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Abstract
We focus on the well-studied problem of distributed overlay network construction. We consider a
synchronous gossip-based communication model where in each round a node can send a message of
small size to another node whose identifier it knows. The network is assumed to be reconfigurable,
i.e., a node can add new connections (edges) to other nodes whose identifier it knows or drop
existing connections. Each node initially has only knowledge of its own identifier and the identifiers
of its neighbors. The overlay construction problem is, given an arbitrary (connected) graph, to
reconfigure it to obtain a bounded-degree expander graph as efficiently as possible. The overlay
construction problem is relevant to building real-world peer-to-peer network topologies that have
desirable properties such as low diameter, high conductance, robustness to adversarial deletions, etc.

Our main result is that we show that starting from any arbitrary (connected) graph G on n nodes
and m edges, we can construct an overlay network that is a constant-degree expander in polylog n

rounds using only Õ(n) messages.1 Our time and message bounds are both essentially optimal (up to
polylogarithmic factors). Our distributed overlay construction protocol is very lightweight as it uses
gossip (each node communicates with only one neighbor in each round) and also scalable as it uses
only Õ(n) messages, which is sublinear in m (even when m is moderately dense). To the best of our
knowledge, this is the first result that achieves overlay network construction in polylog n rounds and
o(m) messages. Our protocol uses graph sketches in a novel way to construct an expander overlay
that is both time and communication efficient.

A consequence of our overlay construction protocol is that distributed computation can be
performed very efficiently in this model. In particular, a wide range of fundamental tasks such as
broadcast, leader election, and minimum spanning tree (MST) construction can be accomplished in
polylog n rounds and Õ(n) message complexity in any graph.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Probabilistic algorithms; Mathematics of computing → Discrete mathematics

Keywords and phrases Peer-to-Peer Networks, Overlay Construction Protocol, Gossip, Expanders,
Sublinear Bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.42

Related Version Full Version: https://arxiv.org/abs/2311.17115

Funding Fabien Dufoulon: Part of the work was done while Fabien Dufoulon was a postdoctoral
fellow at the University of Houston, Houston, TX, USA. F. Dufoulon was supported in part by
National Science Foundation (NSF) grants CCF-1540512, IIS-1633720, and CCF-1717075 and U.S.-
Israel Binational Science Foundation (BSF) grant 2016419.
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1 Introduction

1.1 Background and Prior Work
Many of today’s large-scale distributed systems in the Internet are peer-to-peer (P2P) or
overlay networks. In such networks, the (direct) connections between nodes can be considered
as virtual (or logical) connections as they make use of the physical connections of the
underlying Internet. Furthermore, in these networks, a node can communicate with another
node if it knows the IP address of the other node, and can also (potentially) establish a
connection (link) to it. Thus, the network can reconfigure itself, choosing which connections
to add and which to drop.

In this paper, we consider the well-studied problem of constructing an efficient overlay
topology in a distributed fashion in a reconfigurable network. Overlay construction is
particularly important in modern P2P networks, which depend significantly on topological
properties to ensure efficient performance. In fact, over the last two decades, several
theoretical works [44, 39, 27, 17, 17, 32, 11] have focused on building P2P networks with
various desirable properties such as high conductance, low diameter, and robustness to a large
number of adversarial deletions. The high-level idea in all these works is to distributively
build a (bounded-degree) random graph topology which guarantees the above properties.
This idea exploits the fact that a random graph is an expander with high probability and
hence has all the above desirable properties [31, 43].2 Indeed, random graphs have been used
extensively to model P2P networks (see e.g., [39, 44, 27, 17, 40, 12, 8, 9, 7]). It should also
be noted that the random connectivity topology is widely deployed in many P2P systems
today, including those that implement blockchains and cryptocurrencies, e.g., Bitcoin [41].

Several prior works [3, 26, 30] have addressed the problem of constructing an expander
topology starting from an arbitrary topology network. One of the earliest works is that of
Angluin et al. [3] who showed how one can transform an arbitrary connected graph G on n

nodes and m edges into a binary search tree of depth O(log n) in O(d + log n) rounds and
O(n(d + log n)) messages, where d is the maximum degree. (Their model is similar to ours,
where a node can only send a message to a single neighbor per round.) It can be shown
that an O(log n)-depth binary tree can be transformed into many other desirable topologies
(such as an expander, butterfly, or hypercube). The work of Gilbert et al. [26] presented
a distributed protocol that when given any (connected) network topology having n nodes
and m edges will transform it in to a given (desired) target topology such as an expander,
hypercube, or Chord, with high probability. This protocol incurred O(polylog n) rounds and
exchanged messages of only small size (O(log n) bits) per communication link per round, and
had a total message complexity of Θ̃(m).3 Note that while the protocol of Gilbert et al. has
a better time complexity compared to Angluin et al., when d is large, the protocol of Gilbert
et al. is not gossip-based (i.e., a node can send messages to all its neighbors in one round,
even if its degree is large), unlike that of Angluin et al.

2 Throughout, “with high probability (w.h.p.)” means with probability at least 1 − 1/nc for some constant
c ⩾ 1; n is the network size.

3 The notation Õ hides a polylog n multiplicative factor.



F. Dufoulon, M. Moorman, W. K. Moses Jr., and G. Pandurangan 42:3

The recent work of Götte et al. [30] presented an overlay construction algorithm that
when given an arbitrary (connected) graph, transforms the graph into a well-formed tree,
i.e., a rooted tree of constant degree and O(log n) diameter. In particular, their protocol
first constructs an O(log n)-degree expander (a well-formed tree can be obtained from the
expander by known techniques). The protocol takes O(log n) rounds which is asymptotically
time-optimal, since Ω(log n) rounds is a lower bound for constructing a well-formed tree or a
constant-degree expander from an arbitrary graph [30]. However, their protocol takes Θ̃(m)
messages (m is the number of edges in the starting graph) as each node needs to send d log n

messages in a round where d is the initial (maximum) degree. The novelty of their protocol is
the repeated use of short (constant length) random walks to increase the graph conductance.

We note that all the above overlay construction protocols, while being fast, i.e., taking
only O(polylog n) rounds, use Θ̃(m) messages, i.e., linear in the number of edges of the initial
graph. An important question is whether one can design overlay construction protocols that
are significantly communication-efficient, i.e., taking o(m) messages or even Õ(n) messages.
In fact, the work of Götte et al. [30] raised the question of whether it is possible to obtain a
fast overlay construction protocol that is also communication-efficient.

In this paper, we answer the above question and present the first overlay construction
protocol that is both time- and communication-efficient: given an arbitrary connected graph
on n nodes and m edges, the protocol constructs a constant-degree expander in polylog n

rounds using only Õ(n) messages (regardless of the value of m). We note that our protocol
uses only messages of small size (O(polylog n) bits). Furthermore, it uses gossip-based
communication which is fully-decentralized and lightweight. Hence, it inherits the usual
advantages of gossip-based protocols (e.g., see [35, 19, 34]) such as robustness, no single point
of action, etc.4

1.2 Model
Before we formally state our main result, we discuss our model which is similar to that used
in previous work on overlay network construction (see e.g., [3]).

We assume that we are given a connected arbitrary graph G = (V, E) as input. Let
|V | = n and |E| = m. Each node has a unique ID (identifier) taken from the range [1, N ],
where N = nc for some positive constant c ⩾ 1. Thus, each node ID can be represented
using O(log n) bits.

We assume that the communication links are reconfigurable: if a node u knows about the
ID of some node v, then u can establish or drop a link to v.5 Also, as is standard in overlay
(and P2P) networks, a node can communicate with another node if it knows the identity of
the other node.

The computation proceeds in synchronous rounds and the communication topology
produced by the execution evolves as a sequence of graphs G = G1, G2, . . . , where Gr =
(V, Er) corresponds to the network at the beginning of round r. The graph G1 is the initial
configuration, and determines the initial knowledge of nodes which is restricted to only
knowledge of their own ID and the IDs of their (respective) neighbors. This is a standard
model in distributed computing, called the Knowledge-Till-Radius 1 (KT1) model. Note

4 For this reason, we avoid more centralized methods such as building and using a BFS tree for aggregation,
etc., in favor of fully-decentralized gossip-based aggregation protocols [35, 19].

5 Strictly speaking, it takes a successful handshake between u and v to establish or drop a bidirectional
link. For simplicity, and since it does not change the asymptotic bounds of our results, we assume that
these connections happen instantaneously.
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that in overlay and P2P networks, this model is the natural model, as every node knows the
identity (IP address) of itself and of its neighbors. Nodes initially have no knowledge of any
other nodes (other than their respective neighbors) or any global knowledge including the
initial topology. However, we assume that nodes know an upper bound on n (in fact, just a
constant factor upper bound of log n is sufficient).

