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Abstract
Distributed agreement is a general name for the task of ensuring consensus among non-faulty
nodes in the presence of faulty or malicious behavior. Well-known instances of agreement tasks are
Byzantine Agreement, Broadcast, and Committee or Leader Election. Since agreement tasks lie at
the heart of many modern distributed applications, there has been an increased interest in designing
scalable protocols for these tasks. Specifically, we want protocols where the per-party communication
complexity scales sublinearly with the number of parties.

With unconditional security, the state of the art protocols have Õ(
√

n) per-party communication
and Õ(1) rounds, where n stands for the number of parties, tolerating 1/3 − ϵ fraction of corruptions
for any ϵ > 0. There are matching lower bounds showing that these protocols are essentially optimal
among a large class of protocols. Recently, Boyle-Cohen-Goel (PODC 2021) relaxed the attacker to
be computationally bounded and using strong cryptographic assumptions showed a protocol with
Õ(1) per-party communication and rounds (similarly, tolerating 1/3 − ϵ fraction of corruptions).
The security of their protocol relies on SNARKs for NP with linear-time extraction, a somewhat
strong and non-standard assumption. Their protocols further relies on a public-key infrastructure
(PKI) and a common-reference-string (CRS).

In this work, we present a new protocol with Õ(1) per-party communication and rounds but
relying only on the standard Learning With Errors (LWE) assumption. Our protocol also relies on a
PKI and a CRS, and tolerates 1/3 − ϵ fraction of corruptions, similarly to Boyle et al. Technically,
we leverage (multi-hop) BARGs for NP directly and in a generic manner which significantly deviate
from the framework of Boyle et al.
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1 Introduction

Byzantine Agreement [33, 29] is a classical problem in distributed computing whose aim is to
ensure that all non-faulty nodes in a distributed system agree on the same value, even in the
presence of faulty or malicious (Byzantine) behavior. This task is tightly related to other well
studied distributed agreement tasks such as Broadcast, and Committee or Leader Election.
All of the above are fundamental to many distributed systems, such as blockchain protocols
(e.g., Algorand [18, 8]) and secure multiparty computation (MPC) protocols [19, 2, 7, 34].

The efficiency of an agreement protocol is measured by the number of rounds of com-
munication required to reach agreement and the amount of bits exchanged in each round.
Optimizing the above two is the subject of a rich line of active research. Due to the need
to support large numbers of parties, scalability has become an important goal. Ideally, we
want to design protocols where the number of rounds and the per-party communication grow
(much) slower than the number of parties.

In this work, we consider the synchronous communication model and assume point-to-
point channels. We further consider adversaries that corrupt parties statically (after the
protocol is specified but before the protocol’s execution starts). Our main result is the first
protocol which essentially optimal complexity, based on standard falsifiable cryptographic
assumptions.

▶ Theorem 1.1 (Optimal Agreement from LWE). Assume a public-key infrastructure (PKI), a
common reference string (CRS), and the hardness of LWE. Then, there are n-party protocols
for Byzantine agreement, broadcast, and committee or leader election, where each of these
protocols is secure against a probabilistic polynomial-time adversary that statically corrupts
up to 1/3− ϵ fraction of parties for any constant ϵ > 0. Furthermore, each of these protocols
terminates within poly(log n) rounds and each party sends poly(λ, log n) bits overall, where
λ ∈ N is a computational security parameter.

Our construction, in fact, is obtained using generic usage of a multi-hop non-interactive
batch argument (BARG) system for NP.3 Such BARGs were recently constructed assuming
LWE and in the CRS model by [11, 32]. Therefore, any construction of a multi-hop BARG
from other assumptions, say group-based, will immediately imply the above result under
the other assumptions. (We will explain what BARGs and multi-hop BARGs are below, in
Section 2).

Putting the result in context
For convenience, throughout the paper, we use the notation Õ(·), Ω̃(·) to hide poly-logarithmic
factors in n, and Õλ(·) to additionally hide polynomial factors in λ, the computational security
parameter. That is, poly(log n) ≡ Õ(1) and poly(λ, log n) ≡ Õλ(1).

3 This is an argument system that allows an efficient prover to compute a non-interactive and publicly
verifiable “batch proof” of NP instances, with size smaller than the combined witness length. If any of
the instances is false, then no polynomial-time cheating prover must be able to produce an accepting
proof.
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With information theoretic security, the state of the art protocol (in terms of per-party
communication complexity) is due to King et al. [28, 26]. They obtained an Õ(1)-round
protocol where each party communicates Õ(

√
n) bits overall (tolerating 1/3− ϵ corruptions).

Prior works (e.g., [33, 29, 12, 13, 6]) all had quadratic total communication. Other works that
came around the same time or after [28, 26], for example [27, 5, 1], have total quasi-linear
communication but they are unbalanced; i.e., few (poly-logarithmically many) parties need to
communication with everyone. A recent work [16] gave a computationally-efficient variant of
the state of the art protocol of [28, 26]. In another recent work [15], a generic transformation
was shown from protocols with worst-case (pessimistic) guarantees to protocols that have
optimal guarantees in an honest (optimistic) execution (and same pessimistic guarantees in
the worst case).

In terms of lower bounds, few barriers are known. Holtby, Kapron, and King [20] showed
that in a large class of Byzantine agreement protocols there is at least one honest party that
must send Ω̃(n1/3) messages. Gelles and Komargodski [16] showed that in the same class of
Byzantine agreement protocols, there is at least one honest party that must send or process
Ω̃(n1/2) messages.

Allowing cryptography and trusted setup assumptions (that invalidate both of the above-
mentioned lower bounds), Boyle, Cohen, and Goel [4] achieve a protocol with essentially best-
possible communication: Õ(1) rounds and per-party Õλ(1) bits of communication overall. To
do this they introduce a new cryptographic primitive, which they call succinctly reconstructed
distributed signatures (SRDS), and show that it suffices for distributed agreement. The
authors then instantiate SRDS using a PKI and a strong form of succinct non-interactive
arguments of knowledge (SNARKs),4 which are known not to be constructible based on
falsifiable assumptions [30, 17]. The authors also give a construction of SRDS using falsifiable
assumptions, but in order to achieve this, they modify the PKI model to be much stronger
and less meaningful in the context of BA. Specifically, they assume that a single trusted
party generates every key pair, where it provides valid secret keys only to a small randomly
and secretly chosen subset of the parties; this PKI model can be referred to as a “centrally-
generated PKI.” The construction of [4] in the centrally-generated PKI model has the trusted
party choose a secret, global committee, and programs knowledge of this committee into each
member’s secret key. Thus, their construction can be seen as a way to bootstrap a single BA
output (i.e., the choice of a global committee) in this model to achieve more BA outputs.
It is unclear, however, what this result means in the context of actually achieving a BA
protocol from scratch, since as explained before, it is assumed that a trusted party programs
the output of a BA protocol into the trusted setup. Note that this is very different from
the standard definition of PKI, where each party publishes a public key that it is allowed
to choose arbitrarily. The authors of [4] pose the existence of an efficient BA protocol from
falsifiable assumptions and in the non-trusted PKI model as the main open question in this
line of work.

In Theorem 1.1 we answer this question in the affirmative, obtaining the same efficiency
properties of the resulting protocol as [4] (in the non-trusted PKI model) except that we rely
on the standard LWE assumption instead of (strong variants of) SNARKs. Notably, LWE

4 A SNARK is a proof system that enables a prover holding a witness w to some public NP statement x
to convince a verifier that it indeed knows w by sending a single message. The proof string is succinct
in the sense that it is much shorter than the witness w, and knowledge is formalized via an efficient
extractor that succeeds extracting w from a malicious prover P ∗ with roughly the same probability
that P ∗ convinces an honest verifier. The work of [4] assumes linear extraction, i.e., where the size of
the extractor is linear in the size of the prover.

