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Abstract
We study algebraic complexity classes and their complete polynomials under homogeneous linear
projections, not just under the usual affine linear projections that were originally introduced by
Valiant in 1979. These reductions are weaker yet more natural from a geometric complexity theory
(GCT) standpoint, because the corresponding orbit closure formulations do not require the padding
of polynomials. We give the first complete polynomials for VF, the class of sequences of polynomials
that admit small algebraic formulas, under homogeneous linear projections: The sum of the entries
of the non-commutative elementary symmetric polynomial in 3 by 3 matrices of homogeneous linear
forms.

Even simpler variants of the elementary symmetric polynomial are hard for the topological closure
of a large subclass of VF: the sum of the entries of the non-commutative elementary symmetric
polynomial in 2 by 2 matrices of homogeneous linear forms, and homogeneous variants of the
continuant polynomial (Bringmann, Ikenmeyer, Zuiddam, JACM ’18). This requires a careful study
of circuits with arity-3 product gates.
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43:2 Homogeneous Algebraic Complexity Theory and Algebraic Formulas

1 Motivation: Geometric Complexity Theory and Padding

Geometric Complexity Theory (GCT) is an approach towards proving algebraic variants of the
P ̸= NP conjecture using algebraic geometry and representation theory [27, 28]. Let detn :=
Σσ∈Sn

sgn(π)
∏n

i=1 xi,σ(i) be the determinant polynomial, and let perm := Σσ∈Sm
Πm

i=1xi,σ(i)
be the permanent polynomial. An algebraic version of the P ̸= NP conjecture, often called
Valiant’s determinant vs. permanent conjecture, states that the smallest size of a matrix
A whose entries are affine linear polynomials such that det(A) = perm, is not polynomially
bounded in m. Mulmuley and Sohoni strengthened the conjecture by allowing the permanent
to be approximated arbitrarily closely coefficientwise instead of being computed exactly.

The Mulmuley–Sohoni conjecture can be stated in terms of group orbit closures as
ℓn−mperm ̸∈ GLn2 detn, if n = poly(m); here GLn2 := GL(Cn×n) acts on the space of
homogeneous degree n polynomials in n2 variables by (invertible) linear transformations of
the variables1, ℓ is some homogeneous linear polynomial (one can assume ℓ := x1,1), and
the closure can be taken equivalently in the Zariski or the Euclidean topology, see e.g. [24,
AI.7.2 Folgerung]. The polynomial ℓm−npern is called the “padded permanent”, and the
phenomenon of multiplying with a power of a linear form is called padding. Note here that the
action of GLn2 replaces variables by homogeneous linear polynomials. One could formulate
this setup without padding, but then the reductive group GLn2 would have to be replaced
by the general affine group (see e.g. [26]), which is not a reductive group. For reductive
groups, every representation decomposes into a direct sum of irreducible representations.
This is important for the representation theoretic attack proposed in [27, 28], hence the
padding is introduced in those papers. The idea is that ℓn−mperm ∈ GLn2 detn if and only
if GLn2 ℓn−mperm ⊆ GLn2 detn. Such an inclusion induces a GLn2-equivariant surjection
between the coordinate rings and between their homogeneous degree δ components, see
e.g. [12]: C[GLn2 detn]δ ↠ C[GLn2 ℓn−mperm]δ. Now, since the group GLn2 is reductive,
both sides decompose into irreducible representations of GLn2 :

C[GLn2 detn]δ︸ ︷︷ ︸
=
⊕

λ
dλVλ

↠ C[GLn2 ℓn−mperm]δ︸ ︷︷ ︸
=
⊕

λ
pλVλ

,

where λ is a non-increasing list of n2 many nonnegative integers, and Vλ is the irreducible
GLn2 representation of type λ. Schur’s lemma (see e.g. [16]) implies that ∀λ : dλ ≥ pλ. A λ

with dλ < pλ is called a multiplicity obstruction. If additionally we have that dλ = 0, then λ

is called an occurrence obstruction. Issues with the padding were known from the beginning,
and machinery to carry over information from C[GLm2 perm] to C[GLn2 ℓn−mperm] was
discussed, see e.g. [12]. The impact of the padding on λ was first highlighted by Kadish
and Landsberg [23], where they use the padding to classify a large class of λ as not useful.
This was later strengthened in [19, 11], where it was shown that all relevant λ have strictly
positive dλ, so that occurrence obstructions are not sufficient to prove Mulmuley and Sohoni’s
conjecture. This is known as the occurrence obstruction no-go result.

However, the padding can be removed by replacing detn by the iterated matrix multiplic-
ation polynomial in 2n + n2(d− 2) variables:

IMMn,d := ( x1,1,1 x1,2,1 ··· x1,n,1 )
( x1,1,2 ··· x1,n,2

...
. . .

...
xn,1,2 ··· xn,n,2

)
· · ·

( x1,1,d−1 ··· x1,n,d−1

...
. . .

...
xn,1,d−1 ··· xn,n,d−1

)( x1,1,d

...
xn,1,d

)
.

1 For a homogeneous polynomial p and g ∈ GLn2 define the homogeneous polynomial gp via (gp)( #»x ) :=
p(gt #»x ). The orbit is defined as GLn2 p := {gp | g ∈ GLn2 }.
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Again, the task is to show that a surjection cannot exist:

C[GL2n+n2(d−2) IMMn,d]δ︸ ︷︷ ︸
=
⊕

λ
iλVλ

↠ C[GL2n+n2(d−2) perd]δ︸ ︷︷ ︸
=
⊕

λ
jλVλ

.

Analogously to dλ vs pλ, one searches for λ with iλ < jλ. In fact, it is known that the jλ can be
determined independently of n via inheritance theorems (see [18]): C[GLd2 perd]δ =

⊕
λ jλVλ.

There are no no-go results known for this approach, but no strong equations vanishing on
the orbit closure of IMM have been found so far.

Our main contribution in this paper is the discovery of new natural polynomials that serve
as much simpler replacements for IMM, which are still powerful enough to imply variants of
Valiant’s conjecture, see §3.1.

2 Algebraic Complexity Theory

A sequence of natural numbers m = (mn)n∈N is called polynomially bounded if there exists
a univariate polynomial t such that ∀n ∈ N : mn ≤ t(n). Let B denote the set of all
polynomially bounded sequences. Let S := C[x1, x2, . . .] denote the set of all polynomials,
and let Sd denote the vector space of all homogeneous degree d polynomials (including the zero
polynomial). We sometimes use the notation n 7→ a(n) to denote the function a, for example
n 7→ n is the identity map. For a sequence g ∈ SN of polynomials let deg(g) := n 7→ deg(gn)
be the sequence of degrees. Analogously, for a polynomial p define nvar(p) to be the number of
variables appearing in p, and for a sequence g ∈ SN of polynomials let nvar(g) := n 7→ nvar(gn).
A sequence g ∈ SN is called a p-family if deg(g) ∈ B and nvar(g) ∈ B. We sometimes call
p-families ungraded p-families, and we propose a definition of a graded p-family in §3, which
will be useful for obtaining padding-free orbit closure formulations. The classical complexity
classes that we discuss in this section are defined in terms of ungraded p-families.

An algebraic formula is a directed tree with a unique sink vertex. The source vertices are
labelled by affine linear combinations of variables, and each internal node of the graph is
labelled by either + or ×. Nodes compute polynomials in the natural way by induction. An
algebraic circuit is slightly more general: The underlying digraph is required to be acyclic,
but not necessarily a tree. The size of a circuit/formula is the number of its vertices. VF is the
class of p-families (fn)n∈N, with required formula size of fn being polynomially bounded. VP
is the class p-families (fn)n∈N, with required circuit size of fn being polynomially bounded.

Every homogeneous degree d polynomial p can be written as a product

p = ( ℓ1,1,1 ℓ1,2,1 ··· ℓ1,n,1 )
(

ℓ1,1,2 ··· ℓ1,n,2

...
. . .

...
ℓn,1,2 ··· ℓn,n,2

)
· · ·

(
ℓ1,1,d−1 ··· ℓ1,n,d−1

...
. . .

...
ℓn,1,d−1 ··· ℓn,n,d−1

)(
ℓ1,1,d

...
ℓn,1,d

)

of matrices whose entries are homogeneous linear polynomials. We define w(p) to be the
smallest possible such n, and call it the homogeneous branching program width of p. For an
inhomogeneous polynomial, we define w(p) :=

∑
d∈N w(pd) to be the sum of the widths of its

homogeneous components. VBP is the class of p-families whose w is polynomially bounded.
The permanental complexity of a polynomial f is the smallest n such that f can be written

as the permanent of an n× n matrix of affine linear polynomials. The class VNP consists of
all p-families (fn)n∈N for which the permanental complexity is polynomially bounded.

