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—— Abstract

Correlation intractability is an emerging cryptographic paradigm that enabled several recent break-

throughs in establishing soundness of the Fiat-Shamir transform and, consequently, basing non-
interactive zero-knowledge proofs and succinct arguments on standard cryptographic assumptions.
In a nutshell, a hash family is said to be correlation intractable for a class of relations R if, for any
relation R € R, it is hard given a random hash function h < H to find an input z s.t. (z,h(z)) € R,
namely a correlation.

Despite substantial progress in constructing correlation intractable hash functions, all construc-
tions known to date are based on highly-structured hardness assumptions and, further, are of
complexity scaling with the circuit complexity of the target relation class.

In this work, we initiate the study of the barriers for building correlation intractability. Our
main result is a lower bound on the complexity of any black-box construction of CIH from collision
resistant hash (CRH), or one-way permutations (OWP), for any sufficiently expressive relation class.
In particular, any such construction for a class of relations with circuit complexity ¢ must make at
least Q(t) invocations of the underlying building block.

We see this as a first step in developing a methodology towards broader lower bounds.
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1 Introduction

The Fiat-Shamir (FS) transform [5,25] is a popular technique for eliminating interaction in
interactive public-coin protocols. The technique was first conceived to transform 3-round
identification protocols into non-interactive signature schemes [25]. Since its introduction,

1 Work was done while at Weizmann Institute of Science.
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this methodology has had a substantial impact on modern cryptography through several lines
of research. The concept gave rise to a number of key innovations in modern cryptography,
both for achieving new theoretical feasibility results and for designing communication-efficient
practical solutions. In particular, among its noticeable applications are non-interactive zero
knowledge protocols [11,12,18,42,51], succinct non-interactive arguments (SNARGs) [6,7,39,
43,47], and complexity-theoretic hardness results [17,40,45].

The basic blueprint of the FS-transform, as laid out in [5], is to transform a (multi-round)
public coin protocol by using a hash function H to generate the verifier’s public coin messages
deterministically based on the protocol transcript so-far.

While it is usually a straight-forward to show that Fiat-Shamir preserves some properties
of the original interactive protocol, e.g. completeness and zero-knowledge, it is typically a lot
more challenging to show that it preserves soundness using any hash function H. Intuitively,
this complication arises as a malicious prover has some control over the computed challenges,
e.g. it may just discard a protocol run and retry. In fact, in most constructions the soundness
of FS is based on heuristics.

More concretely, the soundness of the transformed protocol is often established in an
idealized model such as the random oracle model [5]: by modeling the hash function as a
random oracle, which both parties have access to, one can prove that the FS transform is
sound as long as a cheating prover does not make unreasonably many queries to the oracle.
Thus, if the hash function behaves like a random function in the eyes of a bounded adversary,
then the non-interactive protocol is sound. The heuristic leap occurs when the random oracle
is instantiated by an “unstructured” function such as SHA-2.

Although the random oracle model provides a clean theoretical framework, it is not
clear that a sound Fiat-Shamir under the random oracle is a strong enough evidence that
provably sound Fiat-Shamir in the plain model exists. In fact, Goldwasser and Kalai [27]
show that there exists a computationally sound protocol on which the Fiat-Shamir transform
is never sound when instantiated with any actual efficient hash function, even though it is
sound in the random oracle model. Further, Bitansky et al. [8] rule out the possibility of
constructing a “universal” Fiat-Shamir hash function for all 3-message public-coin protocols
based on standard assumptions, or even basing the soundness of Fiat-Shamir for some specific
protocols on any falsifiable assumption.

This gap between the conjectured soundness of Fiat-Shamir using “sufficiently unstruc-
tured” functions and its provability under cryptographic assumptions in the plain model
led Canetti, Goldreich and Halevi [14] to introduce the notion of Correlation Intractability.
Essentially, correlation intractability captures the computational hardness needed from a
Fiat-Shamir hash function in order to prove the soundness of the transform. We say that
H is a correlation-intractable hash for a relation class R (CIH for R) if, for any relation
R € R, it is computationally hard given a random hash key k£ to find an input z such
that (x, H(k,z)) € R. Roughly speaking, in order to show that a Fiat-Shamir instantiation
is sound for a given protocol, we require that the underlying hash function is correlation-
intractable for the relation between partial protocol transcripts and “bad” verifier challenges
that allow for soundness error. Based on this outline, it is known [4,13,42] that a CIH for
all sparse relations (i.e. relations where any z is in relation with at most a negligible fraction
of all y’s) is sufficient for Fiat-Shamir over any constant-round public-coin proof system (the
special case of 3-message protocols has appeared already in [23,31]).

While Canetti et al. [14] show that obtaining correlation intractability in its most general
form is impossible, an extensive line of work has eventually led to CIH constructions that
are useful for a wide class of protocols, including zero knowledge [12, 13, 42], statistical
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ZAP arguments [2,29] and, most recently, succinct argument [16,18,36,40,41]. Overall,
the state-of-the-art constructions of CIH are based on advanced well-studied cryptographic
primitives which are, in turn, provably secure under standard assumptions such as LWE [46,51]
(through special fully-homomorphic commitments or shiftable shift-hiding functions [50])
and DDH [11,39] (through trapdoor hash functions [21]).

Towards Understanding The Complexity of Correlation Intractability

For a complete comprehension of the notion of correlation intractability, it is fundamental to
investigate not only the possibilities but also the limitations in basing correlation intractability
on existing hardness notions. In this work, we focus on the relation between correlation
intractability and two of the most prominent hardness notions in cryptography: One-wayness
and collision-resistance.

One-way functions (OWF) [20] are functions that are easy to compute but hard to
invert. OWFs constitute a central building block in modern cryptography, and were shown
to be essential and sufficient for obtaining basic symmetric-key cryptographic notions (a.k.a.
Impagliazzo’s “Minicrypt” [38]), such as pseudorandom generators [33], pseudorandom
functions [26], symmetric encryption [28], commitment schemes [48], zero knowledge [49],
and more.

A collision resistant hash family (CRH) is a family of hash functions where it is hard
to find collisions under a given random hash sampled from the family. CRH is one of the
most widely used primitives in cryptography, with applications ranging from the most basic
cryptographic tasks [19,32] to more advanced ones [3,10,43]. Despite its conceptual simplicity,
it has been proven that collision resistance cannot be based on one-way functions [53] or
even public-key cryptography [1,9], at least not in a black-box manner.

While, as noted in [15], it is almost trivial that one-way functions imply restricted
notions of correlation intractability, such as CIH for all relations R, = {(z,h(z) + a)}
(where h is any arbitrary fixed function and addition is over a finite group)?, such CIH
are too weak to realize any interesting applications, in particular Fiat-Shamir for useful
protocols. Tt is also known [34] that exponentially-secure OWF imply output-intractability,
which is a special case of correlation-intractability for relations R where the membership
(z,y) € R is determined solely by the value of y (but is more general in the sense that it
considers tuples of such outputs), and has different applications. In contrast, known useful
CIH constructions, for input-output relations, are either based on public-key cryptographic
primitives [11,12,39,46,51], or based on (sub-)exponentially secure OWF and additionally
assume the existence of indistinguishability obfuscation (i0) [34,46].