ITCS 2024



46:4 Scalable Distributed Agreement from LWE

is both falsifiable and believed to be quantum-secure, which has made it an attractive and
widely-used assumption. This gives the first agreement protocols with optimal complexity
(up to poly-logarithmic factors) relying on standard falsifiable assumptions. Notably, we
do not achieve our result by following their template of instantiating SRDSs using LWE;
in fact, this is still an open problem. Instead, we suggest a completely different framework
for achieving scalable agreement protocols utilizing the power of quorums and multi-hop
aggregate signatures. Our approach is arguably much simpler and more direct. We stress
that unlike the “centrally-generated PKI model,” our protocol does not require the public-key
infrastructure to guarantee any sort of agreement. Namely, our protocol is a secure BA
protocol even if a malicious party sends inconsistent public keys to different other parties.
We give a detailed overview of our ideas in Section 2.

On the importance of relying on falsifiable assumptions
Roughly speaking, a falsifiable assumption [30] is one that can be phrased and modeled as an
interactive game between an efficient challenger and an adversary, at the conclusion of which
the challenger can efficiently decide whether the adversary “won” the game. The assumption
states that every efficient adversary has at most a negligible winning probability in the game.
Most standard cryptographic assumptions are falsifiable, including general notions (e.g. one
way functions, trapdoor permutations, oblivious transfer, fully homomorphic encryption, etc.)
and concrete assumptions (e.g. hardness of factoring, discrete logarithms, shortest vector
problem, RSA, CDH, DDH, LWE etc.). The above notion of falsifiability captures the fact
that the challenger gives us an efficient process to test whether an adversarial strategy breaks
the assumption. Since the introduction of this notion, falsifiability has been an important
criteria of “reasonable” or “standard” assumptions.

Intuitively, assumptions that are not falsifiable are harder to reason about, and therefore
we have significantly less confidence in them. SNARKs are a common examples for a
primitive that is by-itself non-falsifiable because for a challenger to decide whether an
adversary produces a proof of a false statement, it needs to decide whether an NP statement
is true or false, which could be hard in general. Additionally, it is well known that it
is impossible to construct (in a certain black-box manner) SNARKs from any falsifiable
assumption [17], making it an assumption that we would prefer to avoid whenever possible.

2 Technical Overview

We consider the following goal that will turn out to suffice for all of our applications. We
want to build a communication tree, where every internal node in the tree corresponds to a
small set of parties and every one of the n leaf nodes is virtually associated with a unique
party. The root node is called the supreme committee. Intuitively, every internal node
is a “committee” that certifies communication from the parent of the node to its children
and vice versa. At a high level, our goal is to maximize the number of internal nodes that
correspond to “good” committees (in particular, containing a majority of honest parties)
and also maximize the number of leaf nodes that can communicate with the root (supreme
committee) by talking only with other “good” committees (this is explained more precisely
below). Obviously, if the members in each node are fixed and known, then an adversary
with a sufficient corruption budget can corrupt a majority of parties in many internal nodes
and eventually prevent reliable communication. Thus, while the tree structure is fixed and
known ahead of time, the members in each node will be selected “on the fly”. For efficiency
purposes, we want each non-leaf node to contain Õ(1) members and that each party is a
member in Õ(1) nodes. The tree will have fan-out Õ(1) and the depth of the tree is Õ(1).
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Let H be the set of honest parties. A resulting communication tree will induce a set
K ⊆ H such that for every p ∈ K, it holds that
1. The path from the node associated with p to the root is “good”, where “good” means

that the majority of each node members along the path are from K. That is, for every
node N along the path between leaf p to the root (including the root), it holds that
|N ∩K| > |N |/2.

2. For each node in the tree, each node member from K knows the members of its neighboring
nodes (parent and children).

Note that in the above two properties we do not require anything for parties in H \K and
so it is convenient to think of them as behaving adversarially.

If we manage to generate such a tree with K = H, then we are essentially done. The
supreme committee members (i.e., the Õ(1) parties associated with the root node) can perform
any polynomial complexity protocol to compute Byzantine Agreement, or Committee/Leader
Election, and distribute the result to all the parties using the tree. Indeed, since any honest
party has a direct (and short) path to the root, involving only nodes with an honest majority,
it is guaranteed that it will learn the right value. The main challenge is therefore to come up
with such a communication tree.

Prior work: using the almost everywhere communication tree. Already in the original work
of [28], a communication tree as above was constructed. However, instead of achieving it with
respect to K = H, they achieved it with respect to some K ′ ⊂ H, where |H\K ′| ∈ Θ(n/ log n).
This is also why they achieved only almost everywhere agreement rather than everywhere
agreement.

Boyle et al. [4] worked directly with the tree of [28] and came up with a new primitive
that suffices to make sure that the adversary can neither prevent an honest party from
learning the right output or cause it to accept a wrong value. This new primitive is called
succinctly reconstructed distributed signatures (SRDS), and allows the parties to aggregate
cryptographic signatures along a tree. SRDS have a “robust threshold” property: if enough
(say 2/3+ ϵ) of the nodes are honest and agree to sign, then even if some internal nodes of the
tree are malicious, these malicious nodes cannot prevent a signature from being generated.
On the other hand, if few enough (say 1/3− ϵ) nodes agree to sign, then the malicious nodes
cannot produce a signature.

The authors of [4] give two instantiations of SRDS. The first is using a PKI and a
strong form of (recursively composable) succinct non-interactive arguments of knowledge
(SNARKs). Specifically, since the communication tree is of logarithmic depth they eventually
need to perform recursive composition log-many times. Thus, to bound the complexity of
the knowledge extractor by a fixed polynomial, they need to assume that a single extraction
has only constant multiplicative overhead. The second instantiation only requires one-way
functions as a cryptographic assumption, but works in the much stronger and less standard
centrally-generated PKI model, where it is assumed that a central, trusted party generates all
key pairs. Crucially, such a setup essentially allows to secretly choose and identify a random
committee, almost solving the problem we want to solve in the first place.

(Multi-hop) BARGs to the rescue? We want to work in the standard PKI model, and to
also eliminate the need for SNARKs. A natural attempt is to try to use the exciting recent
line of work on BARGs. Recall that a non-interactive batch arguments (BARG) [10, 9],
given an NP-language, is an argument system that allows an efficient prover to compute a
non-interactive and publicly verifiable “batch proof” of the conjunction of k NP instances,

ITCS 2024



46:6 Scalable Distributed Agreement from LWE

with size much smaller than the combined witness length. If any of the k instances is false,
then no polynomial-time cheating prover must be able to produce an accepting proof. The
multi-hop variant [11] allows to compose proofs, enabling mutually distrustful parties to
perform distributed computations in a verifiable manner. See Section 3.2.2 for the precise
definition. BARGs are nowadays known from multiple assumptions like LWE [23, 10],
bilinear maps [25, 36, 24], decisional Diffie-Hellman (DDH) and quadratic residuosity [9, 22],
or obfuscation [14], and the multi-hop variant in particular is known from LWE [11, 32].

Unfortunately, the specific structure of BARGs makes it clear that naively replacing
SNARKs with (multi-hop) BARGs in the protocol template of [4] does not work. At a high
level, [4]’s certification mechanism consists of a tree of SNARKs, where each non-leaf SNARK
has a “running count” of how many valid signatures are present in the corresponding subtree.
So a particular node n will have left and right children (cl, πl) and (cr, πr), where cl and cr

are counts of the signatures, and πl and πr are SNARKs which attest to those signatures (or
are signatures themselves, if l and r are leaf nodes). Upon seeing these values, node n will
set cn = cl + cr, and generate πn that attests that it saw proofs for its child nodes, and that
they sum up to cn. Multi-hop BARGs also allow aggregation of proofs in a tree, but they do
not allow this summing-of-counts logic in the internal nodes. With BARGs, the leaves of the
tree correspond to NP statements, and the only allowed logic is “all-or-nothing”: either all
statements are true, and the root-node proof can be generated attesting to this, or if any
statement is not true, then the aggregation fails.

