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Abstract
The message complexity of a distributed algorithm is the total number of messages sent by all nodes
over the course of the algorithm. This paper studies the message complexity of distributed algorithms
for fundamental graph optimization problems. We focus on four classical graph optimization problems:
Maximum Matching (MaxM), Minimum Vertex Cover (MVC), Minimum Dominating Set (MDS), and
Maximum Independent Set (MaxIS). In the sequential setting, these problems are representative of
a wide spectrum of hardness of approximation. While there has been some progress in understanding
the round complexity of distributed algorithms (for both exact and approximate versions) for these
problems, much less is known about their message complexity and its relation with the quality of
approximation. We almost fully quantify the message complexity of distributed graph optimization
by showing the following results:
1. Cubic regime: Our first main contribution is showing essentially cubic, i.e., Ω̃(n3) lower bounds1

(where n is the number of nodes in the graph) on the message complexity of distributed exact
computation of Minimum Vertex Cover (MVC), Minimum Dominating Set (MDS), and Maximum
Independent Set (MaxIS). Our lower bounds apply to any distributed algorithm that runs in
polynomial number of rounds (a mild and necessary restriction). Our result is significant since, to
the best of our knowledge, this are the first ω(m) (where m is the number of edges in the graph)
message lower bound known for distributed computation of such classical graph optimization
problems. Our bounds are essentially tight, as all these problems can be solved trivially using
O(n3) messages in polynomial rounds. All these bounds hold in the standard CONGEST model
of distributed computation in which messages are of O(log n) size.

2. Quadratic regime: In contrast, we show that if we allow approximate computation then Θ̃(n2)
messages are both necessary and sufficient. Specifically, we show that Ω̃(n2) messages are
required for constant-factor approximation algorithms for all four problems. For MaxM and
MVC, these bounds hold for any constant-factor approximation, whereas for MDS and MaxIS
they hold for any approximation factor better than some specific constants. These lower bounds
hold even in the LOCAL model (in which messages can be arbitrarily large) and they even apply
to algorithms that take arbitrarily many rounds. We show that our lower bounds are essentially
tight, by showing that if we allow approximation to within an arbitrarily small constant factor,
then all these problems can be solved using Õ(n2) messages even in the CONGEST model.

3. Linear regime: We complement the above lower bounds by showing distributed algorithms
with Õ(n) message complexity that run in polylogarithmic rounds and give constant-factor
approximations for all four problems on random graphs. These results imply that almost linear
(in n) message complexity is achievable on almost all (connected) graphs of every edge density.

1 Ω̃ and Õ hide a 1/ polylog n and polylog n factor respectively.
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1 Introduction

The focus of this paper is understanding the communication cost of distributively solving
graph optimization problems. The communication cost of distributed computation has been
studied extensively in theoretical computer science since the seminal work of Yao [81]. This
line of work studies the communication cost of computing boolean functions of the form
f(x, y), where the input x ∈ {0, 1}n is given to Alice and the input y ∈ {0, 1}n is given
to Bob, and these two players (nodes) jointly compute f(x, y) by communicating across a
communication link (edge). The communication complexity of f is measured by the minimum
number of bits exchanged by Alice and Bob to compute f . Boolean functions that have
been studied extensively include equality, set disjointness etc.; we refer to [60, 74] for a
comprehensive treatment. We note that the communication complexity of functions on
graphs, e.g., connectivity, bipartiteness, maximum matching, etc., has also been studied; see
[46, 50, 51, 29, 42] for some examples. In the context of a graph problem, each player gets a
portion of an input graph G. The graph may be edge-partitioned into two parts or may be
partitioned in some other arbitrary way.

Over the years many extensions and variants of this basic “two-party” communication
complexity model have been studied. One important early variant is by Tiwari [77] who
studied the same problem, but instead of the two players communicating via an edge, the
two players communicate via an arbitrary network. Another important variant is multi-party
communication complexity, introduced in the work of Chandra, Furst and Lipton [19], where
k players are provided inputs x1, . . . , xk ∈ {0, 1}n and these k players want to compute
some joint boolean function f : ({0, 1}n)k → {0, 1} with the goal of minimizing the total
communication between the k players. In the multi-party model, the k players are connected
by a communication network, which is typically a clique, but arbitrary topologies have also
been considered (see for e.g., [80, 22] and the references therein).

A related, yet different line of work has been the study of the message complexity in
distributed computing (see for e.g., [61, 67, 4, 2, 70, 31]). In this line of work, we are
given an input graph G, which also serves as the communication network. The nodes of
this network (which can be viewed as players) communicate along the edges of G to solve
problems defined on G. The message complexity is simply the total number of messages
sent by all nodes over the course of the algorithm. Usually, only messages of small size (say,
O(log n) bits) are allowed, hence in such cases, message complexity is essentially the total
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number of bits communicated (up to a small factor). A wide variety of graph problems
have been studied in this setting, including classical problems such as breadth-first search,
minimum spanning tree, minimum cut, maximal independent set, (∆ + 1)-coloring, shortest
paths, etc., and NP-complete problems such as minimum vertex cover, minimum dominating
set, etc. A key difference between this line of work and the previously described research on
two-party and multi-party communication complexity models is that here the input graph
G is also the communication network and so the structure of G simultaneously determines
both the difficulty of the problem and the difficulty of communication needed to solve the
problem. For example, it may be that a particular problem is easier to solve on a sparse
input graph G, but the sparsity of G also limits the volume of information that can be
exchanged along the edges of G. A second difference is that most prior work on two-party and
multi-party communication complexity by default assumes an asynchronous communication
model. Whereas in distributed computing, a synchronous model of computation, i.e., a model
with a global clock, is extensively used. While there has been a significant progress in our
understanding of communication complexity in the 2-party and multi-party settings, our
understanding of the message complexity of distributed computation of graph problems is
significantly limited. We refer to Section 1.3 for more details comparing and contrasting the
above lines of research.

The focus of this paper is gaining a deeper understanding of the message complexity of
distributed algorithms for fundamental graph optimization problems. Besides message com-
plexity, round complexity is also a key measure of the performance of distributed algorithms.
While a rich body of literature exists on the round complexity of distributed exact and
approximation algorithms for graph optimization problems [9, 59, 58, 17, 52, 24, 39, 68, 5, 18],
much less is known about the message complexity of these problems and the possibility of
tradeoffs between the message complexity and the quality of approximation that can be
achieved for these problems.

We focus on four classical graph optimization problems: Maximum Matching (MaxM),
Minimum Vertex Cover (MVC), Minimum Dominating Set (MDS), and Maximum Inde-
pendent Set (MaxIS). In the sequential setting, these problems are representative of a
wide spectrum of hardness of approximability. MaxM can be solved exactly in polynomial
time. MVC has a simple 2-approximation algorithm, but it does not have a better than
1.3606-approximation [25]. A simple greedy algorithm provides a O(log ∆)-approximation to
MDS [78], though it is known that MDS does not have a (1 − ϵ) · ln ∆-approximation (where
∆ is the maximum degree of the graph) for any 0 < ϵ < 1 [26]. Finally, MaxIS is known to
be even harder; it does not even have an O(n1−ϵ)-approximation for any 0 < ϵ < 1 [78]. All
of these hardness of approximation results are conditional on P ̸= NP.

In the standard models of distributed computing such as LOCAL and CONGEST, it is
assumed that processors have infinite computational power. This means that hardness of
approximation results in the sequential setting do not directly translate to the distributed
setting. Hardness of approximation in the distributed setting is, roughly speaking, due
to the distance information has to travel or the volume of information that has to travel
for nodes to produce a solution that is close enough to optimal. Researchers are starting
to better understand the distributed hardness of approximation from a round complexity
point of view, but intriguing gaps remain. For example, there is a (2 + ϵ)-approximation
algorithm for MVC (even vertex-weighted MVC) running in O(log ∆/(ϵ log log ∆)) rounds in
the CONGEST model [9]. The approximation factor was reduced to exactly 2 in [14], but at
the cost of polylogarithmic factor extra rounds. These upper bounds are complemented by an
Ω̃(n2) round lower bound for solving MVC exactly in the CONGEST model [18]. Currently,
the round complexity of obtaining an α-approximation for MVC, for 1 < α < 2, is unknown.