Whereas the theoretical cryptography literature is rich with proven separations between
various cryptographic notions, almost no work had been done on the limitations of reducing
correlation intractable hash to other primitives, leaving our understanding of the “reduction
complexity” of correlation intractability to be very lacking. The only exceptions are [30],
who rule out building the strongest possible form of CIH (for all sparse relations, implying a
universal Fiat-Shamir hash) on one-way functions, and [15], who ask whether we can instan-
tiate some specific use-cases of Fiat-Shamir without (or with very weak) cryptography. What
we aim for is a more general and accurate picture where we place correlation intractability
among the prominent hardness notions in cryptography, specifically one-wayness and collision
resistance.

2 The hash function H(k,z) = f(x) + h(x) + k, where f is a OWF, is correlation intractable for {R,}.
An adversary that breaks the correlation intractability of H for some R, inverts f at a random image y
when given the random key k = a — y.
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While it is typically beyond our field’s current capabilities to rule out general reductions
between different hardness notions, a useful framework, that has been developed along the
past decades to facilitate reaching meaningful separation results, considers the special case
of fully-black-box constructions [52], where

(i) the construction makes only black-box use of the underlying primitive, i.e. is oblivious
in its implementation, and
(ii) the reduction is assumed to use the provided adversary against the base primitive in a
black-box manner.
Such separations are insightful in particular since they already rule out most of the techniques
used constructions in the cryptographic literature. The fully-black-box framework has been
shown to be extremely fruitful to obtain fundamental separation results, such as separating
CRH from OWFs or public-key cryptography [1,9,53] and separating key-agreement (and
hence, public-key cryptography) from OWFs [37].

Restricting our focus to fully-black-box reductions, we propose the following question to

initiate a thorough study of the complexity of correlation intractability:

What is the black-box complexity of correlation intractable hashing from CRH?

We believe collision resistance is a natural starting point in this general direction as it is a
sufficiently simple and basic notion to constitute a first step towards broader research. There
are two items to note here: First, as collision resistance implies OWFs (in a fully-black-box
manner), any answer for the above question would immediately imply a similar statement
for constructions from OWFs. Second, CRH are a special case of multi-input correlation
intractability, which is a generalization of correlation intractability where it is hard to find a
tuple of inputs that satisfy some relation between themselves and their images under the hash
(in standard CI relations are over a single input-output pair). While general multi-input CI
is clearly stronger than regular CI and implies it, what we ask above is whether multi-input
CI for a specific natural (multi-input) relation can be useful to build CI for a more general
class of (single-input) relations, that is — whether “multiplicity” of the relation class can be
exchanged for “expressiveness”.

1.1 Our Results

In this work, we explore inherent limitations in constructing correlation intractable hash
functions and initiate the study of the black-box complexity of correlation intractability. We
draw the following connection between the complexity of any fully-black-box construction of
CIH from CRH or OWP and the complexity of the relations we get correlation intractability
for.

» Theorem 1 (Black-box Complexity of CIH from CRH or OWP; Informal). Any fully-black-box
construction of correlation intractable hash for any t-wise independent class of relations
from collision-resistant hash, or one-way permutations, must make at least O(t) calls to the
underlying base primitive(s).

A t-wise independent class of relations R is class of relations where for any ¢ pairs (21, w1),

.oy (zt,wy), the events {(z;,w;) € R} for a random relation R <~ R are all independent.
One example is the class of all relations searchable by degree t polynomials, i.e. any
relation consisting of all pairs (z,p(2)) for a degree ¢ polyonomial p specified by the relation.
Consequently, as polynomials of degree ¢ can be computed by (arithmetic) circuits of size ¢,
we get that the class of relations searchable by ¢-bounded circuits is €(¢)-wise independent.
Hence, the degree of independence provides a meaningful proxy for the complexity of a class
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of relations. To give some sense, CIH suitable for cryptographic applications, such as NIZKs
or succinct non-interactive arguments, as far as we know requires intractability for relations
with complexity proportional to the security parameter.

Our result carries a couple of caveats. First, it holds only for fully-black-box constructions.
Although this is already insightful and captures many of the existing and imaginable tech-
niques, there might exist non fully-black-box constructions that circumvent this impossibility.
Second, this is not an absolute separation in the sense that it does not entirely rule out
building one primitive from another, rather it only sets a lower bound on the efficiency of
such constructions. While such a result is partial in nature, we believe that the analysis
underlying the proof provides many insights regarding the essence of correlation intractability
and its complexity, potentially leading to future work advancing our understanding further,
through stronger separations and even new constructions. We elaborate below.

1.2 Discussion and Open Questions

We view our result as initiating the research on the complexity of correlation intractable
hashing. While our bottom-line yields a lower bound that is far from what is known or
even believed to be possible, our hope is that the techniques and observations introduced
in our analysis will eventually lead to a better understanding of the notion of correlation
intractability.

For instance, it may not be unlikely that, with some additional effort and insights, our
proof can be extended to achieve a similar impossibility for CIH from public-key cryptography;
In the work of [9] by which our initial ideas were inspired, they are able to show separation
of CRH not only from OWPs but also from the combination of OWPs with iO, which, in
particular, implies a separation from public-key encryption (PKE) 2. While extending our
result in an analogous manner is doomed to fail due to the existence of (fully black-box) CIH
based on OWP and iO, demonstrated in [46], we expect that a more careful adaptation of
the developed ideas has the potential to yield a separation from PKE.

A more intriguing direction is to investigate the gap between our limited separation
result, that does not entirely rule out constructions of CIH from CRH or OWP, and the
state-of-the-art CIH constructions which are known from building blocks that are much more
complex. We see it is important to understand whether it is merely an artifact of our proof
technique that we were not able to extend it to rule out constructions for any (non-trivial)
class of relations or whether there is an inherent barrier in proving such a separation. In
particular, one may ask

Is it indeed impossible to build non-trivial CIH in Minicrypt [38] (or Hashomania [44])?
Which relation classes can we get CIH for, based on OWFs or CRH?

1.3 Technical Overview

We will now discuss the ideas behind our main result, Theorem 1, which states that any
fully-black-box construction of CIH from CRH, or OWP for relations of complexity ¢ (more
accurately, that are ¢-wise independent) must make €(¢) invocations of the underlying base
primitive(s).

The starting point of our proof is the work of Bitansky and Degwekar [9], which provides
a separation of collision-resistant hash functions (CRH) from one-way permutations (OWP).
We generalize their framework to the correlation intractability setting and further extend

3 This, in fact, was first established in [1]
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it to capture the separation from CRH. Along the way, we introduce a new notion which
facilitates establishing hardness under oracles (e.g. of inversion or finding collisions) which
we call differential indistinguishability. Proving oracle-relative hardness is always at the core
of separations of this theme since, typically, the underlying cryptographic primitive, which is
accessible only in a black-box manner, is modelled as an oracle that provably satisfies the
corresponding intractability property. Interestingly, through differential indistinguishability,
we show how to use techniques resembling those from the differential privacy literature in
order to obtain traditional cryptographic hardness relative to an oracle.

