
Proving Unsatisfiability with Hitting Formulas
Yuval Filmus #

Technion – Israel Institute of Technology, Haifa, Israel

Edward A. Hirsch #

Department of Computer Science, Ariel University, Israel

Artur Riazanov #

EPFL, Lausanne, Switzerland

Alexander Smal #

Technion – Israel Institute of Technology, Haifa, Israel

Marc Vinyals #

University of Auckland, New Zealand

Abstract
A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously
falsified. Hitting formulas have been studied in many different contexts at least since [45] and, based
on experimental evidence, Peitl and Szeider [53] conjectured that unsatisfiable hitting formulas
are among the hardest for resolution. Using the fact that hitting formulas are easy to check for
satisfiability we make them the foundation of a new static proof system Hitting: a refutation of
a CNF in Hitting is an unsatisfiable hitting formula such that each of its clauses is a weakening
of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is
equivalent to studying the hardness of hitting formulas.

Our first result is that Hitting is quasi-polynomially simulated by tree-like resolution, which
means that hitting formulas cannot be exponentially hard for resolution and partially refutes
the conjecture of Peitl and Szeider. We show that tree-like resolution and Hitting are quasi-
polynomially separated, while for resolution, this question remains open. For a system that is only
quasi-polynomially stronger than tree-like resolution, Hitting is surprisingly difficult to polynomially
simulate in another proof system. Using the ideas of Raz–Shpilka’s polynomial identity testing for
noncommutative circuits [57] we show that Hitting is p-simulated by Extended Frege, but we
conjecture that much more efficient simulations exist. As a byproduct, we show that a number of
static (semi)algebraic systems are verifiable in deterministic polynomial time.

We consider multiple extensions of Hitting, and in particular a proof system Hitting(⊕)
related to the Res(⊕) proof system for which no superpolynomial-size lower bounds are known.
Hitting(⊕) p-simulates the tree-like version of Res(⊕) and is at least quasi-polynomially stronger.
We show that formulas expressing the non-existence of perfect matchings in the graphs Kn,n+2

are exponentially hard for Hitting(⊕) via a reduction to the partition bound for communication
complexity.

See the full version of the paper for the proofs. They are omitted in this Extended Abstract.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases hitting formulas, polynomial identity testing, query complexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.48

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/016

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 802020-ERC-HARMONIC.
Artur Riazanov: This work was supported by the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract number MB22.00026.

Acknowledgements We thank Jan Johannsen, Ilario Bonacina, Oliver Kullmann, and Stefan Szeider
for introducing us to the topic; Zachary Chase, Susanna de Rezende, Mika Göös, Amir Shpilka, and
Dmitry Sokolov for helpful discussions.

© Yuval Filmus, Edward A. Hirsch, Artur Riazanov, Alexander Smal, and Marc Vinyals;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 48; pp. 48:1–48:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuvalfi@cs.technion.ac.il
https://orcid.org/0000-0002-1739-0872
mailto:edwardh@ariel.ac.il
https://orcid.org/0009-0003-2779-5536
mailto:tunyash@gmail.com
https://orcid.org/0000-0001-7892-1502
mailto:avsmal@gmail.com
https://orcid.org/0000-0002-8241-5503
mailto:marc.vinyals@auckland.ac.nz
https://orcid.org/0000-0002-1487-445X
https://doi.org/10.4230/LIPIcs.ITCS.2024.48
https://eccc.weizmann.ac.il/report/2023/016
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Proving Unsatisfiability with Hitting Formulas

1 Introduction

Propositional proof complexity is a well-established area with a number of mathematically
rich results. A propositional proof system [19] is formally a deterministic polynomial-
time algorithm that verifies candidate proofs of unsatisfiability of propositional formulas in
conjunctive normal form. The existence of a proof system that has such polynomial-size
refutations for all unsatisfiable formulas is equivalent to NP = co-NP, and (dis)proving it
is out of reach of the currently available methods. Towards this goal, Cook and Reckhow’s
paper [19] started a program to develop new stronger proof systems that have short proofs
for tautologies that are hard for known proof systems and to prove superpolynomial lower
bounds for these new systems. The idea is that obtaining new results where our previous
techniques fail helps in developing new techniques.

One of the oldest propositional proof systems is the propositional version of resolution
(Res) [15, 23] that operates on Boolean clauses (disjunctions of literals treated as sets) and has
only a single rule that allows introducing resolvents ℓ1∨···∨ℓk∨x ℓ′

1∨···∨ℓ′
m∨x

ℓ1∨···∨ℓk∨ℓ′
1∨···∨ℓ′

m
. Superpolynomial

lower bounds on the size of a particular case of resolution proofs are known since [62],
while exponential lower bounds on general Res proof size were proven by Haken [41] and
Urquhart [63] for the pigeonhole principle and handshaking lemma, respectively. Furthermore
Res encompasses CDCL algorithms for SAT [8, 54], that are the most successful SAT-solving
algorithms to date.

Motivated by the quest of finding hard examples for modern SAT-solvers, Peitl and
Szeider [53] experimentally investigated the hardness of hitting formulas for resolution. A
hitting formula as a mathematical object has been studied under a number of names and
in various contexts (a polynomial-time solvable SAT subclass, partitions of the Boolean
cube viewed combinatorially, etc.) [45, 24, 48, 49, 38, 37, 50, 53, 29]. A formula H =

∧
i Hi

in CNF with clauses Hi is a hitting formula if every pair of clauses cannot be falsified
simultaneously (that is, there is a variable that appears in the two clauses with different
signs). Equivalently, the sets Si of truth assignments falsifying clauses Hi are disjoint, thus
in an unsatisfiable hitting formula every assignment in {0, 1}n is covered exactly once by Si’s.
Peitl and Szeider conjectured that hitting formulas might be among the hardest formulas for
resolution. Their conjecture was supported by experimental results for formulas with a small
number of variables.

One of the reasons why hitting formulas received an abundance of attention is that they
are one of the classes of CNFs that are polynomial-time tractable for satisfiability checking
(along with e.g. Horn formulas and 2-CNFs) [45]. First, it is straightforward to check whether
a CNF formula is hitting: simply enumerate all pairs of clauses and check that they contain
some variable with opposite signs. Then the number of satisfying assignments of a hitting
formula is 2n −

∑
i 2n−|Hi|, where |Hi| is the number of literals in Hi and n is the number of

variables in H.
This nice property allows us to think about hitting not only as a class of formulas but as

an algorithm to determine satisfiability. For the algorithm to apply to any kind of formulas
we need to introduce nondeterminism, and this is best modelled with a proof system. Thus
we define a new static proof system based on unsatisfiable hitting formulas. A refutation of
an arbitrary CNF F in the Hitting proof system is an unsatisfiable hitting formula such
that each of its clauses is a weakening of a clause in F (i.e. a clause of F with extra literals).

By thinking of hitting as a proof system we reinterpret the conjecture of Peitl and Szeider
as the following question: is it possible to efficiently formalize the model counting argument
above within the Res proof system? Then the question of the hardness of hitting formulas
for Res can be phrased in terms of the relative strength of Res and Hitting: can Hitting

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:3

be separated from Res? That is, can we find formulas that are easy to refute in Hitting
and hard to refute in Res? More in general, by relating Hitting to other proof systems
we can pinpoint both the hardness of hitting formulas and the ability to formalize Iwama’s
counting argument in those proof systems.

It turns out that Hitting is tightly connected to the tree-like version of Res (tl-Res),
which is exponentially weaker than Res [14]. It encompasses all DPLL algorithms [23, 22],
which form the base of multiple (exponential-time) upper bounds for SAT (see, e.g., [21] for
a survey). A DPLL algorithm splits the input problem F into subproblems F |x=0 and F |x=1
for some variable x and applies easy simplification rules.

More precisely, tl-Res quasi-polynomially simulates Hitting (Theorem 3.1), and the
simulation cannot be improved to a polynomial one (Theorem 3.8). This partially answers
the question “How hard can hitting formulas be for resolution?” raised in [53] in the following
way. Not only every hitting formula has proofs of quasi-polynomial size, their unsatisfiability
can be decided in quasi-polynomial time by a DPLL algorithm. The simulation also entails
that every exponential-size lower bound we already have for tl-Res holds for Hitting,
which in particular allows for a separation of Res from Hitting.