ITCS 2024
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Even this level of understanding is lacking about the message complexity of distributed
graph optimization. The key question addressed in this paper is this: how does the message
complexity of fundamental distributed graph optimization problems change as we move from
exact algorithms to approximation algorithms? We almost fully answer this question and
the key takeaway from our results is that there is a sharp separation between the message
complexity of exact and approximate solutions. Specifically, we show that Θ̃(n3) messages
are necessary and sufficient for the distributed exact computation of MVC, MDS, and MaxIS
for algorithms that runs in a polynomial number of rounds. In contrast, we show that if we
allow approximate computation, for a constant-approximation factor, then Θ̃(n2) messages
are both necessary and sufficient for algorithms that run in polynomial rounds for all four
problems, MaxM, MVC, MDS, and MaxIS. We note that focusing on algorithms that run in
polynomial rounds is hardly restrictive because any problem can be solved in polynomial
rounds in standard distributed computing models (e.g., CONGEST and LOCAL) by gathering
the entire input at a single node.

1.1 Distributed Computing Models
We primarily work in the synchronous version of a standard message-passing model of
distributed computing known as CONGEST [73]. In this model, the input is a graph
G = (V, E), n = |V |, m = |E|, which also serves as the communication network. Nodes in
the graph are processors with unique IDs from a space whose size is polynomial in n. In the
synchronous version of this model, it is assumed that all nodes have access to have a common
global clock, and both computation and communication proceed in lockstep, i.e., in discrete
time steps called rounds.2 In each round, each node (i) receives messages (if any) sent to it
in the previous round, (ii) performs local computation based on information it has, and (iii)
sends a message (possibly different) to each of its neighbors in the graph. Processors are
assumed to be arbitrarily powerful and can perform arbitrary (e.g., exponential-time) local
computations in a round. We allow only small, i.e., O(log n)-sized messages, to be sent per
edge per round. Since each ID can be represented with O(log n) bits, each message in the
CONGEST model is large enough to contain O(1) IDs. We note that some of our message
lower bounds also hold in the less restrictive LOCAL model, where messages sent per edge
per round can be of arbitrary size.

We primarily work in the standard KT0 (Knowledge Till radius 0 ) model, also called the
clean network model [73], in which nodes have initial local knowledge of only themselves and
do not know anything else about the network; specifically, nodes know nothing about their
neighbors (e.g., IDs of neighbors). As we explain in the full paper [28], some of our lower
bounds even extend to the KT1 model, in which each node has initial knowledge of itself
and the IDs of its neighbors. The point is significant because knowledge of neighbors’ IDs
can be used in surprising ways to reduce the message complexity of algorithms (see for e.g.,
the Minimum Spanning Tree (MST) algorithm of King, Kutten, and Thorup [53]). Unless
explicitly specified otherwise, all the results we present are in the KT0 CONGEST model.

1.2 Our Contributions
Our main results, which are summarized in Table 1, can be organized into 3 categories.
Column 2 shows essentially tight almost cubic (i.e., Ω̃(n3)) lower bounds in the CONGEST
model on the message complexity of computing exact solutions for MVC, MDS, and MaxIS

2 We note that all our lower bounds also hold in the more general asynchronous model where there is no
such assumption of a common clock. See Section 2.
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in polynomial number of rounds.3 This is significant since, to the best of our knowledge,
these are the first ω(m) message lower bounds (where m is the number of edges in the
graph) known for distributed computation of graph problems in the CONGEST model. Tight
message lower bounds are known for a wide variety of problems in the KT0 CONGEST model
including important global problems such as broadcast, leader election (LE), and minimum
spanning tree (MST) [61] as well as for local symmetry breaking problems such as maximal
independent set (MIS), ruling sets, and (∆ + 1)-coloring [66, 67]. But all of these lower
bounds are either of the form Ω(m) or Ω(n2).

Column 3 shows quadratic lower bounds on the message complexity of constant-factor ap-
proximations for MaxM, MVC, MDS, and MaxIS. These bounds hold not just for polynomial-
round algorithms, but even for algorithms that use arbitrarily many rounds. Furthermore,
they hold not just in the CONGEST model, but also in the LOCAL model, in which message
sizes can be arbitrarily large. These quadratic lower bounds are tight because we are also
able to show Õ(n2) message upper bounds for constant-approximation algorithms for all four
problems, for arbitrarily small constant. To the best of our knowledge, of the four problems
we consider, only MDS has been previously studied from a message complexity perspective.
In [43, 45], the authors show an (expected) O(log ∆)-approximation algorithm to MDS in
the KT0 CONGEST model that uses O(n1.5) messages, running in polylogarithmic rounds.
This upper bound result shows that non-trivial approximation for MDS can be achieved
in the KT0 CONGEST model without communicating over most edges. The authors also
show a Ω̃(n1.5) message lower bound for algorithms that yield an O(1)-approximation for
MDS. Our work significantly improves on this lower bound result by showing that Ω(n2) is a
lower bound for 5/4 − ϵ approximation of MDS. This indicates that message complexity can
be quite sensitive to the quality of approximation for some problems and hence the Ω(n2)
message lower bounds shown in this paper for approximation algorithms cannot be taken for
granted.

Finally, we note that we are able to extend these lower bounds (both cubic and quadratic),
which are in the KT0 model, to the KT1 model also. We present these results in the full
paper [28].

We complement our lower bounds by presenting almost-quadratic, i.e., Õ(n2), message
upper bounds for computing (1 ± ϵ)-approximations to all four problems (Column 4) and
essentially linear, i.e., Õ(n), message complexity algorithms (Column 5) on G(n, p) (Erdös-
Rényi) random graphs[16] for all four problems that give constant-factor approximations
with high probability. We now describe the techniques used to obtain our results in more
detail.

A. Tight Cubic Lower Bounds for Exact Computation

The starting point for our cubic message lower bounds is the communication-complexity-based
approach in [5, 18] that is used to show Ω̃(n2) round lower bounds for exact MVC and MDS.
In [18], the authors present a reduction from the 2-party communication complexity problem
SetDisjointness to MVC. For any positive integer n that is a power of 2 and bit-vectors
x, y ∈ {0, 1}n2 , this reduction maps an instance (x, y) of SetDisjointness to a graph Gx,y

with Θ(n) vertices and Θ(n2) edges such that SetDisjointness(x, y) = FALSE iff Gx,y

has a vertex cover of size at most 4n + 4 log n − 4. Furthermore, Gx,y has the property
that its vertex set can be partitioned into sets Vx and Vy where the subgraph Gx,y[Vx] is

3 It is open whether the message complexity of exactly computing MaxM is Ω̃(n3). See Section 5.

ITCS 2024



41:6 The Message Complexity of Distributed Graph Optimization

Table 1 A summary of our message complexity lower and upper bound results. All of these
results hold in the synchronous KT0 CONGEST model, with all the message complexity lower bounds
applying to all algorithms that run in polynomial rounds. Additionally, the quadratic lower bounds
for approximation algorithms (Column 3) even apply in the KT0 LOCAL model and also to algorithms
that take arbitrarily many rounds. The cubic lower bounds for exact algorithms (Column 2) are
tight because any problem can be trivially solved in the KT0 CONGEST model in polynomial rounds
using O(n3) messages by gathering the entire graph topology at a node. Moreover, this gathering
algorithm implies that, in random graphs, all problems can be solved trivially in Õ(n2) messages
with high probability since such graphs have O(log n) diameter with high probability. While our
focus is not on round complexity, we note that our approximation algorithms for arbitrary graphs
take polynomial number of rounds, while those for random graphs take polylogarithmic number of
rounds. For the lower bound for approximate MaxM (Columnn 3), ϵ ∈ ( 1

n1/3 , 1); everywhere else
the only restriction on ϵ is 0 < ϵ < 1. The lower bound for approximate MVC holds for any c ≥ 1.