For the sake of this overview, we outline the lower bound on CIH constructions from
one-way permutations and then briefly discuss how the underlying techniques can be further
expanded to obtain the lower bound on constructions from CRH.

Let us first recall the fully black-box separation framework which we follow in this work.

Fully Black-box Separations and How to Prove Them

We say that a construction P of a cryptographic primitive P from a different primitive Q is
fully black-box [52] if
(i) the construction makes only black-box use of Q (that is, any instantiation of Q,
independently of its implementation) and, further,
(ii) there is a black-box security reduction M which, given a black-box access to any
adversary A that breaks P, breaks the underlying instantiation of Q.
A fully black-box separation of P from Q simply means that fully black-box constructions
of P from Q are impossible. In many cases, such as ours, conditioned separations are
considered, namely, where it is only argued that fully-black-box constructions that satisfy
certain constraints (e.g. efficiency) are impossible.

Similarly to prior work on fully-black-box separations, we follow the “Two-Oracle Meth-
odology” [1,9,35,53] where, to show that is it impossible to build correlation intractable hash
from another primitive Q, e.g. OWP or CRH — again, possibly assuming certain efficiency
constraints — it is shown that there exists an oracle Q, which models an idealized implement-
ation of Q, and an oracle that models an adversary against correlation intractability, namely,
a correlation finder CF, such that

(i) CF breaks any black-box construction of CIH from Q that satisfies the presumed
constraints, yet,
(ii) Q is still secure, as per the security definition of Q, in the presence of CF.
Given that such oracles Q and CF exist, any fully black-box reduction M fails in breaking Q
using CF and, hence, no fully black-box construction of CIH from Q exists.

We first focus on separating CIH constructions from OWP, as this captures many of the
key concepts in the extended result, and only later discuss how to further derive a separation
from CRH.

The Challenge in Designing a Correlation Finder

We model our “ideal” OWP via a random permutation oracle f : {0,1}* — {0,1}*. While it
is straight-forward to show that it is infeasible to invert a random permutation at a random
image given bounded black-box access, our goal is to show this is still infeasible even given
access to a successful correlation finder CF. The correlation finder CF takes as input a circuit
C € H describing a hash function with oracle access to f. Here we can think of the set H
as abstracting away from the keys in a hash construction. In essence the set H limits the
adversary’s choice.
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One natural way to show that any bounded reduction M still cannot invert f given CF is
to show that M is able to simulate, with little extra cost, any useful information it receives
from CF by itself alone, making the correlation finder redundant and using the one-wayness of
a random permutation to complete the proof. This approach has been successful to separate,
in particular, CRH from OWP [9,53]. An elementary reason is that, under any (sufficiently
shrinking) CRH, the marginal distribution of any “half” of a uniformly random collision, is
almost uniform. Let C' € H be a circuit with oracle-access to f describing a hash function.
Thus, when letting the collision finder, on input such a circuit C7, simply output a random
collision (z,2') (s.t. C¥(2) = C/(2') and z # 2’), the reduction can simulate the marginals
of each of z and 2z’ without the help of the collision-finder. Roughly speaking, as has been
shown particularly in [9], the marginals capture the only “useful” information the reduction
can obtain for inverting f.

Things are not that simple, however, when the goal of the oracle is to return a correlation.
Here, the correlation finder CFJI; depends on a relation R as well as f. We will omit R and f
when the context is clear. On input a circuit C' € H the correlation finder CF{;{(C) should
produce an input z such that (z,C7(z)) € R. In this setting, a reduction M may produce
a query to CF where all possible correlations under a chosen relation R, i.e. all “correct”
answers that CF may possibly return, coincide with a set of inputs that is most useful for
inverting f at any given point. For example, we may think of an M that, given a challenge
y, calls CF(C) where C' is the hash circuit that on any input z, outputs a w s.t. (z,w) € R if
and only if f(z) = y (it is reasonable to assume that such a w is efficiently computable)?.
For this C, there is only one such z satisfying (z,C7(z)) € R, an hence CF(C) must return
this z.

Picky Correlation Finder

Given the inherent tension between correctness of the correlation finder and its usefulness
for inverting f, we propose the following way out. We design CF to be imperfect, that is, to
return a correct answer, say a uniformly random correlation, for most inputs while rejecting
to do so for the others. The distinction between functions on which CF may “cooporate”
and functions on which CF must reject is made possible by the fact that, in order to break
correlation intractability, CF must succeed on some relation R only for an average-case hash
C < H. Thus, in the CIH game, which one can think of as the “honest” case, the circuit C
that computes the hash function is independent of R and should not exhibit any extraordinary
behavior w.r.t. correlations under R. On the other hand, if M attempts to abuse CF to
invert f, then it must produce a “malicious” circuit C' which is specifically tailored to be
useful for inversion and, therefore, as we argue in our proof, must highly “depend” on R.

Thus, we need to construct a correlation finder CF that is able to tell when a circuit C
is likely to be malicious, yet does not overshoot as it still needs to answer for an honest C.
To that end, we articulate a measure of “extraordinariness” that captures “usefulness” for
inversion, which, roughly speaking, happens to be tightly related to the Rényi divergence
of infinite order (this can be thought of as an analog of KL-divergence for min-entropy)
between what useful information is obtained from CF and what useful information can be
simulatable without CF. We let our CF reject any circuit C' that is extraordinary w.r.t. R
to obtain a picky correlation finder, namely a correlation finder that is successful only with
high probability.

4 We are implicitly assuming that the input spaces for f and C are the same. When this is not the case,
the reduction can use any arbitrary 1-1 mapping that maps any C-input w to a corresponding f-input
x4 and the implication still holds.
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Detecting Malicious CF-Queries

In the following let Corrgc denote the set of all z which satisfy (z,C7(2)) € R. To identify
what “useful information” is w.r.t. inverting one-way permutations, we take inspiration
from [9], where they implicitly show that to invert an oracle f at a random image y*, it is
necessary for the reduction M to be able to distinguish between black-box access to f and
black-box access to a different permutation f’ = f,« ., that is obtained from f by swapping
the solution pre-image x* = f~!(y*) with a uniformly random z’. Given this, a malicious
query to CF is then a circuit C for which the distribution of a non-rejecting CFY(C), namely
the correlation finder’s answer to C' under f can be distinguished from a CF/’ (C), namely
its answer under f’. Only using such malicious queries, the reduction M can use CF to
distinguish between f and f’ and, thus, invert f. We observe that C' can induce such two
distinguishable distributions under functions f and f’ only if the swap z* <+ 2’ significantly
affects the set of correlations, from which CF samples its answer. This may occur only if,
given a random correlation z Corré’o, the hash function Cf(z) calls any of *, 2’ with
noticeable probability or, in other words, only if any of x*, 2’ are heavy among correlations.
Hence, our correlation finder should, in particular, look at the weight of any worst-case x
w.r.t. the given query C and the chosen relation R (it is crucial to note that CF has no
knowledge of z*, 2" as they exist only in the inversion game and its analysis), which we define
as

wheole)= Pr [0Y(2) — 4, (1)

f
z(—CorrR’C

where Cf(z) — z denotes the event that the computation C/(z) calls f at . This alone
is not sufficient, however, since it may be the case that there are heavy inputs also under
an honest query C, that does not depend on the relation R. For instance, consider a
CIH construction C' that always calls f at some fixed z(, regardless of its input being a
correlation or not. Then, in such case we have that max, w(z) takes its maximal value 1
and the correlation finder always rejects and is, therefore, never successful. It is clear that
such a query to CF cannot possibly be helpful to invert f since, intuitively speaking, any
information that M may extract from CF/ (C) regarding the image of the heavy input xg
it could already extract without calling CF by calling C' at random inputs (that are not
necessarily a correlation). Keeping our initial outline in mind, we are interested in the relative
“usefulness” of information obtained form CF compared to information simulatable without
CF’s help. We refine our basic idea to consider the relative weight of any worst-case z among
correlations compared to its weight in the entire input space. For that, we define the scale of
any input x as

ob@) = _Pr [C7()—al, (2)
and look at the amplification in the likelihood of observing z in an execution Cf(z) due to
restricting z to be a random correlation compared to being a random input (i.e., a random
CF answer compared to a random input which is simulatable without CF), that is,

oy o(@) = wh o(2) /ol (x). 3)