We assume a gossip-based communication model which is very lightweight, where in a
round, a node can send a small-sized message (of size O(polylog n) bits) to only one of its
neighbors. Thus, a round r consists of the following three steps: (i) each node contacts one
neighbor, (ii) each node sends a O(polylog n) bit message to the contacted neighbor and
receives a O(polylog n) bit reply,6 and (iii) after all messages in transit have been received,
u performs some local computation possibly including changes to its communication links,
resulting in Gr+1. We call this model the P2P-GOSSIP model. Note that although the gossip
model allows each node to send a message to only one neighbor per round, one can easily
simulate sending messages to any constant k ⩾ 1 neighbors in a round, by performing gossip
for k rounds and thus blowing up the number of rounds by a factor of k. On the other hand,
in the standard CONGEST model, a node can send a message (of small size, say O(log n)
bits) to all its neighbors in a round. In addition, in the LOCAL model, the message size is
unbounded.

1.3 Our Contributions
Main Result. Our main contribution is a distributed protocol for overlay network construc-
tion that given an arbitrary connected graph, constructs an overlay graph whose topology is a
constant-degree expander. Informally, an expander is a graph that has constant conductance
(see definition in Section 2.1). As mentioned earlier, an expander graph has very desirable
properties: low diameter (O(log n)), high conductance, fast mixing of random walks (i.e.,
a random walk reaches stationary distribution in O(log n) rounds, which is useful for fast
random sampling), and robustness to large adversarial deletions (deleting even a constant
fraction of nodes leaves a giant component of size Θ(n) that is also an expander) [31, 13, 10, 9].

The protocol takes polylog n rounds and uses only Õ(n) messages.7 These time and
message bounds are both essentially optimal (up to polylogarithmic factors), since it is easy
to show that Ω(log n) is a lower bound on time [30] and Ω(n) is a lower bound on the number
of connections that need to be added/deleted (and hence the number of messages).8

Our distributed overlay construction protocol (Section 4) is very lightweight and scalable,
as it uses gossip-based communication (each node communicates with only one neighbor per
round). To the best of our knowledge, this is the first result that achieves overlay network
construction in O(polylog n) rounds and o(m) messages, i.e., sublinear in m, the number
of edges of the initial graph. All prior protocols took at least Õ(m) messages in general
while taking polylog n rounds. We note that once an expander topology is constructed,
several other well-known topologies such as hypercube, butterfly, binary tree, etc. can be
constructed [30, 3].

6 Note that although each node sends a message to only one neighbor, a node can receive as many
messages as its degree in a round (e.g., the center node in a star graph). We assume that the node
replies to all them in the round.

7 We have not chosen to optimize the log factors in our protocol, as this was not the primary focus. As it
is, our protocol takes O(log5 n) rounds and this can be improved.

8 Consider a dumbbell graph consisting of two cliques joined by a single edge as the starting graph. To
convert this graph to a constant degree expander, at least Θ(n) edges have to be added between the
cliques, and the cliques themselves have to be sparsified by dropping all but a constant number of
random edges.
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We simulated our protocol to study its performance in several types of graphs (Section 5).
The results validate the theory and shows that in all the different types of graphs, the
conductance increases significantly to essentially the best possible. The algorithm also
finishes fast, i.e., in a few phases.

Implications. A consequence of our overlay construction protocol, is that distributed
computation can be performed very efficiently in the P2P-GOSSIP model. In particular, a
wide range of fundamental tasks such as broadcast, leader election, and spanning tree (ST)
construction can be accomplished in polylog n round complexity and O(n polylog n) message
complexity in any graph. This follows because one can first construct a constant-degree
expander using the overlay construction protocol and then do the above tasks on the expander
graph (which has O(log n) diameter and O(n) edges) in O(log n) rounds and Õ(n) messages
by just simulating standard CONGEST model algorithms in gossip [48, 38].9

Furthermore, one can also show that the minimum spanning tree (MST) problem can be
solved very efficiently. (Note that in the MST problem, we are given an arbitrary (connected)
undirected graph G with edge weights, and the goal is to find the MST of G.) We will
outline how this can be accomplished in polylog n rounds and O(n polylog n) messages which
is a consequence of this work and prior works. First, using our expander overlay protocol,
we add a (constant-degree) expander overlay on G (i.e., the expander edges are added in
addition to the edges of G). The expander edges will be used for efficient communication in
G. For this, we convert the expander (that is not addressable) into an hypercube (that is
addressable) which allows efficient routing between any two nodes in O(log n) rounds and
O(n log n) messages. This conversion can be accomplished using the techniques of [3, 28, 4]
(see also [30]) or the protocol of [5].10 All these protocols take polylog n rounds and Õ(n)
messages to convert a constant-degree expander into an hypercube. Using the addressable
hypercube overlay on top of G, we can efficiently implement the Gallagher-Humblet-Spira
(GHS) algorithm [22] as shown in Chatterjee et al. [16] to compute the MST of G in polylog n

rounds and Õ(n) message complexity.11

We note that the above results are a significant improvement in the round complexity of
solving the above fundamental problems in the standard KT1 model. King, Kutten, and
Thorup [37] showed that all these problems can be solved using Õ(n) messages (regardless of
the value of m, the number of edges of the graph), but this takes Õ(n) rounds in the standard
CONGEST model. Obtaining sublinear, i.e., Õ(n) messages, in time that is significantly
faster than O(n) is an open problem in the CONGEST model (see also [42, 29, 37]). In
contrast, we show that in the P2P-GOSSIP model, one can solve these problems in sublinear
(Õ(n)) messages and polylog n time.

Another implication is to the complexity of the GOSSIP model, see e.g., [15, 14] and
the references therein. The works of Censor-Hillel et al. [14] studied the complexity of
distributed computation in the GOSSIP model – where a node may only initiate contact

9 Since the graph is of constant degree, one can easily simulate a round of the CONGEST model, where a
node sends a message to all its neighbors, by performing gossip for a constant number of rounds.

10 The techniques of [3, 4, 30] construct a well-formed tree which can then be transformed into an hypercube.
The well-formed tree can be easily constructed from an expander [30]. Alternatively, one can use the
protocol of [5] which gives a fully-decentralized and robust protocol using random walks (which can be
simulated using gossip) to construct an addressable hypercube from a constant-degree expander.

11 We note that Chatterjee et al. uses the permutation routing algorithm of Ghaffari and Li [24] (also see
[23]) which takes 2O(

√
log n) rounds on an expander (which is not addressable). In contrast, exploiting

the reconfigurability of the P2P model, we can reconfigure the expander into an hypercube which allows
permutation routing to be accomplished in O(log n) rounds using the standard Valiant routing [49].

ITCS 2024
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with a single neighbor in each round, but unbounded messages sizes are allowed (unlike in our
P2P-GOSSIP model which uses small message sizes) – in comparison to the more standard
model of distributed computation, namely, the much less restrictive LOCAL model, where
a node may simultaneously communicate with all of its neighbors in a single round (also
message sizes can be unbounded). This work studied the complexity of the information
dissemination problem in which each node has some (possibly unique) data item and each
node is required to collect all the data items from all nodes. They gave an algorithm that
solves the information dissemination problem in at most O(D+polylog n) rounds in a network
of size n and diameter D. This is at most an additive polylogarithmic factor from the trivial
lower bound of D, which applies even in the LOCAL model. In fact, they prove that any
algorithm that requires T rounds in the LOCAL model can be simulated in O(T + polylog n)
rounds in the GOSSIP model, showing that GOSSIP and LOCAL models are essentially
equivalent (up to polylogarithmic factors). Our work shows that in the P2P-GOSSIP model,
if we allow unbounded message sizes, one can solve information dissemination in O(polylog n)
rounds in a straightforward way by first constructing a constant-degree expander (that has
diameter O(log n)) and then doing gossip on the expander [15].

High-level Overview and Technical Contributions. Our overlay construction protocol
(Section 4) uses a combination of several techniques in a non-trivial way to construct an
expander overlay in Õ(n) messages and polylog n time.

Our expander overlay construction protocol is conceptually simple and is similar to the
classic GHS algorithm [22] and consists of several phases. In the first phase, we start with n

clusters, each corresponding to a node. In a phase, adjacent clusters are merged and the
protocol maintains the invariant that each cluster is a constant-degree expander at the end of
each phase. (More precisely, there exists some “uniform” constant δ such that any cluster in
any phase is an expander of degree at most δ.)