Our approach. To alleviate this problem, we completely deviate from the above template
and construct a new communication tree which still satisfies the above properties for K ′ ⊂ H
but we additionally have the following important guarantee: All internal (non-leaf) nodes
have a majority of parties from H.

Why does this suffice? Each internal node in the tree will collect signatures on the candidate
string from its members. Because each internal node has an honest majority from K ′, we are
guaranteed that the right candidate string will form a majority. Now (because all internal
nodes are “honest virtual nodes”), we can use multi-hop BARGs to aggregate the validity of
the signatures along the tree. Once all lower level nodes hold an aggregate signature they
can send it to their associate parties. The latter are then convinced that this value was held
by more than 1/2 of the parties and so it must be correct.

How do we achieve it? One can utilize the communication tree of [28] in the following
way: ask the members of the supreme committee to jointly sample a succinct representation
of a new random tree. Say, this can be done by sampling (at the root node) a key for a
pseudo-random function (PRF), disseminating it to everyone (along the tree), and locally
expanding it to get a new (pseudo-random) new tree. This will satisfy the above property
that all internal nodes will have an honest majority (with all but negligible probability of
error).

The above idea almost works. The only problem is that there might exist some “bad”
PRF key, where the whole tree generated by this key consists of dishonest-majority nodes.
If such a key exists, the adversary can choose this key, generate a BARG-based signature
which is signed by all nodes in the tree (since they are all majority-dishonest), and present
this to any of the honest parties in H \K ′. Any such party in H \K ′ will have no way of
distinguishing this malicious signature from the honest signature of the true agreed-upon
value. Thus, this scenario allows the adversary to prevent full agreement.
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We need some way to prevent generating such a “terrible” tree, i.e., in every possible
choice of a tree, there must be at least one node that has an honest majority. We achieve this
property by using a particular method for getting the tree. Instead of choosing it (pseudo-)
randomly, we choose only one node at random. We then “shift” this node members in
a particular way so that we are guaranteed that (1) w.h.p all nodes consist of an honest
majority and (2) for every originally sampled node, there must be at least one node that has
an honest majority. See details in Section 4.

The idea of using shifts is somewhat similar to a recent idea due to [16], however, the
setting is a bit different and we end up needing new properties. Specifically, in [16], the
idea of using shifts was applied to a seed that was sampled differently, and further they use
this idea for a different purpose than to generate a tree. In particular, the “no terrible tree”
analysis, and in general the entire portion of our work which concerns the communication
tree, is novel to this work.

3 Model and Preliminaries

Notation. For any distribution X , we denote by x← X the process of sampling a value x

from the distribution X . For a set X we denote by x← X the process of sampling x from
the uniform distribution over X. For an integer n ∈ N we denote by [n] the set {1, .., n}. A
function negl : N→ R is negligible if for every constant c > 0 there exists an integer Nc such
that negl(λ) < λ−c for all λ > Nc. Throughout this paper, all machines are assumed to be
non-uniform. We will use λ to denote the computational security parameter. We will use
PPT as an acronym for “probabilistic polynomial-time”.

Model. We consider n parties in a fully connected network (i.e., clique). Each party has
a unique ID and the IDs are common knowledge. We assume the IDs are 1, . . . , n. Parties
are uniform and efficient algorithms, i.e., they can be represented as Turing machines that
run in polynomial time in the (common) security parameter given in unary representation.
Parties can perform arbitrary computation and they have a (private) source of randomness.
Communication is private and authenticated, that is, whenever a party sends a message
directly to another, the identity of the sender is known to the recipient and moreover the
content of the message is hidden from the adversary.5 We assume synchronous communication.
That is, communication proceeds in rounds; messages are all sent out at the same time at
the start of the round, and then received at the same time at the end of the same round. All
parties have synchronized clocks.

We assume that there is a PPT adversary that controls up to t parties and whose goal is
to cause the protocol to fail in some way, depending on the context. The adversary is allowed
to be non-uniform PPT (while the honest parties need only be uniform). The adversary
chooses which parties to control non-adaptively, i.e., it chooses the set of corrupted parties
at the start of the protocol. The adversary is malicious: corrupted parties can engage in
any kind of deviations from the protocol and send arbitrary messages in the name of the
corrupted parties. We emphasize that corrupted parties can send arbitrarily long messages
to arbitrary other parties. We assume that the adversary is rushing, that is, it can view
all messages sent by the honest parties in a round before the corrupted parties send their
messages in the same round.

5 Since our constructions rely on a public-key infrastructure it is easy to “implement” these properties
(e.g., by using authenticated encryption).

ITCS 2024
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We further consider protocols in the PKI model, where each party i ∈ [n] samples for
itself a secret key ski and a public verification key vki from some distribution. The adversary
can replace the vk’s of corrupted parties arbitrarily and even send inconsistent public keys
to different parties. We further assume a common reference string (CRS) which is sampled
once at the beginning of time by a trusted party (alternatively, one can think of the CRS as
being non-uniformly hardwired into the protocol’s description). The CRS is known to all
parties as well as to the adversary. We emphasize that the adversary chooses which parties
to corrupt after seeing the CRS and after seeing all (honest) vks, but before the protocol’s
execution begins.

The adversary’s advantage, and the relation between n and λ. In this paper, we say
that a protocol is secure if a computationally-bounded adversary cannot contradict any of
its properties except with negligible probability. By this, we mean that the probability of
the adversary succeeding should be bounded by negl(n) + negl(λ), where n is the number
of parties, and λ is a security parameter which is used to instantiate the cryptographic
primitives used in the protocol. For this to be meaningful, we can either assume that λ and
n are polynomially related (i.e., n is upper-bounded by an unspecified polynomial p(·) in
terms of λ), and rely on polynomial-hardness assumptions, or we can rely on sub-exponential
hardness assumptions and relax this relation, saying that n can go up to 2λΘ(1) . We stress
that even in the polynomial-hardness regime, none of the constructions in this paper require
knowing or specifying the bounding polynomial p upfront in order to work.

3.1 Definition of Byzantine Agreement and Friends
Byzantine agreement. In this problem, there are n parties, P1, . . . , Pn. At most t of the
parties may be corrupted. Each party Pi begins with an input bit xi ∈ {0, 1} and outputs a
bit yi. The goal of the protocol is (with high probability) for all honest parties to terminate
and, upon termination, agree on a bit held by at least one honest party at the start. This
should hold even when the t corrupted parties collude and actively try to prevent it. More
precisely, the Byzantine agreement problem is defined as a protocol that satisfies with high
probability the following agreement, validity, and termination properties:

Agreement: For every pair of honest parties Pi and Pj it holds that yi = yj .
Validity: If there exists a bit x such that for every honest party Pi it holds that xi = x,
then the common output is x.
Termination: Every honest party eventually outputs a bit.

Committee election and broadcast. In committee election, the goal is to bring all
honest parties to agree on a small subset of parties with a fraction of corrupted parties close
to the fraction for the whole set. In the extreme case, the committee is of size 1 in which
case a single leader is chosen (i.e., leader election) and the goal is to guarantee that the
leader is an honest party with constant probability. In broadcast, the goal is to allow an
honest party to communicate a message to all other parties so that the message that all
other honest parties end up knowing is the same as the one sent.

3.1.1 Quorum to Byzantine Agreement, Broadcast, and Committee
Election

It is not at all obvious if one can translate a protocol for one of the above tasks into another
one while preserving scalability. One naive idea is to choose a small committee and let it
do most of the work. That is, elect a small committee and run a “heavy-weight” protocol
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among the committee members for task X, where X could be (for instance) leader election,
Byzantine agreement, or broadcast. If the committee is sufficiently small, then we can afford
to execute rather inefficient protocols among the committee members. The problem with
this approach is that it results with highly unbalanced protocols: members would need to
communication with all other parties.

There is a useful abstraction called a quorum that does imply all of the above applications
as a special case. A quorum is a collection of n committees where (1) each committee contains
roughly the same fraction of bad parties as in the total population, (2) Each party is a
member in roughly the same number of committees. Once we have a quorum, it is relatively
easy to obtain all other above-mentioned abstractions with essentially no extra complexity
(as noted in [28]). For completeness, we sketch the details next.

