, jℓ, iℓ+1, . . . , ik) to (i1, . . . , ik) is w[i1, . . . , ik, jℓ] (the airplane can only flies
on the grid). The problem asks to minimize the cost of traveling.

One commonly studied cost of traveling from (i1, . . . , iℓ−1, jℓ, iℓ+1, . . . , ik) to (i1, . . . , ik)
is w[i1, . . . , ik, jℓ] = (k − (iℓ − jℓ))2 for a fixed constant k [24], which has rank 4 since

(k − (iℓ − jℓ))2 = i2
ℓ · 1 + 1 · j2

ℓ + (iℓ − k) · (−2jℓ) + (iℓ − k

2 ) · (−2k).

1.2.2 Slice Rank

A d-dimensional (order-d) tensor w ∈ Rn1×n2×···×nd has slice rank 1 if there is a j ∈ [d],
a vector a ∈ Rnj , and a (d − 1)-dimensional tensor b ∈ Rn1×···×nj−1×nj+1×···×nd such that,
for all i1 ∈ [n1], . . . , id ∈ [nd] we have w[i1, . . . , id] = a[ij ] · b[i1, . . . , ij−1, ij+1, . . . , id]. More
generally, the slice rank of tensor w is the minimum non-negative integer k such that there are
slice rank 1 tensors w1, . . . , wk for which w = w1 +· · ·+wk. Slice rank was recently introduced
in the context of solving the cap set problem from extremal combinatorics [17, 44, 45, 11],
but it has since found applications in algorithm design and complexity theory [11, 5, 3, 10, 9]
and other areas of combinatorics [18, 39, 42, 35].

It is immediate that if a tensor w has rank d, then it has slice rank at most d. However,
there are many natural situations where the slice rank of a tensor may be much lower than
its rank, and we could hope to take advantage of this to design faster algorithms.

For example, another reasonable cost function for the airplane refueling problem is the
one that depends only on the destinations, e.g., each airport charges a fee for landing at that
airport. In this scenario, the cost function would have slice rank 1 but very large rank. We
discuss the details in Section 5.1.
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1.3 Higher-dimensional LWS recurrences
Many problems solvable by LWS can be naturally generalized to higher dimensions, which
motivates us to study high dimensional version of the LWS recurrence. We focus on two new
recurrences which capture most examples. The first, which we call kD LWS, is perhaps the
most general.

▶ Definition 1 (kD LWS). For a positive integer k, consider (k + 1)-dimensional tensors
w1, . . . , wk of size n×n×· · ·×n, where wℓ[i1, . . . , ik, j] ∈ {−W, . . . , W, ∞} for all 1 ≤ ℓ ≤ k.
The kD LWS problem asks, given as input w1, . . . , wk, to determine T [n, . . . , n] given the
dynamic programming recurrence relation:

T
[
j1, j2, . . . , jk

]
=

0 if j1 = j2 = . . . = jk = 1
min

1≤ℓ≤k

{
min

1≤iℓ<jℓ

{
T

[
j1, . . . , jℓ−1, iℓ, jℓ+1, . . . , jk

]
+ wℓ

[
j1, j2, . . . , jk, iℓ

]}}
otherwise.

Intuitively, to compute T [j1, j2, . . . , jk], we look at all previous terms in the table T that
differ from (j1, j2, . . . , jk) by one coordinate. For example, when k = 2, 2D LWS can be
expressed as

T [i, j] =


0 if i = j = 1

min

 min
1≤k<i

{T [k, j] + w1[i, j, k]}

min
1≤k<j

{T [i, k] + w2[i, j, k]}
otherwise.

kD LWS captures high-dimensional analogs of many previous problems solved by LWS and
also some new problems which we discuss below. This includes higher dimensional airplane
refueling (see Section 5.1 below), kMin-IP (Section 3.1), all-pairs shortest paths (Section 3.2),
multiple nested box chains (Section 5.2), etc. An illustration of 2D LWS is shown in Figure 2.

i

j

1

1

T

Figure 2 2D LWS. To compute T [i, j], we take the minimum of all possible white circles (plus
their respective tensor values w) such that their coordinates differ from the target by one coordinate.

Static kD LWS
Similar to [33], we also define a notion of “static” kD LWS in which we are given some entries
in the DP table, and we would like to compute new entries which depend only on the given
entries. The main idea of [Static]kD LWS is that we have the information (T [i1, . . . , ik]) for
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4:6 Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

all (i1, . . . , ik) on a “band” Da,a+N and we want to compute T [i1, . . . , ik] for all (i1, . . . , ik)
on the next “band” Da+N,a+2N . A band Dα,β is defined to be all (i1, . . . , ik) such that their
sum i1 + · · · + ik is in the interval [α, β).

▶ Definition 2. ([Static]kD LWS) Given intervals Da,a+N , Da+N,a+2N together with correctly
computed values T [i1, . . . , ik] for all 1 ≤ ℓ ≤ k and (i1, . . . , ik) ∈ Da,a+N , [Static]kD LWS
asks to determine

T ′
[
j1, . . . , jk

]
= min

1≤ℓ≤k

{
min

a−Iℓ≤iℓ<a+N−Iℓ

{
T

[
j1, . . . , jℓ−1, iℓ, jℓ+1, . . . , jk

]
+ wℓ

[
j1, j2, . . . , jk, iℓ

]}}
for all (j1, j2, . . . , jk) ∈ Da+N,a+2N .

For illustration purposes, consider the [Static]2D LWS problem: given correctly computed
values T [i, j] for all (i, j) ∈ Da,a+N , determine

T ′[i, j] = min

 min
a−i≤k<a+N−i

{T [k, j] + w1[i, j, k]}

min
a−j≤k<a+N−j

{T [i, k] + w2[i, j, k]}

for all (i, j) ∈ Da+N,a+2N . Figure 3 depicts the idea.