It is known that VF ⊆ VBP ⊆ VP ⊆ VNP [34, 33]. The conjectures VF ̸= VNP,
VBP ̸= VNP, VP ≠ VNP, are known as Valiant’s conjectures. Especially VBP ̸= VNP is
known as the determinant vs permanent problem. A sequence (cn)n∈N of natural numbers is
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43:4 Homogeneous Algebraic Complexity Theory and Algebraic Formulas

called quasipolynomially bounded if there exists a polynomial q with ∀n ≥ 2 : cn ≤ nq(log2 n).
In the definitions of VF, VBP, VP, if we change the upper bound on the complexity to
“quasipolynomially bounded” instead of just “polynomially bounded”, then each time we
obtain the same class, which we call VQP, see [8]. The conjecture VNP ̸⊆ VQP is called
Valiant’s extended conjecture.

2.1 Border Complexity
The complexity notions mentioned above, such as formula size, circuit size, width w, per-
manental complexity, have an associated border complexity variant: A polynomial has border
complexity ≤ k if it is the limit of polynomials of complexity at most k. Here, the limit
is taken in the Euclidean topology on the coefficient vector space, see e.g. [20]. Border
complexity measures are usually indicated by an underlined symbol: e.g., w is the border
homogeneous algebraic branching program width. Clearly w(p) ≤ w(p) for all polynomials p.

The border complexity analogues of the classical classes are denoted by an overline,
e.g., VF is the class of p-families with polynomially bounded border formula complexity2.
While Valiant’s conjecture states that w(per) grows superpolynomially (VBP ̸= VNP), the
Mulmuley-Sohoni conjecture states that w(per) grows superpolynomially (VNP ̸⊆ VBP). The
extended Valiant’s conjecture states that w(per) grows superquasipolynomially (VNP ̸⊆ VQP),
and it is natural to merge these to the extended Mulmuley-Sohoni conjecture: w(per) grows
superquasipolynomially (VNP ̸⊆ VQP).

Border complexity is an old area of study in algebraic geometry. In theoretical computer
science it was introduced in [3, 2] in the context of fast matrix multiplication. In algebraic
complexity theory, border complexity was first discussed independently in [27, 9].

3 Graded p-families and Homogeneous Reductions

In this section we generalize known concepts from algebraic complexity theory from univariate
to bivariate by adding a degree parameter. This gives the correct setting for homogeneous
linear projections, which is the natural setting for padding-free geometric complexity theory.
We are very formal in this section, because the readers are used to affine projections, and
some steps might seem very subtle.

For the connections between the homogeneous and inhomogeneous setting, see §4.2.
As usual, for a set A, we identify sequences a ∈ AN with functions N→ A, and we write

an = a(n). We use the same notation for functions N× N→ A, i.e., an,d = a(n, d).
A function m : N × N → N is called bivariately polynomially bounded if there exists

a bivariate polynomial t such that ∀(n, d) ∈ N × N : mn,d ≤ t(n, d). We propose the
following definition of a graded p-family in order to work with the weak reduction notion of
homogeneous linear projections, which enables padding-free orbit closure formulations.

▶ Definition 3.1. A graded p-family f is a map f : N× N→ S such that
(n, d) 7→ nvar(fn,d) is bivariately polynomially bounded, and
every fn,d is either zero or homogeneous of degree d.

For example, IMM(n, d) = IMMn,d is a graded p-family. The natural reduction notion for
graded p-families are homogeneous linear projections, which are defined as follows. Suppose
U, W are finite dimensional complex vector spaces and p ∈ C[U ]d, q ∈ C[W ]d are homogeneous

2 see [20] for the definition of the closure of sets of p-families in general.
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degree d (where d > 0) polynomials. We say that p is a homogeneous linear projection of q,
and write p ≤homlin q, if p ∈ {q ◦A | A : U →W linear}. For degree d = 0 we define that for
any nonzero q we have p ≤homlin q. For graded p-families f and h we write f ≤p-homlin h if
there exists m ∈ B such that for all n, d we have fn,d ≤homlin hmn,d. The border complexity
version is analogous: p ⊴homlin q, if p ∈ {q ◦A | A : U →W linear}, and f ⊴p-homlin h, if
∃m ∈ B ∀n, d : fn,d ⊴homlin hmn,d. If m is only quasipolynomially bounded, we obtain the
analogous quasipolynomial variants f ≤qp-homlin h and f ⊴qp-homlin h.

Ungraded p-families g are graded p-families in the natural way, by setting gn,d to be the
homogeneous degree d component of gn. In particular, the permanent can be interpreted in
this way as a graded p-family. This allows us to phrase the four conjectures in this language:

VNP = VBP if and only if per ≤p-homlin IMM,

VNP ⊆ VBP if and only if per ⊴p-homlin IMM,

VNP ⊆ VQP if and only if per ≤qp-homlin IMM,

VNP ⊆ VQP if and only if per ⊴qp-homlin IMM.

Since per is a p-family of homogeneous polynomials, the question per ⊴p-homlin IMM is about
the existence of an m ∈ B such that ∀d : perd ⊴homlin IMMm(d),d. This has a padding-free
orbit closure formulation under the general linear group, which is reductive:

perd ⊴homlin IMMmd,d iff GLd2 perd ⊆ GL2md+m2
d

(d−2) IMMmd,d .

This is the main advantage of using homogeneous linear projections as the reduction notion.
Our main contribution is to replace IMM by simpler graded p-families that capture VF or
the large subset V3F of VF; see Definition 6.7 in §6.3. This has two advantages: The orbit
closures become simpler, and the separations from VNP become easier than VBP ≠ VNP,
because V3F ⊆ VF ⊆ VBP, while the quasipolynomial versions of V3F, VF, VBP all coincide
with VQP.

3.1 Main Results
Let nced(X1, . . . , Xn) :=

∑
1≤I1<I2<···<Id≤n XI1 . . . XId

, denote the elementary symmetric
polynomial in noncommuting variables X1, . . . , Xn. Let L : C3×3 → C be the sum of all 9
entries. Let nce3,n,d := L ◦ nced(A1, A2, . . . , An), where each Ai is a 3× 3 matrix of 9 fresh
variables. We denote by nce3 the corresponding graded p-family.

▶ Theorem 3.2.

VNP = VF if and only if per ≤p-homlin nce3,

VNP ⊆ VF if and only if per ⊴p-homlin nce3,

VNP ⊆ VQP if and only if per ≤qp-homlin nce3,

VNP ⊆ VQP if and only if per ⊴qp-homlin nce3.

Note that perd ⊴homlin nce3,n,d iff GLd2 perd ⊆ GL9n nce3,n,d . In the border setting, we
manage to get the same results even for nce2, we simplify the orbit closure on the right hand
side even further by introducing a new class V3F ⊆ VF (see §6.3), whose quasipolynomial
version is still VQP. The parity-alternating elementary symmetric polynomial Cn,d is defined
via Cn,d :=

∑
(i1,i2,...,id)∈I xi1xi2 · · ·xid

, where I is the set of length d increasing sequences
of numbers i1 < i2 < . . . < id from {1, . . . , n} in which for all j the parity of ij differs from
the parity of ij+1, and i1 is odd, in other words, ij ≡ j (mod 2).

ITCS 2024



43:6 Homogeneous Algebraic Complexity Theory and Algebraic Formulas

▶ Theorem 3.3.

VNP ⊆ V3F =⇒ per ⊴p-homlin C,

VNP ⊆ VF ⇐= per ⊴p-homlin C,

VNP ⊆ VQP if and only if per ⊴qp-homlin C.

Note that “perd ⊴homlin Cn,d iff GLd2 perd ⊆ GLn Cn,d” is a formulation with an
intriguingly simple orbit closure. Moreover, it seems reasonable to try to prove VNP ̸⊆ V3F
or VNP ̸⊆ VF before proving the more difficult VNP ̸⊆ VBP.

4 Related Concepts

4.1 Classical homogeneous complexity measures: Waring rank, Chow
rank, tensor rank

In classical algebraic geometry, homogeneous linear projections are the standard way to
compare homogeneous polynomials and tensors.

We list some of the classical examples in this subsection.
Given a homogeneous degree d polynomial f , the Waring rank of f , denoted WR(f), is the

smallest r such that there exist homogeneous linear polynomials ℓ1, . . . , ℓr, with f =
∑r

i=1 ℓd
i .