We now describe a phase of the protocol which consists of three major steps. By the
maintained invariant, we can assume that all the clusters are constant-degree expanders
(this is trivially true in the first phase, since each cluster is a singleton node). As in GHS,
one has to quickly find outgoing edges from each cluster. Except for the first phase, it
is non-trivial to accomplish this using gossip in polylog n rounds and using O(n polylog n)
messages per phase. The first major step in a phase is to efficiently aggregate sketches from
each cluster. Informally, a sketch of a node is a short representation of its adjacency list, i.e.,
using O(polylog n) bits (see Section 2.2). An important property of these graph sketches
is that the sketches of all nodes in a cluster can be aggregated in O(polylog n) bits and an
outgoing edge of the cluster can be found with high probability from the aggregated sketch.
A main technical contribution, that can be of independent interest, is showing how one can
use graph sketches [1, 2] to efficiently sample an outgoing edge using gossip in an expander.
We show that we can adapt the PUSH-SUM gossip protocol of [35] to efficiently aggregate
sketches in an accurate manner in all nodes of a cluster (Section 3.2).

In the second step, each cluster uses the aggregated sketch to sample an outgoing edge.
The clusters along with their respective outgoing edges induce a disjoint set of connected
components. Each such component has to be converted into a constant degree expander. To
accomplish this, we use the protocol of Götte et al. [30] that takes an arbitrary constant-degree
graph and converts it into an expander that has O(log n) degree.12 One cannot directly

12 Note that the protocol of [30] works on graphs of somewhat higher degree, say O(log n), but the
maximum degree needs to be small to get the performance guarantees as claimed.
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invoke the protocol of [30] on each connected component, since the degree of a node may not
be constant (multiple outgoing edges can go to a single node). In the second step, to satisfy
the degree bound needed for the protocol of [30] (invoked in step 3) we do a degree reduction
to keep the degrees of all nodes constant.

In the third step, we run the protocol of [30] which uses random walks (and can be
simulated in the gossip model with an O(log n) factor slow down in the number of rounds)
to convert each connected component into an O(log n)-degree expander in polylog n rounds
of gossip. We then run an efficient distributed protocol for reducing the degree of the
expander to O(1), which may also be of independent interest (Section 3.1). This is essential
in maintaining the invariant of the next phase (without this degree reduction, one can show
that nodes’ degrees can grow large from phase to phase).

We show that each phase reduces the number of clusters by a constant factor and hence
the total number of phases is O(log n). At the end, the whole graph becomes one cluster,
which will be a constant degree expander.

1.4 Additional Related Work and Comparison
There have been several prior works on P2P and reconfigurable networks (e.g., [46, 20, 39, 11])
that assume an expander graph to start with, and then faults occur (insertions or deletions of
nodes due to churn or other dynamic changes), even repeatedly, and the goal is to maintain
the expander. One can view the current paper (as well as prior works discussed earlier
[30, 3, 26]) as a preprocessing step that starts with an arbitrary graph and converts it to
an expander. Subsequently, one may use the protocols from these works to maintain the
expander. For future work, it will be useful to extend our protocol to a dynamic setting
where churn is present. In this context, one can see the current work as a first step towards
obtaining a protocol that builds and maintains an expander overlay in dynamic P2P networks
that suffer from churn and where the churn can result in (intermediate) arbitrary topologies
that are far from expanders (but still connected, say). In that case, a protocol like ours will
be useful to reconstruct an expander.

Finally, we point out that there has been work on other models that are similar, yet
different, compared to the P2P-GOSSIP model. Two notable examples include the node-
congested clique model [6] and the hybrid model [28]. In the node-congested clique model,
each node is constrained to send only a small amount of messages of small size per round,
say O(log n) messages each of size O(log n) bits. In the hybrid model, two modes of
communication are assumed: the LOCAL (or CONGEST) model in the input graph G,
where a node can send unlimited (or small-sized) messages on the (local) edges of G and
a node-congested clique model where a node can send O(log n)-size messages to O(log n)
other nodes. Note that instead of a clique model (where a node can potentially communicate
with any other node), one can also assume an O(log n)-degree expander (or another sparse
degree structure such as a tree) built on top of G and nodes can communicate on these using
small-sized messages. This variant of the hybrid model is assumed in [30]. A main difference
between the P2P-GOSSIP model and the node-congested clique model is that in the latter,
it is assumed that each nodes knows the IDs of all other nodes which makes routing trivial.
Whereas in the P2P-GOSSIP model, a node knows only the IDs of its neighbors. Also in the
node-congested clique model, each node can send or receive only O(log n) messages, whereas,
in the P2P-GOSSIP model, since the graph is arbitrary a node can receive as many messages
as its degree. Efficient algorithms for MST (and other problems) that take polylogarithmic
rounds are known in the node-congested clique model. In the hybrid model variant of [30],
logarithmic round algorithms have been given for several fundamental problems such as
spanning trees, MIS, etc. However, it is left open whether an efficient algorithm can be
designed for MST in the hybrid model [30].

ITCS 2024
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2 Preliminaries

2.1 Graph Definitions
For any graph G = (V, E), its (maximal) connected components are called clusters. Moreover,
for any node v ∈ V , the neighbors of v are denoted by N(v) = {u | (u, v) ∈ E} and the degree
of v by d(v) = |N(v)|. The volume of any subset S ⊆ V is defined as vol(S) =

∑
v∈S d(v),

and the edge cut of S as E(S, V \ S) = {(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}. The conductance
Φ(S) of any subset S ⊆ V is defined as Φ(S) = |E(S, V \ S)|/ min{vol(S), vol(V \ S)}. The
conductance of graph G is defined as Φ = minS⊆V,S ̸=∅ Φ(S). Finally, for any edge set E′ ⊆ V 2,
we say that E′ generates the graph G(E′) = (V, E′) is called the graph generated. Note that
E′ may include edges in V 2 \ E (i.e., peer-to-peer edges when G is the communication graph)
and thus G(E′) is not the graph induced by E′.

A family of graphs Gn on n nodes is an expander family if, for some constant α with
0 < α < 1, the conductance ϕn = ϕ(Gn) satisfies ϕn ⩾ α for all n ⩾ n0 for some n0 ∈ N.

2.2 Graph Sketches
Consider an arbitrary set of nodes V , such that all nodes of V have unique IDs in [1, N ],
where N is known to all nodes. We define, for any graph G = (V, E) and node v ∈ V , the
incidence vector iG(v) ∈ R(N

2 ) whose entries correspond to all possible choices of two IDs
in N . An entry in iG(v) corresponding to the possible edge between u with idu ∈ N and
v is 0 if (u, v) /∈ E, 1 if (u, v) ∈ E and idu > idv, and −1 otherwise (i.e., (u, v) ∈ E and
idu < idv). Entries in iG(v) that correspond to a possible edge not including v (e.g., (u, w))
have value 0. Naturally, one can extend this definition to any node subset S ⊆ V : more
precisely, iG(S) =

∑
v∈S iG(v). Note that by linearity, the non-zero indices of iG(S) indicate

exactly which edges are in the cut of S with respect to G, that is, in EG(S, V \ S).
One may use the incidence vector of some node set S to sample an outgoing edge from S,

if one exists, uniformly at random from all such outgoing edges, i.e., sample a non-zero entry
in iG(S) uniformly at random. However, in a distributed setting, to compute the incidence
vector on a set of nodes S, one would need to aggregate the incidence vectors of the nodes
belonging to S. This is problematic since incidence vectors are exponentially larger (recall
that they have size

(
N
2
)
) than our O(polylog N) message size.

Fortunately, we can use a linear sketch [1] – a well-chosen linear function from R(N
2 )

to Rk – or in other words, a graph sketching matrix – a well-chosen k ×
(

N
2
)

size matrix
MG – to compress these vectors (iG(v))v∈V into smaller (sketch) vectors (sG(v))v∈V of
size k = O(polylog

(
N
2
)
); more concretely, MG · iG(v) = sG(v). Moreover, although this

compression necessarily loses some information, it has two major advantages. First, it is
possible to sample (almost) uniformly at random one of the non-zero indices of iG(v) ∈ R(N

2 )
by performing operations on sG(v) only (albeit with some small failure probability). More
concretely, for any graph sketching matrix MG and for any subset S ⊆ V , there exists a
sampling function fG that takes the sketch vector sG(S) as input and outputs an edge chosen
uniformly at random in EG(S, V \ S). Second, the linearity of the graph sketching matrix
allows us to compute sG(S) without computing iG(S), but instead by computing the sketch
vectors (sG(v))v∈S and summing them.

In summary, for any subset S ⊆ V , we can sample an edge chosen uniformly at random
in EG(S, V \ S) by (i) having nodes agree on Θ(log2 n) true random bits that they can use to
locally compute a common graph sketching matrix MG with polynomially bounded integer
entries [33, 45], (ii) aggregating the sketch vectors of all nodes in S, and (iii) applying the
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sampling function fG on the aggregate vector sG(S). Note that these steps require messages
of small O(polylog n) size only. A more formal statement is given below, which can be
obtained straightforwardly by adapting known results [33, 1, 45].