T

D
a,a+

N

D
a+

N
,a+2N

i

j

Figure 3 [Static]2D LWS. To calculate T ′[i, j] (black circle), we take the minimum over all possible
white circles (plus their respective weight values w) such that they share all but one coordinate with
T [i, j].

[33] showed that in the k = 1 case, [Static]LWS is subquadratic-equivalent to the original
LWS problem. We will find that the relationships among the higher-dimensional versions are
more complicated.

1.4 Polygon Triangulation
kD LWS as we defined above captures many different high-dimensional DP problems, but it
is not the only conceivable way to generalize LWS. We consider here another example we call
2D LWSPT, which captures optimization over sets that are counted by the Catalan numbers.

Recall that the Catalan numbers C0, C1, C2, . . . can be defined recursively by C0 = 1 and

Cn =
n∑

k=1
Ck−1 · Cn−k. (2)

Cn counts many different combinatorial objects, such as the number of triangulations of a
convex polygon with n + 2 vertices, and the number of binary trees with n + 1 leaves. (See,
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e.g., [43].) The variable k being summed over in Equation (2) typically corresponds to ways
to partition the combinatorial object into two smaller parts. This leads to our new definition,
in which we want to instead minimize over all ways to partition the object:

▶ Definition 3 (2D LWSPT). Given as input an n × n × n tensor w, the 2D LWSPT problem
asks to compute the value of T [n, n] given the dynamic programming recurrence relation:

T [i, j] =

0 if j − i ≤ 1
min

i<k<j

{
T [i, k] + T [k, j] + w[i, j, k]

}
otherwise.

For instance, this captures the polygon triangulation problem defined above when
w[i, j, k] = wi · wj · wk, which is unsurprising as polygon triangulations are counted by
the Catalan numbers; this inspires the name 2D LWSPT. We show in Section 6 below that
this recurrence also captures other natural problems such as optimal binary search tree
construction (optimizing over binary trees, which are counted by Catalan numbers) and
matrix chain multiplication (optimizing over sequences of properly matched parentheses,
again counted by Catalan numbers). Furthermore, in each of these examples, the rank (for
polygon triangulation) or slice rank (for the other two examples) of w is 1.

1.5 Main Results and Proof Structure Overview
Reduction notation. Before stating our results, we introduce one piece of notation for
denoting the results of fine-grained reductions between problems with different running times.
For computational problems P, Q, we say that P “reduces” to Q, denoted by P → Q if a
polynomial speedup for Q yields a polynomial speedup for P . More precisely, suppose P, Q

are solved in time Tp, Tq, respectively, via the straightforward algorithms. We say that P

“reduces” to Q, denoted by P → Q if for every ε > 0 there exists a δ > 0 such that, given a
O(T 1−ε

q ) time algorithm for Q, one gets a O(T 1−δ
p ) time algorithm for P .

For example, SAT → Min-IPn,c log n means that if there is an algorithm for Min-IPn,c log n

with running time O(n2−ε) for some ε > 0, then there is an algorithm for SAT with running
time O(2(1−δ)n) for some δ > 0. 3Min-IP → Min-IP means that if there is an algorithm for
Min-IP with running time O(n2−ε) for some ε > 0, then there is an algorithm for 3Min-IP
with running time O(n3−δ) for some δ > 0. When it may be unclear, the formal statements
of our results are stated in the theorems below.

1.5.1 kD LWS Hierarchy and Hardness
We establish a hierarchy of kD LWS problems and describe their connections to kMin-IP,
summarized by the following diagram.

ITCS 2024



4:8 Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

In particular, assuming SETH, it follows that the straightforward algorithms for all the
problems in the diagram cannot be substantially improved. The results depicted in this
diagram, more precisely stated, are described by the following four theorems.

Building on Chen’s reduction [14] from SAT to Min-IPn,2O(log∗ n) , we show that more
generally, SAT also reduces to kMin-IP. (Note that kMin-IP reduces to (k − 1)Min-IP in a
straightforward way, but a reduction in the other direction is not known.)

▶ Theorem 4. Assuming SETH, there is no algorithm for kMin-IPn,2O(log∗ n) running in time
O(nk−ε) for any ε > 0.

Just as Min-IP reduces to LWS, we show that kMin-IP reduces to (k − 1)D LWS.

▶ Theorem 5 (Theorem 35). Suppose there exists an algorithm for (k − 1)D LWS with rank
d with running time O(nk−ε) for some ε > 0, then there exists an algorithm for kMin-IP with
rank d with running time O(nk−δ) for some δ > 0.

By a divide and conquer method similar to [33, Lemma 3.5], we show that kD LWS can
be reduced to [Static]kD LWS.

▶ Theorem 6 (Theorem 36). Suppose there exists an algorithm for [Static]kD LWSn,N,d with
running time O(N2−ε · nk−1) for some ε > 0, then there exists an algorithm for kD LWSn,d

with running time O(nk+1−δ) for some δ > 0.

In addition, we show that [Static]kD LWS also exhibits a hierarchy similar to kMin-IP.

▶ Theorem 7 (Theorem 38). Suppose there exists an algorithm for [Static](k − 1)D LWSn,N,d

with running time O(N2−ε · nk−2) for some ε > 0, then there exists an algorithm for
[Static]kD LWSn,N,d with running time O(N2−δ · nk−1) for some δ > 0.

As one consequence of these reductions, [Static]kD LWS, kD LWS all reduce to Min-IP,
which has a truly sub-quadratic algorithm when the vector length is constant, leading to a
polynomial speedup:

▶ Corollary 8. For every constant c > 0 there is an ε > 0 such that kD LWS, [Static]kD LWS
can be solved in time O(nk+1−ε), O(N2−ε · nk−1) respectively if the rank of the tensor w is
at most c.