Even though the very weak proof system tl-Res is enough to quasi-polynomially simulate
Hitting, it is surprisingly difficult to push the upper bound all the way to a polynomial: even
though we compare Hitting to a number of known proof systems with different strengths with
the hope of obtaining a polynomial simulation, the only system where we can polynomially
simulate Hitting is the very powerful Extended Frege (Corollary 4.3). As a byproduct
of this result, we prove also that various static (semi)algebraic proof systems (Nullstellensatz,
Sherali–Adams, Lovász–Schrijver, Sum-of-Squares) are indeed Cook–Reckhow (determinist-
ically polynomial-time verifiable) proof systems even when we measure the proof size in a
succinct way, ignoring the part enforcing Boolean variables. Such distinction can be safely
ignored in lower bound results, but in principle ought to be accounted for when constructing
upper bounds. Efficient deterministic formal proof verification becomes more and more
important because of the increasing interest in algorithms based on sum-of-squares [6, 30].

In more detail, we study the relation between various versions of Hitting and known
proof systems such as:

Res(⊕), defined in [44] by analogy with the system Res(Lin) of [58] in the same vein
as Krajíček’s R(. . .) systems [47]. No superpolynomial-size lower bound is known for it,
however, [44] proves an exponential bound for its tree-like version. Res(⊕) extends Res
by allowing clauses to contain affine equations modulo two instead of just literals, and
this is the weakest known bounded-depth Frege system with parity gates where we do
not know a superpolynomial-size lower bound.
We prove two separations showing that Hitting is incomparable with tl-Res(⊕)
(Sect. 3.3, the separation is quasi-polynomial in one direction and exponential in the
other direction).
Nullstellensatz (NS), defined in [7] (where also an exponential-size lower bound was
proved), along with its version NSR [27] that uses dual variables (x = 1 − x introduced
in [2] for PC [18], which is a “dynamic” version of Hilbert’s Nullstellensatz that allows
generating elements of the ideal step-by-step). An exponential-size lower bound for NSR
follows from [16] (see Corollary 5.4).
Cutting Planes (CP), defined in [20], uses linear inequalities as its proof lines and has
two rules: the rule introducing nonnegative linear combinations and the integer rounding
rule (

∑
cixi≥c∑

cixi≥⌈c⌉
for integer ci’s).

ITCS 2024

48:4 Proving Unsatisfiability with Hitting Formulas

Frege, defined in [59, 19], can be thought of as any implicationally complete “textbook”
derivation system for propositional logic. Proving superpolynomial lower bounds for it is
a long-standing open problem that seems out of reach at the moment.
Systems augmented by Tseitin’s extension rule and its analogues, such as Extended
Frege. This rule allows the introduction of new variables denoting some functions of
already introduced variables.

Given that known proof systems do not obviously polynomially simulate Hitting, this
leaves us with the following question: does augmenting SAT algorithms with the ability to
reason about hitting formulas lead to any improvements? Or its counterpart about proof
systems, how powerful are proof systems resulting from combining known proof systems with
Hitting?

Recall that a DPLL algorithm splits the input problem F into subproblems F |x=0 and
F |x=1. Algorithms that give upper bounds for SAT use more general splittings; in fact one
can split over any tautology, that is, consider subproblems F ∧ G1, . . . , F ∧ Gm, where
G1 ∨ · · · ∨ Gk is a tautology. Put in another way, one can split over an unsatisfiable formula
G1 ∧ · · · ∧ Gk – including unsatisfiable hitting formulas. We use this idea, although in a
DAG-like context, to introduce the following generalization of Hitting.
Hitting Res merges Hitting with Res. It uses the weakening rule and also extends the

main resolution rule to

C1 ∨ H1, . . . , Ck ∨ Hk

C1 ∨ · · · ∨ Ck

for a hitting formula H1 ∧ · · · ∧ Hk. It is also p-simulated by Extended Frege
(Corollary 4.4).

Other ways in which we can generalize Hitting while keeping with the spirit of the proof
system are to allow some leeway in the requirement for the subcubes to form a partition, or
in the type of objects that constitute the partition. While at first these may appear to be a
mere mathematical curiosity, the connections to Nullstellensatz in the case of Odd Hitting
and to the partition bound in the case of Hitting(⊕) show that these are natural proof
systems.

Hitting[k] strengthens Hitting by allowing to cover a falsifying assignment with at most
k sets. Such proofs can be efficiently verified and p-simulated in Extended Frege using
the inclusion-exclusion formula and polynomial identity testing (PIT) (Theorem 4.7).

Odd Hitting strengthens Hitting by allowing to cover a falsifying assignment with an
odd number of sets. Such proofs also can be efficiently verified and p-simulated in
Extended Frege using PIT (Prop. 4.5). This system is equivalent to a certain version
of Nullstellensatz, which we discuss in Sect. 5. We prove a lower bound for Odd Hitting
(Corollary 5.4) that allows us to separate it from Res.

Hitting(⊕) strengthens Hitting by allowing the complements of affine subspaces instead
of clauses, that is, a clause can now contain affine equations instead of just literals,
and Si is thus an affine subspace. Such proofs can be verified similarly to Hitting
using Gaussian elimination. We prove an exponential-size lower bound for Hitting(⊕)
(Theorem 6.1) which, additionally, separates it from CP.

A summary of our simulations and separations is depicted in Figure 1, and more precise
bounds are stated in Table 1. Now we turn to a more detailed discussion.

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:5

tl-Res

Hitting tl-Res(⊕)

Hitting(⊕)Extended Frege CP

Res

Odd Hitting

6.1

l.b. 3.3

3.5, 3.8 [44]

as in 3.5

3.16, 3.13

3.1

4.3
4.5

5.1, 5.4

Figure 1 Arrow A B means that B p-simulates A, a dashed arrow A B means B

quasi-polynomially simulates A. A B means a quasi-polynomial separation (a lower bound is
for the system A). An arrowhead in the tail A B means that A is exponentially separated
from B. A dotted line A B means that we do not know any simulations between A and B.
Known simulations involving CP and Extended Frege are not shown.

Table 1 Precise bounds in our separations. Upper bounds are black and lower bounds are purple.

Thm Hitting Hitting(⊕) Odd Hitting tl-Res tl-Res(⊕) Res CP

3.8, 3.17 2Õ(m) 2Ω̃(m2−ε) 2Õ(m)

3.16 2Õ(m) 2Ω̃(m2−ε)

5.4 2Ω̃(n) poly
3.13, [44] 2nΩ(1)

poly 2Ω(n)

6.1 2Ω(n) poly

1.1 Our results and methods

1.1.1 Simulations of HITTING-based systems and proof verification using
PIT

Proof verification is not straightforward in static (semi)algebraic proof systems that use
either dual variables x̄ = 1 − x or do not open the parentheses in (1 − x) for the negation
of a variable x (such as static Lovász–Schrijver or Sherali–Adams proofs or NS proofs with
dual variables). A similar situation occurs with the verification of Hitting proofs which,
contrary to most (or all?) known proof systems, is based on model counting. Such reasoning
is not expressed naturally in propositional logic, and it makes it difficult to simulate Hitting
proofs in other proof systems. We observe that Hitting proofs can be expressed similarly to
NS proofs with dual variables without explicitly mentioning the side polynomials for x2 − x

and x + x̄ − 1 (in particular, we notice that over GF(2), such proofs, which we call succinct
NSR proofs, are equivalent to Odd Hitting proofs, and that over any field they p-simulate
Hitting proofs in a straightforward manner). We show that the two problems have the
same cure: we provide an efficient polynomial identity testing procedure for multilinear
polynomials modulo x + x̄ − 1 that can also be formalized in Extended Frege.