Consider the Byzantine agreement problem first. Given a quorum, each party sends
its bit to its associated committee members. The committees now perform agreement in
a tree-like fashion by say computing the majority value of their input bits. Lastly, all
committees distribute the agreed upon bit to their respective associated parties. Broadcast is
implemented in a similar fashion by performing broadcast in a tree-like fashion between the
committees defined via the quorum (again, since these committees are behaving honestly, this
is easy). Committee election is a special case of quorum (the first committee in the quorum
is a good committee). Leader election can be implemented by running a naive (heavy-weight)
protocol among a chosen committee.

3.2 Cryptographic Building Blocks
3.2.1 Digital Signatures
A digital signature allows one party to “convince” another party that a third party indeed
“approved” a given message. The notion that suffices for this paper is that of existential
unforgeability, where it is required to be computationally infeasible to generate a valid
message-signature pair even after seeing as many such pairs for different messages as needed.
We first describe the syntax and then formalize the security notion via a game between a
challenger and an adversary.

A signature scheme consists of three polynomial-time procedures S = (Gen, Sign, Verify)
with the following syntax:

Gen(1λ)→ vk, sk: given security parameter 1λ, the procedure outputs a verification key
vk and signing key sk pair.
Sign(sk, m)→ σ: given signing key sk and a message m, the procedure outputs a signature
σ.
Verify(vk, m, σ) → {0, 1}: given verification key vk, message m, and a signature σ, the
procedure outputs 0 (for “fail”) or 1 (for “succcess”).

Correctness. A signature scheme should satisfy that honestly generated signatures veri-
fication always succeed. That is, for all λ ∈ N, vk, sk← Gen(1λ), and m ∈ {0, 1}∗, it holds
that

Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.

PKI existential unforgeability. For any PPT adversary A, there is a negligible function
negl(·) such that the probability to win the unforgeability game is at most negl(λ). That is,

Pr[ExUnfgS,A(λ) = 1] ≤ negl(λ),
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where the game ExUnfgS,A(λ) is defined as:
1. A(1λ) specifies an integer k by writing it in unary.
2. Initialize M = ∅ and run {(vki, ski)← Gen(1λ)}i∈[k]. Send {vki}i∈[k] to A.
3. A chooses a set C ⊆ [k] and gets back {ski}i∈C .
4. A gets access to a signing oracle that gets as input pairs of the form (i, m) for i ∈ [k] \ C

and returns σi,m = Sign(ski, m). A makes as many queries as it wants (adaptively), and
upon every such query, the experiment updates M = M∪ {(i, m)}. When A queries
(⊥,⊥), the experiment proceeds to the next step.

5. A outputs (i∗, m∗, σ∗) and the experiment outputs 1 (i.e., adversary wins) if (1) i∗ is
not among the set of corrupted keys C, (2) (i∗, m∗) does not belong to the list of queries
M, and (3) the signature σ∗ is a valid signature of m∗ with respect to vki∗ . That is,
i∗ ∈ [k] \ C ∧ (i∗, m∗) /∈M ∧ Verify(vki∗ , m∗, σ∗).

▶ Remark 1 (Equivalence to standard existential unforgeability). The standard definition of
existential unforgeability of signatures is a special case of the above where k = 1 and C = ∅.
By a standard “guessing” argument the two notions are existentially equivalent. That is, to
translate an attacker of the above definition to an attacker in the “single-key” variant, we
can embed the challenge vk into the list of vk at a random index. If this index ends up being
corrupted (i.e., in C), the game aborts. Otherwise, the game proceeds normally. A successful
attack to the PKI existential unforgeability game will translate into a successful attack in
the single-key existential unforgeability game with probability smaller by 1/n factor.

The above definition of digital signatures is standard and satisfied by many known
constructions. For instance, the one-way function-based construction satisfies it [31, 35]
(which then implies an LWE-based construction, directly).

3.2.2 Multi-Hop BARGs for NP
Let R(·, ·) be an NP relation, and let x1, . . . , xn be n public statements. A BARG scheme
stands for publicly verifiable non-interactive argument system for batch-NP. Such a scheme
allows a prover to prove that it knows n witnesses such that for all i ∈ [n], R(xi, wi) = 1, using
total communication o(n). A multi-hop BARG scheme extends this notion to a distribute
system where there are n provers, each one holding a different witness. A multi-hop BARG
allows the provers to jointly and aggregate a proof that they know n witnesses using o(n)
communication for each prover. In two concurrent recent works [11, 32], a multi-hop BARG
was given. We give the definition of multi-hop BARG from [11], except that we simplify it
slightly by fixing the aggregation pattern to be in a full binary tree-like manner.

▶ Definition 2 (Multi-hop BARG scheme with fixed aggregation pattern). Let R(·, ·) be a
NP-relation and let λ, n ∈ N be two parameters. Let X = (x1, . . . , xn) be n public statements,
and let the aggregation pattern be the full binary tree with n labeled nodes (denoted T ).
A multi-hop BARG scheme with fixed aggregation pattern for R consists of the following
(randomized) polynomial time algorithms:

Gen(1λ, i∗)→ crs, td. The setup algorithm receives as input the security parameter λ, and
an index of statement i∗. It returns the crs (common reference string) and trapdoor td.
P(crs, x, w)→ π/⊥. The proof generation algorithm receives the common reference string
crs, an instance x, and a potential witness w. If R(x, w) = 1, it outputs a proof π;
otherwise, it returns ⊥.
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AggProve(crs, X, i, πi, πL, πR) → π. The aggregation algorithm receives as input the n

instances X, an index i in the aggregation tree, the proof πi associated with the ith
instance xi, and the aggregated proofs πL and πR of the left and right subtrees of index i,
respectively. It returns an aggregated proof π associated with the subtree of index i.
V(crs, X, i, π)→ {0, 1}. The verification algorithm gets as input the n instances X, an
index i, and a proof π. It returns 1 if π is valid proof for the aggregated statements with
respect to the subtree; otherwise, it returns 0.

The scheme need to satisfy the following:
Efficiency. The size of crs, td is at most Õλ(1), and the size of a (combined) proof
corresponding to T is at most maxi∈[n] |wi|+ Õλ(1).
Correctness. For any crs, td← Gen(1λ, i∗), and for any X and valid witnesses:

For every leaf j of T :

V(crs, X, j,P(crs, xj , wj)) = 1.

For every internal node k ∈ [n] the following holds. Let kL and kR be k’s left and right
children, respectively. Assume that πL and πR are proofs associated with kL and kR

such that V(crs, X, kL, πL) = 1 and V(crs, X, kR, πR) = 1. Then,

V(crs, X, k, AggProve(crs, X, k,P(crs, xk, wk), πL, πR)) = 1.

Index hiding. For any PPT adversary A, and any i, j ∈ [n]:∣∣∣∣ Pr
crs←Gen(1λ,i)

[A(crs, i, j) = i]− Pr
crs←Gen(1λ,j)

[A(crs, i, j) = i]
∣∣∣∣ ≤ negl(λ).

Somewhere argument of knowledge. There exists a PPT extractor E, such that for
any PPT adversary A:

Pr
crs←Gen(1λ,i∗)

(i,π)=A(crs)

[V(crs, X, i, π) = 1 ∧R(xi, E(X, td, i∗, i, π)) = 0] ≤ negl(λ).

▶ Theorem 3.3 (Theorem 1.3 in [11]). Assume hardness of LWE against non-uniform
polynomial-time attackers. A multi-hop BARG for all NP satisfying Definition 2 exists.

Above, we assume that n, the number of instances in the batch, and λ, the computational
security parameter, are polynomially related. One can support even n that grows sub-
exponentially with λ (or, alternatively, λ that is only poly-logarithmic in n) if we assume
sub-exponential hardness of LWE.