For one application of this corollary, we show in Section 5.1 that the generalized airplane
refueling problem [24] in higher dimensions can be solved polynomially faster than the
straightforward DP formulation.

Our reductions from SAT also give hardness of kD LWS assuming SETH, showing that
the fast algorithm cannot extend much beyond constant rank:

▶ Corollary 9. Under SETH, for any k > 1 and ε > 0, there is no algorithm running in time
O(nk+1−ε) for kD LWS when the weight tensor has rank 2O(log∗ n).

Since for rank r, the input size is nr, one could have imagined a better running time than
O(nk+1) for any r ≪ nk; our lower bound shows that it is (conditionally) impossible even
for the slightly super-constant r = 2Ω(log∗ n).

Note that the prior work [33] showed a subquadratic equivalence between LWS and its
static version. We give a reduction from kD LWS to its static version, but not a reduction
in the other direction; the techniques from prior work do not seem to generalize to the
higher-dimensional setting.
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1.5.2 Slice Rank in kD LWS

Slice rank is a another way to define tensor rank. If a tensor with rank d, then it trivially has
slice rank at most d, which makes 2D LWS with slice rank more powerful. Indeed, we show
that 2D LWS with slice rank becomes hard very quickly. Interestingly, this new hardness
result builds on the APSP conjecture, rather than SETH; the APSP conjecture has not
previously been connected to LWS problems to our knowledge.

▶ Theorem 10 (Theorem 39). Assuming the APSP conjecture, there is no truly sub-cubic
algorithm for 2D LWS or [Static]2D LWS with slice rank 3.

However, we can design a truly sub-cubic algorithm for 2D LWS with slice rank 1.

▶ Theorem 11 (Theorem 41,Theorem 40). There are truly sub-cubic time algorithms for
2D LWS and [Static]2D LWS with slice rank 1.

We then use this to design faster algorithms for natural dynamic programming problems.
For instance, we generalize the nested boxes problem defined in [33] to a multiple nested
boxes problem and show that it can be formulated as kD LWS with slice rank 1, and thus it
can be solved in time O(nk+1−ε) for some ε > 0.

▶ Theorem 12 (Theorem 51). Multiple nested boxes with dimension k can be solved in time
O(nk+1−ε) for some ε > 0.

We also show how to give a polynomial speedup for the airplane refueling problem in
dimension k if the cost only depends on where the airplane lands, since that would mean the
tensor has slice rank 1. We discuss the details in Section 5.1.

1.5.3 Hardness of Polygon Triangulation

We show similar algorithms and hardness for 2D LWSPT.

▶ Corollary 13 (Corollary 43). Under SETH, there is no truly sub-cubic algorithm for
2D LWSPT with weight function whose rank is 2O(log∗ n) or above.

▶ Corollary 14 (Corollary 45). Under APSP conjecture, there is no truly sub-cubic algorithm
for 2D LWSPT with weight function whose slice rank is 3 or above.

These results are proved by making use of a reduction to 2D LWSPT from a special case
of 2D LWS where the two tensors w1, w2 must be equal. We then show that our previous
hardness results hold even in this special case, yielding the above corollaries.

In fact, previous work shows that in some special cases when w has rank 1, 2D LWSPT

can be solved in truly sub-cubic time.

▶ Theorem 15 ([26, 27, 25, 34]). Suppose there exists xi ∈ N, 1 ≤ i ≤ n such that w[i, j, k] =
xi · xj · xk for all 1 ≤ i, j, k ≤ n, then 2D LWSPT with tensor w can be solved in O(n log n)
time.

Our results help explain why the examples of 2D LWSPT problems where faster algorithms
are known correspond to tensors w of rank or slice rank 1; see Section 6 for more details.

ITCS 2024
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1.6 Organization
Section 2 contains the preliminaries: our notation, background on fine-grained complexity,
and definitions of relevant problems. Section 3 discusses the kD LWS hierarchy and hardness,
proving that a polynomial speedup over the standard DP algorithm is possible when the
tensor rank is O(1) but impossible when the tensor rank is 2O(log∗ n) (assuming SETH).
Section 4 discusses the polygon triangulation problem 2D LWSPT and its connections with
2D LWS. Sections 5 and 6 respectively discuss applications of kD LWS and 2D LWSPT to
various real-world problems.

2 Preliminaries

In this section, we state our core problems and relevant problems in fine-grained complexity.
We also state our notations for convenience.

For a problem P , we say that it is truly sub-quadratic (or sub-cubic) if there exists an
algorithm for it with running time O(n2−ε) (or O(n3−ε)) for any ε > 0. We say that P and
Q are sub-quadratic (sub-cubic) equivalent if P is truly sub-quadratic (sub-cubic) if and only
if Q is truly sub-quadratic (sub-cubic).

For a positive integer n, we let [n] = {1, . . . , n}. We assume the word-RAM model with
word size Θ(log n) throughout this paper, and assume that all integer inputs are chosen from
{−W, . . . , W, ∞} where W fits in a constant number of words. We usually use d to denote
the length of vectors (rank of a tensor) in our problems, k to denote the dimension of our
problems, and n to denote the input size. We put these parameters as subscripts of problems.
Since we will discuss both rank and slice rank, we make it clear which we are talking about
in the discussions. In this paper, “kD LWS has (slice) rank d” means the array w has (slice)
rank d.

For a k-dimensional dynamic programming array T with entries T [i1, i2, . . . , ik], we let
Iℓ denote the sum of all ik’s except iℓ. Let Da,b denote the set of all (i1, . . . , ik) such that
a ≤ i1 + . . . + ik < b.

2.1 Strong Exponential Time Hypothesis and Min-IP
We state some important problems and definitions in fine-grained complexity that we will
refer to later.

▶ Conjecture 16 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0, there exists
a positive integer k such that kSAT requires time Ω(2(1−ε)n).

SETH is well-known for being a stronger version of P ̸= NP, i.e. it implies P ̸= NP.