ITCS 2024

48:6 Proving Unsatisfiability with Hitting Formulas

Our approach uses the main idea of the Raz–Shpilka polynomial identity testing for
noncommutative circuits [57]. We introduce new variables for quadratic polynomials; crucially
it suffices to do so for a basis instead of the potentially exponential number of polynomials.
This serves as an inductive step cutting the degrees. Namely, at the first step we consider
two variables x1 and x2 and quadratic polynomials (potentially, (1 − x1)(1 − x2), (1 − x1)x2,
x1(1 − x2), x1x2, 1 − x1, x1, 1 − x2, and x2) appearing in the monomials mi as x̄1x̄2, x̄1x2,
etc., and replace them using linear combinations of new variables y1,2

i , thus decreasing the
degree by one. At the next step we treat all the variables y1,2

i as a single “layer” (note that
they are not multiplied by each other). We merge this layer of y1,2

i with x3, getting a layer
of variables y1,2,3

j , and so on, until we reach a linear equation, which is easy to verify.
In order to implement this strategy we prove a lemma allowing us to merge two layers of

variables by ensuring that after the merge the equivalence of polynomials still holds.
By using this polynomial identity testing we get not only an efficient algorithm for

checking static proofs (including succinct NSR proofs), but also a polynomial simulation
in the Extended Polynomial Calculus (Ext-PC) system that has been recently used in [3],
where an exponential-size lower bound has been proved. It is not difficult to see that Ext-PC
over GF(2) is equivalent to Extended Frege, so we obtain p-simulations of Hitting,
Hitting Res, Odd Hitting and Hitting[k] in Extended Frege.

1.1.2 Separations of HITTING from classical systems
A polynomial simulation of tl-Res in Hitting (Theorem 3.5) can be easily shown by
converting tl-Res to a decision tree, then the assignments in the leaves provide a disjoint
partition of the Boolean cube. We show a quasi-polynomial simulation in the other direction
through careful analysis of a recursive argument (Theorem 3.1). The main idea is that
an unsatisfiable formula containing m clauses must necessarily contain a clause of width
w ≤ log2 m, and in a hitting formula this clause must contain a variable that occurs with
the opposite sign in at least (m − 1)/w clauses. Making a decision over this variable thus
removes a lot of clauses in one of the two branches. We also employ a generalization of
this idea to show that Hitting[k] proofs can be quasi-polynomially simulated in Hitting
(Prop. 3.2) and hence in tl-Res.

A polynomial simulation in the other direction is impossible because of a superpolynomial
separation. To show this result (Theorem 3.8) we use query complexity, and in particular, the
result of [4] separating unambiguous query complexity from randomized query complexity.
We lift it using xorification to obtain the desired separation.

We then obtain a two-way separation between Hitting and tl-Res(⊕) (Sect. 3.4). On
the one hand Tseitin formulas are hard for Res [63] and hence for Hitting. On the other
hand, [44] shows that they have polynomial-size tl-Res(⊕) (and thus also Hitting(⊕))
proofs. In the other direction, similarly to the separation between Hitting and tl-Res, we
again use the separation of [4] between unambiguous certificate complexity and randomized
query complexity as our starting point. However, since for tl-Res(⊕) we are unable to use
decision trees, we need to go through randomized communication complexity arguments,
using a randomized query-to-communication lifting theorem [40].

Eventually, we discuss separations of Hitting from Res and NS. While the relevant
lower bounds for Hitting follow directly from known lower bounds for tl-Res, the other
direction seems much more difficult, if possible at all. One natural candidate for a separation
result could be the formulas that we used to separate Hitting from tl-Res, but this cannot
work because they turn out to have Res proofs of polynomial size (Theorem 3.17). We show
this fact using dag-like query complexity [31], the analogue of resolution width in query
complexity, which stems from a game characterization of Res [56, 5]. We need to reprove the

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:7

result of [4] accordingly, improving it to a separation between unambiguous dag-like query
complexity and randomized query complexity. This immediately yields an upper bound on
the Res width. Concerning NS, it is a simple observation that Hitting is simulated by NS
with respect to width vs degree. Furthermore, as we discussed above, succinct NSR proofs
(over any field) simulate Hitting with respect to size, therefore separating Hitting from
Res would amount to separating explicit vs succinct NSR size.

1.1.3 A lower bound for ODD HITTING

As mentioned above Odd Hitting is polynomially equivalent to succinct NSR proofs
over GF(2), and we explain this in more detail in the beginning of Sect. 5. It is easy to
see that Odd Hitting has short proofs of Tseitin formulas and thus it is exponentially
separated from Res. The opposite direction (Cor. 5.4) requires slightly more effort. It is
known that Res width can be separated from NS degree [16]. We use this result to get our
size separation using xorification and the random restriction technique of Aleknhovich and
Razborov (see [13]).

1.1.4 A lower bound for HITTING(⊕)

Our lower bound for Hitting(⊕) (Theorem 6.1) uses a communication complexity argument.
Communication complexity reductions have a long history of applications in proof complexity
[11, 42, 35, 44, 25]. The first step in these reductions is a simulation theorem, which shows
that a refutation of an arbitrary CNF ϕ in the proof system of interest can be used to obtain
a low-cost communication protocol solving the communication problem Search(ϕ): given an
assignment to the variables of ϕ, find a clause of ϕ falsified by this assignment. The second
step is reducing a known hard communication problem (usually set disjointness) to Search(ϕ)
for a carefully chosen CNF ϕ.

Until recently the applications of these reductions were limited to either proving a lower
bound for a tree-like version of the system or proving a size-space tradeoff, neither of which
applies to our result. However, over the last few years, the list of applications of the
communication approach in proof complexity has grown significantly. A major breakthrough
came in [61, 31] with a dag-like lifting theorem from resolution to monotone circuits and
cutting plane refutations. Another novel idea was introduced in [39], where the authors
derived a lower bound for Nullstellensatz via a communication-like reduction from the Ω(

√
n)

lower bound on the approximate polynomial degree of ANDn [52].
We use yet another twist on this idea: we apply a communication reduction to the

partition bound [46], a generalization of randomized communication protocols which simulates
Hitting(⊕). To the best of our knowledge this is the first application of the partition bound
in a proof complexity context. We then adapt a communication reduction from set disjointness
in [43] so that it works for the partition bound and use the fact that set disjointness is
still hard for the partition bound to get our lower bound (Theorem 6.1). The choice of the
reduction of [43] is not particularly important, and we believe that reductions from [11, 35, 44]
should also work. A nice feature of the reduction we use is that we get a lower bound for a
natural combinatorial principle: a formula encoding the non-existence of a perfect matching
in a complete bipartite graph Kn,n+2. Because this formula is known to have short CP
proofs, we obtain a separation between Hitting(⊕) and CP as an immediate corollary.

ITCS 2024

48:8 Proving Unsatisfiability with Hitting Formulas

1.2 Further research
Relation between HITTING and RES. Although we have gained a lot of understanding
of the hardness of hitting formulas for resolution, the initial question of Peitl and Szeider
is not fully answered. In particular, we do not know whether hitting formulas can be
superpolynomially hard for Res. The negative answer implies a simulation of Hitting by
Res. To show the positive answer it is sufficient to separate two query complexity measures:
dag-like query complexity (w) and unambiguous certificate complexity (UC). The dag-like
query complexity of the falsified clause search problem for a formula F corresponds to the
resolution width of F . The unambiguous certificate complexity for this problem corresponds
to the width of Hitting refutations of F . Note that unambiguous certificate complexity
only makes sense for functions, while dag-like query complexity is defined for (total) relations.
Unfortunately, separating even regular certificate complexity (C) and w is an open problem for
functions (without the uniqueness requirement the certificate complexity can only decrease,
so it might be easier to separate w from C than from UC). It turns out that w is resistant
to known lower bound techniques in the field of query complexity, so tackling it will likely
lead to finding new techniques there. Notice that we know how to separate w and C for
relations: every lower bound on the resolution width for an O(1)-CNF formula constitutes a
separation for the corresponding falsified clause search problem. Such a separation (constant
vs. polynomial) is unachievable for functions (we cannot hope for better than quadratic
separation for functions as w(R) ≤ C(R)2). Can we use ideas from resolution lower bounds
to separate w and UC (or at least C)?

Separate HITTING and HITTING[2]. With xorification this problem can be shown to be
equivalent to a simple (if only in the statement!) question in query complexity: separate
unambiguous certificate complexity and 2-unambiguous certificate complexity (where every
input has one or two certificates). It is known how to separate one-sided versions of these
query models [33], but similarly to the question of Hitting vs Res it is unclear how to
extend this to the two-sided case.