The border Waring rank of f , denoted WR(f), is the smallest r such that f can be
written as limit of a sequence of polynomials fϵ with WR(fϵ) ≤ r. Given the graded p-
family Pn,d := xd

1 + · · · + xd
n, we see that WR(p) ≤ r iff p ≤homlin Pn,d and WR(p) ≤ r iff

p ⊴homlin Pn,d, which is equivalent to p ∈ GLn Pn,d, provided p is defined in the variables
x1, . . . , xn. Waring rank was studied already in the eighteenth century [13, 31, 14] in the
context of invariant theory, with the aim to determine normal forms for homogeneous
polynomials. We mention the famous Sylvester Pentahedral Theorem, stating that a generic
cubic form in four variables can be written uniquely as sum of five cubes. At the beginning
of the twentieth century, the early work on secant varieties in classical algebraic geometry
[29, 32] implicitly commenced the study of border Waring rank. In the algebraic complexity
theory literature, Waring rank is called the homogeneous ΣΛΣ-circuit complexity.

The Chow rank of f , denoted CR(f), is the smallest r such that there exist homogeneous
linear polynomials ℓ1,1, . . . , ℓr,d, with f =

∑r
i=1 ℓi,1 · · · ℓi,d. The border Chow rank of f ,

denoted CR(f), is the smallest r such that f can be written as limit of a sequence of
polynomials fϵ with CR(fϵ) ≤ r. Given the graded p-family Qn,d := x1,1 · · ·x1,d + · · · +
xn,1 · · ·xn,d, we see that CR(p) ≤ r iff p ≤homlin Qn,d and CR(p) ≤ r iff p ⊴homlin Qn,d,
which is equivalent to p ∈ GLnd Qn,d, provided p is defined in the variables x1,1, . . . , xn,d.
In the algebraic complexity literature, Chow rank is called the homogeneous ΣΠΣ-circuit
complexity.

The noncommutative analog (i.e., variables do not commute) of Chow rank is the classical
tensor rank. The notion of border rank for tensors was introduced in [3] to construct faster-
than-Strassen matrix multiplication algorithms. In [2], Bini proved that tensor border rank
and tensor rank define the same matrix multiplication exponent. Today this theory is deeply
related to the study of Gorenstein algebras [17, 6], the Hilbert scheme of points [21], and
deformation theory [7, 22]. Homogeneous linear projections are used to compare not only
the rank of tensors, but they are used to define a partial order on the set of all tensors, see
e.g. [10, Ch 14.6]. This is also a common concept in quantum information theory.
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4.2 Homogeneous vs Inhomogeneous
In this subsection we work out the relation to classical (i.e., ungraded) algebraic complexity
theory. In order to define the notion of completeness of graded p-families for the classical
algebraic complexity classes we use the following map φ. Given d ∈ B, m ∈ B and a ∈ CN×N,
then a graded p-family f can be converted into an ungraded p-family φ(f, a, m, d) by setting
φ(f, a, m, d)n :=

∑dn

i=0 an,i · fmn,i. For a graded p-family f we define the set φ(f) of
associated ungraded p-families as φ(f) := {φ(f, a, m, d) | m ∈ B, d ∈ B, a ∈ CN×N}.

▶ Definition 4.1. Let C ⊆ SN be a class of ungraded p-families. We say that a graded p-family
f is C-hard if for all g ∈ C we have g ≤p-homlin f .

We say that f is C-complete if f is C-hard and φ(f) ⊆ C.

There are analogous variants for completeness under border projections (g ⊴p-homlin f)
and quasipolynomial projections (g ≤qp-homlin f), and quasipolynomial border projections
(g ⊴qp-homlin f).

The main example is that the graded p-family IMM is VBP-complete under homogeneous
linear p-projections. From §4.1, P is complete for the class of p-families with polynomially
bounded Waring rank, and Q is complete for the class of p-families with polynomially
bounded Chow rank.

While for ungraded p-families we have to allow affine linear projections as reductions,
for graded p-families we can (and always will) use the weaker notion of homogeneous linear
projections. Hence, it is not obvious how to turn a C-complete ungraded p-family (under affine
linear projections) into a C-complete graded p-family (under homogeneous linear projections)!
We illustrate this scenario by an example below.

Let us consider a ungraded p-family g, which is VF-complete under affine linear projections;
then g interpreted as a graded p-family is not necessarily VF-complete under homogeneous
linear projections, as the following example illustrates. The ungraded p-family IMM3 defined
via (IMM3)n = IMM3,n is an ungraded VF-complete p-family. The constant ungraded p-family
with each element x2

1 + · · · + x2
7 is in VF, but by construction IMM3,2 is nonzero only for

exactly n = 2, and there is no homogeneous linear projection of IMM3,2 to x2
1 + · · · + x2

7
(because every homogeneous linear projection of IMM3,2 has only at most 6 essential variables,
i.e., its GL-orbit has dimension at most 6.However, the reverse works under mild conditions
on self-reducibility of f under affine projections and on being able to simulate sums; as an
example we refer to the following claim.

▷ Claim 4.2. We write p ≤afflin q if p can be obtained from q by replacing variables in q by
affine linear polynomials. Let f be a graded p-family that is C-complete under homogeneous
linear projections, and assume that ∀n, d : fn,d−1 ≤afflin fn,d and fn−1,d ≤homlin fn,d. Let
g := φ(f, diag(1, . . . , 1), idN, idN) with the property that there exists a bivariately polynomially
bounded q such that ∀n, k: if h1, . . . , hk ≤afflin gn, then h1 + . . . + hk ≤afflin gq(k,n). Then g

is C-complete under affine linear projections.

Proof. From φ(f) ⊆ C it follows that g ∈ C. Now, let h ∈ C be an ungraded p-family. We
have h ≤p-homlin f , hence

∀n, d : hn,d ≤homlin fmn,d ≤afflin fmax{mn,deg(hn)},max{mn,deg(hn)} = gmax{mn,deg(hn)}.

Therefore, ∀n : hn ≤afflin gq(deg(hn)+1,max{mn,deg(hn)}). Define

a(n) := q(deg(hn) + 1, max{mn, deg(hn)}).

Thus, ∀n : hn ≤afflin ga(n), which proves the claim, because a ∈ B. ◁
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43:8 Homogeneous Algebraic Complexity Theory and Algebraic Formulas

While IMM is a VBP-complete graded p-family and IMM3 is a VF-complete ungraded p-
family, our paper is the first to introduce a VF-complete graded p-family nce3, see Theorem 3.2.
It is unclear if graded complete p-families for VP or for VNP exist, and we leave this as an
open question. For example, it is not obvious if a universal circuit family for VP can be used
to construct a VP-complete graded p-family under homogeneous linear projections.

5 Proof Ideas

In this section, we briefly sketch the overall proof idea of Theorem 3.2 and Theorem 3.3.

5.1 Proof idea of Theorem 3.2
The recent paper [15, Section 3] introduced a notion of complexity with a rigid interplay
between homogeneous linear entries and fixed constants, which they call Kumar’s complexity.
It is modeled after Kumar’s construction in [25]. For a polynomial f , Kumar’s complexity
of f is the smallest m such that there exists a constant α and homogeneous linear polynomials
ℓi such that

f = α
((∏m

i=1(1 + ℓi)
)
− 1
)
. (1)

We study an analogous notion for matrices. Let En,d be the homogeneous degree d part
of the sum of the entries of 1 x1,1,2 x1,1,3

x1,2,1 1 x1,2,3
x1,3,1 x1,3,2 1

 · · ·
 1 xn,1,2 xn,1,3

xn,2,1 1 xn,2,3
xn,3,1 xn,3,2 1

−
1 0 0

0 1 0
0 0 1

 .

In the expansion, the noncommutative elementary symmetric polynomials appear. Our
study of this setup leads to a homogenized version of the result by Ben-Or & Cleve [1].
Here we have to pay close attention on how to deal with field constants, and we define the
notion of input-homogeneous-linear computation (IHL), see §6.1. In particular, we prove an
input-homogeneous-linear version of Brent’s depth reduction, see Lemma 6.2. Theorem 3.2
appears in §6 as Corollary 6.6.

5.2 Proof idea of Theorem 3.3
From 3×3 matrices, we turn to 2×2 matrices. Note that (for odd d) Cn,d is the homogeneous
degree d part of the (1, 2) entry of

( 1 x1
0 1

)( 1 0
x2 1

)
· · ·
( 1 xn

0 1
)
−
(

1 0
0 1
)
. Theorem 3.3 appears in

§6 as Theorem 6.10. Its proof is based on the construction of [5], which is, however inherently
affine. To circumvent this, we convert the product gate into an arity 3 homogeneous
product gate. The resulting analysis of arithmetic circuits and formulas allowing only arity 3
homogeneous product gates is surprisingly subtle. The graded p-family Cn,d can be seen as
a homogeneous variant of the continuant in [5].