We let CF reject only if there exists an x for which of (z) > 1. This gives us a CF that is
successful in the honest case since one can easily see that af (z) has an average of 1 when the
relation R is sampled independently in C' (further, a sufficient tail bound for worst-case af (z)
can be derived already when R is pairwise independent). On the other hand, CF rejects
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whenever z* or 2’ are too heavy among correlations since aé(;v*) and aé (2') can be assumed

to be small: z’ is a random input that is sampled in the analysis and is independent in the
reduction’s choice of C', while z* is the solution pre-image and, had it been heavy among
random inputs, the reduction would have been able to observe it by sampling random inputs
to C' without the help of CF.

As already mentioned, it turns out that max, af(z) is precisely the Rényi divergence of
order infinity between the distributions over the f-input space induced by the PDFs w and
o. In Figure 1 we visualize the distinction between honest queries, which give low divergence
between w and ¢, and malicious queries.

an honest query C an honest query C a malicious query C

x x x x
X x
xxx ""xxx
x x % XX 0% x
xX X xx *
x
x %
X x % x x
x
x
x
x
% x X x’:‘x xx
’{x x x

= Corr = {z|(2,C#(2)) € R}
® Hits, = {z|Cf(z) — «}

Figure 1 An illustration of the domain of the circuit C' when C is an honest query vs. when it is
a malicious one. Notice that C' is malicious only if some z is observed with much higher likelihood
in the correlation set, compared with the entire space.

While our efforts so far already constitute a major step towards a separation, a new
problem pops up: the decision for rejection, namely whether CF rejects or not, might itself
give information that is useful for inverting f! This is not merely a hypothetical scenario;
One can show, in fact, a concrete “attack” against such CF, namely a reduction M that,
while unable to learn anything from the non-rejection answers, can learn the pre-image
entirely based on the rejection decisions of CF (note each such decision conveys at most a
single bit of information).

Differential Indistinguishability

To solve the issue raised above, we encapsulate the “usefulness” (or “uselessness”) of a
correlation finder in inverting f via an novel oracle-relative hardness notion, we call differ-
ential indistinguishability. At a high level, we say that CF is differentially indistinguishable
if its answers and, in particular, its rejection decision, do not substantially change when
the function f is modified locally (specifically, when two inputs are swapped under the
permutation as described above). As already mentioned, the notion of differential indistin-
guishability is implicitly used in the work of [9] and is inspired by their proof. However, the
straight-forward collision finder, that returns a random collision, already satisfies differential
indistinguishability and, therefore, the main effort in their proof goes to show that differential
indistinguishability implies “uselessness” for inversion. One of the contributions in our work
is formalizing then extending the implicit framework from [9] to capture correlation finders
(in fact, any oracle) and additionally show a similar implication regarding “uselessness” for
finding collisions, through which we derive the separation from CRH.
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A Differentially Indistinguishable Rejection Policy

Given that differential indistinguishability implies that f is hard to invert given CF, it
remains to design a differentially indistinguishable CF. To that end, we further refine the
picky correlation finder from above and design a “soft” rejection policy that is robust against
local changes of the function f. Unsurprisingly, our mechanism for achieving this looks,
in retrospect, as if taken from the world of differential privacy (DP) [22]. In more details,
we consider a rejection policy that takes into account not only extraordinary behaviour,
namely large of (r), w.r.t. the given function f, but also w.r.t. functions f’ that are in the
“neighborhood” of f, namely functions that can be obtained by performing a limited series of
swaps on f. By weighing in the impact of any extraordinary behaviour in a way that quickly
vanishes with increasing distance from f, e.g. an weight function which drops exponentially
with the distance from f, we are able to derive differential indistinguishability. Overall, our
rejection policy, namely the probability that CF rejects at some circuit query C', is computed
by a function similar to the following

PR(C) = e maxle™ 2T g (@), (4)

where A(f, f') denotes the swap distance ® between f and f’, and € < 1 and d > 1 are
carefully chosen normalization parameters; The larger d and € are, the stronger is the
differential indistinguishability guarantee, yet the harder it is to show that CF is successful
in the honest case. For the sake of this overview, d can be thought of as superpolynomial in
the security parameter and € as inverse-superpolynomial.

Having safeguarded intractability of inverting f via differential indistinguishability, we
need to make sure we have not broken the subtle balance with the necessary correctness
requirement on CF. While it is almost immediate that any circuit C' (modelling a random
hash function C' + H sampled from the CIH candidate) behaves “nicely” under f w.r.t.
an independently chosen relation R < R, even when relations in R are only pairwise-
independent, it is not clear that this holds under all functions f’ in the close neighborhoods
of f. The straight-forward attempt to apply a union bound over all possible functions in the
neighborhood inherently requires that relations in the class have a description of exponential
size, which would dramatically weaken our result. Instead, we exploit the fact that the
candidate CIH is bounded to make ¢ invocations of f and observe strong dependencies
between the «(z) values under different functions across the neighborhood of f. More
specifically, since the behavior of C' on any input is determined by the images of at most
t points in f, we notice that we can represent af’ (), under any f’, as the average of a
collection of values {a/ ()} where each &/ (z) depends solely on ¢t < d points in f’. This
allows us to apply a much more benign union bound to establish that none of the possible
af /(x) is too large. Consequently, we are able to argue that if the relation class is sufficiently
“expressive”, namely (¢)-wise independent, then when the relation R is chosen at random
and independently in the hash circuit C, C' is indeed behaving well under any f’ that is
sufficiently close to f. This implies that an honest query C' is rejected with low probability
and, therefore, CF is correct and we have a separation of CIH from OWP.