Is it possible to separate HITTING(⊕) and TL-RES(⊕)? In the full version of this paper we
give evidence that a simulation of Hitting(⊕) by tl-Res(⊕) along the lines of Theorem 3.1
is not possible. That, however, does not rule out the existence of such a simulation. [60,
Conjecture 5.1.3] conjectures that every affine subspace partition can be refined to one
corresponding to a parity decision tree with a quasi-polynomial blow-up. With some caveats1,
the statement of this conjecture is equivalent to the existence of quasi-polynomial simulation
of Hitting(⊕) by tl-Res(⊕). So, is there an exponential separation between these two
systems? It seems that communication-based lower bounds for tl-Res(⊕) can be transferred
to Hitting(⊕) as it is done in Section 6. There are several other techniques that yield
tl-Res(⊕) lower bounds such as prover-delayer games [44, 36], reduction to polynomial
calculus degree [32], and the recent lifting from decision tree depth to parity decision tree
size directly [17, 10]. None of those seem to work for Hitting(⊕), so it is reasonable to
think that some of the yielded formulas may have an upper bound in Hitting(⊕). The most
promising technique seems to be lifting since it yields a wide family of formulas hard for
tl-Res(⊕) with the source of hardness inherent to the tree-like structure of refutations.

1 The refinement might be non-constructive, but its mere existence does not imply the simulation. The
simulation might produce parity decision trees that are not refinements of the initial Hitting(⊕)
refutation but nevertheless, solve the relation Search(ϕ).

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:9

Better upper bound on HITTING. One intriguing matter is that although a very weak
proof system such as tl-Res is enough to quasi-polynomially simulate Hitting, we need
to go all the way to the very strong proof system Extended Frege for the simulation to
become polynomial. A natural question is then what is the weakest proof system that is
enough to polynomially simulate Hitting.

It is consistent with our findings that a fairly weak proof system such as NSR is already
enough to simulate Hitting; indeed this would be the case if NSR and succinct NSR were
equivalent. Hence we ask the same question regarding succinct (semi)algebraic proof systems:
what is the weakest proof system that polynomially simulates succinct NSR or succinct SA?
And in particular, is succinct NSR equivalent to NSR and is succinct SA equivalent to SA?
One way to answer all these questions would be to formalize the PIT of Theorem 4.2 in a
weaker proof system.

The situation with Hitting(⊕) is even worse. We have shown how to p-simulate most of
the generalizations of Hitting that we defined, including Odd Hitting and Hitting[k], in
Ext-PC, but the argument does not work as is for Hitting(⊕) since we are relying on a
noncommutative PIT. Therefore we do not know even an Extended Frege simulation of
Hitting(⊕) (though it is of course quite expected).

Non-automatability of HITTING. It follows from Theorem 3.1 and quasi-polynomial auto-
matability of tl-Res [9] that Hitting is also quasi-polynomially automatable. Can we show
that it is impossible to do better? We think that it is possible to adapt the similar result of
de Rezende [26] for tl-Res.

2 Basic definitions

2.1 Basic notation

For a function f : N → R, Õ(f) and Ω̃(f) denote O and Ω up to logarithmic factors, that is,
g = Õ(f) and h = Ω̃(f) if g = O(f logC f) and h = O(f/ logC f) respectively for a constant
C. For example, 2nn2 = Õ(2n) and n/ log n = Ω̃(n).

Let f : {0, 1}n → {0, 1} be a Boolean function. The deterministic query complexity of f ,
denoted by D(f), is the minimal number of (adaptive) queries to the input variables that is
enough to compute f(x) for any input x. The randomized query complexity of f , R(f), is
the minimum number of queries needed by a randomized algorithm that outputs f(x) for
any input x with probability at least 2/3. A partial assignment α ∈ {0, 1, ∗}n is a certificate
for f if for any two assignments x, y ∈ {0, 1}n agreeing with α, f(x) = f(y). The size of a
certificate is the number of non-star entries. The certificate complexity of f on an input x,
denoted C(f, x), is size of the smallest certificate α such that x agrees with α. For b ∈ {0, 1},
the (one-sided) b-certificate complexity of f is defined as Cb(f) = maxx:f(x)=b C(f, x). The
(two-sided) certificate complexity of f is the maximum of 0- and 1-certificate complexities,
C(f) = max{C0(f), C1(f)}. We say that a family of certificates A ⊂ {0, 1, ∗}n is unambiguous
if any two distinct certificates α, β ∈ A conflict, i.e., there is no assignment that agrees with
both α and β. For b ∈ {0, 1}, the (one-sided) unambiguous b-certificate complexity of f ,
UCb(f), is the minimum number w such that there is an unambiguous family of certificates
A such that A contains only certificates of size at most w and every x ∈ f−1(b) agrees with
some certificate in A. The (two-sided) unambiguous certificate complexity of f is defined as
UC(f) = max{UC0(f), UC1(f)}.

ITCS 2024

48:10 Proving Unsatisfiability with Hitting Formulas

We use the following notation for widely known proof systems: Res for Resolution,
tl-Res for tree-like Resolution, Res(⊕) for Resolution over XORs of [44], tl-Res(⊕) for its
tree-like version, CP for Cutting Planes, NS for Nullstellensatz, PC for Polynomial Calculus,
Frege for Frege and Extended Frege for Extended Frege.

Deterministic communication complexity of a search problem defined by a ternary relation
R is the minimal amount of communication (number of bits) that is enough to solve the
following communication problem for two players on any input: Alice is given x, Bob is
given y, and their goal is to find some z such that (x, y, z) ∈ R. Alice and Bob can exchange
information by sending bit messages to each other. At the end of the game both players must
know z. (Public coin) ε-error randomized communication complexity of a search problem is
the minimal amount of communication that is enough for players to win the communication
game with probability at least 1 − ε if the players have access to a public source of random
bits. If ε is not explicitly specified then we assume ε = 1/3. More information on the
standard definitions of communication complexity can be found in [51].

2.2 Hitting formulas and proof system
Iwama [45] started to study hitting formulas as a polynomial-time tractable subclass of
satisfiability problems (see also [48]).

▶ Definition 2.1 (Hitting formula). A hitting formula is a formula F = C1 ∧ · · · ∧ Cm in
conjunctive normal form such that every two of its clauses Ci and Cj contain contrary literals,
that is, there is some literal ℓ such that ℓ ∈ Ci and ℓ̄ ∈ Cj; in other words, Ci ∨ Cj is a
tautology.

Sometimes the notion is defined for formulas in disjunctive normal form. We call them a
different name to avoid misunderstanding.

▶ Definition 2.2 (Unambiguous DNF). An unambiguous DNF is the negation of a hitting
formula, that is, every two its terms (conjunctions) contradict each other.

▶ Definition 2.3 (Hitting proof system). A refutation of a CNF F in Hitting is an
unsatisfiable hitting formula H such that every clause C in H has a strengthening C ′ ⊆ C

in F .

Hitting refutations can be verified in polynomial time: the unsatisfiability of H can be
easily checked by counting the number of falsifying assignments, as implicitly noticed by
Iwama [45] (note that the sets of falsifying assignments for any two clauses of H are disjoint),
and matching clauses to their strengthening is done simply by considering all pairs C ∈ H,
C ′ ∈ F .

The soundness of Hitting is trivial, the completeness is given by the “complete” hitting
formula consisting of all possible clauses containing all the variables of F : the unique
assignment falsifying such a clause C must also falsify some clause C ′ of (unsatisfiable) F ,
which is then the required strengthening of C.

2.3 Other HITTING-based proof systems
2.3.1 HITTING RES

Hitting is a “static” proof system with no real derivation procedure. We add more power
to it by incorporating such steps into a Res refutation. Indeed, a resolution step can be
generalized to resolve over any contradiction, not just x ∧ x̄. In Hitting Res we resolve by
hitting formulas:

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:11

▶ Definition 2.4 (Hitting Res). This proof system embraces both Hitting and Res. One
derivation step uses an unsatisfiable hitting formula H1 ∧ · · · ∧ Hk:

C1 ∨ H1, . . . , Ck ∨ Hk

C1 ∨ · · · ∨ Ck
.

We also allow weakening steps:

C

C ∨ D
.