For the last part of Theorem 3.3, we prove that VQ3F = VQP. The rest of the hardness
proof follows then completely analogously via quasipolynomial homogeneous linear border
projections. The proof of VQ3F = VQP proceeds in two steps: We first show that VF lies
in V3P (the circuit analog of V3F), see Theorem 6.11, where we first “parity-homogenize”
the formula (every gate has only even or only odd nonzero homogeneous components), and
then compute z · f at each even-degree gate instead of f , where z is a new variable. This
additional factor z is then later replaced, which is the main reason why the output of this
construction is a circuit and not a formula. Since we know that V3F ⊆ VF, we are now in
this situation:

V3F ⊆ VF ⊆ V3P ∩ VBP ⊆ VP.



P. Dutta, F. Gesmundo, C. Ikenmeyer, G. Jindal, and V. Lysikov 43:9

Our proof does not give V3F = VF, see Remark 6.12. We conclude our proof by showing that
VQ3F = VQ3P, which implies that both classes are equal to VQ3F = VQF = VQ3P, but we
already know VQF = VQP. For details, see (2) and Theorem 6.14.

To achieve this, we use an arity-3 basis variant of the Valiant-Skyum-Berkowitz-Rackoff
circuit depth reduction [35], which is a bit more involved than the original proof.

6 Input-homogenization and Arity 3 Products

In this section, f is a polynomial, and not a graded p-family.

6.1 Input-homogeneous-linear Computation
We start with a technicality in the definition of arithmetic circuits. In this section every
edge of an arithmetic circuit is labelled with a field constant. Instead of just forwarding the
computation result of a gate to another gate, these edges rescale the polynomial along the
way. For arithmetic formulas we do not allow this, as we will see that it is unnecessary. In
other words, we allow g + h gates for formulas, while we allow a α · g + β · h gates in circuits,
and analogously for multiplication.

The depth of an arithmetic circuit/formula is the length of the longest path from the
source to a leaf.

▶ Definition 6.1. An arithmetic formula/circuit is called input-homogeneous-linear (IHL)
if all its leaves are labelled with homogeneous linear polynomials.

In particular (contrary to ordinary arithmetic formulas/circuits) in an IHL formula/circuit
we do not allow any leaf to be labelled with a field constant. It now becomes clear why we
needed the technicality: For any α ∈ C, if an IHL circuit with s gates computes a polynomial
f , then using the scalars on the edges there exists an IHL circuit computing αf with also
only s many gates. For formulas this rescaling can be simulated by rescaling a subset of the
leaves. Indeed, we rescale the root of the formula by induction: we rescale a summation
gate by rescaling both children, we rescale a product gate by rescaling an arbitrary child.
Alternatively, if f is homogeneous, one can rescale the input gates by the d

√
α. The latter

technique works for formulas and circuits alike, but we will not use this method.
It is easy to see that IHL formulas/circuits can only compute polynomials f with f(0) = 0.

But other than that, being IHL is not a strong restriction, as the following simple lemma
shows. We write f̂ := f − f(0).

▶ Lemma 6.2. Given an arithmetic circuit of size s computing a polynomial f , then there
exists an IHL arithmetic circuit of size 6s and depth 3s computing f̂ .

There exists a polynomial p such that: Given any arithmetic formula of size s computing
a polynomial f , then there exists an IHL arithmetic formula of size p(s) and depth O(log(s))
computing f̂ .

Proof. We treat the case of formulas first. We first use Brent’s depth reduction [4] to ensure
that the size is poly(s) and the depth is O(log(s)). We now proceed in a way that is similar
to the homogenization of arithmetic circuits. Let F be the formula computing f . We replace
every computation gate (that computes some polynomial g) by a pair of gates (and some
auxiliary gates), one computing g(0) and one computing ĝ. Clearly,(

(g + h)(0), ĝ + h
)

=
(
g(0) + h(0), ĝ + ĥ

)
(addition gate) ,(

(g · h)(0), ĝ · h
)

=
(
g(0) · h(0), g(0) · ĥ + ĝ · h(0) + ĝ · ĥ

)
(multiplication gate) .
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Therefore, an addition gate is just replaced by 2 addition gates, while a multiplication
gate is replaced by 4 multiplication gates and 2 addition gates (and this gadget has depth 3).
We copy the subformulas of g(0), h(0), ĝ, and ĥ, which maintains the depth, and it keeps
the size poly(s). In this construction additions happen only between constants or between
non-constants, but never between a constant and a non-constant. Therefore each maximal
subformula of constant gates can be evaluated and replaced with a single constant gate, and
these gates are multiplied with non-constant gates (with the one exception of the gate for
f(0)). But in a formula, scaling a non-constant gate by a field element does not require a
multiplication gate, and instead we can recursively pass this scaling operation down to the
children, as explained before this lemma. At the end we remove the one remaining constant
gate for f(0) and are done.

For circuits we proceed similarly. We skip the depth reduction step. Let C be the formula
computing f . We replace every computation gate (that computes some polynomial g) by a
pair of gates (and some auxiliary gates), one computing g(0) and one computing ĝ. Clearly,
for addition and multiplication gates, we can do the following:(

(αg + βh)(0), ̂αg + βh
)

=
(
αg(0) + βh(0), αĝ + βĥ

)
,(

(αg · βh)(0), α̂g · βh
)

=
(
αg(0) · βh(0), αg(0) · βĥ + αĝ · βh(0) + αĝ · βĥ

)
.

Therefore, an addition gate is just replaced by 2 addition gates, while a multiplication
gate is replaced by 4 multiplication gates and 2 addition gates (and this gadget has depth
3). Here we have no need to copy subformulas, and we re-use the computation instead. In
this construction additions happen only between constants or between non-constants, but
never between a constant and a non-constant. Therefore each maximal subcircuit of constant
gates can be evaluated and replaced with a single constant gate v, and each of these gates is
multiplied with a non-constant gate w (with the one exception of the gate for f(0)). This
rescaling of the polynomial computed at w can be simulated by just rescaling all the edge
labels of the outgoing edges of w, so v can be removed. At the end we also remove the one
remaining constant gate for f(0) and are done. ◀

A circuit/formula that is the sum of an IHL circuit/formula and a field constant is called an
IHL+ circuit/formula. The following corollary is obvious.

▶ Corollary 6.3. VP is the set of p-families for which the IHL+ circuit size is polynomially
bounded. VF is the set of p-families for which the IHL+ formula size is polynomially bounded.

Proof. Use Lemma 6.2 to compute f̂ . The missing constant f(0) can be added to the IHL
circuit/formula as the very last operation. ◀

6.2 IHL Ben-Or and Cleve is Exactly Kumar’s complexity for 3 × 3
Matrices

Quite surprisingly, the 3× 3 matrix analogue of Kumar’s complexity model (see (1)) turns
out to be the homogeneous version of Ben-Or and Cleve’s construction [1], as the proof of
the following Proposition 6.4 shows. Let Ei,j denote the 3× 3 matrix with a 1 at the entry
(i, j) and zeros elsewhere. Let id3 denote the 3× 3 identity matrix.

▶ Proposition 6.4. Fix i, j ∈ {1, 2, 3}, i ̸= j. Let f be a polynomial admitting an IHL formula
of depth δ. Then there exist 3 × 3 matrices A1, . . . , Ar with r ≤ 4δ having homogeneous
linear entries such that

f · Ei,j = (id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3 .
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Proof. Consider the six positions {(i, j) | 1 ≤ i, j ≤ 3, i ̸= j} of the zeros in the 3× 3 unit
matrix. Given an IHL formula, to each input gate and to each computation gate we assign
one of the 6 positions in the following way. We start at the root and assign it position (i, j).
We proceed by assigning position labels recursively: For a summation gate with position
(i′, j′), both summands get position (i′, j′). For a product gate with position (i′, j′), one
factor gets position (i′, k) and the other gets position (k, j′), k ≠ i′, k ̸= j′. We now prove by
induction on the depth D of the gate g (the depth of a gate it the depth of its subformula:
the input have depth 0; the root has the highest depth) with position (i′, j′) that for each
gate there is a list of at most 4D matrices (A1, . . . , Ar) such that

(id3 + A1)(id3 + A2) · · · (id3 + Ar) = id3 + gE(i′,j′)

and the same number of matrices B1, . . . , Br such that

(id3 + B1)(id3 + B2) · · · (id3 + Br) = id3 − gE(i′,j′).