Our agreement protocol is eventually proven secure by a reduction to the security of
the multi-hop BARG and an underlying signature scheme. We have stated the existence of
multi-hop BARGs from LWE because this is the way that [11, 32] state it. However, the
latter works actually show a generic construction of multi-hop BARGs from two primitives
(1) somewhere-extractable hash functions (SEH) [21, 10], and (2) standard batch arguments
(i.e., not necessarily multi-hop). These were first constructed from LWE [21, 10], and more
recently using other assumptions (e.g., DLIN or subexponentially-hard DDH) [24]. By relying
on these results (and noting that signatures exist too under these assumptions), we can get
our results also from those assumptions. Lastly, we mention that our protocols only require
multi-hop BARG that supports logarithmically-many hopes.
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4 Quorum Agreement Protocol

In this section we provide a scalable protocol used to agree on a “good” quorum. Recall that
a quorum is a collection of n committees C1, . . . , Cn ∈ [n]d (i.e., size d subsets of parties). In
our context, each committee will be of size d = log2 n and a quorum is good if the following
conditions hold. Denote by B the set of parties the adversary controls, and recall that
|B| ≤ (1/3− ϵ)n for ϵ > 0.
1. For each i ∈ [n], |Ci \B| > d/2. That is, there is an honest majority in each committee.
2. For each j ∈ [n],

∑
i∈[n] |Ci ∩ {j}| ∈ O(d). That is, each party appears in about d

committees.

The protocol that we describe in this section results with a good quorum as described
above, and does so using only Õλ(1) per-party communication and Õ(1) rounds. All of our
protocols succeed with very high probability, i.e., all but negligible probability of error in the
security parameter and in n.

▶ Theorem 4.1. Assume a PKI, a CRS, and the hardness of LWE. Then, there is a protocol
for generating a good quorum (with probability at least 1− negl(n)), secure against a PPT
adversary that statically corrupts up to 1/3 − ϵ fraction of parties for any constant ϵ > 0.
Furthermore, the protocol terminates within Õ(1) rounds and each party sends Õλ(1) bits
overall.

As immediate corollaries, we obtain protocols for classical agreement tasks such as
byzantine agreement, broadcast, and committee or leader election. The construction that
achieves this transformation is immediate and is described in Section 3.1.1.

▶ Theorem 4.2 (Restatement of Theorem 1.1). Assume a PKI, a CRS, and the hardness of
LWE. Then, there are protocols for byzantine agreement, broadcast, and committee or leader
election, secure against a PPT adversary that statically corrupts up to 1/3 − ϵ fraction of
parties for any constant ϵ > 0. Furthermore, these protocols terminate within Õ(1) rounds
and each party sends Õλ(1) bits overall.

Section organization. In Section 4.1 we present a protocol that makes almost all parties
agree on a random string. That is, at the end of this phase, each party i holds a string seedi.
For all but o(1) fraction of parties, there is a string seed such that all seedi’s are equal to it.
The o(n) parties that do not hold seed are called unknowledgeable. There is no guarantee
on the seedi of the unknowledgeable parties. Furthermore, seed is distributed uniformly
from {0, 1}log3 n. It is not guaranteed that a party knows whether it is knowledgeable or not.
Then, in Section 4.2 we show that the output of the previous protocol can be used to sample
from a strong family of good quorums. That is, we construct a family of good quorums with
additional properties that are crucial for the next step in our protocol. Lastly, in Section 4.3
we preset the full protocol that causes all parties to agree on seed and thereby implies a good
quorum.

4.1 Almost Everywhere Agreement on a Seed
Recall that [28]’s protocol establishes a O(log n)-degree communication tree (which is essen-
tially a sparse overlay network) in which each node is assigned with a committee of Õ(1)
parties. The guarantees are that the Õ(1)-size root committee has a 2/3 honest majority and
almost all of the parties are connected to the supreme committee via the communication
tree. Denote root the root committee. We run a standard MPC protocol among the parties
in the root of the tree to sample fresh seed of length log3 n.
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AlmostEverywhereAgreementOnASeed:
1. All the parties runs the protocol from [28] to generate the communication tree.
2. The parties in the root node perform the MPC protocol of BGW [2] to calculate seed =

XORi∈rootseedi, where for each party in the root seedi ← {0, 1}log3 n. Recall that BGWs
protocol requires private channels and a broadcast channel. The former we assume as
part of the model (and this can easily be implemented using a PKI) and the latter
we implement via polynomial (but not necessarily scalable) broadcast protocol, say [3]
(remember that we run BGW among poly-logarithmically many parties).

3. The root node distributes seed to the leaves using the communication tree from step 1.
4. Each leaf node Ni sends seed to party Pi, where Pi saves only the value that it received

mostly.

▶ Theorem 4.3. For any PPT adversary A that statically corrupt up to 1/3− ϵ parties, for
any constant ϵ > 0, with probability at least 1− negl(n)− negl(λ), at the end of the protocol,
1− o(1) fraction of honest parties agree on a uniform string seed ∈ {0, 1}log3 n. In addition,
the protocol terminates after Õ(1) rounds, and each party sends Õλ(1) bits overall.

The proof is by direct composition of the results from [28, 2, 3]; see the full version for
details.

4.2 Sampling a Strong Quorum

Recall that a quorum is a collection of n committees. Roughly, a quorum is good if each
committee has a fraction of corrupt parties similar to the fraction of total corrupt parties
(out of n). Also, we shall require a balancedness property meaning that each party appears
roughly in the same number of committees. These properties have been considered before
and are not new to this work. We introduce and require a new property called no terrible
quorums meaning that in every possible (adversarially chosen) quorum there is at least one
“good” committee.

▶ Definition 4 (Good family of quorums). A family of quorums is a family Q = {Qn}n∈N.
For each n ∈ N, each member Q ∈ Qn is a set of n committees Q = (C1, . . . , Cn) ∈ ([n]d)n,
where the size of each committee is d = log2 n. Note that each Ci is a multi-set. The family
Q is said to be good if
1. Efficient sampling: There is a deterministic polynomial-time procedure QSample(1n,

seed) that gets as input n ∈ N and seed ∈ {0, 1}log3 n, and outputs a quorum Q ∈ Qn.
2. Good committees: For every n ∈ N, every H ⊆ [n] such that |H| > n/ log log n, with

high probability over the choice of the quorum Q = (C1, . . . , Cn), the density of H-members
in Ci is very close to their density in [n]. That is,

Pr
seed←{0,1}log3 n,

(C1,...,Cn)=QSample(1n,seed)

[
∀i ∈ [n] : 1

d
·

∑
z∈Ci

1z∈H ≥
(

1− 1
log log n

)
|H|
n

]
≥ 1− negl(n).

3. Balanced committees: For every n ∈ N, with high probability over the choice of the
quorum Q = (C1, . . . , Cn), every party appears in O(d) committees overall. That is,

Pr
seed←{0,1}log3 n,

(C1,...,Cn)=QSample(1n,seed)

[
∀j ∈ [n] :

n∑
i=1

∑
z∈Ci

1z=j ∈ O(d)
]
≥ 1− negl(n).
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4. No terrible quorums: For every n ∈ N and every H ⊆ [n], for every possible choice
of a quorum Q = (C1, . . . , Cn), there exists at least one committee Ci where the density
of H-members in Ci is at least |H|/n. That is, for every seed ∈ {0, 1}log3 n such that
(C1, . . . , Cn) = QSample(1n, seed), it holds that

∃i ∈ [n] : 1
d
·

∑
z∈Ci

1z∈H ≥
|H|
n

.

▶ Theorem 4.5. There is an implementation of QSample such that for every n ∈ N,
QSample(1n, ·) results with a good family of quorums as defined in Definition 4.