▶ Proposition 2.5. Hitting Res p-simulates both Hitting and Res.

2.3.2 ODD HITTING

While a hitting formula covers every falsifying assignment exactly once, that is, it satisfies
exactly one clause, an odd hitting formula does this an odd number of times.

▶ Definition 2.6 (Odd hitting formula). An odd hitting formula is a formula F = C1∧· · ·∧Cm

in conjunctive normal form such that every falsifying assignment falsifies an odd number of
its clauses.

▶ Definition 2.7 (Odd Hitting proof system). A refutation of a CNF F in Odd Hitting
is an unsatisfiable odd hitting formula H such that every clause C in H has a strengthening
C ′ ⊆ C in F .

It is not straightforward how to verify that a (not necessarily unsatisfiable) formula is an
odd hitting formula, and how to verify that a formula is an unsatisfiable odd hitting formula
(thus verifying Odd Hitting proofs). We show it in Prop. 4.6 and Prop. 4.5.

2.3.3 HITTING[k]
One can generalize hitting formulas by allowing a falsifying assignment to falsify a limited
number of clauses (and not just a single clause) [49].

▶ Definition 2.8 (Hitting-k formula). A hitting-k formula is a formula F in conjunctive
normal form such that every assignment falsifying F falsifies at most k clauses of F .

▶ Definition 2.9 (Hitting[k]). A refutation of a CNF F in Hitting[k] is an unsatisfiable
hitting-k formula H such that every clause C in H has a strengthening C ′ ⊆ C in F .

We show in Theorem 4.7 that Hitting[k] refutations can be verified in polynomial time.

2.3.4 HITTING(⊕)
Hitting(⊕) stands to Hitting the same way as Res(⊕) stands to Res, where Res(⊕) is
the system defined in [44] that allows clauses to contain affine equations modulo two instead
of just literals. It resembles the system Res(Lin) of [58] and falls under the concept of
Krajíček’s R(. . .) systems [47].

▶ Definition 2.10 (Hitting(⊕) formula). A hitting(⊕) formula decomposes {0, 1}n into
disjoint affine subspaces over GF(2). Namely, it is a conjunction of ⊕-clauses of the form∨

k ck ⊕
⊕

i∈Ik
xi, where ck ∈ {0, 1} is a constant, xi’s are variables, and any two its ⊕-clauses

do not share a common falsifying assignment.

ITCS 2024

48:12 Proving Unsatisfiability with Hitting Formulas

Note that we can check that two affine subspaces are disjoint using Gaussian elimination,
and this gives an efficient way of checking whether a given formula is hitting(⊕).

⊕-clauses can be thought of as sets of linear (affine) equations similarly to clauses that
we usually think of as sets of literals.

▶ Definition 2.11 (Hitting(⊕) proof system). A refutation of a CNF F in Hitting(⊕) is
an unsatisfiable hitting(⊕) formula H such that every ⊕-clause C in H has a strengthening
C ′ ⊆ C in F .

Note that Hitting(⊕) can be thought of also as a proof system for sets of affine subspaces
covering {0, 1}n, that is, unsatisfiable systems of disjunctions of linear (affine) equations.

3 HITTING vs TL-RES and other classical systems

We prove that while Hitting p-simulates tl-Res, in the other direction tl-Res simulates
Hitting only quasi-polynomially. Moreover, tl-Res is quasi-polynomially weaker than
Hitting. We also relate Hitting to other proof systems: the tree-like version of Res(⊕)
(they are incomparable), certain versions of NS, and Res.

3.1 TL-RES quasi-polynomially simulates HITTING

We use a construction of small decision trees from DNF covers of Boolean functions to
quasi-polynomially simulate Hitting in tl-Res [28]. We adapt the argument of Ehrenfeucht–
Haussler to prove the following theorem. Intuitively, every hitting formula defines a subcube
partition of the Boolean cube {0, 1}n. The structure of this partition can be used to greedily
construct a decision tree (tl-Res refutation) that always queries the most conflicting variable
in the narrowest clause.

▶ Theorem 3.1. If a CNF formula F has a Hitting refutation of size m, then F has a
tl-Res refutation of size at most O(22 log3 m).

The argument can be extended to Hitting[k] simulation by Hitting (hence, by tl-Res).

▶ Proposition 3.2. Hitting quasi-polynomially simulates Hitting[k] up to k = (log m)O(1).

Later in Theorem 3.8 we show that the simulation of Hitting by tl-Res cannot be
polynomial; however, we do not know whether it can be improved to mO(log m).

▶ Corollary 3.3. There are formulas that have polynomial-size Res proofs but require
exponential-size Hitting proofs.

▶ Remark 3.4. Similarly to Theorem 3.1, Hitting Res can be quasi-polynomially simulated
in Res (every hitting resolution step can be simulated using Theorem 3.1), and thus an
exponential-size lower bound for it also follows from exponential-size lower bounds for Res
(e.g., [63]).

3.2 HITTING is quasi-polynomially stronger than TL-RES

The simulation is not difficult to see.

▶ Theorem 3.5. Hitting p-simulates tl-Res.

We use ⊕-lifting to prove the separation result. We employ the following separation of
randomized query complexity (deterministic is enough for our purpose) and unambiguous
certificate complexity from [4].

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:13

▶ Definition 3.6 ([1, 4]). Let f : {0, 1}N → {0, 1} be a function, c = 10 log N and m =
c · C(f) log N = 10C(f) log2 N . Then the cheat sheet version of f , denoted fCS, is a total
function fCS : ({0, 1}N)c × ({0, 1}m)2c → {0, 1}.

Let the input be written as (x1, x2, . . . , xc, Y1, Y2, . . . , Y2c), where for all i ∈ [c], xi ∈
{0, 1}N , and for all j ∈ [2c], Yj ∈ {0, 1}m. Let ℓi = f(xi) and ℓ ∈ [2c] be the positive integer
corresponding to the binary string ℓ1, . . . , ℓc. Then we define the value of fCS to be 1 if and
only if Yℓ contains certificates for f(xi) = ℓi for all i ∈ [c].

At first glance, the definition of fCS might look nonconstructive due to the usage of C(f).
However, the theorem of [4] uses an appropriate upper bound on C(f), which is proved along
with the interactive construction of the function.

▶ Theorem 3.7 ([4, Theorem 5.1]). Let f0 = ANDn and fk be defined inductively as
fk := ANDn ◦ (ORn ◦ fk−1)CS, where fk has O(n25k) inputs. Then R(fk) = Ω̃(n2k+1) and
UC(fk) = Õ(nk+1).

The unambiguous DNFs from this theorem, lifted by (⊕2)m, yield the upper bound.

▶ Theorem 3.8. For every ε > 0, there exists a sequence of unsatifiable hitting formulas Gm

containing 2Õ(m) clauses of width at most Õ(m) such that Gm requires tl-Res proof size
2Ω̃(m2−ε).

3.3 HITTING and TL-RES(⊕) are incomparable
3.3.1 A hard formula for HITTING

We show that there exist formulas that are easy for tl-Res(⊕) and exponentially hard for
Hitting. We recall the separation of tl-Res(⊕) from Res for Tseitin formulas [44].

▶ Definition 3.9 (Tseitin formulas TG,c). For a constant-degree graph G = (V, E) and a 0/1
vector c of “charges” for the vertices, consider the following linear system in the variables xe

for e ∈ E:

∧
v∈V

(⊕
e∋v

xe = cv

)
,

where
⊕

v∈V cv = 1. In the corresponding Tseitin formula TG,c in CNF each vertex constraint⊕
e∋v xe = cv expands into 2deg v−1 clauses of width deg v.

▶ Theorem 3.10 ([63]). There exists a family of constant-degree graphs Gn with n nodes
and a family of charge vectors cn such that TsGn,cn

requires Res refutation of size 2Ω(n).

▶ Theorem 3.11 ([44]). For any graph G and charges c the Tseitin formula TsG,c has a
tree-like Res(⊕) refutation of size linear in the size of the CNF.

Given the quasi-polynomial simulation of Theorem 3.1 and the following generalization of
Theorem 3.5, we can separate Hitting from tl-Res(⊕) and Hitting(⊕).

▶ Proposition 3.12. If F has a tree-like Res(⊕) refutation of size s, then it has a Hitting(⊕)
refutation of size s.

