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Abstract
Characterizing the performance of no-regret dynamics in multi-player games is a foundational problem
at the interface of online learning and game theory. Recent results have revealed that when all players
adopt specific learning algorithms, it is possible to improve exponentially over what is predicted by
the overly pessimistic no-regret framework in the traditional adversarial regime, thereby leading
to faster convergence to the set of coarse correlated equilibria (CCE) – a standard game-theoretic
equilibrium concept. Yet, despite considerable recent progress, the fundamental complexity barriers
for learning in normal- and extensive-form games are poorly understood. In this paper, we make a
step towards closing this gap by first showing that – barring major complexity breakthroughs – any
polynomial-time learning algorithms in extensive-form games need at least 2log1/2−o(1) |T | iterations
for the average regret to reach below even an absolute constant, where |T | is the number of nodes in
the game. This establishes a superpolynomial separation between no-regret learning in normal- and
extensive-form games, as in the former class a logarithmic number of iterations suffices to achieve
constant average regret. Furthermore, our results imply that algorithms such as multiplicative
weights update, as well as its optimistic counterpart, require at least 2(log log m)1/2−o(1)

iterations to
attain an O(1)-CCE in m-action normal-form games under any parameterization. These are the
first non-trivial – and dimension-dependent – lower bounds in that setting for the most well-studied
algorithms in the literature. From a technical standpoint, we follow a beautiful connection recently
made by Foster, Golowich, and Kakade (ICML ’23) between sparse CCE and Nash equilibria in
the context of Markov games. Consequently, our lower bounds rule out polynomial-time algorithms
well beyond the traditional online learning framework, capturing techniques commonly used for
accelerating centralized equilibrium computation.
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5:2 Lower Bounds for No-Regret Learning in Games

1 Introduction

At the heart of the intricate interplay between online learning and game theory, which
can be traced all the way back to Blackwell’s seminal approachability theorem [10] and
Robinson’s analysis of fictitious play [72], lies the fundamental no-regret framework. Here, a
learner has to select round by round a sequence of actions so as to obtain a high cumulative
reward; the crux presents itself in the online nature of the revealed information, in that
each reward function is unbeknownst to the learner prior to the termination of that round.
The canonical measure of performance in this online environment is the notion of regret,
which contrasts the cumulative reward of the learner to that of the optimal fixed action in
hindsight; a learner is said to incur no-regret if its regret grows sublinearly with the time
horizon T . By now, it is well understood that when the sequence of rewards is produced
adversarially, the minimax regret after T repetitions is precisely Θ̃(

√
T log m), where m

denotes the number of available actions of the learner.1 More broadly, online learnability in
more general combinatorial domains, such as binary classification, can be characterized by a
certain notion of dimension known as the Littlestone dimension [59, 9], painting a rather
complete picture in the adversarial regime. In this context, the alluded nexus between the
no-regret framework and game theory can be witnessed by the celebrated realization that
players with sublinear regret converge to a certain game-theoretic equilibrium concept known
as coarse correlated equilibrium (CCE) [46, 40, 17]. In particular, if players follow certain
no-regret algorithms, such as the celebrated multiplicative weights update (MWU), the history
of play induces an ϵ-CCE after merely T = O( log m

ϵ2 ) repetitions of the game.
In light of our rather comprehensive understanding of online learning, one might expect

that the fundamental barriers of no-regret learning in games have already been identified.
However, as it turns out, this is not the case. Indeed, the regret incurred by each player
when facing other learning agents can be remarkably smaller than what is predicted by the
overly pessimistic no-regret framework. This is exemplified by the recent result of Daskalakis
et al. [24], who proved that when players in an n-player m-action game follow the optimistic
counterpart of MWU [70] (henceforth OMWU), each player’s regret grows only as Õ(n log m),
revealing an exponential separation compared to the lower bound in the adversarial regime.
Another noteworthy example concerns the behavior of fictitious play: it is hopeless in the
adversarial setting, where it can accumulate linear regret [17], but Julia Robinson famously
proved that it converges to minimax equilibria when followed by both players in a (two-player)
zero-sum game [72].

Despite the considerable interest recent work has devoted to understanding the problem
of no-regret learning in games (Section 1.2 features several such results), little is known in
terms of lower bounds. Daskalakis et al. [23] made an early effort by noting that incurring
Ω(1) regret is – at least in some sense – inevitable; this boils down to the straightforward
realization that even in a single-agent problem the first decision will likely be suboptimal,
resulting in Ω(1) regret even if all the subsequent actions are optimal. Besides failing to
provide a meaningful bound in terms of the dimensions of the game, another unsatisfactory
feature of the lower bound of Daskalakis et al. [23] is that it can be bypassed by simply
detaching the first iteration – in which case both players actually incur 0 regret. Can we
hope to guarantee that each player will incur Õ(1) regret, independent of the dimensions of
the game, or are there fundamental barriers that circumscribe the performance of no-regret
learners in games?