▶ Definition 17 (OVn,d). Given two sets of vectors A = {a1, . . . , an}, B = {b1, . . . , bn} such
that ai, bj ∈ {0, 1}d for all i, j, the Orthogonal Vectors problem (OVn,d) asks to determine
whether there exists 1 ≤ i, j ≤ n such that ⟨ai, bj⟩ = 0.

In [47], it is shown that assuming SETH, for any positive c there exists ε > 0 such that
OVn,c log n cannot be solved in time O(n2−ε).

▶ Definition 18 (Min-IPn,d). Given two sets of vectors A = {a1, . . . , an}, B = {b1, . . . , bn}
such that ai, bj ∈ {−W, . . . , W, ∞}d for all i, j and a natural number r ∈ Z, the Minimal
Inner Product (Min-IPn,d) asks to determine whether there exists 1 ≤ i, j ≤ n such that
⟨ai, bj⟩ ≤ r.
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OVn,d trivially reduces to Min-IPn,d, and in fact these two problems are sub-quadratic
equivalent [15]. It is known that this decision version of Min-IPn,d is sub-quadratic equivalent
to its counting version where it asks to output min

1≤i,j≤n
⟨ai, bj⟩. We will use the counting

version throughout the rest of the paper.

2.2 Higher Dimension OV, Min-IP
OV, Min-IP can be naturally generalize to higher dimensions as follows.

▶ Definition 19 (kOVn,d). Given k sets of vectors

X1 = {x11, . . . , x1n}, . . . , Xk = {xk1, . . . , xkn}

such that xij ∈ {0, 1}d for all i, j, kOVn,d asks to determine whether there exists 1 ≤
i1, . . . , ik ≤ n such that ⟨x1,i1 , x2,i2 , . . . , xk,ik

⟩ = 0.

▶ Definition 20 (kMin-IPn,d). Given k sets of vectors

X1 = {x11, . . . , x1n}, . . . , Xk = {xk1, . . . , xkn}

such that xij ∈ {−W, . . . , W, ∞}d for all i, j and a natural number r ∈ Z, kMin-IPn,d asks to
determine whether there exists 1 ≤ i1, . . . , ik ≤ n such that ⟨x1,i1 , x2,i2 , . . . , xk,ik

⟩ ≤ r.

Just from the definitions, kOV trivially reduces to kMin-IP. In addition, it is not hard to
show kOVn,d → (k − 1)OVn,d and kMin-IPn,d → (k − 1)Min-IPn,d for all k ≥ 3.

▶ Lemma 21. Suppose there exists an algorithm for (k − 1)OVn,d that runs in time O(nk−1−ε)
for some ε > 0, then there exists an algorithm for kOVn,d that runs in time O(nk−δ) for
some δ > 0.

Proof. Given an kOVn,d instance with sets X1, . . . , Xk, we trivially compute ⟨x1,i1 , x2,i2⟩
for all 1 ≤ i1, i2 ≤ n using time O(n2d). Now for each 1 ≤ i1 ≤ n, run the algorithm for
(k − 1)OVn,d with x1,i1 · X2, X3, . . . , Xk. If there are no zeros then output no; otherwise
output yes.

This algorithm is correct because we have covered all possible ⟨x1,i1 , x2,i2 , . . . , xk,ik
⟩. The

running time is O(n2d) + O(nk−1−ε) · n = O(nk−1−ε). ◀

▶ Lemma 22. Suppose there exists an algorithm for (k − 1)Min-IPn,d that runs in time
O(nk−1−ε) for some ε > 0, then there exists an algorithm for kMin-IPn,d that runs in time
O(nk−δ) for some δ > 0.

Proof. The proof is exactly the same as the proof of Lemma 21. ◀

2.3 All Pair Shortest Path
All Pair Shortest Path (APSP) is a well-known problem in fine grained complexity and graph
theory.

▶ Definition 23 (APSP). Given a directed graph G with nodes V = {v1, . . . , vn}, the All Pair
Shortest Path (APSP) asks to determine the distance between vi and vj for all 1 ≤ i < j ≤ n.

Currently there is no algorithm for APSP that runs in O(n3−ε) time for any ε > 0, and it
is conjectured that no such algorithm exists.
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▶ Conjecture 24 (APSP Conjecture). There is no truly sub-cubic algorithm for APSP.

It is known that APSP is sub-cubic equivalent to many problems such that min-plus
matrix multiplication, negative triangle etc [49]. Therefore, assuming APSP conjecture, none
of these problems are truly sub-cubic. We will use the hardness of these problems to obtain
our hardness results.

▶ Definition 25 ((min, +)MM). Given two n×n matrices A, B, compute its min-plus product
C where

C[i, j] = min
1≤k≤n

{A[i, k] + B[k, j]}

for all 1 ≤ i, j ≤ n.

▶ Definition 26 (NegativeTriangle). Given an undirected, weighted graph, determines whether
there exists a triangle such that its weight (the sum of weights of three sides) is negative.

2.4 Least Weight Subsequence
We formally define LWS using the definition provided in [33].

▶ Definition 27 (LWS). Consider a sequence of n data items x1, . . . , xn and a weight matrix
w of size n × n where w[i, j] ∈ {−W, . . . , W, ∞} for all 1 ≤ i < j ≤ n. The LWS problem
asks to determine T [n], which is defined by the following DP formulation:

T [j] =

0 if j = 0
min

0≤i<j

{
T [i] + w[i, j]

}
otherwise.

Given a sequence of n items, LWS computes a subsequence of those items which minimizes
the total weight from the items chosen. We assume all the entries of w can be accessed in
O(1) time. Figure 4 captures the idea of LWS.

ji

T

0

Figure 4 LWS. To compute the value of T ′[j] (black circle), we start from T [0] and go through
all possible T [i] such that 1 ≤ i < j ≤ n and takes the minimum of all possible values (plus their
respective weight values w).