5 We define the swap distance between permutations f and f’ as the minimal number of times we need
to swap outputs between input pairs 21 and z2 in order to transform f into f’
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Extending to Constructions from Collision Resistance

We will now discuss how these results can be extended to capture constructions from CRH as
well. At the core of our extended result is the observation that the task of finding collisions in
an oracle can be conceptually thought of as an “adaptive” inversion task; To find a collision in
an oracle f, an adversary must invert an image y for which he had already seen a pre-image
under f. The difference from breaking the one-wayness of f, namely inverting f at a random
image, is clear: In the collision-finding game, the adversary, in some sense, chooses the images
he aims to invert. Hence the “adaptiveness”.
Recall that in order to establish a separation of CIH from OWP, we
(i) define a notion of differential indistinguishability and prove a random f is hard to invert
even given a differentially indistinguishable correlation finder, and
(ii) construct a differentially indistinguishable correlation finder (that is successful in the
honest case).
Based on the above insight, we propose a notion of adaptive differential indistinguishably,
then prove that it is sufficient to imply collision-resistance of f under the correlation finder
were the latter to satisfy it. Lastly, we show how to generalize our construction of correlation
finder from above to satisfy the new adaptive notion and, by this, finish. We elaborate below.

Re-randomizing Siblings

The reason that differential indistinguishability is sufficient to imply hardness of inversion is
that it allows us to re-randomize the target pre-image (that is, swap the original z* whose
image is given as a challenge with a random z') without the adversary noticing that he is
given access to a different function f’ = f,«..,. Thus, the probability that the adversary
returns z* under f is equal to the probability he returns z* under f’, which carries no
information about z*, and therefore he cannot do better than guessing. To adapt this idea to
an adversary that is trying to find collisions, we re-randomize, as hinted above, the siblings
of any input = at which the adversary calls f in his executions. The siblings of any x under
f are all 2’ that make a collision with z, i.e. all ' # x such that f(z) = f(z’). Roughly
speaking, since we may assume w.l.o.g. that the adversary calls f at a collision the moment
he finds it, then we can assume that a successful adversary must call a sibling of a previously
queried input. It would not be sufficient, however, to re-randomize, at every step of the
execution, only siblings from previous queries since, hypothetically, the adversary’s strategy
might be to collect information about “future” siblings, namely siblings of some x before
actually making the query to f at . We must therefore re-randomize all siblings induced by
the execution at any of its steps.

Adaptive Differential Indistinguishability

An inherent difference from the OWP case then arises: In proving intractability of inverting
an OWP f, we re-randomize a pre-image x* which is fixed apriori to the execution of the
adversary. In contrast, when re-randomizing siblings, specifically “future” siblings, we are
re-randomizing pre-images that are implicitly determined by the adversary’s execution. This
difference motivates us to define an adaptive analog of differential indistinguishability, where,
in a high level, we require that the answers of CF do not change when the function f is
swapped even at points chosen adaptively in the answers themselves (essentially, the answers

are what constitute the view of the adversary on which he bases his choice of siblings).

The new adaptive notion introduces various non-trivial subtleties. For instance, unlike its
non-adaptive counterpart, adaptive differential indistinguishability against any general choice
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of swap sets is impossible to realize while preserving correctness of the correlation finder.
To see this, consider an adaptive choice that, given an answer on some query C, namely a
correlation z < CF/(C), chooses to swap the function f at an input 2 that is called by C7(z).
Swapping  possibly changes the outcome of the computation C7(z) making z no longer a
correlation under the modified function f’ and, therefore, no longer a “correct” answer for z.
A successful CF will most likely not output z in such a case, practically implying that such a
modification of f must cause CF to answer differently with high probability.

Fortunately, we are able to show that, unless our adaptive choice is that “targeted” (that
is, chooses to swap inputs that specifically appear in the execution of the query circuit C' on
CPF’s answer), then adaptive differential indistinguishability is achievable. On the other hand,
we prove that the choice to swap the set of siblings is never such a “targeted” choice under one
condition in particular: that the execution of C' on the answer z « CF/ (C) does not observe
a collision, namely does not make two f-queries that collide, with high probability over CF’s
randomness. Through these observations, we are able to generalize our correlation finder from
above to satisfy the required adaptive notion against any choice of siblings. In particular,
our new correlation finder looks at an analog of the amplification values o = w/o that we
define for pairs of inputs and, further, for the “soft” rejection considers the neighborhood
of functions that are obtained by swapping between sets of inputs (rather than individual
points). Overall, we get a correlation finder that is adaptively differentially indistinguishable
against siblings, implying a similar separation of correlation intractable hash from collision
resistance.

1.4 Technical Notation

We introduce basic notation to be used in the paper. For a distribution X', we write v € X
to say that x is in the support of X', and = < X to denote that x is sampled from the
distribution X. We overload the notation for sets and write z < X when z is sampled
uniformly at random from a set X. We use P(X) to denote the power set of X. For an event
E, we use 1(E) to denote the binary value which takes 1 if and only if E occurs. SD(X,Y)
denotes statistical distance between distributions X and Y. For an oracle-aided algorithm A,
an oracle ¥, and a U-input z, we denote by AY (z) =z Q@ the event where A, on input z, calls

the oracle ¥ at Q. We extend this notation for tuples of W-inputs: AY () z Q1,...,Q, if
AY (2) calls Q; for all i.

1.5 Paper Organization

Due to space limitation, in what follows in this version of the paper, we focus only on the
separation result of CIH from OWP and present a series of arguments and abstractions
through which we establish the result. The full version of the paper [24] contains all necessary
proofs, as well as the presentation of the stronger separation result from CRH, which relies
on a generalization of many of the ideas presented hereby.

In Section 2 we define the notions of fully black-box constructions and separations then
formally state our results. In Section 3 we present a generic framework for proving bounds
on constructions of correlation intractability via the notion of differential indistinguishability
and, in Section 4 we build a differentially indistinguishable correlation finder that satisfies
our requirements, allowing us to derive the main theorem separating CIH from OWP.
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2  Our Results: Statement of Main Theorems

In this section we formally state our separation results of correlation intractability from CRH
and OWPs. Let us first define a fully black-box construction of CIH from OWP.

» Definition 2 (Fully Black-box Construction of CIH from OWP). Let m := m(n) be a
length parameter and let R be a class of relations. A (t,q, ¢)-fully black-box construction of
correlation intractable hash (CIH) for R with input length m from one-way permutations
(OWP), for t :=t(n), ¢ := q(\) and € := €(X), is an ensemble of distributions H = {H,}
where, for any n € N, H, is a distribution over functions mapping m-bit inputs to n-bit
outputs, and an oracle-aided reduction M satisfying the following properties:
Construction Efficiency: For any n € N and any h € H,,, h/ makes at most t(n)
queries to f on any input.
Black-boz Security Reduction: For any oracle f = {fy :{0,1}* — {0,1}*} and any
probabilistic oracle-aided adversary A, if there exists a relation R € R such that

AdvEi(n, R, A) = hf}{{ [(z,h(2)) € R] >
2 AT (17 1)

N =

for infinitely many n € N, then,

Adviwp\ M) = Pr [MPA(fi(2)) = 2] > €())
z<+{0,1}*
for infinitely many X\ € N.
Reduction Efficiency: For any A € N and y € {0,1}*, M/A(y) makes at most q()\)
queries to the oracles f and A, and for every A-query (1™, h) made by M(y), it holds
that n < 2?* and h'(-) makes at most q(\) queries to f on any input.

A fully black-box construction of CIH from CRH is defined along similar lines, except
that the reduction aims at finding collisions in a shrinking oracle f. A full definition is given
in the full version [24].