▶ Lemma 1. For any upper bound N on the ID range and constant 0 < δ < 1, there exist a
graph sketching matrix MG (with entries polynomially bounded in N) and a sampling function
fG such that for any node subset S ⊂ V , the aggregate sketch vector sG(S) =

∑
u∈S sG(u)

can be represented using O(polylog n) bits, and fG(sG(S)) samples a (uniformly) random
edge in EG(S, V \ S) with probability 1 − δ.

2.3 Creating Expanders from Bounded Degree Graphs
To make our work self-contained, we briefly describe Procedure CreateExpander – the
overlay construction algorithm from [30] – and its guarantees here. For any constant Φ ∈
(0, 1/2], integer d ⩾ 1 and d-bounded degree graph G = (V, E), Procedure CreateExpander
first performs some preprocessing on the graph G to transform it into an O(log n)-regular
benign graph H0. (A formal definition of benign graphs is given below, but roughly speaking,
these are graphs on which random walks have some good properties.) After which, starting
from the edges of H0, Procedure CreateExpander computes in each phase a new set of
edges generating a graph with twice as much conductance – up to 1/2. After some O(log n)
phases, Procedure CreateExpander terminates and outputs an O(log n)-regular expander
graph with conductance Φ.

▶ Lemma 2 ([30] with an O(log n) overhead in the P2P-GOSSIP model). For any constant Φ ∈
(0, 1/2], integer d ⩾ 1 and d-bounded degree graph G = (V, E), Procedure CreateExpander
uses O(log2 n) rounds and O(n log2 n) messages to output an O(log n)-regular graph H ′ =
(V, E′

H) with conductance Φ.

Next, we provide more details about the phases of Procedure CreateExpander. First, let
∆H = ∆H(d) = Θ(log n) and Λ = Θ(log n) be two parameters chosen via the analysis. We call
H = (V, EH), a multi-graph composed of peer-to-peer (multi-)edges, a (∆H , Λ)-benign graph
if it holds that (i) H is ∆H -regular, that is, every node of H has ∆H incident (multi-)edges,
(ii) H is lazy, that is, every node of H has at least ∆H/2 self-loops, and (iii) the minimum
cut of H is at least Λ. Then, Procedure IncreaseExpansion – implementing one phase of
Procedure CreateExpander – is run on a (∆H , Λ)-benign graph and outputs a (∆H , Λ)-
benign graph with better conductance. More precisely, in Procedure IncreaseExpansion,
each node initiates ∆H/8 random walks of length ℓ = Θ(1). These random walks take Θ(log n)
rounds to terminate (since nodes may only send 1 message per round in the P2P-GOSSIP
model). After these O(log n) rounds, each node generates, for each token it holds, an edge
to the token’s originating node. If a node holds more than 3∆H/8 tokens, then that node
randomly chooses 3∆H/8 tokens without replacement and creates edges accordingly. Finally,
each node adds self-loops until it has ∆H incident edges.

▶ Lemma 3 ([30]). For any (∆H , Λ)-benign graph H = (V, EH) with conductance Φ, Pro-
cedure IncreaseExpansion uses O(log n) rounds and O(n log n) messages to output a
(∆H , Λ)-benign graph H ′ = (V, E′

H) with conductance Φ′ ⩾ min{(Φ
√

ℓ)/640, 1/2}. For
ℓ ⩾ (2 · 640)2, it holds that Φ′ ⩾ min{2Φ, 1/2}.

3 Our Primitives

In this section, we develop two primitives (that can be of independent interest) that we
subsequently use in our main algorithm. The first primitive, in Section 3.1, allows us to
modify an O(log n)-regular expander graph into an O(1)-bounded degree expander. The
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second primitive, in Section 3.2, allows one to construct an aggregate sketch vector in an
O(1)-bounded degree expander using a gossip-style approach, assuming that each node
initially contains its own sketch vector.

3.1 Degree Reduction for Expanders
Consider a high conductance O(log n)-regular expander graph G. We give a procedure,
called Procedure ExpanderDegreeReduction, that sparsifies this expander graph into
a δ-bounded degree expander graph Gδ with any desired conductance Φ ∈ (0, 1/10], in
O(log3 n) rounds and O(n log3 n) messages, where δ = O(1) is some integer determined by
the analysis.

Initially, each node generates c active tokens with its ID, where c is a positive integer such
that c < δ/10. These tokens will be used to generate the edges of the procedure’s resulting
graph Gδ. The algorithm works in O(log n) phases, where the precise value is determined
by the analysis. In each phase, active tokens take random walks of length ℓ = O(log n) per
phase – where ℓ is larger than the mixing time on G. (More concretely, each node that holds
an active token sends the token to a neighbor chosen uniformly at random.13) At the end
of each phase, any token that ends at some node with at most δ tokens becomes inactive
and remains at that node for the remainder of the algorithm. (If during some phase too
many tokens end at a node, such that it holds strictly more than δ tokens, then for simplicity
all these tokens remain active.) Moreover, for each token that becomes inactive, the node
holding it creates a temporary (1-round) edge to inform its source (of the inactive token). A
node is said to be satisfied once all of its generated tokens are inactive. Once all nodes are
satisfied, each satisfied node creates one edge (in Gδ) to each node holding at least one of its
inactive tokens.

Analysis. We start with a simple invariant obtained via counting argument (see Lemma 4).
With this invariant, we can show that the number of active tokens reduces by half in
each phase with constant probability (see Lemma 5). As a result, we can show that all
nodes become satisfied within O(log n) phases (see Lemma 6), or in other words, before the
algorithm terminates.

▶ Lemma 4. For any given phase, fix the random walks of all tokens except one. Then, it
holds that at least 0.9n nodes have strictly less than δ tokens.

Proof. We use a simple counting argument to show the lemma statement. Assume by
contradiction that more than n/10 nodes have more than δ tokens. By the algorithm
definition, there can only be c · n tokens in total, and thus c · n ⩾ δ · n/10. However, since
c < δ/10, c · n < δ · n/10, which leads to a contradiction. ◀

▶ Lemma 5. In any given phase, the number of active tokens reduces by half with probability
at least 1/2.

Proof. Let k ⩽ c · n be the initial number of active tokens in this phase. These tokens,
denoted by t1, . . . , tk, each take an ℓ-length random walk. For any i ∈ {1, . . . , t}, let Vi be the
random variable denoting the node the i-th token ends at. Note that ℓ is chosen sufficiently
greater than the mixing time on G, thus the i-th token ends at an (almost) uniform random
node. More formally, for any node v ∈ V , Pr[Vi = v] ∈ [1/n − 1/na, 1/n + 1/na] for some
constant a ⩾ 1. Then, the following rough upper bound holds: for some constant ε ∈ (0, 1),
for any node v ∈ V , Pr[Vi = v] ⩽ (1 + ε)/n.

13 We show later that sending these tokens in our model incurs an overhead of O(log n).
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Next, for any token ti, let R(ti) = (X0, . . . , Xℓ) denote the random walk of ti (i.e., the
sequence of nodes visited by token ti) and let 1i indicate that ti ends the phase as active.
We use R̄(ti) as shorthand for (R(t1), . . . , R(ti−1), R(ti+1), . . . , R(tk)), or in other words, to
denote all tokens’ random walks except that of token ti. Note that if we fix all random
walks except that of ti – i.e., if we fix R̄(ti) – then Lemma 4 implies that there exists a set
G(R̄(ti)) of nodes, each with strictly less than δ tokens, and such that |G(R̄(ti))| ⩾ 0.9n.
If ti ends up at any nodes of G(R̄(ti)), it becomes inactive. Thus, Pr

[
1i = 1 | R̄(ti)

]
⩽

Pr
[
Vi /∈ G(R̄(ti)) | R̄(ti)

]
⩽ Pr

[∨
v /∈G(R̄(ti)) Vi = v | R̄(ti)

]
⩽ (1 + ε)/10, where the last

inequality is obtained through union bound. Consequently, Pr[1i = 1] ⩽ (1 + ε)/10.
Let the random variable A =

∑k
i=1 1i denote the number of active tokens when the phase

ends. By the above inequality, E[A] =
∑k

i=1 Pr[1i = 1] ⩽ (1 + ε)k/10. Finally, Markov’s
inequality implies the lemma statement: that is, Pr[A ⩾ 0.5k] ⩽ Pr[A ⩾ 2E[A]] ⩽ 1/2. ◀

▶ Lemma 6. After O(log n) phases, all nodes are satisfied.