[33] also defines a “static” version of LWS which is central to their reductions.

▶ Definition 28. ([Static]LWS) Fix an instance of LWS with matrix w. Given intervals
I = {a, a + 1, . . . , a + N − 1}, J = {a + N, a + N + 1, . . . , a + 2N − 1}, together with correctly
computed values T [i] for all i ∈ I, the [Static]LWS problem asks to determine

T ′[j] = min
i∈I

{
T [i] + w[i, j]

}
for all j ∈ J.

[Static]LWS is a parallel, batch version of LWS that applies the LWS recurrence relation
to many values of j at once, rather than to just a single j value at a time. Indeed, we can
compute all T ′[j] values where j ∈ J in parallel because each T ′[j] only depends on the T [i]
values where i ∈ I, not on any other T ′[j] values.

We use the notation T ′ to highlight that T ′[j] may not equal T [j] since T ′[j] is computed
with partial information (in I). Figure 5 captures the idea of [Static]LWS.



J. Alman, E. Turok, H. Yu, and H. Zhang 4:13

ja + N

T

0 a a + 2N

Figure 5 [Static]LWS. To compute T ′[j] (black circle), we take the minimum of all possible white
circles from T [a] to T [a + N − 1] (plus their respective weight values w).

2.5 Higher Dimension LWS
We now define the core problems that this paper discusses again, which is a generalization of
LWS to higher dimensions.

▶ Definition 29 (kD LWS). Fix a positive integer k. Consider (k + 1)-dimensional tensors
w1, . . . , wℓ such that wℓ[i1, . . . , ik, j] ∈ {−W, . . . , W, ∞} for all 1 ≤ i1, . . . , ik, j ≤ n, 1 ≤
ℓ ≤ k. The kD LWS problem asks to determine T [n, . . . , n] given the dynamic programming
recurrence relation:

T
[
j1, j2, . . . , jk

]
=

0 if j1 = j2 = . . . = jk = 1
min

1≤ℓ≤k

{
min

1≤iℓ<jℓ

{
T

[
j1, . . . , jℓ−1, iℓ, jℓ+1, . . . , jk

]
+ wℓ

[
j1, j2, . . . , jk, iℓ

]}}
otherwise.

An illustration of 2D LWS can be found in Figure 2.
Like [33], we also define [Static]kD LWS, a generalization of [Static]LWS to higher dimen-

sions which is central to our reductions.

▶ Definition 30. ([Static]kD LWS) Given intervals Da,a+N , Da+N,a+2N together with correctly
computed values Tℓ[i1, . . . , ik] for all 1 ≤ ℓ ≤ k and (i1, . . . , ik) ∈ Da,a+N , [Static]kD LWS
asks to determine

T ′
[
j1, . . . , jk

]
= min

1≤ℓ≤k

{
min

a−Iℓ≤iℓ<a+N−Iℓ

{
Tℓ

[
j1, . . . , jℓ−1, iℓ, jℓ+1, . . . , jk

]
+ wℓ

[
j1, j2, . . . , jk, iℓ

]}}

for all (j1, j2, . . . , jk) ∈ Da+N,a+2N .

An illustration of [Static]2D LWS can be found in Figure 3.

2.6 Tensor Ranks
We give definitions of rank and slice rank for tensors. For notational convenience, we say
that a problem has rank d if its associated array/tensor has rank d.

▶ Definition 31 (Rank). We say that a k-dimension array w has rank d if there exists k sets

X1 = {x11, . . . , x1n}, . . . , Xk = {xk1, . . . , xkn}

of vectors with length d such that w[i1, . . . , ik] = ⟨x1,i1 , x2,i2 , . . . , xk,ik
⟩ for all 1 ≤ i1, . . . , ik ≤

n.
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▶ Definition 32 (Slice Rank). A k-dimensional (order-k) tensor w ∈ Rn1×n2×···×nd has
slice rank 1 if there is a j ∈ [d], a vector a ∈ Rnj , and a (d − 1)-dimensional tensor
b ∈ Rn1×···×nj−1×nj+1×···×nd such that, for all i1 ∈ [n1], . . . , id ∈ [nd] we have

w[i1, . . . , id] = a[ij ] · b[i1, . . . , ij−1, ij+1, . . . , id].

More generally, the slice rank of tensor w is the minimum non-negative integer k such that
there are slice rank 1 tensors w1, . . . , wk for which w = w1 + · · · + wk.

2.7 Polygon Triangulation
In computational geometry, a polygon triangulation is a partition of a polygon P into
triangles. It is known that the number of partitions of a convex polygon is counted by the
Catalan numbers [43]. We discuss the problem of finding the triangulation that minimizes
the sum of weights of all triangles.

▶ Definition 33 (Polygon Triangulation). Let P (n) denote an n-sided convex polygon and
fix an ordering of the polygon vertices. A triangulation of P (n) is a partition of P (n) into
disjoint triangles using straight, internal edges between pair of nodes of P (n). For each
triangle (vi, vj , vk), let w(i, j, k) be its weight, and the weight of a partition is the sum of all
weights of its triangles. The polygon triangulation problem asks to determine the minimal
weight of all partitions.

For an example, consider the polygon triangulation of a polygon P with 10 sides (see
Figure 6). Starting from the side (1, 10), we choose a node 6 and partitions P into 3 parts
P (1, 6), triangle (1, 6, 10) and P (6, 10), denoted by the black dashed lines. We further
partitions P (i, j) by choosing a node i < k < j and partitions it to P (i, k), triangle (i, j, k)
and P (k, j).

1

2

3

4

5 6

7

8

9

10

Figure 6 An example polygon triangulation problem.

The polygon triangulation problem can be solved via dynamic programing, motivating
our 2D LWSPT problem.