▶ Corollary 3.13. There exists a family of CNF formulas Fn such that Fn requires Resolution
refutation of size 2Ω(n), Hitting refutation of size 2nΩ(1) and admits polynomial-size tree-like
Res(⊕) refutation (and, consequently, polynomial-size Hitting(⊕) refutation).

ITCS 2024

48:14 Proving Unsatisfiability with Hitting Formulas

3.3.2 A hard formula for TL-RES(⊕)
In addition to separating Hitting from tl-Res, we can follow the same plan to separate it
from a stronger tl-Res(⊕) proof system, that is, to lift a separation between unambiguous
certificate complexity and query complexity. We cannot use decision tree size to bound
tl-Res(⊕) size, but rather the stronger randomized communication complexity measure.

▶ Theorem 3.14 ([44, Theorem 3.11]). Let F be an unsatisfiable CNF that has tree-like
Res(⊕) refutation of size t then the randomized communication complexity of the falsified
clause search problem for F is O(log t).

The function Indexingm : [m] × {0, 1}m → {0, 1} is defined as Indexingm(i, x) = xi, i.e.
it accepts an index and a vector and returns the element of the vector with the given index.
Observe that Indexingm has a decision tree of depth ⌈log2 m⌉ + 1: we first query the index
and then query a single bit of the vector.

▶ Theorem 3.15 ([40]). If a function f : {0, 1}n → {0, 1} requires a randomized decision
tree of depth t, then the function f ◦ (Indexingm)n where m = n256 requires randomized
communication cost Ω(t log n).

By lifting formulas from Theorem 3.7 with IndexingM256 , we prove the separation result.

▶ Theorem 3.16. For every ϵ > 0, there is a sequence of unsatisfiable hitting formulas Gm

containing 2Õ(m) clauses of width Õ(m) that requires tl-Res(⊕) proof size 2Ω̃(m2−ϵ).

3.4 Relation to RES and NS
As we discussed in Section 3.3.1, a corollary of Theorem 3.1, which shows that tl-Res
quasi-polynomially simulates Hitting, is that if a proof system P is exponentially separated
from tl-Res then P is also exponentially separated from Hitting. Since this is the case
with Res and NS – which have short proofs of the ordering principle and the bijective
pigeonhole principle [12] respectively, while tl-Res requires exponentially long proofs of
both – we conclude that Res and NS are exponentially separated from Hitting.

In this section we explore whether a simulation or separation in the other direction exists.
We show that the formula that we used for the quasi-polynomial separation of Hitting from
tl-Res has short Res refutations, and therefore cannot be used for showing a separation
from Res. We also show that in a sense NS simulates Hitting.

3.4.1 Upper bound in RES

To construct a Res refutation we first reprove the upper bound part of Theorem 3.7 (separ-
ating unambiguous certificate complexity from randomized query complexity) strengthening
it to an upper bound for unambiguous dag-like query complexity in place of unambiguous
certificate complexity. We need to make a few minor changes arising from the fact that
w(ANDn) = n while C0(ANDn) = 1, but using the fact that w(ORn ◦ ANDn) = O(n) and
not Θ(n2) is enough for our purposes.

▶ Theorem 3.17. The formula Gm of Theorem 3.8 has a Res refutation of size 2Õ(m).

3.4.2 Upper bound in NS
Given a clause C =

∨
i∈P xi ∨

∨
i∈N xi, let pC =

∏
i∈P (1 − xi) ·

∏
i∈N xi be the polynomial

whose roots are the satisfying assignments of C. Recall that a NS certificate that polynomials
{pi} have no common roots is a set of polynomials {qi} such that

∑
piqi ≡ 1, and the

degree of a certificate is maxi deg(piqi). A NS refutation of a CNF F is a NS certificate for
{pC | C ∈ F} ∪ {x2

i − xi}. It turns out that NS simulates Hitting with respect to degree.

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:15

▶ Proposition 3.18. NS degree is at most Hitting width.

When measuring the size of a NS refutation it is more appropriate to consider a definition
that allows us to introduce dual variables x̄ = 1 − x [2] resulting in a new system NSR [27],
since otherwise a formula containing a wide clause with many positive literals would already
require exponential size when translated to polynomials. We discuss this system in Sect. 4.
Moreover, we discuss succinct NSR proofs that contain only side polynomials for the input
axioms and not for x2 − x = 0 or x + x̄ − 1 = 0. In fact, Prop. 3.18 already shows that
succinct NSR polynomially simulates Hitting with respect to size.

4 PIT helps to simulate HITTING, and more

4.1 EXTENDED FREGE p-simulates HITTING

We prove that Hitting can be p-simulated at least in the most powerful logical propositional
proof system, Extended Frege. The obstacle is that the soundness of Hitting is based
on the counting argument that involves the number of assignments falsified by a clause, and
it is not easy to express this argument in propositional logic.

Our strategy is to p-simulate Hitting in a strong algebraic system that is p-equivalent
to Extended Frege in the case of GF(2).

There are several proof systems extending the power of PC by allowing to express
polynomials in a more compact way than linear combinations of monomials. Grigoriev
and Hirsch [34] introduced F-PC that allows to express polynomials as algebraic formulas
without opening the parentheses. Of course, this needs usual associativity–commutativity–
distributivity rules to transform these formulas. The next powerful system is Ext-PC
considered by Alekseev [3]. This is simply PC with Tseitin’s extension rule generalized
so that variables can be introduced for arbitrary polynomials. It can be viewed as a way
to express PC proofs where polynomials can be represented as algebraic circuits (but
transformations of these circuits must be justified using the definitions of extension variables
that denote gates values). Eventually, Grochow and Pitassi [55, 35] suggested to generalize
proof systems to allow the randomized verification of the proofs, and in these proof systems,
one can switch for free between different circuit representations of a polynomial.

A Frege system [19, §2] is defined as any implicationally complete inference system
that uses sound constant-size rule schemata for Boolean formulas (a schema means that the
formulas in the rules are represented by meta-variables, for example, F and G in the modus
ponens rule F ; F ⊃G

G can be any formulas). An Extended Frege system additionally allows
us to introduce new variables using the axiom schema x ⇔ A for any formula A, where x is
a new variable.

Grigoriev and Hirsch [34, Theorem 3] prove that F-PC (over any field), a system that
allows us to represent polynomials using arbitrary algebraic formulas and to transform them
using the ring rules, p-simulates Frege (and also a similar statement for constant-depth
F-PC over finite fields versus Frege with modular gates). They also state that Frege
p-simulates F-PC over GF(2) [34, Remark 5]. We include a formal proof of this statement
in the full version for completeness. Namely, we prove that F-PC over GF(2) is a Frege
system itself (and it is known that all sound and implicationally complete Frege systems
over all possible sets of Boolean connectives are equivalent [59, Theorem 5.3.1.4.i]).

▶ Definition 4.1 ([3]). An Ext-PC refutation over a ring R of a set of polynomials
P ⊂ R[x1, . . . , xn] is a PC refutation over R of a set of polynomials P ∪ Q, where Q :=
{y1 − q1(x1, . . . , xn), . . . , ym − qm(x1, . . . , xn, y1, . . . , ym−1)} consists of polynomials defining
new variables yi for arbitary polynomials qi ∈ R[x1, . . . , xn, y1, . . . , yi−1].

ITCS 2024

48:16 Proving Unsatisfiability with Hitting Formulas

While [3] defines Ext-PC over arbitrary fields and even rings, we use it over finite fields only.
It is not difficult to see that Ext-PC over GF(2) is an Extended Frege system (and it is
known that all Extended Frege systems are p-equivalent [59, Theorem 5.3.2.a]).

The main theorem of this section is

▶ Theorem 4.2. Ext-PC over a finite field p-simulates Hitting.

▶ Corollary 4.3. Extended Frege p-simulates Hitting.

▶ Corollary 4.4. Extended Frege p-simulates Hitting Res.

The proof of Theorem 4.2 (which can be found in the full version of this paper) can be
used for proving in Ext-PC similar statements about multilinear polynomials that use dual
variables. In particular, it can be used for simulating Odd Hitting and Hitting[k].