For an input gate (i.e., depth 0) with position (i′, j′) and input label ℓ, we set A1 := ℓ ·Ei′,j′

and B1 := −ℓ ·Ei′,j′ . For an addition gate with position (i′, j′) let (A1, . . . , Ar), (B1, . . . , Br)
and (A′

1, . . . , A′
r′), (B′

1, . . . , B′
r′) be the lists coming from the induction hypothesis. We

define the list for the addition gate as the concatenations (A1, . . . , Ar, A′
1, . . . , A′

r′) and
(B1, . . . , Br, B′

1, . . . , B′
r′). Observe that

(id3 + fE(i′,j′)) · (id3 + gE(i′,j′)) = id3 + (f + g)E(i′,j′) ,

and

(id3 − fE(i′,j′)) · (id3 − gE(i′,j′)) = id3 − (f + g)E(i′,j′) .

so this case is correct. For a product gate with position (i′, j′) let (A1, . . . , Ar), (B1, . . . , Br)
and (A′

1, . . . , A′
r′), (B′

1, . . . , B′
r′) be the lists coming from the induction hypothesis, i.e., (id3 +

A1)(id3 +A2) · · · (id3 +Ar) = id3 +fE(i′,k), (id3 +B1)(id3 +B2) · · · (id3 +Br) = id3−fE(i′,k),
(id3 + A′

1)(id3 + A′
2) · · · (id3 + A′

r) = id3 + gE(k,j′), (id3 + B′
1)(id3 + B′

2) · · · (id3 + B′
r) =

id3 − gE(k′,j′). Observe that(
id3 + fE(i′,k)

)(
id3 + gE(k,j′)

)(
id3 − fE(i′,k)

)(
id3 − gE(k,j′)

)
= id3 + fgE(i′,j′)

and analogously(
id3 − fE(i′,k)

)(
id3 + gE(k,j′)

)(
id3 + fE(i′,k)

)(
id3 − gE(k,j′)

)
= id3 − fgE(i′,j′).

For illustration, in the notation of [5] the product with position (1,3) can be depicted as
follows.

=
f

g

−f

−g fg

Since 4 · 4D−1 = 4D, the size bound is satisfied. ◀

Since the trace of a matrix can sometimes be preferrable to the (i, j)-entry, we present
the result with the trace, provided approximations are allowed.
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▶ Proposition 6.5. For every IHL formula of depth δ there exist ≤ 4δ many 3× 3 matrices
Ai with homogeneous linear entries over C[ϵ, ϵ−1] and α ∈ C[ϵ, ϵ−1] such that

E1,1 · f = lim
ϵ→0

(
α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
and hence

f = lim
ϵ→0

tr
(

α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
.

Proof. The IHL formula is a sum of products of subformulas g1 · h1, g2 · h2, . . ., gr · hr, and
r ≤ 2δ by induction. We compute subformulas for ϵg1, −ϵg1, ϵh1, −ϵh1, ϵg2, −ϵg2, . . . , −ϵhr

as in the proof of Proposition 6.4 with position (1, 2) for each ±ϵgi and position (2, 1) for
each ±ϵhi. It turns out that

Ma := (id3+ϵgaE1,2)(id3+ϵhaE2,1)(id3−ϵgaE1,2)(id3−ϵhaE2,1) = id3+ϵ2fagaE1,1+O(ϵ3).

Pictorially:

= +O(ϵ3)

1 + ϵ2haga

ϵga ϵha −ϵga −ϵha

Hence M1M2 · · ·Mr = id3 +ϵ2(h1g1 +h2g2 + · · ·+hrgr)E1,1 +O(ϵ3). We choose α = ϵ−2. ◀

Recall, ncen,d(X1, . . . , Xn) :=
∑

1≤I1<I2<···<Id≤n XI1 . . . XId
, is the elementary sym-

metric polynomial in noncommuting variables X1, . . . , Xn. For any L : C3×3 → C, let

nceL,n,d := L ◦ nced(A1, A2, . . . , An), where each Ai =
(

0 x1,2,i x1,3,i

x2,1,i 0 x2,3,i

x3,1,i x3,2,i 0

)
is a 3× 3 matrix

of 6 fresh variables. We denote by nceL the corresponding graded p-family. To be formally
precise, we set nceL,n,0 = 1. In particular, L can be taken to be the trace.

▶ Corollary 6.6. Fix any nonzero linear form L on the space of 3 × 3 matrices. If L is
supported outside the main diagonal, then the graded p-family nceL is VF-complete under
homogeneous linear projections. If L is supported on the main diagonal, then the graded
p-family nceL is VF-complete under homogeneous linear border projections.

Proof. Given a ungraded p-family g ∈ VF. We apply Brent’s depth reduction and then
Lemma 6.2 to every homogeneous component of every gn to obtain IHL formulas fn,d of
logarithmic depth and polynomial size in n (d is polynomial in n). The first case is treated
with Proposition 6.4, the second is treated completely analogously with Proposition 6.5.
We only handle the slightly more difficult second case. We obtain 4O(log n) = poly(n) many
matrices Ai with

fn = lim
ϵ→0

L
(

α
(
(id3 + A1)(id3 + A2) · · · (id3 + Ar)− id3

))
Note that α ∈ C[ϵ, ϵ−1] can be assumed to be a scalar times a power of ϵ, because lower
order terms have no effect on the limit. Since fn,d is homogeneous of degree d, we have

fn,d = lim
ϵ→0

L
(

α ncen,d(A1, . . . , Ar)
)

= lim
ϵ→0

L
(

ncen,d( d
√

βϵkA′
1, . . . , α d

√
βϵkA′

r)
)

where A′
i arises from Ai by replacing every ϵ by ϵd. ◀
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While Corollary 6.6 gives the first collection that is VF-complete under homogeneous
linear projection, we found simpler polynomials with similar properties. In the next sections
we will prove that the parity-alternating elementary symmetric polynomial is hard for the
class V3F under homogeneous linear projections, which gives a polynomial that is just barely
more complicated than the elementary symmetric polynomial.

6.3 IHL Computation with Arity 3 Products
In the light of [5] we now study the 2 × 2 analogues of Proposition 6.4, Proposition 6.5,
Corollary 6.6. In order to do so, in this section we study IHL formulas and circuits where
the additions have arity 2, but the products have arity exactly 3. We call this basis the arity
3 basis. This turns out to be rather subtle, because one would usually want to simulate an
arity 2 product by an arity 3 product in which one of the factors is a constant 1, but that
violates the IHL property. A circuit/formula of this type is called an IHL circuit/formula
over the arity 3 basis. If a polynomial is computed by an IHL formula or circuit over the arity
3 basis, then all its homogeneous even-degree components are zero, hence we have to adjust
this definition slightly: For an even degree homogeneous polynomial we want to compute all
partial derivatives instead. Formally, a graded IHL circuit/formula over the arity 3 basis is a
circuit/formula of the following syntactic structure:

f = f(0) +
∑

d∈2N+1
fd︸︷︷︸

IHL, arity 3

+
∑

d∈2N
d≥2

1
d

m∑
i=1

xi · ∂fd/∂xi︸ ︷︷ ︸
IHL, arity 3

,

where each homogeneous fd and homogeneous ∂fd/∂xi is computed by an IHL circuit/formula
over the arity 3 basis. Euler’s homogeneous function theorem ensures that the right-hand
side actually computes f . We define V3P and V3F as follows:

▶ Definition 6.7 (V3P and V3F). V3P (respectively, V3F) is the class of p-families for which
the graded IHL circuit (respectively, formula) complexity over the arity 3 basis is polynomially
bounded.

We have the following inclusion among the classes:

V3F ⊆ VF ⊆ V3P ∩ VBP ⊆ VP, (2)

where V3F ⊆ VF is obvious, and we prove the first inclusion in Theorem 6.11, while it is
well-known that VF ⊆ VBP. It is known that if we go to quasipolynomial complexity instead
of polynomial complexity, the three classical classes coincide: VQF = VQBP = VQP, which is
an immediate corollary of the circuit depth reduction result of Valiant-Berkowitz-Skyum-
Rackoff [35]. We prove in Theorem 6.14 that our two new classes also belong to this set:
All classes in (2) coincide if we go to quasipolynomial complexity instead of polynomial
complexity, see (6).

The following proposition is an adaption of Brent’s depth reduction [4] and it shows that
instead of polynomially sized formulas we can work with formulas of logarithmic depth. Both
properties, IHL and the arity 3 basis, require some moficiations to Brent’s original argument.