Proof. A phase is said to be successful if the number of active tokens reduces by half. By
Lemma 5, each phase is successful with probability at least 1/2. A simple application of
Chernoff bounds imply that there are at least log(c · n) successful phases after large enough
O(log n) phases. Consequently, after O(log n) phases, there remain no active tokens, and
hence no unsatisfied nodes. ◀

Now, we can show the correctness of the primitive, and bound its round and message
complexities, in Theorem 8.

▶ Lemma 7. For any constant Φ ∈ (0, 1/10] and any two integers n, s ⩾ 1 such that s ⩽ n/2,(
n
s

)(
cs

(1−Φ)cs

)
((1 + ε)s/n)(1−Φ)cs ⩽ 1/n2 for large enough n and some suitably chosen integer

c ⩾ 1 and constant ε ⩾ 0.

Proof. Let p∗ =
(

n
s

)(
cs

(1−Φ)cs

)
((1 + ε)s/n)(1−Φ)cs. We give two upper bounds: the first for

s = o(n) and the second for s = κn for some constant 0 < κ ⩽ 1/2.
To get the first bound, we use the inequality

(
y
x

)
⩽ (ey/x)x, that holds for any integers y ⩾

x ⩾ 1. Then, p∗ ⩽ (en/s)s(e/(1−Φ))(1−Φ)cs((1+ε)s/n)(1−Φ)cs = 2s(β+(1−(1−Φ)c)(log n−log s)),
where β = log(e)+(1−Φ)c log(e(1 + ε)/(1 − Φ)). For large enough n, the (1− (1−Φ)c) log n

factor dominates in the exponent. Thus, it suffices to choose c large enough and it holds
that p∗ ⩽ 1/n2 for large enough n.

To get the second bound, we need to use a tighter inequality (since s and n are large)
to bound the binomial coefficients. More concretely, using Stirling’s formula, it holds that(

y
x

)
⩽ 2yH(x/y), for any integers x, y ⩾ 0 and where H(q) = −q log(q)−(1−q) log(1 − q) is the

binary entropy of q ∈ (0, 1). As a result, we get p∗ ⩽ 2n(H(κ)+cκH(1−Φ)+(1−Φ)cκ log((1+ε)κ)).
First, we take small enough ε such that for any κ ⩽ 1/2, | log((1 + ε)κ)| ⩾ 0.9. Next,
note that H(1 − Φ) ⩽ 2

√
Φ(1 − Φ) ⩽ 0.6, where the first inequality is a well-known

upper bound for binary entropy that holds for any Φ ∈ (0, 1) and the second one holds
because 2

√
x(1 − x) takes value 0.6 at x = 1/10 and increases between x = 0 and x =

1/2. Then, H(1 − Φ) ⩽ |(3/4)(1 − Φ) log((1 + ε)κ)|, since the right-hand side is strictly
greater than 0.6 for Φ ⩽ 1/10. Therefore, p∗ ⩽ 2n(H(κ)+(cκ/4)(1−Φ) log((1+ε)κ)). Next,
we take c large enough so that |(cκ/8)(1 − Φ) log((1 + ε)κ)| ⩾ 2|κ log κ|. Then, p∗ ⩽
2n(κ log κ−(1−κ) log(1−κ)+(cκ/8)(1−Φ) log((1+ε)κ)). Since κ log κ − (1 − κ) log(1 − κ) ⩽ 0 for 0 ⩽
κ ⩽ 1/2 and the other term in the exponent is negative, p∗ ⩽ 2n(cκ/8)(1−Φ) log((1+ε)κ). Finally,
we use again log((1 + ε)κ) ⩽ −0.9 to obtain p∗ ⩽ 2−b·s, where b = 0.9c(1 − Φ)/8 does not
depend on κ. Since s = Ω(n), it holds that p∗ ⩽ 1/n2 for large enough n. ◀
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▶ Theorem 8. For any constant Φ ∈ (0, 1/10] and for any O(log n)-regular expander graph
G = (V, E) with constant conductance, Procedure ExpanderDegreeReduction uses
O(log3 n) rounds and O(n log3 n) messages to output an O(1)-bounded degree expander graph
with conductance Φ with high probability.

Proof. We start with the round complexity. By the algorithm definition, we run O(log n)
phases, and within each phase, tokens take at most ℓ = O(log n) steps. Moreover, a simple
randomized analysis shows that each node receives, for any 0 ⩽ i ⩽ ℓ, in expectation
O(c) = O(1) tokens having taken i steps and per incident edge. Thus, by Chernoff bounds,
each node receives, with high probability, at most O(log n) tokens having taken i steps, for
any 0 ⩽ i ⩽ ℓ. (A more detailed analysis can be found in the proof of Lemma 3.2 in [18].)
Thus, under the condition that tokens having taken less steps have priority to be sent,
all tokens take ℓ steps within O(log2 n) rounds with high probability. As for the message
complexity, each node can send at most 1 messages per round, thus the message complexity
follows from the round complexity. Next, the resulting graph trivially has bounded degree
since by the algorithm definition, each node has up to c + δ ⩽ 2δ incident edges.

It remains to show that the resulting graph has constant conductance with high probability.
To do so, we give a similar proof to that of Lemma 1 in [11]. To start with, all nodes are
satisfied when the algorithm ends, by Lemma 6. We consider an arbitrary S ⊂ V of size
s ⩽ n/2 and the following random variables: the edges E1, . . . , Ecs obtained via the algorithm,
each corresponding to a now inactive token originating in S. After which, let the random
variable L(S) denote the number of edges with both endpoints in S. We shall upper bound
Pr[L(S) ⩾ (1 − Φ)cs]. For any integer i ∈ {1, . . . , cs}, let 1i be the indicator random variable
indicating whether Ei has both endpoints in S. Since each token is obtained from a random
walk of length at least ℓ, where ℓ is greater than the mixing time of G, then for any integer
i ∈ {1, . . . , cs}, it holds by union bound that Pr[1i = 1] ⩽ (1 + ε)s/n. Conditioning on the
events 11 = 1, . . . ,1i−1 = 1 can only reduce that probability, since nodes (in S) can hold
a maximum of δ inactive tokens. Thus, Pr

[
1i = 1 |

∧i−1
j=1 1j = 1

]
⩽ (1 + ε)s/n. By the

chain rule of conditional probability, we have Pr
[∧i

j=1 1j = 1
]

= Pr
[
1i = 1 |

∧i−1
j=1 1j = 1

]
·

Pr
[∧i−1

j=1 1j = 1
]

= Pr[11 = 1] ·
∏cs

j=2 Pr
[
1j = 1 |

∧j−1
k=1 1k = 1

]
⩽ ((1 + ε)s/n)i. Note that

in an analogous coin-flipping experiment with cs coins, the probability that you get at least
(1 − Φ)cs coins is upper bounded by the probability that you get (1 − Φ)cs heads and leave
other coins unobserved. Thus, Pr[L(S) ⩾ (1 − Φ)cs] ⩽

(
cs

(1−Φ)cs

)
((1 + ε)s/n)(1−Φ)cs.

From the above inequality, we get p∗ = Pr[∃S, |S| = s and L(S) ⩾ (1 − Φ)cs] ⩽(
n
s

)(
cs

(1−Φ)cs

)
((1 + ε)s/n)(1−Φ)cs. By Lemma 7, p∗ ⩽ 1/n2 for large enough n and some

suitably chosen integer c ⩾ 1 and constant ε ⩾ 0 (where ε can be made as small as required
by taking ℓ = O(log n) large enough). It suffices to union bound over all n/2 possible sizes
for S (for s ∈ {1, . . . , n/2}) to get that the resulting graph has constant conductance Φ with
probability at least 1 − 1/n. ◀

3.2 Computing Graph Sketches via Gossip
Consider a node subset S ⊂ V and a set of (peer-to-peer) edges E′ ⊆ V 2, such that the
graph G′ = (S, E′) is an O(1)-bounded degree expander graph (and thus connected), whose
maximum degree d is known to all nodes (in S). We describe the Aggregate-Sketch-
Vector primitive run on G′. We assume that all nodes in S know the minimum ID among
the nodes in S, that all nodes in S have computed a common graph sketch matrix MG,
with certain properties (see Lemma 11), and that each node u ∈ S has computed the
corresponding sketch vector sG(u). Primitive Aggregate-Sketch-Vector computes the
aggregate sketch vector sG(S) =

∑
u∈S sG(u).
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Description. Each node u ∈ S creates two sketch vectors, a positive sketch vector and a
negative sketch vector, denoted by s+

G(u) and s−
G(u), respectively. s+

G(u) holds all positive
value entries of sG(u) and the remaining entries are zero. s−

G(u) is similarly defined. Define
s+

G(S) =
∑

u∈S s+
G(u) and s−

G(S) =
∑

u∈S s−
G(u). All nodes u run two instances of Push-

Sum (see [36]) for Ts = O(log n log(nx)) phases, where each phase consists of Tp = O(log2 n)
rounds and x comes from the graph sketching matrix MG (see Lemma 11), to obtain s+

G(S)
and s−

G(S). Note that Push-Sum, as described in [36], was described for a complete graph
and is a gossip-style technique to compute aggregate functions (like average, sum, etc.) in
a network. The description below shows how to simulate it on an O(1)-bounded degree
expander to compute the sum.