▶ Proposition 4.5. Odd Hitting proofs can be verified in deterministic polynomial time.
Ext-PC over GF(2) p-simulates Odd Hitting. In particular, Extended Frege p-
simulates Odd Hitting.

This argument allows us to verify unsatisfiable odd hitting formulas. However, a similar
technique also makes it possible to check arbitrary formulas for being odd hitting.

▶ Proposition 4.6. Given a formula in CNF, it can be checked in deterministic polynomial
time whether F is an odd hitting formula.

▶ Theorem 4.7. Hitting[k] proofs can be verified in deterministic polynomial time. Ext-PC
over a finite field p-simulates Hitting[k]. In particular, Extended Frege p-simulates
Hitting[k].

5 ODD HITTING

Like NS over GF(2), Odd Hitting can efficiently refute Tseitin formulas modulo 2 (see
Def. 3.9), which require exponential-size resolution proofs [63].

▶ Proposition 5.1. For any constant-degree graph G = (V, E) and 0/1-vector c, Odd
Hitting has a polynomial-size refutation of TG,c.

A separation between Odd Hitting and NS without dual variables follows immediately
from the separation between NSR and NS of de Rezende et al [27].

In the opposite direction, there are formulas that require exponentially larger proofs in
Odd Hitting than in Res. Dmitry Sokolov [private communication] suggested that the
well-known technique of xorification can produce an exponential separation between the size
of Res and NSR proofs from the bounds of [16]:

▶ Theorem 5.2 ([16]). There exists a family of formulas that have Res proofs of constant
width and require NS degree Ω(n/ log n).

We notice that this technique is still viable for succinct NSR proofs, and hence Odd
Hitting. In the following lemma we apply xorification and the random restriction technique
of Alekhnovich and Razborov (see [13]) to get the separation.

▶ Lemma 5.3. Let F be a CNF formula that requires degree d to refute in NS over a field F.
Then F ◦ (⊕2)n requires size 2Ω(d) to refute in succinct NSR over F.

Combining xorification with a lower bound on the degree of pebbling formulas we obtain a
separation between Odd Hitting and Res.

▶ Corollary 5.4. There exists a family of formulas that have Res proofs of polynomial size
and require Odd Hitting proofs of size 2Ω(n/ log n).

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:17

6 HITTING(⊕)

Hitting(⊕) extends Hitting to formulas that work with linear equations modulo two. We
know from Cor. 3.13 that Tseitin formulas separate Hitting(⊕) from Hitting and Res.

We show that perfect matching formulas (that have polynomial-size CP proofs) require
exponential-size Hitting(⊕) refutations. In order to do this, we lift them using (binary)
xorification and then reduce the question to the known communication complexity lower
bound for set disjointness.

▶ Theorem 6.1. Any Hitting(⊕) refutation of PMG for the complete bipartite graph
K40n+1,40n+3 contains 2Ω(n) many subspaces.

▶ Remark 6.2. Note that the PMG formulas for Ki,j for i ̸= j have polynomial-size CP
proofs: it can be easily derived from the 2-clauses that the number of edges around a vertex
is at most 1; then take the sum of such inequalities around all vertices in the smaller part,
and take the sum of the other input inequalities in the larger part.

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using

cheat sheets. In STOC-2016, pages 863–876, 2016. doi:10.1145/2897518.2897644.
2 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space

complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
doi:10.1137/S0097539700366735.

3 Yaroslav Alekseev. A lower bound for polynomial calculus with extension rule. In 36th
Computational Complexity Conference, volume 200 of LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., 2021. Art. 21:18. doi:10.4230/LIPIcs.CCC.2021.21.

4 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations between
communication (or query) complexity and partitions. In 31st Conference on Computational
Complexity, volume 50 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 4, 14. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016. doi:10.4230/LIPIcs.CCC.2016.4.

5 Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width. J.
Comput. System Sci., 74(3):323–334, 2008. doi:10.1016/j.jcss.2007.06.025.

6 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algorithms.
ECCC, TR14-059, 2014. URL: https://eccc.weizmann.ac.il/report/2014/059, arXiv:
TR14-059.

7 P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák. Lower bounds on Hilbert’s
Nullstellensatz and propositional proofs. Proc. London Math. Soc., 73(3):1–26, 1996. doi:
10.1112/plms/s3-73.1.1.

8 P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004. doi:10.1613/jair.1410.

9 P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th Conference
on Foundations of Computer Science, pages 274–282, 1996. doi:10.1109/SFCS.1996.548486.

10 Paul Beame and Sajin Koroth. On disperser/lifting properties of the index and inner-product
functions, 2022. arXiv:2211.17211.

11 Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver systems
and beyond follow from multiparty communication complexity. In Automata, Languages and
Programming, volume 3580 of LNCS, pages 1176–1188. Springer, 2005.

12 Paul Beame and Søren Riis. More on the relative strength of counting principles. In Proof
Complexity and Feasible Arithmetics, volume 39 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 13–35, 1996. doi:10.1090/dimacs/039/02.

13 Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing, 38(6):2511–
2525, 2009. doi:10.1137/080723880.

ITCS 2024

https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1137/S0097539700366735
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.1016/j.jcss.2007.06.025
https://eccc.weizmann.ac.il/report/2014/059
https://arxiv.org/abs/TR14-059
https://arxiv.org/abs/TR14-059
https://doi.org/10.1112/plms/s3-73.1.1
https://doi.org/10.1112/plms/s3-73.1.1
https://doi.org/10.1613/jair.1410
https://doi.org/10.1109/SFCS.1996.548486
https://arxiv.org/abs/2211.17211
https://doi.org/10.1090/dimacs/039/02
https://doi.org/10.1137/080723880

48:18 Proving Unsatisfiability with Hitting Formulas

14 Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combinatorica, 24(4):585–603, 2004. doi:10.1007/
s00493-004-0036-5.

15 Archie Blake. Canonical expressions in Boolean algebra. PhD thesis, University of Chicago,
1937.

16 Josh Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Ho-
mogenization and the polynomial calculus. Comput. Complex., 11(3-4):91–108, 2002.
doi:10.1007/s00037-002-0171-6.

17 Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to
parity decision trees via stifling, 2022. arXiv:2211.17214.

18 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In 28th Annual ACM Symposium on the Theory of Computing,
pages 174–183, New York, 1996. ACM. doi:10.1145/237814.237860.

19 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

20 W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, 1987.

21 E. Dantsin and E. A. Hirsch. Worst-case upper bounds. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, 2nd Ed., volume 336 of Frontiers in Artificial
Intelligence and Applications, pages 669–692. IOS Press, 2021. doi:10.3233/FAIA200999.

22 M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commu-
nications of the ACM, 5(7):394–397, 1962.

23 M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201–215, 1960.

24 G. Davydov and I. Davydova. Dividing formulas and polynomial classes for satisfiability. In
SAT’98, 2nd Workshop on the Satisfiability Problem, pages 12–21, 1998.

25 S.F. de Rezende, J. Nordström, and M. Vinyals. How limited interaction hinders real commu-
nication (and what it means for proof and circuit complexity). In 57th Annual Symposium on
Foundations of Computer Science, pages 295–304, 2016. doi:10.1109/FOCS.2016.40.

26 Susanna F. de Rezende. Automating tree-like resolution in time no(log n) is ETH-hard. Procedia
Computer Science, 195:152–162, 2021. Proceedings of the XI Latin and American Algorithms,
Graphs and Optimization Symposium. doi:10.1016/j.procs.2021.11.021.

27 Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The power
of negative reasoning. In 36th Computational Complexity Conference, CCC 2021, July 20-23,
2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 40:1–40:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.40.

28 Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Inform. and Comput., 82(3):231–246, 1989. doi:10.1016/0890-5401(89)90001-1.

29 Y. Filmus, E. A. Hirsch, S. Kurz, F. Ihringer, A. Ryazanov, A. V. Smal, and M. Vinyals.
Irreducible subcube partitions. Electron. J. Comb., 30(3), 2023. doi:10.37236/11862.

30 N. Fleming, P. Kothari, and T. Pitassi. Semialgebraic proofs and efficient algorithm design.
Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019. doi:10.1561/0400000086.

31 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. Theory Comput., 16(13):1–30, 2020. doi:10.4086/toc.2020.v016a013.