1 We use the Θ̃(·) notation to suppress polylogT factors.
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1.1 Our results
Our primary contribution in this paper is to make a step towards filling the aforementioned
knowledge gap by establishing the first non-trivial computational hardness results when
multiple players are learning in games.

Our first lower bound concerns a class of no-regret dynamics that includes MWU, perhaps
the most well-studied learning algorithm in the literature, as well its optimistic counterpart
(OMWU). Before we proceed, we recall that the exponential-time hypothesis (ETH) for PPAD [4]
postulates that there do no exist truly subexponential algorithms for solving EndOfALine –
the prototypical PPAD-complete problem (Conjecture 3.7). By now, this is a fairly standard
computational complexity assumption, which was – crucially for the purpose of this paper
– famously invoked by Rubinstein [74] to settle the complexity of computing approximate
Nash equilibria in two-player (normal-form) games.

▶ Theorem 1.1. Consider the class of n-player m-action games in normal form. If each
player i ∈ [[n]] follows MWU or OMWU and incurs (cumulative) regret RegT

i , there is a game G and
an absolute constant ϵ > 0 such that at least T ≥ 2(log2 log2 m)1/2−o(1) repetitions of the game
are needed so that 1

T max1≤i≤n RegT
i ≤ ϵ, unless ETH for PPAD (Conjecture 3.7) is false.

This represents the first non-trivial lower bounds for no-regret learning in the fundamental
setting of Theorem 1.1 under algorithms such as MWU and OMWU. Theorem 1.1 applies under
any choice of learning rates (as specified in Corollary 3.9). For comparison, we have already
alluded to the fact that T = O(log m) = O(2log log m) repetitions of MWU or OMWU suffice to
guarantee that 1

T max1≤i≤n RegT
i ≤ ϵ, for any absolute constant ϵ > 0. As such, Theorem 1.1

leaves a certain gap compared to the best known upper bounds. In fact, Theorem 1.1 actually
applies to a class of algorithms more general than MWU-type update rules, as we will make
clear shortly.

Learning in extensive-form games

Although Theorem 1.1 concerns the behavior of (O)MWU under the standard normal-form
representation of finite games, our approach actually revolves around proving hardness results
for extensive-form games. The extensive-form representation is typically exponentially more
compact – and thereby much more appropriate – when encoding games involving sequential
moves as well as imperfect information. In light of their ubiquitous presence in real-world
applications, there has been a considerable interest in understanding the performance of
no-regret learning algorithms in the more challenging class of extensive-form games (see
Section 1.2). Indeed, no-regret dynamics have been at the heart of recent landmark results
in practical computation of strategies for large games [13, 14, 16, 7].

Sparse equilibria

To establish lower bounds for no-regret learning algorithms in extensive-form games, we
follow a beautiful approach recently put forward by Foster et al. [41] in a different context,
namely that of Markov games. Their idea is to use as a proxy a refinement of CCE in
which a certain sparsity constraint is imposed. More precisely, a correlated distribution is
said to be k-sparse if it can be expressed as the uniform mixture of k product distributions
(Definition 2.2); as such, we clarify that a 1-sparse CCE is equivalent to a Nash equilibrium.
The connection of this refinement with the no-regret framework is evident: any CCE derived
from (independent) no-regret learners after T repetitions certainly satisfies the T -sparsity
constraint [41]. The name of the game now is to establish hardness results for computing
sparse CCE in a certain regime of sparsity, which in turn would readily impose barriers on
the performance of (computationally efficient) no-regret algorithms.

ITCS 2024



5:4 Lower Bounds for No-Regret Learning in Games

As an aside, we argue that a k-sparse CCE is an important solution concept in its own
right, besides the connection with no-regret learning. First, a correlated distribution is
in general an exponential object; polynomial sparsity ensures that there exists a succinct
representation of that distribution. Indeed, that refinement was central in the celebrated
ellipsoid against hope algorithm of Papadimitriou and Roughgarden [66], the only known
polynomial-time algorithm for computing (exact) CCE in succinct multi-player games [53].
Further, one important weakness of CCE compared to Nash equilibria is that the former
has a much larger description complexity even if the sparsity is polynomial. This becomes
especially relevant in some modern machine learning applications in which strategies are
represented through massive neural networks, thereby necessitating storing a large sequence
of such neural networks in order to simply represent a CCE, which can be prohibitive. In
contrast, if a CCE with sparsity k = 2 was efficiently computable, that would effectively
address such concerns.

Hardness of computing sparse CCE in extensive-form games

Having motivated the concept of a sparse CCE, we next state our main hardness result for
computing such equilibria in extensive-form games under a certain sparsity regime. Below,
for an extensive-form game described by a tree T , we denote by |T | the number of nodes in
T (the reader not familiar with the extensive-form representation can first turn to Section 2.2
for formal definitions).

▶ Theorem 1.2. There is no algorithm that runs in time polynomial in the description of an
extensive-form game T and can compute a 2log1/2−o(1)

2 |T |-sparse ϵ-CCE, even for an absolute
constant ϵ > 0, unless ETH for PPAD (Conjecture 3.7) is false.