▶ Proposition 6.8 (Brent’s depth reduction for graded IHL formulas over the arity 3 basis). Let
f be a polynomial computed by a graded IHL formula of size s over the arity 3 basis. Then
there exists a graded IHL formula over the arity 3 basis of size poly(s) and depth O(log(s))
computing f .
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Proof. We discuss only the homogeneous odd-degree case, because the more general case
directly follows from it. The construction is recursive, just as in Brent’s original argument.
We follow the description in [30]. We start at the root and keep picking the child with the
larger subformula until we reach a vertex v with 1

3 s ≤ |⟨v⟩| ≤ 2
3 s, where ⟨v⟩ is the subformula

at the gate v. We make a case distinction. In the first case we assume that on the path from
v to the root (excluding v) there is no product gate. We reorder the gates as follows:

+
+

+

hk

hk−1

h1⟨v⟩

−→

+
+

+

⟨v⟩
hk

h2h1

The construction applied to a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 1. The resulting

size is Size(s) ≤ 2 · Size( 2
3 s) + 1.

In the second case we assume that v is the child of a product gate.

∗

⟨v⟩ ⟨x⟩ ⟨y⟩

We now replace ⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the
resulting polynomial F (interpreted as a bivariate polynomial in α and β) is linear in the
product αβ. Therefore F (α, β) = αβ(F (1, 1)− F (0, 0)) + F (0, 0). Both F (0, 0) and F (1, 1)
can be realized as an IHL formula over the arity 3 basis (because an arity 3 product gate
with two 1s as inputs can be replaced by just the third input, and an arity 3 product gate
with two 0s as input can be replaced by a constant 0, which can be simulated by removing
gates), so we obtain:

+

∗

+

F (1, 1) −F (0, 0)

F (0, 0)

⟨v⟩ ⟨x⟩
(3)

The construction on a size s formula gives Depth(s) ≤ Depth( 2
3 s) + 2. The resulting size is:

Size(s) ≤ 5 · Size( 2
3 s) + 3.

In the third case we assume that on the path from from v to the root (excluding v) there
are addition gates and then a product gate, so

∗

+
+

+

hk

hk−1

h1⟨v⟩

⟨x⟩ ⟨y⟩
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As a first step we make copies of ⟨x⟩ and ⟨y⟩ and call them ⟨x′⟩ and ⟨y′⟩, respectively, and
re-wire similarly as in the first case:

∗ ∗

+
+

+

+

hk

hk−1

h2h1

⟨x′⟩ ⟨y′⟩ ⟨v⟩ ⟨x⟩ ⟨y⟩

On the right-hand side of the tree we now proceed analogously as in the second case. We
replace ⟨v⟩ by a new variable α and ⟨x⟩ by a new variable β. We observe that the resulting
polynomial F (interpreted as a bivariate polynomial in α and β) is linear in the product αβ.
Therefore,

F (α, β) = αβ(F (1, 1)− F (0, 0)) + F (0, 0) .

Both F (0, 0) and F (1, 1) can be realized as an input-homogeneous formula over the arity 3
basis, so we obtain the same formula as in (3). The construction on a size s formula gives
Depth(s) ≤ Depth( 2

3 s) + 2. The resulting size is Size(s) ≤ 5 · Size( 2
3 s) + 3. Putting all cases

together, the construction has Depth(s) ≤ Depth( 2
3 s) + 2 and Size(s) ≤ 5 · Size( 2

3 s) + 3.
Hence applying the construction recursively gives logarithmic depth and polynomial size. ◀

6.4 The Parity-alternating Elementary Symmetric Polynomial
Let n be odd. For odd i let Xi =

( 0 xi
0 0

)
, and for even i let Xi =

( 0 0
xi 0

)
. Let A :=

ncen,d(X1, X2, . . . , Xn). Note that in row 1 the matrix A has only one nonzero entry, and
its position depends on the parity of n. Let Cn,d := A1,1 + A1,2. A sequence a of integers
is called parity-alternating if ai ≠ ai+1 mod 2 for all i, and a1 is odd. Let P be the set of
length d increasing parity-alternating sequences of numbers from {1, . . . , n}. It is easy to see
that

Cn,d =
∑

(i1,i2,...,id)∈P xi1xi2 · · ·xid
. (4)

We call the corresponding graded p-family C. We usually only consider the case when the
parities of d and n coincide, which is justified by the following lemma.

▶ Lemma 6.9. If n and d have different parity, then Cn,d = Cn−1,d.

Proof. If d is odd, each parity-alternating sequence always ends with an odd parity, so if n

is even we have Cn,d = Cn−1,d. If d is even, each parity-alternating sequence always ends
with an even parity, so if n is odd we have Cn,d = Cn−1,d. ◀

Analogously to Corollary 6.6 we have the following theorem.

▶ Theorem 6.10. Recall C from (4) and φ from §4.2. The graded p-family C is V3F-hard
under homogeneous linear border projections, and φ(C) ⊆ VF.
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Proof. Let id2 denote the 2× 2 identity matrix. φ(C) ⊆ VF follows from the fast that Cn,d

is the homogeneous degree d component of the product (id2 + X1) · · · (id2 + Xn) of 2 × 2
matrices.

We prove V3F-hardness. Given a logdepth formula for a homogeneous degree d polynomial
f . Let Eodd =

(
0 1
0 0
)

and let Eeven =
(

0 0
1 0
)
. We are given a formula for a homogeneous

degree d polynomial f . We can assume that the gates are additions and negative cubes
(x 7→ −x3), because xyz = 1

24
(
(x + y + z)3 − (x + y− z)3 − (x− y + z)3 + (x− y− z)3), and

the rescalings by (±24)− 1
3 can be pushed to the input gates. We first treat the case of d

being odd. We write A ≃ B is A and B are parametrized by ϵ and both limits limϵ→0 A and
limϵ→0 B exist and coincide with each other. We prove by induction on the depth D of a
gate that there exist ≤ 3D homogeneous linear forms ℓ1, . . . , ℓr over C[ϵ, ϵ−1, α] such that

αf · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2

The induction starting at an input gate with label ℓ is done by ℓ1 = αℓ. The addition
gate is handled as follows. By induction hypothesis there exist ℓ1, . . . , ℓr and ℓ′

1, . . . , ℓ′
r′ with

αf · Eodd + id2 ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd) and

αg · Eodd + id2 ≃ (id2 + ℓ′
1Eodd)(id2 + ℓ′

2Eeven) · · · (id2 + ℓ′
r′Eodd)

Therefore α(f + g) · Eodd + id2 = (αf · Eodd + id2)(αg · Eodd + id2) ≃

(id2 +ℓ1Eodd)(id2 +ℓ2Eeven) · · · (id2 +ℓrEodd)(id2 +ℓ′
1Eodd)(id2 +ℓ′

2Eeven) · · · (id2 +ℓ′
r′Eodd)

Handling the negative cube gates is more subtle (the negative squaring gates are also the
subtle cases in [5]). By induction hypothesis we have ℓ1, . . . , ℓr such that

αf · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2 (5)

We replace each ϵ by ϵk in each ℓi, with k so large that even when we replace α by ϵ−1 or
−ϵ−1, we still have the equivalence of the LHS and RHS mod ϵ2.

We call the resulting linear forms ℓ′
i. It follows that

αf · Eodd ≡
(
(id2 + ℓ′

1Eodd)(id2 + ℓ′
2Eeven) · · · (id2 + ℓ′

rEodd)− id2
)

(mod ϵk)

Setting α to ϵ−1 we obtain

ϵ−1f · Eodd ≡
(
(id2 + ℓ′′

1Eodd)(id2 + ℓ′′
2Eeven) · · · (id2 + ℓ′′

r Eodd)− id2
)

(mod ϵ2)

Anaogously with α = −ϵ−1:

−ϵ−1f · Eodd ≡
(
(id2 + ℓ̃′′

1Eodd)(id2 + ℓ̃′′
2Eeven) · · · (id2 + ℓ̃′′

r Eodd)− id2
)

(mod ϵ2)

The induction hypothesis (5) also implies (set ϵ to ϵ3 and α to ϵ2α) that

ϵ2αf · Eodd ≡
(
(id2 + ℓ′′′

1 Eodd)(id2 + ℓ′′′
2 Eeven) · · · (id2 + ℓ′′′

r Eodd)− id2
)

(mod ϵ3)

Transposing gives

ϵ2αf · Eeven ≡
(
(id2 + ℓ′′′

r Eeven)(id2 + ℓ′′′
r−1Eodd) · · · (id2 + ℓ′′′

1 Eeven)− id2
)

(mod ϵ3)

We now observe:

(ϵ−1fEodd +id2 +ϵ2g1)(ϵ2αfEeven +id2 +ϵ3g2)(−ϵ−1fEodd +id2 +ϵ2g3) ≃ −αf3Eodd +id2.
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Pictorially:

+O(ϵ2) +O(ϵ3) +O(ϵ2)

=ε−1f ε2αf −ε−1f −αf3

+O(ϵ)

At the end, setting α = 1 we obtain

αf · Eodd ≃ (id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEodd)− id2.