We describe an instance of Push-Sum from the perspective of node u to obtain s+
G(S).

The process is similar to obtain s−
G(S). At the end of each phase t, each node u maintains

some weight value w+
t,u and some estimate of the average of the sketches s+

t,u. After a
sufficiently long time t∗ = TsTp + 1 has passed, the ratio s+

t∗,u/w+
t∗,u will be an approximation

of s+
G(S).
Initially, the minimum ID node min sets its weight w+

0,min = 1 and the remaining nodes u

set their weights w+
0,u = 0. Initially, every node u sets s+

0,u = s+
G(S). We assume that at the

end of the phase 0 (i.e., before the algorithm begins), each node u sends the pair (w+
0,u, s+

0,u)
to itself.

In each phase t ⩾ 1 of Push-Sum, each node u does the following. Let {(ŝr, ŵr)} be
all pairs sent to node u at the end of phase t − 1. Node u computes s+

t,u =
∑

r ŝr and
w+

t,u =
∑

r ŵr.14 Node u constructs the pair ( 1
2 s+

t,u, 1
2 w+

t,u) and sends it to itself and a node
v ∈ S chosen uniformly at random as follows. Node u initiates a lazy random walk of length
O(log n) within G′ carrying the message ( 1

2 s+
t,u, 1

2 w+
t,u). During these Tp rounds, node u

helps other messages continue their random walks. After Ts phases are over, i.e, at time
t∗ = TsTp + 1 rounds, an approximation of s+

G(S) is constructed at node u as s+
t∗,u/w+

t∗,u.
The correct values of s+

G(S) can be recovered from s+
t∗,u/w+

t∗,u by rounding each element in
s+

t∗,u/w+
t∗,u to the nearest legal value, i.e., the value that an element in the sketch vector can

take.
Now, each node has computed s+

G(S) and s−
G(S), and computes the output sG(S) as

sG(S) = s+
G(S) + s−

G(S).

Analysis. In order to capture the properties of Aggregate-Sketch-Vector, we must
first look at the properties of Push-Sum. The following lemma from [36] captures the
properties of Push-Sum. To bridge the notation, notice that each node u contains some
initial sketch vector xu = s+

G(u) (and for another instance of Push-Sum xu = s−
G(u)) and

our goal is to calculate
∑

j∈S xj .

▶ Lemma 9 (Theorem 3.1 in [36]).
1. With probability at least 1 − δ, there is a time t0 = O(log n + log 1

ε + log 1
δ ), such that

for all times t ⩾ t0 and all nodes u, the relative error in the estimate of the average at

node u is at most ε ·
∑

j
|xj |

|
∑

j
xj |

(where the relative error is 1
|
∑

j
xj |

· | st,u

wt,u
− 1

n ·
∑

j xj |). In

particular, the relative error is at most ε whenever all values xj have the same sign.
2. The sizes of all messages sent at time t are bounded by O(t + maxj bits(xj)) bits, where

bits(xj) denotes the number of bits in the binary representation of xj.

14 Recall that s+
t,u is some vector. The sum of vectors denotes the sum of the elements for each index of

the vectors.
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As mentioned in [36], we can get the sum of the values of all nodes instead of just the
average, by setting the initial weights such that only one node has weight 1 and the remaining
have weight 0, as we do in Aggregate-Sketch-Vector.

It should be noted that the original Push-Sum was designed for a complete graph, where
each node u could sample one of the nodes of the graph uniformly at random. We simulate
this process on an O(1)-bounded degree expander by having node u choose another node as
the result of a lazy random walk that is run for the mixing time. This guarantees us that we
may sample a node in S nearly uniformly at random.

Since this requires multiple nodes initiating and facilitating random walks simultaneously,
we make use of the following lemma, adapted from a lemma in [18]. We note that it is for the
traditional CONGEST model, where every node can communicate with all of its neighbors
in a given round, unlike the current setting. We explain in the analysis of the final lemma of
this section, how the following lemma can easily be adapted to the current model.

▶ Lemma 10 (Adapted from Lemma 3.2 in [18]). In the traditional CONGEST model, let
G = (V, E) be an undirected graph and let each node v ∈ V , with degree d(v), initiate ηd(v)
random walks, each of length λ. Then all walks reach their destinations in O(ηλ log n) rounds
with high probability.

The following lemma shows that Aggregate-Sketch-Vector works as desired to help
us reconstruct the aggregate of the initial sketch vectors in the desired time.

▶ Lemma 11. Assume that each node u has a graph sketch vector sG(u) computed using a
graph sketching matrix MG that satisfies the following properties:

For all nodes u, elements in sG(u) belong to the same range of values [L, U ], where
L, U ∈ R, and U − L = x ̸= 0.
The range of values taken by elements in the sketch vector, Range, is some totally ordered
countable set of numbers such that the minimum distance between any two numbers is at
least some constant c > 0, i.e., ∀u, v ∈ Range if u ̸= v, then |u − v| ⩾ c.

If all nodes u ∈ S participate in Aggregate-Sketch-Vector for O(log3 n log(nx)) rounds,
then each node outputs the aggregated sketch vector sG(S) =

∑
u∈S sG(u) with high probability.

Proof. We first argue that Push-Sum is faithfully simulated. Each round of the original
Push-Sum corresponds to O(log n) phases of the process as described here. We first describe
the end result of one phase. In one phase, we ensure that a lazy random walk starting at some
node u is run for enough rounds to reach mixing time. In an O(1)-bounded degree expander,
the mixing time of one single lazy random walk is O(log n) rounds. However, since each node
simultaneously initiates a single lazy random walk of length O(log n), by Lemma 10, we see
that we need O(log2 n) rounds to ensure that they all complete. Furthermore, it should be
noted that Lemma 10 applies to the traditional CONGEST model. However, in a bounded
degree graph with maximum degree d, one round of the traditional CONGEST model can
be simulated in d rounds in the current model. Since d = O(1), we incur no overhead with
respect to the lemma and see that the O(1) random walks initiated from each node, each run
for O(log n) time, require in total O(log2 n) rounds to complete. Thus in one phase, some
node from G′ will be sampled (nearly) uniformly at random.

To faithfully simulate Push-Sum, we want the sampled node to not be the starting
node. However, in order to ensure that some node, other than the starting node, is sampled
uniformly at random, we need to run O(log n) phases of this protocol. By a simple Chernoff
bound, we can see that with high probability, even when |S| = O(1), a random walk starting
at some node u will sample some node that is not u.
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Notice that by separating each node’s sketch vector into two vectors corresponding to
positive values and negative values and using Push-Sum to find the aggregate of each set of
vectors separately, we ensure that the signs of values being aggregated is the same. From
Lemma 9, we see that the relative error of any entry is thus at most ε. By setting ε = 1/nx,
we see that the output of each element of the sketch vector is within 1/n of the actual value.
Since each element of the sketch vector can only take values such that the distance between
values is some constant c, it is easy to see that rounding the element to the nearest legal
value gives the correct value (since the outputted value will only be at most some 1/n ≪ c/2
from a legal value).

Finally, in order to ensure that these guarantees are with high probability, it is sufficient
to set δ = 1/n in Lemma 9. Substituting the values of ε and δ in Lemma 9, we get the
corresponding run time. ◀

In our main algorithm in Section 4, Aggregate-Sketch-Vector is used to compute the
aggregate of the sketch vectors that are obtained via the graph sketching matrix guaranteed by
Lemma 1 in Section 2.2. That matrix satisfies the requirements of Lemma 11 and x = O(nr),
for some positive constant r ⩾ 1, and c = 1. Thus, we have the following corollary.

▶ Corollary 12. Consider any node subset S ⊂ V and set of (possibly peer-to-peer) edges
E′ ⊆ V 2, such that the graph G′ = (S, E′) is an O(1)-bounded degree expander graph. Assume
that each node u has a graph sketch vector sG(u) computed using the graph sketching matrix
guaranteed by Lemma 1 in Section 2.2. If all nodes u ∈ S participate in Aggregate-
Sketch-Vector for O(log4 n) rounds, then each node will obtain the aggregated sketch
vector sG(S) =

∑
u∈S sG(u) with high probability.