Proof. We define the QSample procedure as follows:6

QSample(1n, seed), where |seed| = log3 n:
1. Parse seed as d ≜ log2 n elements in [n], denoted C∗ = P ∗1 , . . . , P ∗d .
2. Define Ci = P ∗1 + i, . . . P ∗d + i (all arithmetic is mod(n) and the nth party is identified

by 0).
3. Output Q = (C1, . . . , Cn).
The efficiency property of this construction is immediate by description. We argue that
we get balanced committees for every seed (i.e., with probability 1). Fix party j ∈ [n] and
seed ∈ {0, 1}log3 n. Denote Q = (C1, . . . , Cn) = QSample(1n, seed) and let C∗ be as above. It
holds that

n∑
i=1

∑
y∈Ci

1j=y =
n∑

i=1

∑
z∈C∗

1j=z+i mod n

=
∑

z∈C∗

n∑
i=1

1j=z+i mod n =
∑

z∈C∗

1 = |C∗| = d.

The fact that the resulting committees are good (with high probability) follows by an
application of Chernoff’s bound along with a union bound. Specifically, for each i ∈ [n], by
Chernoff’s bound,

Pr
seed←{0,1}Õ(1),

(C1,...,Cn)=QSample(1n,seed)

[
1
d
·

∑
z∈Ci

1z∈H ≥
(

1− 1
log log n

)
· |H|

n

]
≥ 1− n

− log n·|H|
2n·log log2 n

≥ 1− negl(n),

where the last inequality follows since |H| > n/ log log n. The second property of a good
quorum now follows by union bound over all i’s.

For the no terrible quorum property, observe that each party appear in exactly d commit-
tees and therefore the total number of honest parties in all quorums together is d · |H|. By
the pigeonhole principle, there must be one Ci with (d · |H|)/n parties from H. ◀

4.3 Everywhere Agreement on a Quorum
In this section we explain the final protocol, resulting with a good quorum known to all honest
parties. At a very high level, we utilize the almost everywhere protocol from Section 4.1 to
get a seed that is known to almost everyone. Then, we let each party expand its candidate

6 As mentioned, the idea to define the quorums via fixed shifts of a single “sufficiently random” committee
is due to [16]. However, there the randomness condition on the single committee is weaker and also
they did not consider the “no terrible quorum” property.
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seed to a quorum (that is agreed upon by almost everyone) using Theorem 4.5. We then use
the multi-hop BARG to aggregate signatures along a tree of the quorum committees. Once
the committees get an aggregated signature of all other committees they can pass on the
candidate string to their associated parties.

Building blocks. Our protocol utilizes the following primitives:
1. A signature scheme S = (Gen, Sign, Verify), as in Section 3.2.1.
2. A multi-hop BARG for NP BARG = (Gen,P, AggProve,V), as in Definition 2. The NP

relation that we use is defined next.

Committee signature relation. Recall that d is the size of a committee in the quorum. The
NP relation we utilize in our BARGs is defined next.

▶ Definition 6 (NP relation for BARGs). We define the following NP-relation:

RS,f,v⃗k,seed(i, {σj}j∈[d]) =
{

1 i ∈ [n] ∧
∑

j∈[d] S.Verify(vkf(i,seed,j), seed, σj) > d/2,

0 otherwise,

where f : [n] × {0, 1}∗ × [d] → [n] is a fixed polynomial-time computable function, v⃗k is a
vector of fixed public verification keys, and seed is a fixed seed string.

Above, we view f(i, seed, ⋆) as a function that outputs a multi-set of d parties (i.e., a
committee). So, the above relation classifies a valid witness for index i as one containing a
majority of valid signatures on seed from the multi-set members.

The QuorumAgree protocol. We now present the QuorumAgree protocol. Let T be an
abstract binary tree with n nodes. Each of the nodes is virtually associated with a committee
(in some arbitrary but fixed manner). Let Depth(T ) be T ’s depth, i.e., the number of nodes
in the longest path from the root to the leaves (so roughly Depth(T ) = log n). For a node j

in the tree, let Parent(j) be its parent, Left(j) and Right(j) be its left and right children,
respectively.
Setup phase:

1. A trusted dealer samples i∗ ← [n] uniformly at random and runs BARG.Gen(1λ, i∗) to
obtain crs and td. The dealer then publishes crs.

2. For each i ∈ [n], Pi runs S.Gen(1λ) to obtain vki and ski. Pi publishes vki.
Online phase:

3. All parties run the almost everywhere protocol from Section 4.1. At the end, each
party Pi holds seedi where |seedi| = log3 n. Denote seed the string that is held by
1− o(1) fraction of honest parties.

4. Each party (locally) computes its view of the quorum C
(i)
1 , . . . , C

(i)
n = QSample(1n,

seedi). Let C1, . . . , Cn = QSample(1n, seed). Define f : [n]×{0, 1}log3 n× [log2 n]→ [n]
such that f(i, x, j) is the j’s party in lexicographic order of the ith committee in
QSample(1n, x).

Terminology. In step 5 below, when we say that a committee does something, e.g., sends
a message, computes a value, etc, it means that every party in the committee does
this and labels its operation with its identity and its view of the committee index.
Importantly, since every party holds its own candidate for seed, the protocol may be
different for every party.
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5. For each committee Cj (in parallel):
a. For each committee member Pi in Cj :

i. Pi computes σi = S.Sign(ski, seed).
ii. Pi sends σi to every party in Cj , and for all k ∈ [log2 n] it learns σf(j,seed,k) (or
⊥).

b. Compute πj = BARG.P(j, {σf(j,seed,k)}k∈[log2 n]).
c. Set πL = ⊥, πR = ⊥.
d. If j is a leaf of T , set State = (Send, πj), else set State = WaitToAggregate.
e. Repeat the following Depth(T )− 1 many times:

i. If State = (Send, π):
A. Send π to CP arent(j).
B. Set State = WaitToDistribute.

ii. If State = WaitToAggregate:
A. For any “in” message from CLeft(j), if BARG.V(crs, ([n], v⃗k, seed), Left(j), in) =

1, then set πL = in.
B. For any “in” message from CRight(j), if BARG.V(crs, ([n], v⃗k, seed), Right(j), in) =

1, then set πR = in.
C. If πL ̸= ⊥ and πR ̸= ⊥, then set State = (Send, BARG.AggProve(crs, ([n], v⃗k, seed),

j, πj , πL, πR)).
* At this point, with high probability for each (honest) party Pi ∈ CRoot(T ) with
seedi = seed, State = (Send, π), where π is a valid proof for the whole tree.

f. Repeat the following Depth(T ) many times:
i. If State = (Send, π):

A. Send π to CLeft(j) and CRight(j) (if they exists).
B. Set State = (Done, π).

ii. If State = WaitToDistribute:
A. For any “in” message from CP arent(j), if BARG.V(crs, ([n], v⃗k, seed), Root(T ), in) =

1, set State = (Send, in).
g. If State = (Done, π), send (seed, π) to party Pj .

6. For each party Pj :
a. Set out = ⊥.
b. For any message (seed, π), if BARG.V(crs, ([n], v⃗k, seed), Root(T ), π) = 1, set out =

seed.
c. Output out.

4.3.1 Efficiency

▶ Lemma 7. The QuorumAgree protocol from Section 4.3 terminate after Õ(1) rounds
and each party sends Õλ(1) bits overall during the protocol.

Proof. By Theorem 4.3 it is guaranteed that all parties reached the end of step 3 after Õ(1)
and until then where each party sent Õ(1) bits. We next analyze the following steps.

Rounds complexity. step 5a takes a single round, steps 5e and 5f consist of O(Depth(T )) ⊂
Õ(1) iterations, where each iteration takes a single round. Then, there is additional round to
send the aggregated proof to everyone. So, at total there are Õ(1) rounds, as needed.
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Communication complexity. consider a single committee. At step 5a each party sends
|σ| ∈ Õλ(1) bits to d ∈ Õ(1) parties. By Theorem 3.3, during steps 5e and 5f each party
sends Õλ(1) bits in each step, and O(Depth(T )) ⊂ Õ(1). At the last round, each party sends
Õλ(1) bits. Finally, since each party is part of exactly d committees and d ∈ Õ(1), it follows
that during the entire protocol each party sends at most Õλ(1) bits, as needed. ◀

4.3.2 Security
This section provides the proof of agreement for the above protocol. We show that even if
an adversary controls 1/3− ϵ fraction of parties and behaves arbitrarily in their name, the
protocol still results with each honest party agreeing on seed.