▶ Definition 34 (2D LWSPT). Fix a tensor w. The 2D LWSPT problem asks to compute the
value of T [n, n] given the dynamic programming recurrence relation:

T [i, j] =

0 if i + j ≤ n + 2
min

0<k<i+j−n

{
T [n − j + k, j] + T [i, j − k] + w[i, j, k]

}
otherwise.
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Under a change of variables/coordinates, this problem is equivalent to computing the value of
T [1, n] given the dynamic programming recurrence relation:

T [i, j] =

0 if j − i ≤ 1
min

i<k<j

{
T [i, k] + T [k, j] + w[i, j, k]

}
otherwise.

It is not hard to see that polygon triangulation and 2D LWSPT are the same problem:
let T [i, j] denote the weight of the sub-polygon containing nodes i to j and w[i, j, k] be the
weight of triangle (vi, vj , vk). More generally, any problem which splits an interval [i, j] at
some point k where k is between i and j can be understood as a 2D LWSPT instance. Figure
7 captures the idea of 2D LWSPT.

i

ji

j

T

T i

j

n − j

n − i

Figure 7 2D LWSPT. To compute T [i, j] (black circle), we are taking the minimum over the
sum of all possible pairs of white circles (plus their respective weight values w). The solution to
2D LWSPT is found at T [1, n] in the left figure and at T [n, n] in the right figure due to a change of
variables.

3 k-dimensional Least Weight Subsequence (kD LWS)

In this section, we discuss kD LWS with rank and slice rank respectively. For kD LWS with
rank d, we prove the reductions in the following diagram. Due to page limit, we omit the
proofs of our statements. Our full version [4] contains all the proofs needed.
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All our reductions preserve the rank of the problem, so this diagram shows that there exists
truly sub-cubic algorithm for kD LWS and [Static]kD LWS when the rank is constant (because
Min-IP does [48]). In addition, we show that kMin-IP reduces to kD LWS and [Static]kD LWS,
so their hardness are established. Our proof of SAT reducing to kMin-IP mimics the proof of
SAT reducing to Min-IP in [14].

In addition, we show that 2D LWS, [Static]2D LWS with slice rank 3 or above is APSP-hard,
and give truly sub-cubic algorithms for 2D LWS, [Static]2D LWS with slice rank 1.

3.1 Rank d [Static]kD LWS Hierarchy

In this section we establish a hierarchy for kD LWS and [Static]kD LWS with rank d.

▶ Theorem 35. (kMin-IP → (k − 1)D LWS) Suppose there exists an algorithm for
(k − 1)D LWS with rank d with running time O(nk−ε) for some ε > 0, then there exists
an algorithm for kMin-IP with rank d with running time O(nk−δ) for some δ > 0.

▶ Theorem 36. (kD LWS → [Static]kD LWS) Suppose there exists an algorithm for
[Static]kD LWSn,N,d with running time O(N2−ε · nk−1) for some ε > 0, then there exists an
algorithm for kD LWSn,d with running time O(nk+1−δ) for some δ > 0.

Since SAT reduces to kMin-IPn,2O(log∗ n) , we immediately get hardness results of kD LWS
and [Static]kD LWS from SETH:

▶ Corollary 37. Assuming SETH, there is no O(nk+1−ε) time algorithm for kD LWS or
[Static]kD LWS with rank at least 2O(log∗ n) for any ε > 0.

Finally, we show that just like kMin-IP, [Static]kD LWS also exhibits a hierarchy.

▶ Theorem 38. ([Static]kD LWS → [Static](k − 1)D LWS) Suppose there exists an algorithm
for [Static](k − 1)D LWSn,N,d with running time O(N2−ε · nk−2) for some ε > 0, then there
exists an algorithm for [Static]kD LWSn,N,d with running time O(N2−δ ·nk−1) for some δ > 0.

3.2 Slice Rank 2D LWS

In this section, we show that 2D LWS, [Static]2D LWS with even slice rank 3 is APSP-hard,
but 2D LWS, [Static]2D LWS with slice rank 1 is truly sub-cubic.

▶ Theorem 39. Assuming the APSP conjecture, there is no truly sub-cubic algorithm for
2D LWS with slice rank 3.

Now we show that [Static]2D LWS with slice rank 1 can be solved in truly sub-cubic
time (which implies 2D LWS with slice rank 1 is also truly sub-cubic) but there is no truly
sub-cubic algorithm for 2D LWS with slice rank 3 or above assuming APSP conjecture.

▶ Theorem 40. [Static]2D LWSn,N with slice rank 1 can be solved in O(n2 · N1−ε) for some
ε > 0.

▶ Theorem 41. 2D LWS with slice rank 1 is truly sub-cubic.

Proof. Immediately follows from Theorem 40 and the fact that our reduction from 2D LWS
to [Static]2D LWS in Theorem 36 preserves slice rank. ◀
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4 Polygon Triangulation (2D LWSPT)

In this section, we discuss the polygon triangulation problem 2D LWSPT and its connections
with 2D LWS. It was shown in [25, 26, 27, 34], that if w[i, j, k] = xi · xj · xk for all i, j, k with
xi, xj , xk > 0 for all i, then 2D LWSPT can be solved in O(n2) time. We establish several
conditional hardness results of 2D LWSPT based on SETH and APSP conjecture. Namely,
2D LWS where w1 = w2 can be reduced to 2D LWSPT with rank/slice rank unchanged, and
thus finding the optimal triangulation for certain weight functions (rank 2O(log∗ n) or slice
rank 3) is hard under SETH.

Due to page limit we are unable to include the proofs. Our full version [4] contains all
the proofs needed.

4.1 Low Rank Polygon Triangulation is SETH-hard
▶ Theorem 42. (2D LWS → 2D LWSPT). There exists an O(nd) time reduction from
2D LWSn with rank d, w1 = w2 = w, to 2D LWSPT

2n with rank d.