Observe that r is only polynomially large, because we started with a formula of logarithmic
depth. Since f is homogeneous of degree d, this implies

f ≃ ncer,d(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEodd)1,2 = Cr,d(ℓ1, . . . , ℓr).

We now treat the case where f has even degree, using an argument similar to the one
form Proposition 6.5. By the above construction, for each i we find

α( 1
d ∂f/∂xi) · Eodd ≃ (id2 + ℓi,1Eodd)(id2 + ℓi,2Eeven) · · · (id2 + ℓi,ri

Eodd)− id2.

We replace all ϵ by ϵ3, replace all α by ϵ, and lastly add id2:

ϵ( 1
d ∂f/∂xi) ·Eodd +id2 ≡

(
(id2 +ℓ′

i,1Eodd)(id2 +ℓ′
i,2Eeven) · · · (id2 +ℓ′

i,ri
Eodd)

)
(mod ϵ3).

Analogously, when replacing α by −ϵ instead:

−ϵ( 1
d ∂f/∂xi)·Eodd +id2 ≡

(
(id2 +ℓ′′

i,1Eodd)(id2 +ℓ′′
i,2Eeven) · · · (id2 +ℓ′′

i,ri
Eodd)

)
(mod ϵ3).

We also find corresponding linear forms for the transposes. Now observe that for any
polynomials a, b we have

(−ϵa·Eodd+id2+O(ϵ3))(−ϵb·Eeven+id2+O(ϵ3))(ϵa·Eodd+id2+O(ϵ3))(ϵb·Eeven+id2+O(ϵ3))

≡
(

1 + ϵ2a · b 0
0 1− ϵ2a · b

)
(mod ϵ3).

Pictorially: =

1 + ϵ2ab

1− ϵ2ab

−ϵa −ϵb ϵa ϵb

+O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3) +O(ϵ3)

Let M(c) :=
(

1 + ϵ2c 0
0 1− ϵ2c

)
. Now note that

(M(a1b1) + O(ϵ3)) · · · (M(anbn) + O(ϵ3)) ≡M(a1b1 + a2b2 + · · · anbn) (mod ϵ3).

Setting ai = xi and bi = 1
d ∂f/∂xi, and using Euler’s homogeneous function theorem, we

obtain polynomially many linear forms ℓ1, . . . , ℓr so that

M(f) ≡
(
(id2 + ℓ1Eodd)(id2 + ℓ2Eeven) · · · (id2 + ℓrEeven)

)
(mod ϵ3)

Subtracting id2 on both sides and taking the degree d homogeneous part of the (1, 1) entry:

ϵ2f ≡ ncer,d(ℓ1Eodd, ℓ2Eeven, · · · , ℓrEeven)1,1︸ ︷︷ ︸
=Cr,d(ℓ1,...,ℓr)

(mod ϵ3)

We replace all ϵ by ϵd/2, to get ϵdf ≡ Cr,d(ℓ′
1, . . . , ℓ′

r) (mod ϵ3d/2). Therefore, f ≃
Cr,d(ϵ−1 ·ℓ′

1, . . . , ϵ−1 ·ℓ′
r). Both cases together prove that Cn,d is V3F-hard under homogeneous

linear border projections. The VQP-hardness under quasipolynomial homogeneous linear
border projections now follows from Theorem 6.14. ◀
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6.5 Converting Formulas to Circuits Over the Arity 3 Basis

In this section we prove the following theorem.

▶ Theorem 6.11. VF ⊆ V3P.

Proof. Let h ∈ VF, i.e., by Brent’s depth reduction, h has formulas of polynomial size and
logarithmic depth. We treat the homogeneous components f of gn independently. If f is
of even degree, observe that if f has a formula of depth δ, then ∂f/∂xi has a formula of
depth 2δ (by induction, using the sum and product rules of derivatives), which by Lemma 6.2
implies the existence of an IHL formula of depth O(δ) (note that ∂f/∂xi is homogeneous
of odd degree). Now we apply the odd-degree argument below for each partial derivative
independently.

Let f be of odd degree. As a first step we convert the IHL formula into an IHL formula for
which at each gate either all even homogeneous components vanish or all odd homogeneous
components vanish. The construction is similar to the Lemma 6.2 and works as follows. We
replace each gate v by two gates vodd and veven, where at veven the sum of the even degree
components is computed, and at vodd the sum of the odd degree components is computed.
Let f = feven+odd be the decomposition of f into the even homogeneous parts and the odd
homogeneous parts.

(
(f + g)even, (f + g)odd

)
= (feven + geven, fodd + godd) so a sum gate is

replaced by two sum gates. Moreover,
(
(f ·g)even, (f ·g)odd

)
= (feven ·geven +fodd ·godd, feven ·

godd + fodd · geven), so a product gate is replaced by 4 product gates and 2 summation gates.
Here we use that the depth was logarithmic.

We now convert such a formula to an IHL circuit with the same number of gates, but over
the arity 3 basis. This part is a bit subtle, and therefore we do it more formally below. We
replace each even degree gate v that computes g with a gate that computes z · g, where z is
a dummy variable. Addition gates are not changed. For product gates there are three cases.

A product gate v of two odd-degree polynomials f and g. By induction we have an IHL
circuit over the arity 3 basis for f and for g. We construct the arity 3 product z × f × g.
A product gate v that has an odd-degree polynomial f at its child w, and that has an
even-degree polynomial g at its child u. By induction we have IHL circuits C and D over
the arity 3 basis for f and for zg, respectively. We take C and D, delete all instances of
z in D, and feed there the output of C instead. The resulting circuit computes fg.
A product of an even-degree polynomial f and an even-degree polynomial g. By induction
we have IHL circuits C and D over the arity 3 basis for zf and for zg, respectively. We
take C and D, delete all instances of z in D, and feed there the output of C instead. The
resulting circuit computes zfg.

The size of the resulting circuit is less or equal to the size of the formula (even though the
depth can increase in this construction). ◀

▶ Remark 6.12. Even when starting with a formula of logarithmic depth, the resulting circuit
does not necessarily have logarithmic depth, hence we do not obtain VF = V3F. This is
because in the second bullet point we rearrange the circuit structure when we replace z.

▶ Remark 6.13. We also do not get VP = V3P, because note that the replacements of z in
the second and third bullet point can only be done, because in a formula the outdegree of
each gate is at most 1, i.e., we do not reuse computation results. After we replace z by f in
a subcircuit that computes zg, the original subcircuit computing zg will be gone and cannot
be reused.
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6.6 Valiant-Skyum-Berkowitz-Rackoff Over the Arity 3 Basis
▶ Theorem 6.14. VQ3F = VQ3P.

Proof. The entire argument is over the arity 3 basis and each homogeneous component is
treated separately. Given a size s circuit that computes an odd-degree polynomial, we use
Theorem 6.15 below to obtain a circuit of size poly(s) and depth O(log2(s)) that computes
the same polynomial. We unfold the circuit to a formula of the same depth. The size is
hence 3O(log2(s)) = sO(log s). If s = npolylog(n), then sO(log s) = npolylog(n) 3. The even-degree
case is done by treating each partial derivative independently. ◀

Since we know that VQF = VQBP = VQP and VQ3F = VQF = VQ3P, the situation of (2)
simplifies:

VQ3F = VQF = VQBP = VQP = VQ3P. (6)

The following Theorem 6.15 is needed in the proof of Theorem 6.14. It lifts the classical
Valiant-Skyum-Berkowitz-Rackoff [35] circuit depth reduction to the arity 3 basis. The
argument is an adaption of the original argument.

▶ Theorem 6.15 (VSBR depth reduction for IHL circuits over the arity 3 basis). Let f be a
polynomial computed by a graded IHL circuit of size s over the arity 3 basis, deg(f) = d.
Then there exists a graded IHL circuit over the arity 3 basis of size O(poly(s)) and depth
O(log(s) · log d) computing f .