4 Overlay Construction Protocol

Let G = (V, E) be the original graph and let Φ ∈ (0, 1/10] be the desired conductance. We
show how to transform any arbitrary graph G = (V, E) (even with large degree) into an
expander overlay network with conductance ⩾ Φ and bounded degree. We assume the harder
case of Φ = Ω(1), or in other words, of building an overlay network with conductance Ω(1).

Initially, each node forms its own (high conductance) cluster, and the set of intra-cluster
edges E0 is empty. In each stage i ∈ [1, k], we compute a new set of edges Ei ⊆ V 2 that
merge the stage’s starting clusters into fewer and larger-sized (high conductance) clusters.
In fact, the merging reduces the number of clusters by half with constant probability. After
k = O(log n) stages, the resulting edge set Ek generates an expander graph G(Ek) = (V, Ek)
with high conductance (i.e., at least Φ).

4.1 Algorithm Description
The algorithm runs in k = O(log n) stages, each consisting of three steps. We ensure the
following invariant holds at the start of each stage i ∈ [1, k]: the graph generated by Ei−1,
G(Ei−1) = (V, Ei−1), is decomposed into clusters (i.e., connected components) with constant
conductance Φ and constant maximum degree. (Note that the initial edge set E0 is empty
and thus the invariant holds trivially.)

First Step. Nodes spread, within each cluster of G(Ei−1), the minimum ID and an associated
O(log2 n) random bit string, by executing a PUSH style information spreading algorithm
(e.g., see [21] or [25]) over (each cluster of) G(Ei−1) for Tg = O(Φ−1 log n) rounds. More

ITCS 2024



42:16 Time- and Communication-Efficient Overlay Network Construction via Gossip

concretely, nodes do the following. Initially, each node picks an O(log2 n) bit random string.
Then, in each round, each node chooses one random neighbor in G(Ei−1) and sends a
message containing ⟨minimum ID seen so far, associated random string⟩ to it. Since G(Ei−1)
decomposes into clusters of maximum degree O(1) and of conductance ⩾ Φ, and thus of
diameter O(Φ−1 log n), the result of [21] implies that Tg rounds is sufficient to spread, within
each cluster, that cluster’s minimum ID and its associated O(log2 n) bit random string.

Second Step. Now, all nodes within some cluster Vj of G(Ei−1) know the minimum ID of
that cluster and the associated O(log2 n) bit random string. Then, nodes use this shared
randomness to sample one edge per cluster, using graph sketches. We describe how this
is done in the next paragraph. Each such sampled edge is an inter-cluster edge (i.e., its
endpoints are in different clusters) with constant probability. These sampled inter-cluster
edges – the set of which is denoted by Ec

i – allow to merge clusters of G(Ei−1), reducing them
by a constant fraction with constant probability. However, although each cluster samples a
single edge, each node may have ω(1) incident edges in Ec

i : for example, if many clusters
sample edges incident to one particular node. Thus, we finish the step by computing a second
edge set Eb

i such that G(Eb
i ) has bounded degree and preserves the connectivity of G(Ec

i ).
Let v be any node within some cluster Vj of G(Ei−1). First, each node v computes its

sketch vector sG(v) (using the cluster’s shared random string to generate a graph sketching
matrix, see Subsection 2.2) and runs Procedure Aggregate-Sketch-Vector. Its output
is the aggregated sketch vector σ(v) =

∑
v∈Vj

sG(v). Next, v samples an edge using σ(v)
(see Subsection 2.2), and this edge is an inter-cluster edge with some constant probability δ.
If v is an endpoint of that edge, then it contacts the other endpoint node, they exchange
information on their cluster’s minimum ID and v drops the edge if these IDs are identical. In
other words, all sampled edges whose endpoints come from different clusters (i.e., exchanged
different IDs) are added to the edge set Ec

i , whereas others are simply “dropped”.
Now, it remains to compute Eb

i , by applying a simple degree reduction procedure on
Ec

i . Note that for each edge in Ec
i , one node belongs to the cluster that sampled that edge.

That node is said to own the edge and one can, for the sake of the procedure’s description,
orient the edge from the owner node to the other endpoint. Then, nodes do the following in
two rounds. Initially, nodes add all incident edges in Ec

i to Eb
i . Any node u with at least 3

incoming incident edges in Eb
i – the set of their owners is denoted by Nu – locally computes

an arbitrary undirected cycle over Nu ∪ {u}, and locally replaces these incident edges in Eb
i

with its two incident edges in that cycle. Then, each node that owns an edge contacts the
other endpoint, and they exchange the result of their local computations (if any). Finally,
nodes that received a cycle locally replace their owned edge in Eb

i with their two incident
edges in that cycle.

Third Step. Finally, we transform each cluster of G(Ei−1 ∪ Eb
i ) into an O(1)-bounded

degree expander graph with constant conductance Φ. More concretely, we compute a set
of edges Ei for which: (i) each cluster of G(Ei) is a cluster of G(Ei−1 ∪ Eb

i ), and (ii) each
cluster of G(Ei) is an O(1)-bounded degree expander graph with constant conductance Φ.

To do so, we first run Procedure CreateExpander (described in Subsection 2.3) for
O(log2 n) rounds. This computes, for each cluster of G(Ei−1 ∪ Eb

i ), an O(log n)-regular
expander graph with constant conductance Φ. Next, we run Procedure ExpanderDe-
greeReduction (described in Subsection 3.1) for O(log3 n) rounds to reduce the degree
of these expander graphs to some constant. More precisely, this procedure computes, for
each O(log n)-regular expander graph, an O(1)-bounded degree expander graph that also
has constant conductance Φ. Adding together the edges of all these O(1)-bounded degree
expander graphs gives the edge set Ei.
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4.2 Analysis
To prove the correctness of our overlay construction algorithm and bound its round and
message complexities (see Theorem 17), we first give a series of lemmas that rely upon the
following invariant: for any stage i ∈ [1, k], all clusters of G(Ei−1) are O(1)-bounded degree
expander graphs with constant conductance Φ. We start by showing that each edge sampled
using graph sketching is an inter-cluster edge with constant probability.

▶ Lemma 13. For any stage i ∈ [1, k], assume all clusters of G(Ei−1) are O(1)-bounded
degree expander graphs with constant conductance Φ. Then, each cluster of G(Ei−1) samples
an inter-cluster edge with probability at least 3/4.

Proof. Since we use the information spreading algorithm of [25] (see Theorem 1 in [25]), and
all clusters of G(Ei−1) are O(1)-bounded degree expander graphs with constant conductance
Φ, then for each such cluster, the minimum ID and the associated O(log2 n) bits random
string is spread to all of that cluster’s nodes in O(Φ−1 log n) rounds w.h.p.

Next, consider any cluster Vj of G(Ei−1). Recall that each node v ∈ Vj computes its sketch
vector sG(v) initially and uses it as input for Procedure Aggregate-Sketch-Vector.
Its output is σ(v) =

∑
u∈Vj

sG(u), the aggregate of sketch vector within cluster Vj , with
high probability by Corollary 12. Then, by choosing δ = 1/4, each node can sample an
inter-cluster edge from this aggregate vector with constant probability 1 − δ = 3/4, by
Lemma 1. ◀

As a result of the above lemma, many sampled edges are inter-cluster with constant
probability. Thus, the addition of these sampled edges significantly reduces the number of
clusters – in fact, by a constant fraction – with constant probability.

▶ Lemma 14. For any stage i ∈ [1, k], assume all c ⩾ 1 clusters of G(Ei−1) are O(1)-bounded
degree expander graphs with constant conductance Φ. If G(Ei−1) has c > 1 clusters, then
G(Ei−1 ∪ Ec

i ) has at most 3c/4 clusters with probability at least 1/2.

Proof. All clusters of G(Ei−1) are O(1)-bounded degree expander graphs with constant
conductance Φ (from the lemma’s assumption). Then, by Lemma 13, each cluster of G(Ei−1)
samples an inter-cluster edge with probability 3/4. By linearity of expectation, in expectation
3c/4 of the sampled edges are inter-cluster edges, or equivalently, in expectation c/4 sampled
edges are intra-cluster edges. Applying Markov’s inequality, the probability that more than
c/2 sampled edges are intra-cluster is at most 1/2, or equivalently, the probability that at
least c/2 sampled edges are inter-cluster is at least 1/2. Any of these inter-cluster edges
(say, from Vj to Vj′) allows to merge two clusters and reduce the number of clusters by 1,
unless an inter-cluster edge from Vj′ to Vj was also sampled. Hence, if there are at least a

inter-cluster edges, then G(Ei−1 ∪ Ec
i ) has at most c − a/2 clusters. Thus, G(Ei−1 ∪ Ec

i ) has
at most 3c/4 clusters with probability at least 1/2. ◀

Note that the sampled inter-cluster edges may generate a graph with large degree. Next,
we prove that the degree reduction procedure used in the second step is correct.