▶ Corollary 43. Under SETH, there is no truly sub-cubic algorithm for 2D LWSPT with weight
function whose rank is 2O(log∗ n) or above.

Proof. When we reduce 3Min-IP to 2D LWS in Theorem 35, the tensors wℓ that we use
are all the same, so Theorem 35 immediately gives a reduction from 3Min-IP to 2D LWS
with w1 = w2 (preserving rank), which further reduces to 2D LWSPT (preserving rank) by
Theorem 42. ◀

4.2 Constant Slice Rank Polygon Triangulation is APSP-hard
In fact, the we can modify the reduction in Theorem 42 such that it preserved slice rank as
well.

▶ Theorem 44. (2D LWS → 2D LWSPT, slice rank version) There exists an O(nd) time
reduction from 2D LWSn with slice rank d, w1 = w2 = w, to 2D LWSPT

2n with slice rank d.

▶ Corollary 45. Under APSP conjecture, there is no truly sub-cubic algorithm for 2D LWSPT

with weight function whose slice rank is 3 or above.

Proof. When we reduce APSP to 2D LWS in Theorem 39, the tensors α that we use are the
same, so Theorem 39 immediately gives a reduction from APSP to 2D LWS with w1 = w2,
which further reduces to 2D LWSPT (preserving slice rank) by Theorem 42. ◀

5 Applications of kD LWS

In Section 3, we have shown that kD LWS can solve kMin-IP and APSP with different tensors.
In this section we discuss more applications of kD LWS.

5.1 Higher Dimension Airplane Refueling
The airplane refueling problem was brought by [24] as an example of LWS.

▶ Definition 46 (Airplane Refueling). Suppose an airplane needs to fly between 2 given airports
which are distance R apart. Suppose there are n − 1 different refueling stops at distance
x1, . . . , xn−1 from the departure point and all stops lie on the segment between departure

ITCS 2024



4:18 Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

and destination points. We can let 0 = x0 < x1 < . . . < xn = R. The cost of flying ℓ miles
is (k − ℓ)2 for some k > 0 (we prefer flying close to k miles), and the goal is to fly from
departure point to arrival point while minimizing the cost.

It is not hard to see setting w[i, j] = (xj − xi − k)2 in LWS will solve the problem since
T [j] is always the minimum cost of flying from x0 to xj . w has rank 4 because

w[i, j] = x2
j · 1 + 1 · x2

i + (−2xj) · (xi + 2k) + k · (2xi + k),

and [24] shows that airplane refueling can be solved in linear time.
In the real world, it is usually unlikely that all refueling stops are located on a single

line. In addition, the plane can move in multiple directions. The higher dimension airplane
refueling problem is motivated by these observations.

▶ Definition 47 (Higher Dimension Airplane Refueling). Suppose an airplane needs to
fly between two given airports on a k-dimensional grid with n points at each dimen-
sion. Each point in the grid represents a refueling stop, and the cost of flying from stop
(i1, . . . , iℓ−1, jℓ, iℓ+1, . . . , ik) to (i1, . . . , ik) to is c(i1, . . . , ik, jℓ). The problem asks the min-
imum cost of flying from (1, . . . , 1) to (n, . . . , n).

Notice that this is closer to real-world scenario where trains need to travel on railways,
or we are driving in a city with well-organized roads.

Setting w[i1, . . . , ik+1] = c[i1, . . . , ik+1] in kD LWS will solve the problem because
T [i1, . . . , ik] will always be the minimum cost of flying from (1, . . . , 1) to (i1, . . . , ik). If we
were to follow the cost function suggested in [24], then we have c[i1, . . . , ik, jℓ] = (L−(iℓ−jℓ))2,
which has constant rank and thus it can be solved in time O(nk+1−ε) for some ε > 0.

Another natural scenario is that the cost of flying from (i1, . . . , iℓ−1, jℓ, iℓ+1, ik) to
(i1, . . . , ik) only depends on (i1, . . . , ik). It mimics the scenario that the airplane is charged a
fee upon arrival.

▶ Definition 48 (Arrival Fee Airplane Refueling). Suppose an airplane needs to fly between two
given airports on a k-dimensional grid with n points at each dimension. Each point in the
grid represents a refueling stop, and the cost of flying from stop (i1, . . . , iℓ−1, jℓ, iℓ+1, . . . , ik)
to (i1, . . . , ik) to is c(i1, . . . , ik). The problem asks the minimum cost of flying from (1, . . . , 1)
to (n, . . . , n).

In the arrival fee airplane refueling problem with dimension k, the tensor has slice rank 1,
so by Theorem 40 it can be solved in time O(nk+1−ε) for some ε > 0.

5.2 Multiple Nested Boxes
Nested boxes problem, or box stacking problem, is a famous example with a DP solution.

▶ Definition 49 (Nested Boxes). Given n boxes in d dimension of size (b1, . . . , bd), find the
longest chain such that each box fits into the next (without rotation). We say that box a of
size (a1, . . . , ad) fits into box b of size (b1, . . . , bd) if ai ≤ bi for all 1 ≤ i ≤ d.

[33] proves that nested boxes is sub-quadratic equivalent to the vector domination problem
defined in [28] and both can be solved by LWS: sort the boxes by volumn in increasing order
as B1, . . . , Bn and set wij to be −1 if Bj contains Bi and 0 otherwise.

It is natural to consider the case where we are allowed to have multiple locations to put
the boxes, which motivates our multiple nested boxes problem.
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▶ Definition 50 (Multiple Nested Boxes). Given n boxes in d dimension of size (b1, . . . , bd)
and k piles, find the maximum number of boxes we can use such that each in each pile, each
box fits into the next (without rotation). We say that box a of size (a1, . . . , ad) fits into box b

of size (b1, . . . , bd) if ai ≤ bi for all 1 ≤ i ≤ d.