Proof. We adapt the proof from [30]. We treat only the homogeneous odd case, because
all summands can be treated independently, and in the even degree case we can treat each
partial derivative independently. We work entirely over the arity 3 basis (and hence compute
a polynomial whose even degree homogeneous parts all vanish), so every circuit and subcircuit
is over the arity 3 basis, and every product is of arity 3.

A circuit whose root is an arity 3 product gate is denoted by x× y × z. A circuit whose
root is an arity 2 addition gate is denoted by x + y, just as usual. Notationally, we use the
same notation for gates, for their subcircuits, and for the polynomials they compute. If we
want to specifically highlight that we talk about the circuit with root w, then we write ⟨w⟩.
We write v ≤ u is v is contained in the subcircuit with root u. We write C ≡ C ′ to denote
that the circuits C and C ′ compute the same polynomial.

Let z be a new dummy variable. Let the circuit [u : v] be defined via [u : v] := z if u = v,
and if u ̸= v we have

[u : v] :=


0 if u is a leaf
[u1 : v] + [u2 : v] if u = u1 + u2

[u1 : v]× u2 × u3 if u = u1 × u2 × u3 and u1 has the highest degree
among {[u1], [u2], [u3]}

It can be seen by induction that [u : v] is zero or a homogeneous polynomial of degree
deg u− deg v + 1, and [u : v] is zero or is homogeneous linear in z. If w ̸≤ u, then [u : w] = 0.
For a circuit C we write [u : v]C := [u : v](z ← C), where ← means that all leaves labelled z

are replaced by the output of the circuit C.
We define a set of gates that is called the m-frontier Fm via

Fm := {u | u = u1 × u2 × u3 with deg u1, deg u2, deg u3 ≤ m and deg(u) > m}.

3 (nlogi(n))logj (nlogi(n)) = nlogi+ij+j (n)
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▶ Lemma 6.16. Fix a pair (u, m) with deg u > m. Let F := Fm. Then u ≡
∑

w∈F [u : w]⟨w⟩.

Proof. For the proof we fix m and do induction on the depth of u, i.e., the position of
u in any fixed topological ordering of the gates. Since for every gate u with deg(u) > m

there exists some gate u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this
case, since F is an antichain, it follows that

∑
w∈F [u : w] = 0 + [u : u] = z, and hence∑

w∈F [u : w]⟨w⟩ = [u : u]⟨u⟩ = z⟨u⟩ = u. This proves that case u ∈ F . Now, let u /∈ F . If u

is an addition gate:

u = u1 + u2
I.H.≡

∑
w∈F

[u1 : w]⟨w⟩ +
∑
w∈F

[u2 : w]⟨w⟩h ≡
∑
w∈F

(
[u1 : w]⟨w⟩ + [u2 : w]⟨w⟩

)
=

∑
w∈F

(
[u1 : w] + [u2 : w]

)
⟨w⟩

Def.=
∑
w∈F

[u : w]⟨w⟩

If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m

(w.l.o.g. that child is called u1):

u = u1 × u2 × u3
I.H.≡

(∑
w∈F

[u1 : w]⟨w⟩

)
× u2 × u3 ≡

∑
w∈F

(
[u1 : w]⟨w⟩ × u2 × u3

)
=

∑
w∈F

(
[u1 : w]× u2 × u3

)
⟨w⟩

Def.=
∑
w∈F

[u : w]⟨w⟩

◀

▶ Lemma 6.17. Fix a pair (u, m, v) with deg u > m ≥ deg v. Let F := Fm.

[u : v] ≡
∑
w∈F

[u : w][w:v].

Proof. For the proof we fix m and v and do induction on the depth of u, i.e., the position of
u in any fixed topological ordering of the gates. Since for every gate u with deg(u) > m there
exists some gate u′ ∈ F ∩ ⟨u⟩, the induction start is the case u ∈ F . In this case, since F is
an antichain, it follows that

∑
w∈F [u : w][w:v] ≡ z[u:v] = [u : v]. This proves that case u ∈ F .

Now, let u /∈ F . Since deg u > m and m ≥ deg v we have u ̸= v. If u is an addition gate:

[u : v] Def. (u ̸= v)= [u1 : v] + [u2 : v] I.H.≡
∑
w∈F

[u1 : w][w:v] +
∑
w∈F

[u2 : w][w:v]

≡
∑
w∈F

(
[u1 : w][w:v] + [u2 : w][w:v]

)
=
∑
w∈F

(
[u1 : w] + [u2 : w]

)
[w:v]

Def.=
∑
w∈F

[u : w][w:v]

If u is a multiplication gate, note that u /∈ F , so one of the children has degree > m (w.l.o.g.
that child is called u1):

[u : v] Def. (u ̸= v)= [u1 : v]× u2 × u3
I.H.≡

(∑
w∈F

[u1 : w][w:v]

)
× u2 × u3

≡
∑
w∈F

(
[u1 : w][w:v] × u2 × u3

)
=
∑
w∈F

(
[u1 : w]× u2 × u3

)
[w:v]

Def.=
∑
w∈F

[u : w][w:v] ◀
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We now construct the shallow circuit so that the degree of each child in a multiplication gate
decreases from δ to ⌈ 2

3 δ⌉, so the multiplication depth (i.e., the number of multiplications
on a path from leaf to root) is at most O(log d). Here we allow arity 5 multiplication gates.
These can be simulated by two arity 3 multiplication gates. We construct the circuit by
induction on the degree, and we construct it in a way that each u and each [u : w]⟨v⟩ are
computed at some gate, so the size of the resulting circuit is at most O(s3). The addition
gates between the multiplications can be balanced, so that we have at most O(log s) depth
in each addition tree. This gives a total depth of log d · log s.

6.7 The construction for u

u
Lem. 6.16≡

∑
w∈F

[u : w]⟨w⟩ =
∑
w∈F

[u : w]⟨w1⟩ × w2 × w3

=
∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w1⟩ × w2 × w3 ≡
∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × w2 × w1

This explicit rearrangement of w1 and w3 is necessary and goes beyond [35]. Choose m =
⌈ 2

3 deg u⌉. Recall deg wi ≤ m, so we already have two of the three cases: deg w1 ≤ ⌈ 2
3 deg u⌉

and w2 ≤ ⌈ 2
3 deg u⌉. But we also know deg(u) ≥ deg(w) = deg(w1)+deg(w2)+deg(w3), hence

w.l.o.g. deg(w3) ≤ ⌊ 1
3 deg(u)⌋. Therefore deg u−deg w+deg w3 ≤ ⌊ 4

3⌋ deg u−deg w︸ ︷︷ ︸
>m

< 2
3 deg u.

6.8 The construction for [u:v]
We use fractions and “·” multiplication signs when we do not have a circuit implementation
in the intermediate equalities on polynomials. We write w = w1 × w2 × w3 for w ∈ F .

[u : v] Lem. 6.17≡
∑
w∈F

[u : w][w:v] =
∑
w∈F

deg(u)≥deg(w)

[u : w]
z
· [w : v]

= 1
z

∑
w∈F

deg(u)≥deg(w)

[u : w] · [w1 : v] · w2 · w3 ≡
∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]× w2

Lem. 6.16≡
∑
w∈F

deg(u)≥deg(w)

[u : w]⟨w3⟩ × [w1 : v]×

 ∑
y∈F ′

deg(w2)≥deg(y)

[w2 : y]⟨y3⟩ × y2 × y1


≡

∑
w∈F

deg(u)≥deg(w)

∑
y∈F ′

deg(w2)≥deg(y)

[u : w]⟨w3⟩ × [w1 : v]×
(
[w2 : y]⟨y3⟩ × y2 × y1

)

We set m = ⌈ 2
3 (deg u + deg v)⌉ and m′ = ⌈ 2

3 deg w2⌉. We calculate the degrees of the five
factors:

deg u−deg w+deg w3 ≤ (deg u−deg w) + ⌊ 1
3 deg u⌋ ≤ ⌊4

3 deg u⌋−m ≤ ⌈ 2
3 (deg u−deg v)⌉

deg w1 − deg v + 1 ≤ deg w1 ≤ m ≤ ⌈ 2
3 (deg u− deg v)⌉

deg w2 − deg y + deg y3 ≤ ⌊ 4
3 deg w2⌋ − ⌈ 2

3 deg w2⌉ ≤ ⌈ 2
3 deg w2⌉ ≤ ⌈ 2

3 (deg u− deg v)⌉
deg y2 ≤ ⌈ 2

3 deg w2⌉ ≤ ⌈ 2
3 (deg u− deg v)⌉, and analogously for deg y1.

The rescaling constants on the edges can be set in the straightforward way. ◀
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