Problem Lower Bounds Lower Bounds Upper Bounds Upper Bounds

Exact Approximate Approximate in Random Graphs

MaxM Open Ω(ϵ3n2) for ϵ-apx Õ(n2/ϵ) for (1 − ϵ)-apx Õ(n) for exact

MVC Ω̃(n3) Ω(n2/c) for c-apx Õ(n2/ϵ) for (1 + ϵ)-apx Õ(n) for (2 − o(1))-apx

MDS Ω̃(n3) Ω(n2) for ( 5
4 − ϵ)-apx Õ(n2/ϵ) for (1 + ϵ)-apx Õ(n) for (1 + o(1))-apx

MaxIS Ω̃(n3) Ω(n2) for
(

1
2 + ϵ

)
-apx Õ(n2/ϵ) for (1 − ϵ)-apx Õ(n) for ( 1

2 − o(1))-apx

determined completely by x (and independently of y), the subgraph Gx,y[Vy] is completely
determined by y (and independently of x), and the cut (Vx, Vy) is small, i.e., has O(log n)
edges. It is then shown that if there is an algorithm A for solving MVC (exactly) in the KT0
CONGEST model, then Alice and Bob can solve SetDisjointness on x, y by simulating A.
Specifically, Alice and Bob start by respectively constructing Gx,y[Vx] and Gx,y[Vy] using
their private inputs. They then simulate A round-by-round, communicating with each other
only when algorithm A sends a message from a node in Vx to Vy (or vice versa). Since the
(Vx, Vy) cut has size O(log n), this means that if A runs in T rounds, Alice and Bob can
solve MVC on Gx,y by communicating O(T · log2 n) bits. Finally, the linear (in length of
x and y) lower bound on the communication complexity of SetDisjointness [75] (even
for randomized, Monte Carlo algorithms) implies an Ω̃(n2) round lower bound on T . The
approach for showing an Ω̃(n2) round lower bound for MDS [5] is quite similar, the only
difference being the construction of the lower bound graph Gx,y.

We extend the above approach to obtain an Ω̃(n3) message lower bound using a key new
idea. Our idea is to “stretch” the (Vx, Vy) cut by adding vertex subsets V2, V3, . . . , Vℓ−1 to
the graph Gx,y. Renaming Vx as V1 and Vy as Vℓ, we then replace the edges in the original
cut (Vx, Vy) by edges between (Vi, Vi+1) for 1 ≤ i ≤ ℓ − 1. The size of each cut (Vi, Vi+1) is
still small, i.e., O(polylog(n)) edges. The first challenge we overcome is showing that the
correctness of the mapping from SetDisjointness instances (x, y) to MVC instances Gx,y

is preserved. We now explain the motivation for “stretching” the cut. Suppose there is an
algorithm A that solves MVC on Gx,y, while sending only o(n2/ polylog(n)) messages across
a constant-fraction of the ℓ − 1 cuts (Vi, Vi+1). Then Alice and Bob can simulate A with low
communication complexity. Specifically, Alice and Bob can coordinate to (randomly) pick
one of the low-message cuts (Vi, Vi+1). Alice starts by constructing the subgraph of Gx,y

induced by V1 ∪ V2 ∪ . . . ∪ Vi and similarly Bob constructs the subgraph of Gx,y induced by
Vi+1 ∪ Vi+2 ∪ . . . ∪ Vℓ. Alice and Bob can then simulate A round-by-round, communicating
with each other only when A needs to send a message from Vi to Vi+1 (or vice versa). Since
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o(n2/ polylog(n)) messages are sent across the (Vi, Vi+1) cut, this means that Alice and Bob
only communicate o(n2) bits. Because of the mapping from SetDisjointness instances
to MVC instances, Alice and Bob can use the solution to MVC obtained by simulating A,
to solve SetDisjointness in o(n2) bits, something that is not possible. This implies that
algorithm A necessarily sends Ω̃(n2) messages across a constant-fraction of the ℓ − 1 cuts
(Vi, Vi+1). By setting ℓ = Θ̃(n), we obtain an Ω̃(n3) message lower bound for A.

The above high-level description glosses over several technical challenges. One of these
is the fact that the 2-party communication complexity is asynchronous, i.e., Alice and Bob
have no common notion of time, whereas we are interested in proving lower bounds for the
synchronous KT0 CONGEST model. However, in such a synchronous model of distributed
computing, the time-encoding trick can be used to reduce messages. For example, a node
can stay silent for many clock ticks and then send a single bit at clock tick t to a neighbor,
thereby using just 1 bit of actual information to implicitly convey log t bits of information.
To overcome this challenge, we first use the above argument in a synchronous version of the
2-party communication model, showing that Alice and Bob can simulate algorithm A using
a small number of bits in the synchronous 2-party communication model. We then appeal
to a result from [69] which shows that in 2-party communication models, synchrony can be
used to compress messages, but only by a log(r)-factor for r-round algorithms. Applying
this result allows us to translate the communication complexity in the synchronous 2-party
communication model to communication complexity in the standard 2-party communication
model with a logarithmic-factor loss, if we restrict ourselves to algorithms that run in
polynomial rounds.

We end this subsection by summarizing the scope of these cubic lower bounds. First,
they only hold in the CONGEST model, and not in the LOCAL model, because the lower
bound technique described above relies on edges having low bandwidth. In fact, it is easy to
see that any problem can be solved using O(n2) messages in the LOCAL model because a
single node can gather the entire graph topology, and broadcast it to all nodes, using O(n2)
messages. Second, our use of communication complexity techniques to obtain lower bounds
in the synchronous setting implies that our cubic lower bounds only hold for algorithms that
run in polynomial rounds. Third, while the above argument has been sketched in the KT0
CONGEST model, it can be generalized to work in the KT1 CONGEST model as well. We
present this generalized argument in the full paper [28].

B. Tight Quadratic Lower Bounds for Approximate Computation

Recall that we show quadratic message lower bounds for approximation algorithms not just
in the KT0 CONGEST model, but even in the KT0 LOCAL model, and our bounds hold not
just for polynomial-round algorithms, but unconditionally, i.e., even for algorithms that use
arbitrarily many rounds. Unfortunately, communication-complexity-based approaches cannot
be used for these types of powerful lower bounds. Communication complexity reductions
typically show a lower bound of, say Ω(b) bits, on the volume of information that travels
across a cut in the graph in any algorithm for the problem. However, in the KT0 LOCAL
model, this does not translate to a message complexity lower bound because there is no
upper bound on the bandwidth of an edge and in fact b or more bits can travel across an
edge in a single message in the KT0 LOCAL model. Furthermore, as mentioned previously,
since information can be encoded in clock ticks, communication-complexity-based lower
bounds degrade with the number of rounds. So any message complexity lower bound
obtained in the synchronous KT0 CONGEST or LOCAL model necessarily only applies to
algorithms that are round-restricted. For these reasons we use approaches different from
communication-complexity-based techniques.

ITCS 2024



41:8 The Message Complexity of Distributed Graph Optimization

Our first technique, which we apply to the MaxM problem, involves showing that finding
a large “planted matching” in the network is impossible without Ω(n) of the nodes identifying
incident “planted matching” edges. Further, we show using a symmetry argument that
identifying a specific edge incident on a node requires messages to pass over many incident
edges. In general, we show in Theorem 8 that there is an inherent dependency between
the number of discovered “planted matching” edges and the message complexity of any
algorithm for approximating a maximum matching. We believe that this technique could
be of independent interest because it can be used to show the difficulty of identifying other
“planted subgraphs” in the KT0 model using few messages. This in turn can lead to message
complexity lower bounds in the KT0 LOCAL model for other problems.

For the other problems, namely MDS, MVC, and MaxIS, we use the so-called edge-
crossing technique, that has been used to prove a variety of distributed computing lower
bounds (see [56, 4, 61, 1, 72] for some examples). For MVC and MaxIS, our constructions
build upon the lower bound graphs used in [67] for proving message complexity lower
bounds for MIS and (∆ + 1)-coloring. Our use of this technique for MDS, which heavily
borrows from communication-complexity-based lower bound constructions, seems novel.
Below we sketch the 2-step approach we use to obtain the Ω(n2) message lower bound for a
( 5

4 − ϵ)-approximation for MDS in the KT0 LOCAL model.
(i) In [5] the authors present a reduction from the 2-party communication complexity

problem SetDisjointness to MDS and use this to show an Ω̃(n2) round lower bound
on computing an exact MDS in the CONGEST model. For their round lower bound
argument, they construct a family of lower bound graphs that have a small cut – of
size O(polylog(n)) – across which Ω(n2) bits have to flow. This small cut is needed
to translate the lower bound on the number of bits to a round complexity lower
bound. But, to show message complexity lower bounds, we do not need a small
cut and this provides much greater flexibility in the construction of the lower bound
graph family. For positive integer n, x, y ∈ {0, 1}n2 , the construction in [5] maps
the instance (x, y) of SetDisjointness to a graph Gx,y with n vertices and Θ(n2)
edges. We take advantage of the flexibility mentioned above and extend the lower
bound construction in [5] to create a relatively large gap in the size of the MDS in
graphs Gx,y for which SetDisjointness(x, y) = FALSE versus graphs Gx,y for which
SetDisjointness(x, y) = TRUE4. However, at this stage this is still a communication-
complexity-based reduction, and as observed earlier we cannot obtain unconditional
KT0 message complexity lower bounds via this construction.