▶ Theorem 51. Multiple nested boxes with k dimension can be solved in time O(nk+1−ε) for
some ε > 0.

Proof. We first sort all the boxes by their volume in increasing order B1, . . . , Bn, and let

wℓ[i1, . . . , ik, j] =
{

−1 if Bj fits into Biℓ

0 otherwise.

To see that this indeed solves multiple nested boxes, we claim that −T [i1, . . . , ik] is the
maximum number of boxes over all assignments such that the rank of the outer box in t-th
pile is at most it. This will solve the multiple nested boxes when i1 = . . . = ik = n + 1.

We proceed by induction. When i1 = . . . = ik = 1, we have T [i1, . . . , ik] = 0. There is no
box with rank 0 so we cannot put any boxes. Now for general (i1, . . . , ik), by recurrence we
have

T
[
i1, . . . , ik

]
= min

1≤ℓ≤k

{
min

1≤jℓ<iℓ

{
T

[
i1, . . . , iℓ−1, jℓ, iℓ+1, ik

]
+ wℓ

[
i1, . . . , ik, jℓ

]}}
.

For any assignment (u1, . . . , uk) to the piles such that the t-th pile outer box has rank ut ≤ it,
it can be achieved from adding Buℓ

to the assignment (u1, . . . , uℓ−1, u′
ℓ, uℓ+1, . . . , uk) with

the guarantee that Bu′
ℓ

fits inside Buℓ
. This case is covered by the right-hand-side of the

equation because by induction hypothesis,

−T
[
u1, . . . , uℓ−1, u′

ℓ, uℓ+1, . . . , uk

]
− wℓ

[
u1, . . . , uk, u′

ℓ

]
is the maximum over the assignments under this procedure.

Therefore, right-hand-side of the equation is exactly all possible ways to achieve the
assignment (u1, . . . , uk) such that ut ≤ it for all t, so our kD LWS instance indeed solves the
multiple nested boxes with k dimension. In addition, notice that wℓ only depends on its ℓ-th
and last coordinate, so it can be expressed as a matrix. The same reasoning in Theorem 40
shows that it can be reduced to [Static](k − 1)D LWS with rank 1, which implies that it can
be solved in time O(nk+1−ε) for some ε > 0. ◀

6 Applications of 2D LWSPT

In section 4, we showed we can solve polygon triangulation and 2D LWSPT with different
tensors. In this section, we discuss more applications of 2D LWSPT.

6.1 Matrix-Chain Multiplication
The matrix-chain multiplication problem was introduced in [22] and is defined as follows:

▶ Definition 52 (Matrix-Chain Multiplication). Given a chain of n matrices A1, . . . , An where
matrix Ai has dimension di−1 × di, find the order of matrix multiplications which minimizes
the number of scalar multiplications using the straightforward matrix multiplication algorithm.
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Recall that multiplying an n × m matrix by an m × p matrix using the straightforward
algorithm uses n · m · p scalar multiplications. Moreover, the order in which you multiply a
chain of matrices determines the number of scalar multiplications performed. For instance,
consider three matrices A1, A2, A3 with dimensions (10, 20), (20, 30), and (30, 40) respectively.
Multiplying (A1, A2)A3 takes (10 · 20 · 30) + (10 · 30 · 40) = 18000 scalar multiplications while
multiplying A1(A2A3) takes (20 · 30 · 40) + (10 · 20 · 40) = 32000 scalar multiplications.

Matrix-chain multiplication is a 2D LWSPT problem where T [i, j] is the cost of multiplying
matrices Ai, . . . , Aj and we want to find the k which minimizes the cost of multiplying
(Ai, . . . , Ak) by (Ak+1, . . . , Aj). Multiplying matrices (Ai, . . . , Ak) would result in a matrix
of dimension (di−1, dk) and multiplying (Ak+1, . . . , Aj) would result in a matrix of dimension
(dk, dj). Thus T [i, j] equals the cost of multiplying all matrices Ai, . . . , Ak (i.e. T [i, k])
and all matrices Ak+1, . . . , Aj (i.e. T [k, j]) plus the cost of multiplying those two resultant
matrices together (i.e. di−1dkdj). Setting w1[i, j, k] = w2[i, j, k] = di−1dkdj would solve this
problem.

Let us construct a vector d = [d0, d1, . . . , dn] with the dimensions of our matrices
A1, . . . , An. Then w has a tensor rank of 1 because it can be represented as the product
of different entries of d, namely w[i, j, k] = d[i − 1] · d[j] · d[k]. Moreover, there exists an
O(n log n) time algorithm for this problem [26, 27]. Corollary 43 helps explain why this
speedup is possible.

6.2 Optimal Binary Search Tree
The optimal binary search tree construction problem was introduced in [30, 21] and is defined
as follows:

▶ Definition 53 (Optimal Binary Search Tree). Given a sequence of n distinct keys h1, . . . , hn

in sorted order where the probability of accessing key hi is pi, construct a binary search tree
from these keys which minimizes the expected access time.

This problem is a 2D LWSPT instance where T [i, j] is the minimum cost binary search
tree with keys hi, . . . , hj . We want to chose a key hk to be the root of the sub-tree containing
keys hi, . . . , hj which minimizes the expected access time. The expected access time for a
key ht is pt · (dt + 1), the key’s probability times its depth in the tree (i.e. the number of
times this item has been accessed). We can compute this quantity incrementally, adding the
probability pt of key ht once at every level it appears in the tree, summing up pt a total of
dt times. Thus the expected cost of accessing keys hi, . . . , hj is w[i, j, k] =

∑j
t=i pt.

w has a slice rank of 1 because it can be written as w[i, j, k] = a[k] · b[i, j] where a[k] = 1
and b[i, j] =

∑j
t=i pt. This observation, together with Corollary 45, recovers the known O(n2)

time algorithm for this problem [51, 50].
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