32 Michal Garlík and Leszek Aleksander Kołodziejczyk. Some subsystems of constant-depth
Frege with parity. ACM Trans. Comput. Logic, 19(4), November 2018. doi:10.1145/3243126.

33 Mika Göös, Stefan Kiefer, and Weiqiang Yuan. Lower Bounds for Unambiguous Automata via
Communication Complexity. In 49th International Colloquium on Automata, Languages, and
Programming, volume 229 of LIPIcs. Leibniz Int. Proc. Inform., pages 126:1–126:13. Schloss
Dagstuhl. Leibniz-Zent. Inform., 2022. doi:10.4230/LIPIcs.ICALP.2022.126.

https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1007/s00037-002-0171-6
https://arxiv.org/abs/2211.17214
https://doi.org/10.1145/237814.237860
https://doi.org/10.2307/2273702
https://doi.org/10.3233/FAIA200999
https://doi.org/10.1109/FOCS.2016.40
https://doi.org/10.1016/j.procs.2021.11.021
https://doi.org/10.4230/LIPIcs.CCC.2021.40
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.37236/11862
https://doi.org/10.1561/0400000086
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.1145/3243126
https://doi.org/10.4230/LIPIcs.ICALP.2022.126

Y. Filmus, E. A. Hirsch, A. Riazanov, A. Smal, and M. Vinyals 48:19

34 Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret.
Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001).
doi:10.1016/S0304-3975(02)00446-2.

35 Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. doi:10.1145/
3230742.

36 Svyatoslav Gryaznov. Notes on resolution over linear equations. In CSR-2019, volume 11532
of LNCS, pages 168–179. Springer, 2019. doi:10.1007/978-3-030-19955-5_15.

37 Matthew Gwynne. Hierarchies for efficient clausal entailment checking: With applications to
satisfiability and knowledge compilation. PhD thesis, Swansea University, 2014.

38 Matthew Gwynne and Oliver Kullmann. Towards a theory of good SAT representations.
CoRR, abs/1302.4421, 2013. URL: http://arxiv.org/abs/1302.4421, arXiv:1302.4421.

39 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP, 2022. arXiv:2205.02168.

40 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for bpp.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
132–143, 2017. doi:10.1109/FOCS.2017.21.

41 Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
42 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying communica-

tion complexity hardness to time-space trade-offs in proof complexity. In 44th Annual ACM
Symposium on Theory of Computing, pages 233–248, 2012. doi:10.1145/2213977.2214000.

43 Dmitry Itsykson and Artur Riazanov. Proof Complexity of Natural Formulas via Communica-
tion Arguments. In 36th Computational Complexity Conference (CCC 2021), volume 200 of
LIPIcs. Leibniz Int. Proc. Inform., pages 3:1–3:34, Dagstuhl, Germany, 2021. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern. doi:10.4230/LIPIcs.CCC.2021.3.

44 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann.
Pure Appl. Logic, 171(1):102722, 31, 2020. doi:10.1016/j.apal.2019.102722.

45 Kazuo Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM J.
Comput., 18(2):385–391, 1989. doi:10.1137/0218026.

46 Rahul Jain and Hartmut Klauck. The partition bound for classical communication complexity
and query complexity. In 25th Annual IEEE Conference on Computational Complexity, pages
247–258, 2010. doi:10.1109/CCC.2010.31.

47 Jan Krajíček. Discretely ordered modules as a first-order extension of the cutting planes proof
system. Journal of Symbolic Logic, 63(4):1582–1596, 1998. doi:10.2307/2586668.

48 Oliver Kullmann. The combinatorics of conflicts between clauses. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing (SAT 2003),
volume 2919 of LNCS, pages 426–440. Springer, 2004. doi:10.1007/978-3-540-24605-3_32.

49 Oliver Kullmann. Constraint satisfaction problems in clausal form II: minimal unsatis-
fiability and conflict structure. Fundam. Informaticae, 109(1):83–119, 2011. doi:10.3233/
FI-2011-429.

50 Oliver Kullmann and Xishun Zhao. On Davis-Putnam reductions for minimally unsatisfiable
clause-sets. Theoret. Comput. Sci., 492:70–87, 2013. doi:10.1016/j.tcs.2013.04.020.

51 Eyal Kushilevitz and Noam Nisan. Communication complexity. CUP, 1997.
52 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.

Computational Complexity, 4, 1995. doi:10.1145/129712.129757.
53 Tomás Peitl and Stefan Szeider. Are hitting formulas hard for resolution? CoRR,

abs/2206.15225, 2022. doi:10.48550/arXiv.2206.15225.
54 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as

resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.2010.10.002.
55 Toniann Pitassi. Algebraic propositional proof systems. In Descriptive Complexity and Finite

Models, volume 31 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 215–244. DIMACS/AMS, 1996. doi:10.1090/dimacs/031/07.

ITCS 2024

https://doi.org/10.1016/S0304-3975(02)00446-2
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3230742
https://doi.org/10.1007/978-3-030-19955-5_15
http://arxiv.org/abs/1302.4421
https://arxiv.org/abs/1302.4421
https://arxiv.org/abs/2205.02168
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.4230/LIPIcs.CCC.2021.3
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1137/0218026
https://doi.org/10.1109/CCC.2010.31
https://doi.org/10.2307/2586668
https://doi.org/10.1007/978-3-540-24605-3_32
https://doi.org/10.3233/FI-2011-429
https://doi.org/10.3233/FI-2011-429
https://doi.org/10.1016/j.tcs.2013.04.020
https://doi.org/10.1145/129712.129757
https://doi.org/10.48550/arXiv.2206.15225
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1090/dimacs/031/07

48:20 Proving Unsatisfiability with Hitting Formulas

56 Pavel Pudlák. Proofs as games. Am. Math. Mon., 107(6):541–550, 2000. URL: http:
//www.jstor.org/stable/2589349.

57 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Comput. Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

58 Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic, 155(3):194–224, 2008. doi:10.1016/j.apal.2008.04.001.

59 R. A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. PhD thesis, University
of Toronto, 1976. URL: https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.
pdf.

60 Suhail Sherif. Communication Complexity and Quantum Optimization Lower Bounds via
Query Complexity. PhD thesis, Tata Institute of Fundamental Research, Mumbai, 2021.

61 Dmitry Sokolov. Dag-like communication and its applications. In CSR-2017, volume 10304 of
LNCS, pages 294–307. Springer, 2017. doi:10.1007/978-3-319-58747-9_26.

62 G. S. Tseitin. On the complexity of derivation in the propositional calculus. Zapiski nauchnykh
seminarov LOMI, 8:234–259, 1968. Translation: Consultants Bureau, N.Y., 1970, pp. 115–125.

63 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

http://www.jstor.org/stable/2589349
http://www.jstor.org/stable/2589349
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1016/j.apal.2008.04.001
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://www.cs.toronto.edu/~sacook/homepage/reckhow_thesis.pdf
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1145/7531.8928
https://doi.org/10.1145/7531.8928

	1 Introduction
	1.1 Our results and methods
	1.1.1 Simulations of HITTING-based systems and proof verification using PIT
	1.1.2 Separations of HITTING from classical systems
	1.1.3 A lower bound for ODD HITTING
	1.1.4 A lower bound for HITTING(⊕)

	1.2 Further research

	2 Basic definitions
	2.1 Basic notation
	2.2 Hitting formulas and proof system
	2.3 Other HITTING-based proof systems
	2.3.1 HITTING RES
	2.3.2 ODD HITTING
	2.3.3 HITTING[k]
	2.3.4 HITTING(oplus)

	3 HITTING vs TL-RES and other classical systems
	3.1 TL-RES quasi-polynomially simulates HITTING
	3.2 HITTING is quasi-polynomially stronger than TL-RES
	3.3 HITTING and TL-RES(⊕) are incomparable
	3.3.1 A hard formula for HITTING
	3.3.2 A hard formula for TL-RES(⊕)

	3.4 Relation to RES and NS
	3.4.1 Upper bound in RES
	3.4.2 Upper bound in NS

	4 PIT helps to simulate HITTING, and more
	4.1 EXTENDED FREGE p-simulates HITTING

	5 ODD HITTING
	6 HITTING(oplus)