(ii) Our goal now is to circumvent the need for a communication-complexity-based reduction,
while still using this lower bound graph construction. To achieve this goal, we pick a
graph G = Gx,y, x, y ∈ {0, 1}n2 for which SetDisjointness(x, y) = TRUE. We then
show that for many pairs of edges (e, e′) in G, the graph G(e, e′) obtained by “crossing”
the edges e and e′ satisfies the property that G(e, e′) = Gx′,y′ for x′, y′ ∈ {0, 1}n2

where SetDisjointness(x′, y′) = FALSE. The gap in the MDS sizes mentioned earlier
implies that the MDS sizes in G and G(e, e′) are relatively different. Finally, we rely on
the well-known feature of “edge-crossing” arguments, which is that an algorithm that
does not send messages on e and e′ cannot distinguish between G and G(e, e′). This
leads to the result (see Theorems 13 and 14) that Ω̃(n2) messages are needed to obtain
an (5/4 − ϵ)-approximation for MDS, for any ϵ > 0, in KT0 LOCAL model.

4 This relatively large gap is created by forcing small minimum dominating sets in both cases; 4 when
SetDisjointness(x, y) = FALSE and 5 when SetDisjointness(x, y) = FALSE.
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We end this subsection by briefly mentioning our technique for obtaining Õ(n2) message
upper bounds for (1 ± ϵ)-approximations for all 4 problems in the KT0 CONGEST model. A
“ball growing” approach has been widely used in distributed computing for problems such as
network decomposition in [62, 3, 65]. Combining this approach with local exponential-time
computations, Ghaffari, Kuhn, and Maus [40] devised (1 ± ϵ)-approximations algorithms
for covering and packing integer linear programs in the KT0 LOCAL model, running in
polylogarithmic rounds. Since all 4 problems we consider are instances of covering and
packing integer linear programs, the results in [40] apply to these problems. Our contribution
is to show that this KT0 LOCAL algorithm can also be implemented in the KT0 CONGEST
model (i.e., using small messages) using only Õ(n2) messages, while running in polynomial
time.

C. Tight Linear Bounds for Random Graphs

The Ω(n2) message lower bounds that we show hold on some specifically constructed graph
families. We complement our lower bounds by presenting essentially linear, i.e., Õ(n), message
complexity algorithms on G(n, p) (Erdös-Rényi) random graphs[16] for all four problems
that work (even) in the KT0 CONGEST model and give constant-factor approximations with
high probability. Our message bounds are essentially tight, since it is easy to see that Ω(n)
is a message lower bound for all these problems. Furthermore, all our algorithms are fast,
the algorithms for MVC, MDS, and MaxIS run in O(log2 n) rounds, whereas the MaxM
algorithm runs in O(1) rounds. These results apply for all G(n, p) random graphs above the
connectivity threshold, i.e., p = Θ(log n/n) (see Section 4). These results imply that almost
all graphs5 of every edge density (above Θ(log n)) admit very message-efficient (essentially
linear) algorithms for exact (for MaxM) or constant-factor approximation (for MaxIS, MDS,
and MVC). In other words, this means for the vast majority of graphs one needs to use a
small fraction of the edges to solve these problems. In the full version [28], we also show that
in general graphs, MaxM can be solved in O(n) messages and O(1) rounds in KT0 CONGEST
giving an expected O((∆/δ)2)-factor approximation, where ∆ and δ are respectively the
maximum and minimum degrees of the graph.

Our main technical contribution is to show that the randomized greedy MIS algorithm
can be implemented in random graphs using Õ(n) messages and in O(log2 n) rounds (where
the first bound holds with high probability). This implies constant-factor distributed
approximation for MaxIS, MVC, and MDS within the same bounds. We note that while
random graphs (above the connectivity threshold) have low diameter (i.e., O(log n)), our
Õ(n) upper bounds are not exclusively due to this property. To compare, we point out that
all of the lower bound graphs we construct for quadratic lower bounds for approximation
algorithms have constant diameter.

For lack of space, many details and full proofs are deferred to the full paper [28].

5 Since we show high probability bounds on G(n, p) for every p above the connectivity threshold, one can
interpret bounds on random graphs in a deterministic manner as applying to all graphs (of every edge
density), except for a vanishingly small fraction. For example, G(n, 1/2) is a uniform distribution on all
graphs of size n and our bounds show that almost all graphs admit Õ(n) message algorithms for the
four problems.
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1.3 Related Work
Significant progress has been made in understanding and improving the round complexity
of fundamental “local” problems such as MIS, maximal matching, (∆ + 1)-coloring, and
ruling sets (see e.g., [10, 11, 13, 12, 20, 40, 37, 76, 38, 47, 15, 57, 66, 67]) in both the
LOCAL and CONGEST models. This research on “local” problems has nice connections
to distributed approximation for graph optimization problems and more recently this has
become a highly active area of research. This line of research includes round complexity upper
bounds for constant-factor and (1 − ϵ)-factor approximation for MaxM [13, 8, 33, 34, 59, 64],
constant-factor approximations for MVC [9, 59] and logarithmic-approximations for MDS
[17, 52, 24, 39, 59, 68]. It also includes round complexity lower bounds for solving MVC,
MDS, and MaxIS, approximately [59, 58, 30] as well as exactly [5, 18].

We compare and contrast only those results in communication complexity that are
relevant to our work. The classical 2-party communication complexity where two parties
communicate via an (asynchronous) link has been studied extensively for computing various
boolean functions, including equality, set disjointness etc. See the books of [74, 60] for a
detailed treatment. The work of Tiwari [77] studies the 2-party communication complexity
where the two players are connected by an arbitrary network. The network is assumed to
be asynchronous. Tiwari shows that the lower bound on the communication complexity
of deterministic protocols in a n-node network can be Ω̃(n) times the standard 2-party
communication complexity (where the two players are connected by a direct link). The
high-level idea of Tiwari’s lower bound is relating the communication complexity in a network
to that of a single-link setting by arguing that the two players have to communicate across
several vertex-disjoint cuts. The “stretching technique” we use to obtain cubic lower bounds
uses similar ideas, but we make this work even for randomized algorithms, and furthermore,
we also circumvent the time-encoding trick mentioned earlier, so that our bounds also hold
for synchronous algorithms.

Another work that is relevant to ours is that of Chattopadhyay, Radhakrishnan, and
Rudra [22] who study multi-party communication complexity where the k players are
connected by an arbitrary network (see also related follow-up works [21, 23]). This work
builds on the earlier work of Woodruff and Zhang [80] who study the same problems, but
under the assumption that the network is a clique. In these works, in the context of graph
problems, the input graph – which is different from the communication network (which also
has k nodes) – is edge-partitioned among the k players and the goal is to compute some
property of the input graph, e.g., whether it is connected or bipartite etc. Chattopadhyay
et al. show that the lower bounds on the multi-party communication complexity of such
problems on an arbitrary network connecting the k players is at least Ω(k) times the same
complexity when the players are connected by a clique. They also exploit communication
over several disjoint cuts to show their stronger lower bounds. While their results hold
also for randomized protocols (unlike the results of Tiwari [77]), their results do not apply
to the synchronous setting. It is easy to show that in this setting, one can solve all their
problems in O(m) messages, where m is the number of edges of the communication network.
It is important to stress that the above results hold only when the input graph is edge
partitioned. Providing the input graph using a vertex partition is closer to the distributed
computing setting where one can associate vertices of the input graph (and their incident
edges) to players. Indeed this is the assumption used in distributed computing models such
as the congested clique [48, 49, 63, 27] and k-machine models [6, 55, 71, 7]. Generally, lower
bounds in the vertex partition setting are harder to show and in fact, Drucker, Kuhn, and
Oshman [27] prove that showing non-trivial lower bounds in the congested clique model will
imply breakthrough circuit complexity lower bounds.
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2 Tight Cubic Bounds for Exact Computations

In this section we present near cubic, i.e. Ω̃(n3) lower bounds on the message complexity of
KT0 CONGEST algorithms that compute exact solutions to MVC and MaxIS in Section 2.1.
Due to space restrictions we defer the cubic lower bound for computing an exact solution to
MDS to the full version [28].

We first present a generic framework for proving message complexity lower bounds in
KT0 CONGEST model by reduction from 2-party communication complexity lower bounds.
We begin by defining a lower bound graph family which we call an ℓ-separated family of
lower bound graphs. Definition 1 is a generalization of the lower bound graph family defined
in [18] which is used in to obtain round complexity lower bounds in the CONGEST model.
In particular, the family defined in [18] is a 2-separated family of lower bound graphs (i.e.
they only consider ℓ = 2).