Lastly, we define a fully black-box a-separation to embody the impossibility of any fully
black-box construction abiding a trade-off (parameterized by «) between the complexity
of the underlying reduction and its success probability. A larger value of « gives stronger
separation and, in particular, superpolynomial « indicates the impossibility of a reduction
that is both polynomial time and has non-negligible advantage, as typically required in the
traditional cryptographic setting.

» Definition 3 (Black-box Separation of CIH from OWP (or CRH)). Let m := m(n) be a length
parameter and let R be a class of relations. We say that t-bounded CIH functions for R
(with input length m) are «(\)-fully black-box separated from OWP (or CRH), for t := t(n)
and a(X) > 1, if for any (¢, q,€)-fully black-box construction of such CIH from OWP (or,
resp., CRH), it holds that either g(X) > O(a(X)), or e(A) < O(1/a(N)).

Our impossibility results rule out any construction of a CIH for relation classes that,
roughly speaking, constitute complexity greater than the black-box complexity of the con-
struction. To articulate the complexity of a given relation class R, we refer to the degree
of “unpredictability” induced by a random relation; We say that R is k-wise universal if, in
particular, the likelihood of any (z,w) to be in a random relation R <+ R does not change
even given the membership (or non-membership) in R of any k — 1 pairs.
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» Definition 4 (k-wise Universal Relations). Let k: N — N and p: N — (0,1). We say that a
relation class R = {R,, CP({0,1}™ x {0,1}"™)}, for m := m(n) is k-wise p-universal if, for
any n € N, there exists a distribution over relations in R, (which we ambiguously denote by
R.) such that for any k' < k and any distinct (z1,w1),. .., (2, wr) € {0,1}™ x {0,1}", it
holds that

Pr
R+R,

(21, wi) € R Vi€ [K]) = p(n)*' (™).

We now formally state our main separation theorems: In any fully-black-box construction
of CIH against a k-wise independent relation class from CRH (or OWP) with non-trivial
security, the hash function must invoke the underlying CRH (or OWP) at least (k) times in
its computation. We provide the formal theorems with accurate quantitative details below.

» Theorem 5 (Black-box Separation of CIH from OWP). Let m := m(n) and p: N — [0,1] be
such that p(n) > 4n?27"™") and let k,t : N — N be such that k(n) > 20 - t(n) for alln € N.
Then, t-bounded CIH functions, with input length m, for any class of k-wise p-universal
relations are 2)/19-fully black-box separated from OWP.

» Theorem 6 (Black-box Separation of CIH from CRH). Let m :=m(n) and p : N — [0,1] be
such that p(n) > 4n?2=™() and let k,t : N — N be such that k(n) > 25 -t(n) for all n € N.
Then, t-bounded CIH functions, with input length m, for any class of k-wise p-universal
relations are 2/ ?°-fully black-box separated from CRH mapping X + O(1) bits to X bits.

Note that our separation result from collision-resistance considers CRH that shrinks
its input only by a constant number of bits. We stress, however, that our proof technique
results in equally-merited separations from any CRH with constant multiplicative shrinkage
smaller than %, where we still require & = Q(t) and obtain a 2*(*)-separation. Since such a
CRH implies CRH with any polynomial shrinkage via a logarithmic number of sequential
invocations, one may derive more general separation results with corresponding parameters.

3 A Generic Framework: One-Wayness under Differentially
Indistinguishable Correlation Finder

We introduce a generic framework for showing barriers on CIH constructions. Our approach
builds on the “Two-Oracle Methodology” [1,9,35,53] where, in order to obtain bounds on
cryptographic constructions, one creates an idealized (oracle-relative) world under which such
constructions are impossible. In our case, such a world would consist mainly of an ideal oracle
representation of a cryptographic primitive (be it a CRH or OWP) and a correlation finder
that should be able to break any construction of CIH from the ideal primitive that satisfies
certain constraints, e.g. query complexity, yet is useless for breaking the intractability of the
underlying oracle (that is, inverting it or finding induced collision).

Among our contributions is the formulation of a somewhat unified hardness notion,
namely differential indistinguishability, and show that any correlation finder that satisfies it is
indeed useless breaking the ideal OWP or CRH. We believe that our approach is sufficiently
modular to allow for adaptation in different settings. For this outline, we focus on separating
CIH from OWP. In the full version [24], we give a generalization of the framework that
enables the separation result from CRH in Theorem 6.



N. Dottling and T. Mour

Setting and Notation

Our proof will be centered around two “computational games”: In the first, a correlation
finder aims to break the correlation intractability of a candidate CTH that maps m := m(n)
bits to n bits (n can be thought of as the “security parameter” in this game). In the
second game, an adversary is given access to the correlation finder and aims to break the
intractability of an idealized OWP that is given as a permutation oracle over A\-bit inputs
(here, ) is the security parameter). We now list the main playing parts in this settings:

A relation class R = {R,} where, for any n € N, R,, is a class of relations over

{0,1}™(™) x {0,1}". This will denote a relation class which we seek to build (actually,

rule out) correlation intractability for.

A (random) oracle F = {F\} where for any A\ € N, F) is the uniform distribution of

permutations over A-bit inputs. We typically use f to denote a function chosen from F.

An algorithm is f-aided if it is given access to an oracle with the syntax of f € F.

The family of f-aided circuits C = {C,,} where, for any n € N, C,, is the set of all f-aided
circuits mapping m(n)-bit inputs to n-bit inputs. In particular, a CIH candidate for R
(from OWP) is an ensemble of f-aided circuits C = {C),} where C,, € C,, for all n € N.

A correlation finder O = {Or} where, for any R € R, Op is a distribution over f-aided
oracles that on input 1" and an f-aided circuit C € C, (for any n € N) outputs a C-input
of length m(n) bits (which should be a correlation w.r.t. R if successful). We often omit
the input 1™ as it is clearly determined by C' and sometimes omit the relation R when it
is irrelevant in the context.

An oracle-aided adversary A that is given access to an oracle f € F and a correlation
finder O € O (which in turn has access to f). In particular, we will be interested in
adversaries against OWP, which take as input y € {0,1}* and return some x € {0, 1}*.

The Two-Oracle Methodology

Following the two-oracle methodology developed in prior separation results [1,9,35,53], we
formulate, in Lemma 8 below, sufficient conditions for separating correlation intractability
from OWP. The proof of the Lemma may be found in the full version [24].

» Definition 7 ((¢,¢’,q")-Bounded Adversary). Let q,¢',¢" : N — N. We say that an
oracle-aided adversary A is (¢,q',q")-bounded if, for any fized correlation finder O and any
f={fr:{0,1}¢N - {0,1}*}, ATO on any input with security parameter X makes at most
q(\) queries to fx and ¢'(N\) queries to O, where each O-query C makes at most ¢'(\) queries
to fa on any input.