We start by stating the result of our transformation from almost everywhere agreement
to everywhere agreement. Note that the transformation and the almost everywhere protocol
tolerate a different number of corrupted parties (1/2 − ϵ fraction vs. 1/3 − ϵ fraction,
respectively). Thus, the combined protocol will be secure against 1/3− ϵ fraction of parties.
(Still, we decide to state a stronger result below as it might be useful for future works.)

▶ Theorem 4.8 (From almost everywhere to everywhere agreement). For any PPT adversary
A that statically corrupts up to 1/2− ϵ fraction of parties, where ϵ is any positive constant,
if at the end of step 3 of QuorumAgree at least 1 − O(log−1 n) fraction of (honest)
parties hold the same uniformly sampled value, denoted by seed, then with probability at least
1− negl(n)− negl(λ), at the end of the protocol all (honest) parties outputs seed.

Obviously, Theorem 4.1 follows from Theorem 4.8 together with the almost everywhere
agreement protocol from Theorem 4.3. The rest of this section is devoted to the proof of
Theorem 4.8.

At a high level, the proof of Theorem 4.8 consists of two main claims: (1) that the
adversary can’t prevent the honest parties from generating a valid proof for seed, and (2)
that the adversary cannot generate valid proof for a maliciously chosen seed seed∗. Consider
a PPT adversary A that statically corrupt up to 1/2 − ϵ fraction of parties, where ϵ > 0.
Denote by C ⊆ [n] the set of corrupted parties. Additionally, we assume (as written in the
statement) that at the end of Step 3, at least 1−O(log−1 n) fraction of (honest) parties hold
the same uniformly sampled value, denoted seed. Let H = {Pi | i ∈ ([n] \ C) ∧ seedi = seed},
i.e., H is the set of honest parties that hold the “right” seed.

The first claim (Claim 10 below) we prove says that if an honest party is part of
committee j, then it must hold a valid witness for index j, that is, it knows a w such that
R(j, w) = 1. We utilize the following claim that says that every committee contains majority
of honest parties that hold the right seed. The proof of this claim follows by the construction
of the almost everywhere protocol that results with a uniform string which is then fed into
our quorum construction.

▷ Claim 9. With probability at least 1− negl(n)− negl(λ), for all j ∈ [n], |H ∩Cj | > |Cj |/2.

Proof. Recall that with probability at least 1 − negl(n) − negl(λ), seed, the output of the
almost everywhere agreement protocol, is sampled uniformly at random and we use it as a
seed to generate a quorum (using Theorem 4.5 with H = H). Thus, with probability at least
(1− negl(n)− negl(λ))(1− negl(n)), for each j ∈ [n],

|H ∩ Cj | =
∑

z∈Cj

1z∈H ≥ |Cj | ·
(

1− 1
log log n

)
· |H|

n
≥

|Cj | ·
(1/2 + ϵ) · (1− o(1)) · n

n
> |Cj |/2. ◁
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▷ Claim 10. At the end of Step 5a, with probability at least 1 − negl(n) − negl(λ),
for every i, j ∈ [n], if Pi ∈ H ∩ Cj , then party Pi holds {σf(j,seed,k)}k∈[log2 n] such that
R(j, {σf(j,seed,k)}k∈[log2 n]) = 1 (see Definition 6).

Proof. By description of the protocol, if Pi ∈ H ∩ Cj , then the size of the set

{k ∈ [log2 n] | Verify(vkf(j,seed,k), seed, σf(j,seed,k)) = 1}

is at least |H ∩ Cj |. Claim 9 implies that |H ∩ Cj | > |Cj |/2 and so party Pi holds a valid
witness. ◁

From this point on, it is convenient to assume that for all j ∈ [n], |Cj ∩ H| > |Cj |/2
(which holds w.h.p due to Claim 9). In the next claim, we show that the honest parties
aggregate the proof successfully. For simplicity of notation, let Xseed = ([n], v⃗k, seed).

▷ Claim 11. Let Tj be the subtree where j is its root. After ℓ iterations of step 5e, for each
j ∈ [n]:
1. If Depth(Tj) = ℓ + 1, then State = (Send, π) and V(crs, Xseed, j, π) = 1.
2. If Depth(Tj) < ℓ + 1, then State = WaitToDistribute.
3. If Depth(Tj) > ℓ + 1, then State = WaitToAggregate.

Proof. We prove by induction on ℓ, the number of executed iterations of step 5e.
Base case: For ℓ = 0 and for all j ∈ [n], j is a leaf of T . Then,

1. If Depth(Tj) = 1: By step 5d, State = (Send, π), where π = P(j, {σf(j,seed,k)}k∈[log2 n]).
By the correctness property of the BARG (Definition 2) and by Claim 10, it follows
that V(crs, Xseed, j, π) = 1.

2. It is impossible that Depth(Tj) < 1, since for every j, Depth(Tj) ≥ 1.
3. If Depth(Tj) > 1: By step 5d, State = WaitToAggregate.

Inductive step: Assume that the claim is true for 0, . . . , ℓ − 1, and we prove it for ℓ. For
j ∈ [n]:
1. If Depth(Tj) = ℓ + 1, then before the start of the ℓth iteration of step 5e, Depth(Tj) >

(ℓ− 1) + 1, so by the inductive assumption, State = WaitToAggregate. W.l.o.g. assume
that the left child sub-tree depth is ℓ and the right child sub-tree depth is ℓ′ ≤ ℓ. Due to
the inductive assumption, at the ℓth (resp. ℓ′th) iteration of step 5e, the state of Left(j)
(resp. Right(j)) was (Send, π), where V(crs, Xseed, Left(j) (resp. Right(j)), π) = 1. So,
from the protocol’s description, State = (Send, π = AggProve(crs, Xseed, j, πj , πL, πR)),
such that V(crs, Xseed, j, π) = 1.

2. If Depth(Tj) < ℓ + 1 there are two cases. First, if Depth(Tj) < ℓ, we can use the
inductive assumption directly. Second, if Depth(Tj) = ℓ, by the inductive assumption,
before the ℓth iteration of step 5e, State = (Send, π). By the protocol’s description, in
the ℓth iteration of step 5e, the state changes to WaitToDistribute.

3. If Depth(Tj) > ℓ + 1, by the inductive assumption, before the ℓth iteration of step 5e,
State = WaitToAggregate. W.l.o.g. assume that the left child sub-tree depth is
Depth(Tj)− 1 ≥ ℓ + 1. From the inductive assumption, it follows that the left child
ends the ℓth iteration of step 5e in state WaitToAggregate or Send, so j has not yet
updated πL. ◁

A corollary of Claim 11 is that the state of all nodes at the end of the iterations of step 5e
is as expected.

▶ Corollary 12. After the Depth(T ) − 1 iterations of step 5e, the state of Root(T ) is
(Send, π), where V(crs, Xseed, Root(T ), π) = 1. Additionally, the state of all other nodes is
WaitToDistribute.
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Now, similarly, we prove that each committee will learn the right proof attesting to the
validity of seed w.r.t T .

▷ Claim 13. Let Tj be the subtree with j at its root. After the ℓ iterations of step 5f, for
each j ∈ [n]:
1. If Depth(Tj) = Depth(T )− ℓ, then State = (Send, π), where V(crs, Xseed, Root(T ), π) = 1.
2. If Depth(Tj) < Depth(T )− ℓ, then State = WaitToDistribute.
3. If Depth(Tj) > Depth(T )−ℓ, then State = (Done, π), where V(crs, Xseed, Root(T ), π) = 1.