▶ Definition 1 (ℓ-Separated Family of Lower Bound Graphs). Let f : X×Y → {TRUE, FALSE}
be a function and P be a graph predicate. For an integer ℓ > 1, a family of graphs {Gx,y =
(V, Ex,y) | x ∈ X, y ∈ Y } is said to be an ℓ-separated family of lower bound graphs w.r.t. f

and P if V can be partitioned into ℓ disjoint and non-empty subsets V1, V2, . . . , Vℓ−1, Vℓ such
that the following properties hold:
1. Only the existence or the weight of edges in V1 × V1 depend on x;
2. Only the existence or the weight of edges in Vℓ × Vℓ depend on y;
3. For all 1 ≤ i ≤ ℓ, the vertices in Vi are only connected to vertices in Vi−1 ∪ Vi ∪ Vi+1

(where V0 = Vℓ+1 = ∅).
4. Gx,y satisfies the predicate P iff f(x, y) = TRUE.

We will now show a theorem (see Theorem 3) which says that the existence of an n-vertex
ℓ-separated family of lower bound graphs w.r.t. f and P implies a lower bound of roughly
ℓ · CC(f) on the message complexity of a KT0 CONGEST algorithm for deciding P , where
CC(f) is the 2-party communication complexity of the function f . We are ignoring many
technical details in the previous statement for the sake of intuition, and we will spend the
rest of the section adding these details. Note that CC(f) is trivially bounded by O(n2) since
f(x, y) can be decided by evaluating P on the n-vertex graph Gx,y, which can be represented
using n2 bits. Therefore, the extra ℓ factor crucially allows us to prove ω(n2) lower bounds
on message complexity.

We will prove Theorem 3 by efficiently simulating a CONGEST algorithm in the 2-party
communication complexity model. In the standard 2-party model, there are two entities,
usually called Alice and Bob. Alice has an input x ∈ X, unknown to Bob, and Bob has an
input y ∈ Y , unknown to Alice. They wish to collaboratively compute a function f(x, y)
by following an agreed-upon protocol Π, which can be possibly randomized with error
probability ε. The communication complexity of this protocol CC(Π) is the number of bits
communicated by the two parties for the worst-case choice of inputs x ∈ X and y ∈ Y .
The deterministic communication complexity of the function f , denoted as CCdet(f) is the
minimum communication complexity of the deterministic protocol Π that correctly computes
f . And the randomized ε-error communication complexity of the function f , denoted as
CCrand

ε (f) is the minimum communication complexity of the randomized protocol Π that
correctly computes f with error probability at most ε. It is important to notice that this
simple model is inherently asynchronous, since it does not provide the two parties with a
common clock.

Since the CONGEST model is synchronous, it is helpful to first simulate the CONGEST
algorithm in the synchronous 2-party model, where the two parties also have a common clock.
The time interval between two consecutive clock ticks is called a round. The computation

ITCS 2024



41:12 The Message Complexity of Distributed Graph Optimization

proceeds in rounds: at the beginning of each synchronous round, (1) both parties send
(possibly different) messages to each other, (2) both parties then receive the messages sent to
it in the same round, and (3) both parties perform local computation, which will determine
the messages it will send in the next round. The synchronous communication complexity
SCC(Π) of an r-round protocol Π is the total number of bits sent by the two parties to
compute f(x, y) for the worst-case choice of inputs x ∈ X and y ∈ Y . Note that if Alice
(or Bob) decides to not send a message in a particular round, it does not contribute to
the communication complexity, but Bob (or Alice) still receives some information, i.e., the
fact that Alice (or Bob) chose to remain silent in this round. The deterministic r-round
synchronous communication complexity of the function f , denoted as SCCdet

r (f) is the
minimum communication complexity of an r-round deterministic protocol Π that correctly
computes f . And the randomized ε-error r-round synchronous communication complexity of
the function f , denoted as SCCrand

r,ε (f) is the minimum communication complexity of the
r-round randomized protocol Π that correctly computes f with error probability at most ε.

We use a known relation between CCdet(f) and SCCdet
r (f), and between CCrand

ε (f) and
SCCrand

r,ε (f). To do so, we use the Synchronous Simulation Theorem (SST) from [69] to
convert the synchronous 2-party protocol into an asynchronous 2-party protocol. Note that
although [69] considers more than two parties, it also applies to the 2-party communication
complexity setting. The below Lemma 2 is a simplified restatement of SST (Theorem
2 in [69]), obtained by setting the number of parties to 2 in both the synchronous and
asynchronous models.

▶ Lemma 2 (Theorem 2 in [69]). Let f : X×Y → {TRUE, FALSE} be a function that requires
CCrand

ε (f) bits for ε-error randomized protocols in the asynchronous 2-party communication
complexity model, and SCCrand

ε,r (f) bits for ε-error randomized, r-round protocols in the
synchronous 2-party communication complexity model. The following relation holds (also for
the deterministic setting),

SCCrand
ε,r (f) = Ω

(
CCrand

ε (f)
1 + log r

)
.

We are now ready to state and prove Theorem 3. We use the existence of an ℓ-separated
family of lower bound graphs w.r.t. f and P to show that a KT0 CONGEST algorithm
that uses r rounds and M messages implies a synchronous randomized 2-party protocol
that uses O(r) rounds and roughly O(M/ℓ) messages. In other words, the existence of the
family implies that SCCrand

ε,r (f) = O(M/ℓ). Therefore any lower bound on the synchronous
communication complexity gives a lower bound on M that is a factor ℓ larger. The synchronous
2-party protocol is pretty straightforward: Alice and Bob agree on a cut (VA, VB) where
VA = V1, . . . , Vi and VB = Vi+1, . . . , Vℓ, where i is chosen uniformly at random in {1, . . . , ℓ−1},
and they simulate the CONGEST algorithm, one round at a time, by exchanging the messages
sent across this cut. Then we use Lemma 2 to turn this into an asynchronous randomized
2-party protocol.

▶ Theorem 3. Fix a function f : X × Y → {TRUE, FALSE}, a predicate P , a constant
0 < δ < 1, and a positive integer ℓ > 1. Suppose there exists an ℓ-separated family of
lower bound graphs {Gx,y = (V, Ex,y) | x ∈ X, y ∈ Y } w.r.t. f and P . Then any r-round
deterministic (or randomized with error probability at most constant 0 < ε < 1) algorithm
for deciding P in the KT0 CONGEST model has message complexity

M = Ω
(

(ℓ − 1)
log |V |

·
CCrand

δ+ε (f)
(1 + log r) − ℓ log ℓ

log |V |

)
.
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b12 b22 bj2 bk2. . . . . .
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. . .
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. . .
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. . .
Clog k+2
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. . .
C2 log k

Clog k+1

f1
1 t21 f ℓ−1

1 tℓ1

t11 f2
1 tℓ−1

1 f ℓ
1

Figure 1 Illustration of one graph Gx,y from the ℓ-separated lower bound graph family we defined
to show a cubic message lower bound for exact MVC. Many edges are omitted for the sake of clarity.
The gray boxes from left to right denote the sets V1, V2, . . . , Vℓ defined in proof of Theorem 5.

2.1 Cubic Lower Bounds for Exact MVC and MaxIS
We define an ℓ-separated lower bound graph family {Gx,y | x ∈ {0, 1}k2

, y ∈ {0, 1}k2} w.r.t.
f = SetDisjointness and predicate P which can be decided by computing the MVC
(we will describe P more formally later). The SetDisjointness function is defined as:
SetDisjointness(x, y) = FALSE iff there exists an index i such that xi = yi = 1. We
will assume k is a power of 2 so that log k is an integer. Note that this construction is a
generalization of the MVC construction in [18]. More precisely, their construction can be
directly obtained from ours by setting ℓ = 2.