» Lemma 8 (Separation via Correlation-Finding Oracle). Let k : N — [0,1] and ¢ € N be a
constant. Let R be a class of relations. Assume there exists a correlation finder O = {Or}rer
(see Setting and Notation above), such that
O breaks all CIH (Correctness): For any CIH candidate H = {H,} with query
complezity bounded by t(n), it holds that

H _ FAn By (ot b
EOR:& [Adv¢p(n, R,0)(n)] fgfl’:;lreHn [z O/ (1",h); (2,h'(2)) € R] > 1 52
R+R,0+0Opgr

for infinitely many n € N.
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F is one-way under O (Security): For any (q,q,q)-bounded A that on security
parameter X calls O only with queries (1™, h) s.t. n < 2M24 any X €N, and any R € R,

E oz [Advwp (X, A%)] = O(g(N\)° - K(N)).

Then, t-bounded CIH functions for R with input length m are (k=Y +))_fully black-box
separated from OWP.

Generic Assumptions on the Correlation Finder and the Adversary

To facilitate our proof, we will make few assumptions over the structure and behavior of
both the correlation finder and the oracle-aided adversary attacking the underlying OWP.
The first assumption we make is that the correlation finder answers each of its queries using
independent randomness. This will be immediately satisfied by our construction later on.

» Definition 9 (Query-Independent Oracle). We say that a distribution O : Q — Z over
oracles is query-independent if the answers of a random oracle O < O to different queries
are independent or, more formally, if

(0(@))eee = (00(@Q))qeo

where O and {Og}oeo are all sampled independently at random from O.

Next, we will assume that the adversary is canonical, namely that it follows the natural
structure of a competent adversary.

» Definition 10 (Canonical Adversary). We say that an oracle-aided adversary A is canonical
if it satisfies the following three properties for any O = {0y : Cry(n),n — {0,1}"} and any f:
(V) ATO% never makes the same oracle query twice.
(ii) After any O-query C that Af07 makes, Af07 immediately calls f at any x such that
cr(O(C)) — z.
(iii) AL immediately halts and outputs answer if found (i.e. when ASO (y*) calls f at
z=f"1y"))
(iv) A0 qlways calls f at its final output(s) (i.e. ASO (y*) = x implies ASO (y*) =N x).

Crucial to our analysis is one more assumption over the adversary, namely that it is
smooth. Conceptually, a smooth adversary never calls the correlation finder with queries that
already convey sufficient amount of information for succeeding in its task (without the help
of the correlation finder). Specifically, these are queries C' where the transcript of C7(z) for
a random input z may contain a correct solution with noticeable probability. That is, we
require that any pre-image x is observed by C/(z) with negligible probability®.

» Definition 11 (Smooth Inputs). Fiz an oracle f and an f-aided circuit C € C,, and let
v: N —=[0,1]. We define the set of ~v-smooth inputs of C under f as follows

Smoothg(C) ={zec{0,}MXeN, Pr [CI(2)—a]<~ry(\)}.

z+{0,1}™

8 In fact, we require this only for z that has not been already observed by A since, by canonicality, if an
has already been observed then it is not the solution. Notice that, otherwise, the correlation finder has
no knowledge about the identity of the targeted pre-image and, therefore, we quantify over all such z’s.
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» Definition 12 (Smooth Adversary). Let 7,7 : N — [0,1]. We say that an oracle-aided
adversary is (1,v)-smooth if, for any f, any fixed correlation finder O, any A € N, any
A-input a, and any i € N, letting C; be the (random) it" O-query made by A7°(a) and
X € {0,1}N be the set of all fx-queries made by A prior to Cy, it holds that

Pr[X<c N {0, 1}* € Smooth? (C)] > 7(\)

We note that the notion of smooth adversaries was considered already in [9] with the
difference that we require smoothness only for unobserved inputs — this simplifies the adaption
to correlation intractability and is w.l.o.g. assuming canonical adversaries.”

In the lemma below, we argue that canonical and smooth adversaries are complete, in
the sense that it would be sufficient to show one-wayness against them if we can tolerate
a small cost in complexity. A proof of a more general lemma, that shows smoothening of
adversaries against CRH as well, is given in the full version [24].

» Lemma 13 (The Smoothening Lemma). For any (q,q’,q")-bounded adversary A and any
B := B(N), there exists a canonical (¢ + Bq'q",q’,q")-bounded adversary B such that the
following two properties hold:

Correctness: for any fized correlation finder O, any f, and any A € N,

Adviwe (), B9) > Advwp (A, A°).

Smoothness: B is a (1 — 28" /)=78 ~)_smooth adversary, for all v > 0.

3.1 One-wayness from Differential Indistinguishability

In this section, we formalize the notion of differential indistinguishability for correlation finders
and show that it is hard to invert f under any differentially indistinguishable correlation
finder. This allows us to focus our design on obtaining differential indistinguishability to
establish separation from OWP (via Lemma 8). We begin by defining this new notion.

» Definition 14 (Differential Indistinguishability). Let §,7: N — R* and ¢: N — N. We say
that a correlation finder O = {ORg} is (non-adaptively) differentially (g, ~, )-indistinguishable
for F if for any R€ R, any A € N, any f € F, any f-aided circuit C € C which makes at
most q(\) queries to fx on any input, and any * € Smoothﬁ;(C’) of length £(\), it holds that

SD(0/(C), 07 (C)) < 6(N),
where O < Or and f' = forcsar for a uniformly random z' + {0,1}.

In the lemma below, we argue that it is hard to invert a random permutation f, even
when given access to a differential indistinguishable correlation finder. The lemma is followed
by a proof sketch whereas the full proof can be found in the full version [24].

7 More specifically, in [9], they make any adversary smooth by modifying his O-queries. Their collision
finder is oblivious to these modifications since the functionality of the queries (as f-aided circuits) is
preserved. This does not hold for our correlation finder and, therefore, their smoothening method does
not preserve advantage in our settings. Hence, we slightly modify the definition, w.l.o.g., to allow for
generic smoothening under any oracle, in particular for our correlation finder.
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» Lemma 15. Let F = {F.} be the distribution of random permutations over {0,1}* (i.e.
LA)=X). Let § : N — [0,1] and let A be a (¢q,¢,q")-bounded Inv-adversary that is canonical
and (7,7)-smooth (see Definitions 10 and 12). Let O be a correlation finder that is query-
independent (see Definition 9) and differentially (q",~, §)-indistinguishable for F. Then, it
holds for any A € N that

EjolAdviwe (A A%)] < O((1—7(N) +q(A\) - 27 +¢' (V) - 5(N),
where [+ F and O <+ O.

Proof Sketch. To show hardness of inversion, we switch the OWP security game to an
experiment where the adversary (and the oracle O) is given access to an oracle f’ that
statistically hides any information about the pre-image of the given challenge x*, which
deems non-trivial success in computing a successful answer virtually impossible. More
specifically, we swap f at x* with a random z’ + {0,1}", essentially “randomizing” the
pre-image of the given challenge under the given function f’ = fy«.,. By the presumed
differential indistinguishability of O (in particular) we are able to show that such a swap
does not affect the view of A except with a negligible probability. Note that the notion of
differential indistinguishability from Definition 14, that considers swapping of smooth inputs
only, is already sufficient by the canonicality and the smoothness of the adversary. Lastly, by
the symmetry between f and f’ given y* = f(z*), we may then conclude that f’ hides any
information about x* and, hence, inversion is impossible. |

4  The Correlation Finder

In this section, we build a correlation finder that is correct and differentially indistinguishable.
Given the framework from Section 3, this suffices to derive the desired separation from OWP.
We stress that the presented correlation finder satisfies a more general notion of differential
indistinguishability (namely, adaptive differential indistinguishability) which is crucial for
the separation from CRH. We refer the reader to the full version [24] for more details.