▶ Lemma 15. For any stage i ∈ [1, k], G(Eb
i ) has maximum degree at most 4 and preserves

the connectivity of G(Ec
i ), that is, for any edge (u, v) ∈ Ec

i , u and v are connected in G(Eb
i ).

Proof. Consider an arbitrary node u. As in the algorithm description, for each edge of Ec
i ,

assume for the sake of the proof that it is directed from the sampling cluster outwards. (Note
that Ec

i contains no edges with both endpoints in the same cluster.) We show that u is
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incident to at most 2 edges in Eb
i due to incoming edges in Ec

i , and to at most 2 other edges
in Eb

i due to outgoing edges in Ec
i ; thus, u has a degree of at most 4 in G(Eb

i ). On the
one hand, if u has at least 3 incoming edges in Ec

i , then these edges are replaced by only 2
edges (from the cycle built by u in the second half of the second step) in Eb

i . On the other
hand, each cluster, and thus node, is incident to at most one outgoing edge in Ec

i (by the
algorithm definition). This outgoing edge may be replaced by at most two edges in Eb

i (when
the outgoing edge’s other endpoint has more than 3 incoming edges in Ec

i ).
Finally, it is straightforward to show that G(Eb

i ) preserves the connectivity of G(Ec
i ).

Indeed, any edge (u, v) ∈ Ec
i that does not remain in Eb

i is replaced by a cycle in Eb
i (locally

computed by either u or v) that includes both u and v. ◀

Next, we show that the invariant is maintained, and that the stage reduces the number
of clusters by a constant fraction with constant probability.

▶ Lemma 16. For any stage i ∈ [1, k], assume all c ⩾ 1 clusters of G(Ei−1) are O(1)-bounded
degree expander graphs with constant conductance Φ. Then, all c′ ⩽ c clusters of G(Ei) are
O(1)-bounded degree expander graphs with constant conductance Φ. Moreover, if G(Ei−1)
has c > 1 clusters, then G(Ei) has at most 3c/4 clusters with probability 1/2.

Proof. Consider some stage i ∈ [1, k]. Let the c ⩾ 1 clusters of G(Ei−1) be denoted by
V1, . . . , Vc. We first provide some properties about G(Ei−1 ∪ Eb

i ). To start with, G(Ei−1)
has constant maximum degree (from the lemma’s assumption) and thus by Lemma 15,
G(Ei−1 ∪ Eb

i ) also has constant maximum degree, denoted by d. Second, each cluster Vi of
G(Ei−1) is part of (i.e., a subset of) some cluster in G(Ei−1 ∪ Eb

i ), as the latter graph only
has additional edges. Third, if G(Ei−1) has c > 1 clusters, then G(Ei−1 ∪ Eb

i ) has at most
c/2 clusters with constant probability. Indeed, G(Ei−1 ∪ Ec

i ) has at most 3c/4 clusters with
probability at least 1/2. Since G(Ei−1 ∪ Eb

i ) preserves the connectivity of G(Ei−1 ∪ Ec
i ) by

Lemma 15, G(Ei−1 ∪ Eb
i ) also has at most 3c/4 clusters with probability at least 1/2.

Finally, recall that the edge set Ei is obtained by nodes running Procedure CreateEx-
pander (with parameters Φ and d) followed by Procedure ExpanderDegreeReduction
on each cluster of G(Ei−1 ∪ Eb

i ). First, note that Procedures CreateExpander and Ex-
panderDegreeReduction do not disconnect any clusters of G(Ei−1 ∪ Eb

i ), and thus in
particular G(Ei) has at most as many clusters as G(Ei−1 ∪ Eb

i ). Moreover, by Lemma 2 and
Theorem 8, each cluster of G(Ei) is an O(1)-bounded degree expander graph with constant
conductance Φ. This completes the proof. ◀

Note that by definition, any graph has at least one cluster. The above lemma implies
that within O(log n) stages, we obtain a graph with exactly one high-conductance cluster,
and thus solve the overlay construction problem – see the following theorem.

▶ Theorem 17. The overlay construction problem can be solved with high probability in
O(log5 n) rounds and Õ(n) messages.

Proof. To start with, for any given stage i ∈ [1, k], the stage is said to be successful if G(Ei)
either (i) has a single cluster or (ii) has less than 3/4 as many clusters as G(Ei−1). By
Lemma 16 (and a simple induction on i), each stage is successful with probability at least 1/2.
Hence, for a large enough number k = O(log n) of stages, a simple application of Chernoff
bounds imply that there are at least log4/3 n successful stages. Thus, G(Ek) has a single
cluster. Moreover, by Lemma 16 again, G(Ek) is an O(1)-bounded degree expander graph
with constant conductance Φ. The correctness follows.
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The round complexity of O(log5 n) is straightforward: O(log n) stages each take O(log4 n)
rounds. The message complexity follows directly from the time complexity, the fact that
communication is always done on graphs of degree at most O(log n), and that messages of
size O(polylog n) suffice throughout the algorithm (both to share the random string in the
first step and by Lemma 9, during Procedure Push-Sum in the second step). ◀

5 Experimental Results

The proposed overlay construction protocol is implemented in a sequential simulation to
study properties of the algorithm for a few different types of low-conductance graphs. We
study the number of rounds and the conductance of the resulting graphs. The simulation
follows the algorithm’s steps with some small deviations.

The algorithm is implemented in sequential simulated form using Python and the graph
library graph_tool [47], to study properties of the algorithm for a few low-conductance graphs
with different properties, and study the number of rounds and estimate the conductance
provided by the algorithm. A full discussion of the implementation is provided in the
full version. The types of graphs tested by the simulator include a high-diameter cycle
graph circle-10000, a graph on a square grid grid-50-50, a randomly-generated preferential
attachment graph barabasi-2000-2-2, as well as modestly sized real-world graphs with differing
topologies: graphs modeling disease contagion kissler, social network attachment twitch, and
citation networks wiki. Table 1 summarizes the results.

Table 1 Table showing simulation results on various input graphs (denoted by G) and the
corresponding graphs output by the protocol (denoted by GE). n is the number of nodes of G.
Phases denotes the number of phases of the overlay construction protocol that were required to
produce GE . DG and DGE are lower-bound estimates of the graph diameter of G and GE . ΦG and
ΦGE are upper-bound estimates of conductance of G and GE .

Graph n Phases DG DGE ΦG ΦGE

circle-10000 10000 6 1111 6 0.068 0.453
grid-50-50 2500 5 98 4 0.148 0.449

barabasi-2000-2-2 2000 3 5 4 0.4 0.451
wiki 2277 3 16 4 0.08 0.450

twitch 7126 3 10 5 0.143 0.452
kissler 409 3 9 3 0.2 0.446

The conductance of the input and the final overlay G and GE are each estimated using O(n)
sampled graph cuts, to provide an upper-bound estimate on the actual graph conductances
ΦG and ΦGE

. The table shows for each input graph these conductance estimates as well as
the number of phases of the protocol required for the algorithm to terminate. The table also
gives the estimate of the diameters DG and DGE

of the initial and final graphs respectively,
given by the pseudo-diameter as calculated for a sampling of nodes. The results show that the
conductance of the constructed graph is likely significantly higher compared to the starting
graph and is close to 0.5 which is essentially the best possible value for a constant-degree
random graph. The results also show that the diameter of the final expander is roughly in
line with expectations of an O(log n) bound, and that the number of rounds, conductance,
and diameter of GE are independent of the edge density of the initial graph.
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6 Conclusion

In this paper, we presented the first distributed overlay construction protocol that is fast
(taking O(log5 n) rounds) as well as taking significantly less communication (using Õ(n)
messages, regardless of the number of edges of the initial graph). The protocol assumes the
P2P-GOSSIP model which uses gossip-based communication (which is very lightweight) and
the reconfigurable nature of P2P networks. Both bounds are essentially the best possible.
Our result also implies that the distributed complexity of solving fundamental problems
such as broadcast, leader election, and MST construction is significantly smaller in the
P2P-GOSSIP model compared to the standard CONGEST model.

Several open questions remain. One is to improve the round complexity of our protocol.
In particular, can we improve the round complexity to O(log2 n) rounds while keeping Õ(n)
communication? Another interesting follow up work is to adapt our protocol to work under
a churn setting. A third interesting research direction is to investigate the complexity of
other fundamental problems such as computing shortest paths in the P2P-GOSSIP model.
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