For positive integer k, fix x, y ∈ {0, 1}k2 . We define the graph Gx,y as follows. The vertex
set of Gx,y is

A1 ∪ A2 ∪ B1 ∪ B2 ∪ C1 ∪ C2 ∪ · · · ∪ C2 log k

where A1 = {ai
1 | 1 ≤ i ≤ k}, A2 = {ai

2 | 1 ≤ i ≤ k}, B1 = {bi
1 | 1 ≤ i ≤ k} and

B2 = {bi
2 | 1 ≤ i ≤ k} are called the “row vertices”. And Ci = {tj

i , f j
i | 1 ≤ j ≤ ℓ} for all

1 ≤ i ≤ 2 log k are called the “bit gadget vertices”. Therefore, Gx,y has 4k + 4ℓ log k vertices.
We now describe the edges of Gx,y. The vertices in the sets A1 form a clique, and so do

the vertices in the sets A2, B1, B2. Assuming ℓ is even, the vertices in the set Ci form a cycle
with the following order:

f1
i , t2

i , f3
i , t4

i , f5
i , . . . , tℓ−2

i , f ℓ−1
i , tℓ

i , f ℓ
i , tℓ−1

i , f ℓ−2
i , . . . , t5

i , f4
i , t3

i , f2
i , t1

i , f1
i
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This cycle is also illustrated for the set C1 in Figure 1. Each vertex ai
1 ∈ A1 is connected to

bit gadgets C1, . . . , Clog k according to the binary representation of the index i. In particular,
ai

1 is connected to t1
h if bit position h of index i is 1 and to f1

h if bit position h of index i

is 0. Similarly, each vertex bi
1 ∈ B1 is connected to tℓ

h if the bit position h of index i is 1
and to f ℓ

h if the bit position h of index i is 0. The vertices in A2 and B2 are connected to
Clog k+1, . . . , C2 log k in a symmetric manner. To be explicit, each vertex aj

2 ∈ A2 is connected
to t1

h+log k if bit position h of index j is 1 and to f1
h+log k if bit position h of index j is 0.

Similarly, each vertex bj
2 ∈ B2 is connected to tℓ

h+log k if bit position h of index j is 1 and to
f ℓ

h+log k if bit position h of index j is 0.
This completes the “fixed” edges in the graph, i.e., the edges that do not depend on bit

vectors x and y. The edges between A1 and A2 depend on x as follows: {ai
1, aj

2} is an edge
iff xij = 0. The edges between B1 and B2 depend on y as follows: {bi

1, bj
2} is an edge iff

yij = 0. The construction is illustrated in Figure 1.

▶ Lemma 4. For x, y ∈ {0, 1}k2 , if SetDisjointness(x, y) = TRUE then the MVC of Gx,y

has size at least 4k + 2ℓ log k − 3, and if SetDisjointness(x, y) = FALSE then the MVC of
Gx,y has size exactly 4k + 2ℓ log k − 4.

▶ Theorem 5. For any 0 < ε < 1/6, any ε-error randomized Monte-Carlo r-round KT0
CONGEST algorithm that computes an MVC or MaxIS on an n-vertex communication graph
has message complexity Ω̃(n3/(1 + log r)).

3 Tight Quadratic Bounds for Approximate Computations

We start this section by proving Õ(n2) message complexity upper bounds for (1 ± ϵ)-
approximations for all four problems, MaxM, MVC, MDS, and MaxIS. These results serve
as a contrast to the cubic lower bounds for exact computation, shown in the previous section.
We then show that these upper bounds are tight, by showing that Ω̃(n2) messages are
required for constant-factor approximation algorithms for all four problems. For MaxM
and MVC, these bounds hold for any constant-factor approximation, whereas for MDS and
MaxIS they hold for any approximation factor better than 5/4 and 1/2 respectively. These
lower bounds hold even in the LOCAL model (in which messages can be arbitrarily large) and
they apply not just to polynomial-round algorithms, but to algorithms that take arbitrarily
many rounds.

3.1 Quadratic Upper Bounds for Approximate Computations
Notation. For any graph G, let α(G) denote the size of the largest independent set in G.
For any node v in G and integer r ≥ 0, let Br(v) denote the set of all nodes in G at distance
at most r from v.

Consider the following sequential algorithm, called the “ball growing” algorithm in [40]
that gives a 1/(1 + ϵ)-approximate solution for MaxIS, for any constant ϵ > 0. Let I denote
the solution constructed by the algorithm; initialize I to ∅. Pick an arbitrary vertex v1
and find a smallest radius r1 such that α(G[Br1+1(v1)]) ≤ (1 + ϵ) · α(G[Br1(v1)]). Add a
maximum-sized independent set of G[Br1(v1)] to I and delete G[Br1+1(v1)] from the graph.
This completes the first iteration of the algorithm. For the second iteration, find an arbitrary
vertex v2 in the graph that remains and repeat an iteration of “ball growing” until a radius
r2 is found. Continue these iterations until the graph becomes empty. Note that each
radius ri = O(log n/ log(1 + ϵ)) and the constructed solution I is an independent set of G.
Furthermore, a simple argument (see [40]) shows that |I| ≥ 1/(1 + ϵ) · α(G). Note that the
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local computations in this algorithm do not run in polynomial-time algorithm because each
vi needs to compute the exact maximum-sized independent set in Br(vi) for different values
of r.

▶ Lemma 6. There is a deterministic 1/(1 + ϵ)-approximation algorithm for MaxIS in the
KT0 CONGEST model that uses Õ(n2/ϵ) messages and runs in O(poly(m + n)) rounds.

While this result is described for MaxIS, the authors of [40] also show that this “ball
growing” algorithm is able to produce a (1 + ϵ)-approximation for MDS. Furthermore, [40]
claims that this approach produces a (1 + ϵ) or a 1/(1 + ϵ)-approximation for any problem
that can be expressed as certain type of packing or covering integer linear program. In
addition to MaxIS and MDS, this framework also includes MaxM and MVC. So we get the
following theorem.6

▶ Theorem 7. There is a deterministic (1 − ϵ)-approximation algorithm for MaxIS and
MaxM in the KT0 CONGEST model that uses Õ(n2/ϵ) messages and runs in O(poly(m + n))
rounds. Similarly, there is a a deterministic (1 + ϵ)-approximation algorithm for MDS and
MVC in the KT0 CONGEST model that uses Õ(n2/ϵ) messages and runs in O(poly(m + n))
rounds.

3.2 Unconditional Quadratic Lower Bound for MaxM Approximation

Next, we show that Ω̃(n2) messages are required for computing a constant-factor approxima-
tion for MaxM.

▶ Theorem 8. Consider any randomized algorithm for the MaxM problem in the KT0 LOCAL
model. Assume that every matched edge is output by at least one of its endpoints; either by
outputting a port number or the ID of the corresponding neighbor. If, for some ϵ ∈

( 1
n1/3 , 1

)
,

the algorithm sends at most ϵ3n2

73·8 = O
(
ϵ3n2) messages with probability at least 1 − ϵ

7 , then
there exists a graph on 2n nodes such that the approximation ratio is at most ϵ in expectation.

In the remainder of this section, we give a class of graphs on which finding a large
matching is hard, and then we state the details of the assumed port numbering model and
discuss the output specification of a given matching algorithm in this setting. We make use
of these definitions when proving Theorem 8.

The Lower Bound Graph. Let γ = ϵ
7 . We consider the following 2n-node graph G consisting

of vertex sets A and B, where A = {u1, . . . , un} and B = {v1, . . . , vn}. We further partition
A into CA and NA such that NA = {u1, . . . , un−⌊γn⌋} and CA = A \ NA. Each node in NA

is connected to all nodes in CA, whereas the nodes in CA form a clique. Analogously, we
define CB and NB, and the edges between them. In addition, we add the set of valuable
edges {{u1, v1}, . . . , {un, vn}}. Figure 2 depicts an example of this construction. Notice that
the set of valuable edges corresponds to a perfect matching of size n and hence forms an
optimum solution for the maximum matching problem.

6 In this theorem statement we use the more convenient (1 − ϵ) rather than 1/(1 + ϵ). This is justified by
the fact that 1/(1 + ϵ) can be written as 1 − ϵ′, where ϵ/2 ≤ ϵ′ ≤ ϵ.
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CA
. . .

. . .

CB

NA
. . .

. . .

NB

A

B

Figure 2 The lower bound construction for proving Theorem 8. There are 2n nodes in total
equally partitioned into sets A and B. Each one of the grey-shaded areas contains ⌊γn⌋ nodes that
form the cliques CA and CB , respectively. Every node in NA = A \ CA has an edge to all nodes in
CA, and the nodes in NB and CB are connected similarly. The thick orange edges are the valuable
edges that form a perfect matching.

The Port Numbering Model. We consider the standard port numbering model, where the
incident edges of a node u are numbered 1, . . . , deg(u). This means that, in order to send a
message across the edge {u, v}, node u would need to send over some port p(u,v), whereas
node v would need to use port p(v,u), for some (possibly distinct) integers p(u,v) ∈ [deg(u)]7
and p(v,u) ∈ [deg(v)].