Proof. By induction on ℓ:
Base case: For ℓ = 0, and for all j ∈ [n]:

1. If Depth(Tj) = Depth(T ), then since j is the root of T , the claim follows from
Corollary 12.

2. If Depth(Tj) < Depth(T ), then j is not the root of T and so the claim follows from
Corollary 12.

3. It is impossible that Depth(Tj) > Depth(T ) since for every j, Depth(Tj) ≤ Depth(T ).
Inductive step: Assume that the claim is true for 0, . . . , ℓ− 1, and we will prove it for ℓ. For

j ∈ [n]:
1. If Depth(Tj) = Depth(T )− ℓ, by the inductive assumption, before the ℓth iteration

of step 5f, the state of j is WaitToDistribute, and the state of Parent(j) is (Send, π),
where V(crs, Xseed, Root(T ), π) = 1. Since there is at least one honest party in each
committee (actually, there is an honest majority) and by description of step 5f, at the
end of the ℓth iteration of step 5f, the state of j will be (Send, π), as needed.

2. If Depth(Tj) < Depth(T )− ℓ, from the inductive assumption, before the ℓth iteration
of step 5f, the state of j and his parent is WaitToDistribute. So, by description of
step 5f, at the end of the ℓth iteration of step 5f, the state of j will be WaitToDistribute,
as needed.

3. If Depth(Tj) > Depth(T )−ℓ there are two cases. First, if Depth(Tj) > Depth(T )−ℓ+1,
we use the inductive assumption directly. Second, if Depth(Tj) = Depth(T )− ℓ + 1,
by the inductive assumption, before the ℓth iteration of step 5f, State = (Send, π),
where V(crs, Xseed, Root(T ), π) = 1. Thus, by the protocol’s description, during the
ℓth iteration of step 5f, the state changes to (Done, π). ◁

A corollary of Claim 13 is that the state of all nodes at the end of the iterations of step 5f
is as expected.

▶ Corollary 14. After the Depth(T ) iterations of step 5f the state of all nodes j ∈ [n] is
(Done, π). Additionally, V(crs, Xseed, Root(T ), π) = 1.

Next, we conclude that with high probability, each honest party will receive at least once
the right seed along with a valid proof.

▶ Lemma 15. With probability at least 1− negl(n)− negl(λ), at step 6b, every (honest) party
sets out = seed, where seed is the value that is outputted by the almost-everywhere agreement
sub-protocol.

Proof. By Corollary 14, each committee’s state is (Done, π), where V(crs, Xseed, Root(T ), π) =
1. Together with Claim 9, every party receives at least once the right seed and a valid proof.
Thus, after step 6b, each party will update out with seed. ◀
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The above lemma stands for the protocol’s “correctness”. In other words, we proved that
the adversary cannot prevent from any honest party from receiving the right seed along with
a valid proof for it. However, we have not yet proved that the adversary cannot generate
another valid proof for a wrong seed, which is also undesirable. For simplicity, assume that
the adversary is given free of charge full control over unknowledgeable honest parties, i.e.,
parties with seedi ̸= seed (after step 6). Notice that this group is of size o(n), so this does
not add significant power to the attacker.

We show that if there exists an adversary that generates a valid proof for a maliciously
chosen seed, then we can build another adversary that wins the unforgeability game of the
signature scheme (Section 3.2.1) with only slightly lower probability. Our adversary uses the
BARG scheme knowledge extractor from Definition 2 which, to recall, is an efficient procedure
that receives valid proofs for some seed′ and extracts (w.h.p.) the witness associated with
some committee Ci∗ , where the index i∗ is supplied during setup.

▷ Claim 16. Assume a PPT adversary A′ that at step 6b of the protocol can generate a
pair (seed′, π′) where seed′ ̸= seed and Pr[V(crs, Xseed′ , Root(T ), π′) = 1] ≥ p(n). Then, there
is another PPT adversary A such that Pr[ExUnfgS,A(λ) = 1] ≥ p(n)/2n, where the game
ExUnfgS,A(λ) is defined in Section 3.2.1.

Proof. Let E be the knowledge extractor of the BARG scheme (Definition 2). We build A as
follows:
1. A chooses k = n, and receives {vki}i∈[n] from the experiment.
2. A samples i∗ ← [n] and runs (crs, td)← BARG.Gen(1λ, i∗).
3. A sends crs and {vki}i∈[n] to A′.
4. A′ chooses the set of corrupted parties C and sends C to A. A sets C as its corrupted set,

receives {ski}i∈C from the experiment, and forwards it to A′.
5. A and A′ run together the QuorumAgree protocol up to the end of step 6b, where A

simulates [n] \ C. When it needs to sign a message m, the experiment signs it for him. At
the end, A′ sends (seed′, π′) to A.

6. A sends (Xseed′ , td, i∗, Root(T ), π′) to E , and it answers with {σf(i∗,seed′,j)}j∈[log2 n].
7. For each j∗ ∈ {f(i∗, seed′, j)}j∈[log2 n], if j∗ ∈ [n] \ C and Verify(vkj∗ , seed′, σj∗) = 1, then
A outputs (j∗, seed′, σj∗).

8. A outputs (⊥,⊥,⊥).

To analyze the above reduction, we define the following events:
Event EAcceptProof : V(crs, Xseed′ , Root(T ), π′) = 1.
Event EEnoughValidSigs: RS,f,v⃗k,seed′(i

∗, {σf(i∗,seed′,j)}j∈[log2 n]) = 1. (See Definition 6.)

Event E
(i)
HonestMajority: |Ci∩ ([n]\C)| > log2 n/2, where Ci the ith committee in the quorum

QSample(n, seed′).
Event E1: The experiment outputs 1.

First, recall that every committee size is exactly log2 n, independently of seed′. By the
definition of RS,f,v⃗k,seed′ if EAcceptProof happens, then∑

j∈[log2 n]

Verify(vkf(i∗,seed′,j), seed, σf(i∗,seed′,j)) > log2 n/2.

This means that Pr[EEnoughValidSigs ∧E
(i∗)
HonestMajority ∧¬E1] = 0. From the “no terrible quorum”

property (see Definition 4), we know that Pr[∃i ∈ [n] : E
(i)
HonestMajority] = 1. Since A′ is unaware
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of i∗, Pr[E(i∗)
HonestMajority] ≥ 1/n, and also E

(i∗)
HonestMajority and EAcceptProof are independent events.7

Next, from the claim requirement it follows that Pr[EAcceptProof ] ≥ p(n), and from the
“somewhere argument of knowledge” property of the BARG scheme we conclude that

Pr[EEnoughValidSigs | EAcceptProof ∧ E
(i∗)
HonestMajority] ≥ 1/2.

Finally,

Pr[E1] ≥ Pr
[
EEnoughValidSigs ∧ E

(i∗)
HonestMajority

]
≥

Pr
[
EAcceptProof ∧ EEnoughValidSigs ∧ E

(i∗)
HonestMajority

]
=

Pr
[
E

(i∗)
HonestMajority ∧ EAcceptProof

]
· Pr

[
EEnoughValidSigs | E(i∗)

HonestMajority ∧ EAcceptProof

]
=

Pr [EAcceptProof ] · Pr
[
E

(i∗)
HonestMajority

]
· Pr

[
EEnoughValidSigs | E(i∗)

HonestMajority ∧ EAcceptProof

]
≥

p(n)/2n. ◁

Next, we show how to use the above reduction to prove that the adversary cannot generate
a proof for a wrong seed.

▶ Lemma 17. With probability at least 1− negl(n)− negl(λ), at step 6b, if (honest) party
sets out = seed, then seed is the value that defines H (the almost everywhere agreed value).

Proof. Assume, by contradiction, that the claim is false. That is, with noticeable probability
an honest party sets out = seed′ for some seed′ ̸= seed. Then, by Corollary 14, there exists a
PPT adversary A that can generate a pair (seed′, π′) such that seed′ ̸= seed and for some
noticeable function f(n), Pr[V(crs, Xseed′ , Root(T ), π′) = 1] ≥ f(n). By Claim 16, there is
another PPT adversary A′ that win the PKI unforgeability game of the signature scheme
(Section 3.2.1) with noticeable probability. This is a contradiction. ◀

Finally, Theorem 4.8 follows by combining Lemmas 15 and 17.
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