Strategy: Picky Correlation Finder

Our correlation finder follows a natural structure of a picky correlation finder, namely a
correlation finder that given any input, rejects with some probability (outputs 18) and,
otherwise, simply outputs a uniformly random correlation under the target relation.

First, we define the set of correlations between a circuit and a relation.

» Definition 16 (Set of Correlations). Let f : {0,1}* — {0,1}* be any oracle function and
Cf :{0,1}™ — {0,1}" be an f-aided circuit. Let R be a relation. The set of (R,C7)-
correlations is defined as

Corrﬁ’c ={z| (z,Cf(z)) € R}.
We sometimes omit f, R and C from notation when clear by context.

We now present our generic picky correlation finder, which we will later instantiate with
a proper rejection policy.

8 Although our definition for a correlation finder allows only for outputs in {0, 1}™, we can always dedicate
some z € {0,1}™ (e.g. the all-zeros input) to correspond to L.
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» Construction 17 (Picky Correlation Finder). Let R be a relation class and F be a class
of oracles. Let p := {p{{ :C = [0,1]} be a an ensemble of functions (namely, a rejection
policy) that take as input a description of an f-aided circuit and outputs a real value in [0,1]
w.r.t. fited R € R and f € F. We define our picky correlation finder with rejection policy
p, which we denote by CF[p| = {CFrlpr]|}rer, such that, for every R € R, CFrlpr] is the
distribution over deterministic oracles where, for any C, letting CF < CFgr|pr], CFQ(C) 18
an independent random variable equal to the random output of the following algorithm °

CFL(O)

Reject with probability pé(C) and, otherwise, output a uniformly random correlation
20 + Corrlf%’c (if Corr = 0, set zc = L ).

We point out that CF[p] is by construction query-independent (as by Definition 9).

Given this framework, it remains only to specify the rejection policy of our correlation
finder, that is, the probability with which he rejects for any given input. As a first step,
we specify in the lemma below a list of conditions on the rejection policy (which is simply
a function from the query space C to real values in [0, 1]) that are sufficient to obtain a
correlation finder that is both correct and differentially indistinguishable (via Construction 17).
The proof of the lemma is deferred to the full version of the paper [24].

» Lemma 18. Let ¢,q,N : N = N and ¢,7: N — [0,1]. Let R be a relation class and let
p = {p{% :Cf = [0,1]}rer that satisfies the following properties:

Correctness: For any f € F and any circuit C = {C,, € C,} with query complexity
bounded by t(n), it holds, for infinitely many n € N, that

EReR[Pﬁ(Cn)] <oz
Soundness: For any R € R, any f € F and any circuit C € C, if pé(C) < 1 then, for
any X € N and any = € {0,1}*, it holds that

Pr [C7(z) —a]< Pr_ [C(2) — ]/e(N).

z+Corrf z+{0,1}m

Differential Indistinguishability (of Rejection)!®: For any R € R, any f € F, any
circuit C € C, any A € N and any x*,2' € {0,1}* such that z*,2' € Smoothﬂ;(C),

|pg(C) — p£(0)|< S(\), where f'' = frriyur

Then, CF[p] = {CFRrlpr)} from Construction 17 satisfies
» Correctness as required by Lemma 8, for t(n)-bounded CIH candidates,
» Differential (q”,~, §')-Indistinguishability , where &' = O(5+(¢"/v)- 272 +¢"-v/e¢).

9 Although the described algorithm has access to f, we think of its random coins as being sampled
obliviously of f (w.l.o.g.), and therefore CF r[pr] is well-defined prior to setting f. One way to sample
such an oracle is proposed in the proof of Lemma 18.

10We note that a much weaker notion of differential indistinguishability is sufficient for the rejection
policy for the separation result from OWP. The presented stronger variant of the notion (in fact, a more
general one) is required for the separation from CRH and is anyway achieved by our construction.
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The Rejection Policy

We are now prepared to define our rejection policy. As outlined in the overview in Section 1.3,
our strategy is to have the rejection probability be proportional to the worst-case amplification
af;’c(x) (see (3)) to obtain soundness as required by Lemma 18 and, further, to blur out the
difference between adjacent functions to obtain differential indistinguishability (of rejection),
by “spreading out” large amplification factors corresponding to some “bad” f over its
neighborhood in the function space.

More specifically, since it is sufficient to guarantee differential indistinguishability only
w.r.t. swaps between smooth inputs (see Lemma 18), we define the d-Neighborhood of f (for
smoothness parameter ) as

/\/;{ﬁ()\,C) = U {fx | X = ((23,2)), ..., (zh,2h)): Vi, x},2) € Smooth’];yg’"l((l')}7

0<d’<d

where fx is the function obtained from f by swapping z} <> «} for all (z},2}) € X, and X,
denotes the first £ swaps in X. Further, we define the distance between functions f and f’ as
the smallest number of swaps required between smooth inputs in {0, 1}* to obtain f’ from f
(and is set to oo if such a transformation is not possible). That is,

Ayac(f.f) =min f" € N (X.0).

We subsequently define our rejection policy in Figure 2.

p={pr:C —[0,1]} Parameters: ¢,v: N — [0, 1] (such that
€> 7).
For any C € C, letting d = (¢/~t)?, where t is the largest number
of queries that C' makes on any input, we define
PR(C) = max_ [ e fe(0) - afy o (),

AEN(C),xEX
freNd (20)

where [(x) = min(1, x) and

MC)={ eN|3ze{0,1}",ze{0,1}N: Cf(2) — z}.

Figure 2 The Rejection Policy.

Deriving Theorem 5

Lastly, we may derive the proof of the separation result stated in Theorem 5 by utilizing
our correlation finder construction with carefully chosen parameters to obtain them via the
differential indistinguishability framework from Section 3. We hereby provide a brief outline
and refer the reader to the full version [24] for more details.

By Lemma 8, a separation can be derived by a correlation finder that satisfies both
the correctness and security conditions in the lemma. We choose our correlation finder
to be the picky correlation finder from Construction 17 with the rejection policy from
Figure 2, instantiated with parameters v = 272*/3 and ¢ = 2=*/3 for the construction. By
the smoothening lemma (Lemma 13), it suffices to establish security of the OWP against
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smooth adversaries which, in turn, is guaranteed when the correlation finder is differentially
indistinguishable, as demonstrated by Lemma 15. Consequently, to prove separation, it is
sufficient to show that our proposed rejection policy satisfies the conditions set by Lemma 18,
namely correctness, soundness, and differential indistinguishability.

While one can prove, almost immediately by our construction, that the rejection policy
satisfies soundness ¢ = 27*/3 and differential indistinguishability O(qy/e) = O(q27*/3),
proving correctness demands much more effort. We refer the reader to the technical overview
in Section 1.3 for an intuitive outline of our approach and to the full version [24] for a full
formal proof.

Plugging in our correlation finder into Lemma 8, with ¢ = 2 and x = A2~*/3

, we obtain
the desired 2*/19-separation.
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