We say that the port p(u,v) is used if u sends a message over p or receives a message
that was sent on p(v,u); otherwise we say that it is unused. A crucial property of the KT0
assumption is that, initially, a node u does not know that it is connected to v via p(u,v).
However, we assume that u learns that p(u,v) connects to v upon receiving a message directly
from v. To obtain a concrete lower bound graph, we fix the node IDs to correspond to a
uniformly random permutation of [2n], and, for each node u, we choose an assignment of its
incident ports to the corresponding endpoints by independently and uniformly selecting a
random permutation of the set [deg(u)].

There are two standard ways how an algorithm may output a matching in KT0. The
first possibility is that at least one of the endpoints of each matched edge outputs the
corresponding port number. The second one is that a node u outputs the ID of some neighbor
v to indicate that {u, v} is in the matching. We point out that our lower bound result holds
under either output assumption.

Proof of Theorem 8. Consider any algorithm that satisfies the premise of the theorem.
Suppose that it sends at most γ3n2

8 messages with probability at least 1 − γ, and let Sparse
denote the event that this happens.

▶ Lemma 9. Let J ⊆ [n−⌊γn⌋] be the set of indices such that, for all i ∈ J , the edge {ui, vi}
is not part of the computed matching. Then E [|J | | Sparse] ≥ (1 − 5γ) n.

7 We use the standard notation [m] := {1, . . . , m}.
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We are now ready to complete the proof of Theorem 8. Let M be the matching computed
by the algorithm and recall that the perfect matching has size n. We have

E [|M |] ≤ E [|M | | Sparse] + n · Pr[¬Sparse]
≤ |CA| + |NA| − |J | + γn

≤ 2γn + (n − γn + 1) − (1 − 5γ) n (by Lemma 9)

≤ 7γn,

which implies the claimed upper bound on the approximation ratio since γ = ϵ
7 and the

maximum matching has size n.

3.3 Unconditional Quadratic Lower Bound for MDS Approximation
A well known and powerful tool for proving lower bounds in KT0 is the notion of a port
preserving crossing which is used to prove message complexity lower bounds in [4]. We use
this tool to prove lower bounds for MDS approximation in this section, and also for MVC
and MaxIS approximation in Sections 3.4 and 3.5.

▶ Definition 10 (Port-Preserving Crossing). Let H be an arbitrary graph with two edges
e = {u, v} and e′ = {u′, v′} for distinct nodes u, u′, v, v′. Let e be connected to u at port p

and to v at port q, and similarly let e′ be connected to u′ at port p′ and to v′ at port q′. The
port preserving crossing of e and e′ is the graph He,e′ which is obtained by removing the
edges e, e′ from H and adding the edge {u, u′} connected to u at port p and to u′ at port p′

and the edge {v, v′} connected to v at port q and to v′ at port q′.

▶ Theorem 11. Let A be a deterministic KT0 LOCAL algorithm. Let H and He,e′ be the
two graphs described in Definition 10 with the same ID assignment. If no messages pass over
e and e′, A behaves identically on the graphs H and He,e′ .

For the approximate MDS lower bound, we define a family {Gx,y | x ∈ {0, 1}n2
, y ∈

{0, 1}n2} of lower bound graphs. This construction is inspired by the construction in [5], but
with a critical difference, that we highlight below. For positive integer n, let x, y ∈ {0, 1}n2 .
We will now define a graph Gx,y as follows. The vertex set of Gx,y is

A1 ∪ A2 ∪ B1 ∪ B2 ∪ C1 ∪ C2 ∪ {a∗, b∗}

where A1 = {ai
1 | 1 ≤ i ≤ n}, A2 = {ai

2 | 1 ≤ i ≤ n}, B1 = {bi
1 | 1 ≤ i ≤ n},

B2 = {bi
2 | 1 ≤ i ≤ n}, C1 = {ci

1 | 1 ≤ i ≤ n}, and C2 = {ci
2 | 1 ≤ i ≤ n}. Therefore, Gx,y

has 6n + 2 vertices.
We now describe the edges of Gx,y. The vertices in C1 (and C2) form an n-vertex clique.

Each vertex ci
1 ∈ C1 is connected to all vertices aj

1, j ̸= i and to all vertices bj
1, j ̸= i.

Similarly, each vertex ci
2 ∈ C2 is connected to all vertices aj

2, j ̸= i and to all vertices bj
2,

j ̸= i. Vertex a∗ is connected to all vertices in A1 and vertex b∗ is connected to all vertices
in B1. This completes the “fixed” edges in the graph, i.e., the edges that do not depend on
bit vectors x and y. The edges between A1 and A2 depend on x as follows: {ai

1, aj
2} is an

edge iff xij = 1. The edges between B1 and B2 depend on y as follows: {bi
1, bj

2} is an edge iff
yij = 1. The construction is illustrated in Figure 3.

In [5], the authors use a similar construction to obtain an Ω(n2) round lower bound
for exact MDS. Their construction critically depends on the existence of a small cut (with
O(poly(log n)) edges) across the partition (VA, VB) of the vertex set, where VA ⊇ A1 ∪ A2
and VB ⊇ B1 ∪ B2. For a message complexity lower bound, we don’t need a small cut. In
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. . . . . .

. . . . . .

a11 a21 ai1 an1. . . . . . A1

aj2 an2. . . . . . A2
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b21 bi1 bn1. . . . . .

b22 bj2 bn2

B1
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xij = 1 yij = 0
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c21 ci1 cn1. . . . . .a∗ b∗
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c12

b11
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Figure 3 Illustration of the graph Gx,y used in the MDS lower bound proof. For clarity, many
edges are not shown. Dashed line segments represent the absence of edges.

fact, it can be verified that Ω(n2) edges connect any VA ⊇ A1 ∪ A2 and VB ⊇ B1 ∪ B2 in our
lower bound graph. This flexibility plays a key role in our ability to force a constant-sized
dominating set in the lower bound graph and obtain a relatively large gap in the MDS sizes
between different types of instances, as shown in the following lemma.

▶ Lemma 12. If ∃(i, j) such that xij = yij = 1 then Gx,y has a dominating set of size at
most 4. If ∄(i, j) such that xij = yij = 1 then Gx,y has a dominating set of size at least 5.

We will pick a member G of this family such that the subgraph G[A1 ∪ A2] is a fixed
n/2-regular bipartite graph where for all 1 ≤ i ≤ n, ai

1 is connected to aj
2 for all j =

i, i + 1, . . . , (i + n/2 − 1) (if j becomes larger than n, we wrap around back to 1). And the
subgraph G[B1 ∪ B2] is the complement of G[A1 ∪ A2]. We claim that that this graph has
a dominating set of size at least 5. This is because G can also be viewed as Gx,y for some
string x ∈ {0, 1}n2 and y = x. Since there is no index (i, j) such that xij = yij = 1, by
Lemma 12, G has a dominating set of size at least 5.

Let A be a deterministic dominating set algorithm in the KT0 LOCAL model that uses
o(n2) messages. Note that A outputs a dominating set of size at least 5 on G. Then,
there exists an edge e = {ai

1, aj
2} in G, ai

1 ∈ A1, aj
2 ∈ A2 such that no message passes

through this edge during the execution of algorithm A. Let N(ai
1) ⊆ A2 be the subset of A2

containing vertices that are not neighbors of ai
1. Similarly, let N(aj

2) ⊆ A1 be the subset of
A1 containing vertices that are not neighbors of aj

2. Note that |N(ai
1)| = |N(aj

2)| = n
2 , and

there are Θ(n2) edges in G between N(ai
1) and N(aj

2). Since A uses o(n2) messages, there
is an edge e′ = {ap

1, aq
2}, ap

1 ∈ N(aj
2), aq

2 ∈ N(ai
1), such that no message passes over edge e′

during the execution of A.
Let Ge,e′ be the graph obtained from G by crossing the edges e = {ai

1, aj
2} and e′ = {aq

2, ap
1}

according to Definition 10. In particular, e and e′ are replaced by edges {ai
1, aq

2} and {ap
1, aj

2},
with the port-numbering preserved. Note that by Theorem 11, algorithm A behaves identically
in G and Ge,e′ and so A outputs a dominating set of size at least 5 for Ge,e′ also. However,
Ge,e′ has a dominating set of size 4. This follows from Lemma 12, and the fact that {bi

1, bq
2}

(and {bp
1, bj

2}) is an edge in Ge,e′ .
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Figure 4 Illustration of the graphs G ∪ G′, and Ge,e′ used in the MVC lower bound proof.

This means that A outputs a dominating set of size at least 5 for a graph with a
dominating set of size at most 4. Thus, a (5/4 − ϵ)-approximation, ϵ > 0, for MDS requires
Ω(n2) messages.

▶ Theorem 13. For any constant ϵ > 0, any deterministic KT0 LOCAL algorithm A that
computes a (5/4−ϵ)-approximation of MDS on n-vertex graphs has Ω(n2) message complexity.

▶ Theorem 14. For any constant ϵ > 0, any randomized Monte-Carlo KT0 LOCAL algorithm
A that computes a (5/4 − ϵ)-approximation of MDS on n-vertex graphs with constant error
probability δ < 1/2 has Ω(n2) message complexity.

3.4 Unconditional Quadratic Lower Bound for MVC Approximation
Here we show that for any parameter c ≥ 1, any randomized KT0 LOCAL c-approximation
algorithm for the minimum vertex cover (MVC) problem uses Ω(n2/c) messages for some
n-vertex graph.

Define a graph G = (V, E) where V is divided into three parts X, Y, Z such that |X| =
|Z| = t and |Y | = t/(4c). We add all possible edges between X and Y and all possible edges
between Y and Z. We then add a copy G′ = (V ′, E′) of G (where the three parts of V ′ are
X ′, Y ′ and Z ′). Note that G and G′ have exactly t2/(2c) edges each. We will call G ∪ G′ the
base graph, using which we create the lower bound graphs. Let n = |V ∪ V ′| = 4t + t/(2c),
thus t = 2cn/(8c + 1).

Each node in the base graph is assigned a unique ID in the range [1, n], and the ports of
each node are also assigned in some arbitrary way.

We create a crossed graph Ge,e′ by starting with the base graph G∪G′ and then replacing
edges e = {y, z} and e′ = {x′, y′} with edges {y, y′} and {z, x′} in a port preserving manner
according to Definition 10. The base graph and crossed graph are illustrated in Figure 4.
Note that the ID and port assignments to the nodes remain unchanged in the crossed graph.

The base and crossed graphs are similar to the lower bound graphs used in [67] to prove
message complexity lower bounds for MIS and (∆ + 1)-coloring (here |Y | = |Y ′| = t). The
motivation for shrinking the size of Y (and Y ′) is to ensure that in any approximate vertex
cover of G ∪ G′, there are lots of vertices that are not in the cover. This is made precise in
the following claim.

▷ Claim 15. Any c-approximate vertex cover in G ∪ G′ has size at most t/2.

Now suppose (to obtain a contradiction) that there is a deterministic KT0 LOCAL
algorithm A that computes a c-approximate vertex cover C in G ∪ G′ using o(t2/c) messages.
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▷ Claim 16. There exist y ∈ Y , z ∈ Z \ C, x′ ∈ X ′ \ C and y′ ∈ Y ′ such that no message
passes over edges {y, z} and {x′, y′} in algorithm A.

▶ Lemma 17. Let y ∈ Y , z ∈ Z \ C, x′ ∈ X ′ \ C and y′ ∈ Y ′ be four nodes such that no
message passes over the edges e = {y, z} and e′ = {x′, y′} in algorithm A. Then A cannot
compute a correct vertex cover on Ge,e′ .

Claim 16 implies the existence of e and e′ assumed in Lemma 17. Thus A must use
Ω(t2/c) messages when run on G ∪ G′. The following theorem formally states this lower
bound.

▶ Theorem 18. For any constant c ≥ 1, any deterministic KT0 LOCAL algorithm A that
computes a c-approximation of MVC on n-vertex graphs has Ω(n2/c) message complexity.

We extend this deterministic lower bound to randomized Monte-Carlo algorithms.

▶ Theorem 19. Any randomized Monte-Carlo KT0 LOCAL algorithm A computing a maximal
matching with constant error probability 0 ≤ δ < 1/8 − o(1) where each matched edge is
output by at least one of its end points has Ω(n2) message complexity.

3.5 Unconditional Quadratic Lower Bound for MaxIS Approximation
For the MaxIS approximation lower bound we use the same base graph G ∪ G′ as the MVC
lower bound but we set |Y | = |Y ′| = ϵt. The crossed graph Ge,e′ obtained by crossing the
edges e and e′ in a port preserving manner according to Definition 10.

▶ Theorem 20. For any constant ϵ > 0, any deterministic KT0 LOCAL algorithm A
that computes a (1/2 + ϵ)-approximation of MaxIS on n-vertex graphs has Ω(n2) message
complexity.

▶ Theorem 21. For any constant ϵ > 0, any randomized Monte-Carlo KT0 LOCAL algorithm
A that computes a (1/2 + ϵ)-approximation of MaxIS on n-vertex graphs with constant error
probability δ < ϵ2/8 − o(1) has Ω(n2) message complexity.

4 Message-Efficient Distributed Approximation Algorithms in Random
Graphs

We first provide a message- and round-efficient randomized greedy MIS in G(n, p) random
graphs.8 With it, we give distributed algorithms using only Õ(n) messages to compute with
high probability (w.h.p.) constant-factor approximations for MaxIS, MDS, MVC and MaxM
in G(n, p) random graphs.

Randomized Greedy MIS. The algorithm works in O(log n) phases (where n is known to
all nodes initially). Initially, all nodes start undecided. Each phase reduces the number of
undecided nodes (i.e., not in the MIS nor neighbors of MIS nodes) by half. Phases are split
into 15 iterations of O(log n) rounds, each iteration reducing the number of undecided nodes
by a constant factor. In each iteration, we sample O(log(n)/p) nodes (or take all nodes
if there remain less undecided nodes), referred to as active nodes. In two rounds, active

8 These are graphs for which each (possible) edge e = {x, y} ∈ V 2 occurs independently with probability
0 < p < 1 (where p may be a function of n).
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nodes know which incident edges are part of the subgraph induced by active nodes. (As the
communication graph has maximum degree O(np) w.h.p, this only takes Õ(n) messages.)
After which, active nodes use O(log n) rounds to run distributed randomized greedy MIS [35]
on this induced subgraph. Finally, nodes in the computed MIS use the last round to inform
all of their neighbors.

▶ Theorem 22. In G(n, p) random graphs, there exists a distributed implementation (in
KT0 CONGEST) of the randomized greedy MIS sequential algorithm that is correct with high
probability, takes O(log2 n) rounds and uses Õ(n) messages with high probability.

Distributed Approximation Problems. Now, we consider random graphs in the connectivity
regime.9 On such graphs (of size n), our distributed randomized greedy MIS algorithm
provides an MIS of size σn ∼ log1/(1−p) np (see [44, 36]). From well-known results regarding
random graphs [44, 36, 41, 79, 32], we obtain the approximation results summarized in the
lemma below.

▶ Lemma 23. In G(n, p) random graphs (with p ≥ 40(log n)/n), (1/2 − o(1))-approximate
MaxIS, (1 + o(1))-approximate MDS and (2 − o(1))-approximate MVC can be solved (w.h.p.)
with Õ(n) messages and O(log2 n) rounds in KT0 CONGEST. Additionally, for these same
graphs, a perfect (or near-perfect) matching can be computed (w.h.p.) with Õ(n) messages
and Õ(n) rounds in KT0 CONGEST.

5 Conclusion and Open Problems

In this work, we almost fully quantify the message complexity of four fundamental graph
optimization problems – MaxM, MVC, MDS, and MaxIS. These problems represent a
spectrum of hardness of approximation in the sequential setting, ranging from MaxM that
is exactly solvable in polynomial-time to MaxIS that is hard to approximate even to a
O(n1−ϵ)-factor for any ϵ > 0. We have shown that Ω̃(n3) messages are needed to solve MVC,
MDS, and MaxIS exactly in the KT0 CONGEST model. The message complexity of exact
MaxM is an intriguing open question and the lower bound technique we use to obtain the
cubic bounds for MVC, MDS, and MaxIS, cannot be used for MaxM. Furthermore, there has
been recent progress on improving the round complexity of exact MaxM [54], though it is not
clear if techniques from this line of work can be used to obtain o(n3) message algorithms for
exact MaxM. Another set of open questions relate to our quadratic lower bounds. For MDS
and MaxIS, our lower bounds are for constant-factor approximations, for specific constants.
Can these lower bounds be extended to any α-approximation algorithm? Such lower bounds
would be a function of the graph size as well as α (similar to our lower bounds for MaxM
and MVC). For MDS, such a general lower bound would have to account for the O(n1.5)
message upper bound for O(log ∆)-approximation for MDS [43, 45].
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