Prior to our work, even the complexity status of computing a 2-sparse O(1)-CCE in
extensive-form games was open. Theorem 1.2 implies a superpolynomial separation for the
problem of computing sparse CCE between normal- and extensive-form games. Indeed, we
have seen that in normal-form games logarithmic – in the description of the game – sparsity
is efficiently attainable; Theorem 1.2 precludes such a possibility in extensive-form games.
To better contextualize Theorem 1.2, we remark that certain polynomial-time algorithms
in extensive-form games attain roughly 2log |T |-sparsity (in the regime where ϵ = O(1)),
thereby leaving again a certain gap compared to Theorem 1.2. We further point out that
Theorem 1.2, and implications thereof (Theorem 1.1 and Corollary 1.3), applies even for
games with three players; it is open whether it extends to two-player games, a discrepancy
explained in more detail in Section 3 (cf. [12, 41]).

Implications for no-regret dynamics

As a consequence, Theorem 1.2 circumscribes in extensive-form games the performance of
any no-regret dynamics that have polynomial complexity per iteration.

▶ Corollary 1.3. Suppose that each player follows an algorithm with polynomial iteration
complexity in the description of an extensive-form game T . If RegT

i is the regret incurred by
player i ∈ [[n]], there is an extensive-form game T and an absolute constant ϵ > 0 such that
at least T ≥ 2log1/2−o(1)

2 |T | repetitions are needed so that 1
T max1≤i≤n RegT

i ≤ ϵ, unless ETH
for PPAD (Conjecture 3.7) is false.

There are many compelling aspects of Corollary 1.3 worth stressing. First, it applies
even in a centralized model well beyond the online and decentralized learning framework.
As a concrete example, Corollary 1.3 applies even if the dynamics are alternating instead of
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simultaneous. Alternation has been a remarkably successful ingredient in practical solvers [79],
but it violates the online nature of the problem; indeed, the player who gets to play last
has complete information about the current reward function. Nevertheless, even alternating
dynamics are subject to the barriers imposed by Corollary 1.3. Furthermore, as we point
out in Remark 3.6, Corollary 1.3 can be extended even if one considers a more general non-
uniform notion of regret, which has been observed to lead to significantly faster convergence in
practice [15]. Another interesting feature of Corollary 1.3 is that players are allowed to store a
polynomial amount of information regarding past rewards. This is considerably stronger – in
that designing lower bounds is harder – than the model of Daskalakis et al. [23] wherein only
a constant number of prior rewards can be stored; that assumption was made by Daskalakis
et al. [23] to preclude trivial exploration strategies in two-player zero-sum games whereby
players first determine the entire payoff matrix, and then compute a minimax strategy with
the information gathered. In contrast, such an exploration strategy is a legitimate possibility
in the context of Corollary 1.3. As such, the model we consider here is so permissive that
no hardness results can be established for no-regret learning in two-player zero-sum games,
simply because there are polynomial-time algorithms for computing Nash equilibria in such
games.

Returning to Theorem 1.1, the key connection is that algorithms such as (O)MWU can
be efficiently simulated on the induced normal-form representation of the extensive-form
game [35]. As such, Theorem 1.1 turns out to be a consequence of Corollary 1.3. As a
result, Theorem 1.1 applies more broadly to any class of algorithms simulated on the induced
normal form with per-iteration complexity polynomial in the representation of the underlying
extensive-form game.

Technical approach

From a technical standpoint, we follow the approach of Foster et al. [41], who proved that
computing sparse CCE in Markov (aka. stochastic) games is computationally hard even when
targeting a polynomial sparsity. A crucial detail here is that Foster et al. [41] define CCE
by allowing potentially non-Markovian deviations, for otherwise polynomial algorithms do
exist [28]; this already separates regret minimization in Markov games from extensive-form
games. The key observation of Foster et al. [41] is that sparse CCE in general-sum Markov
games can be leveraged to efficiently compute Nash equilibria in general-sum (normal-form)
games, thereby confronting immediate computational barriers [25, 18, 74]. Following this
connection, we establish a similar reduction: we show that for any two-player m-action
game G there is an extensive-form game T = T (G) (Section 3.1) with the property that i) a
T -sparse ϵ-CCE in T induces an O(ϵ)-NE in G (Theorem 3.5), and ii) the description of T is
of the order mlog T/ϵ2 . The key idea is that by repeating the underlying game G multiple
times, a potentially deviating player could approximately discern the product distribution
the rest of the players prescribe to, even though their randomization is unbeknownst to the
deviator. In turn, this essentially forces a CCE in T to contain a Nash equilibrium strategy
for G by virtue of a reduction due to Borgs et al. [12]; otherwise, there would exist a deviation
with a significant profit in T , contradicting the assumption that the original mixture of
product distributions constitutes a CCE. This argument is the crux of the entire approach,
and – following Foster et al. [41] – relies on some classical results on online density estimation,
namely Vovk’s aggregating algorithm [84]. In particular, Vovk’s algorithm guarantees that a
deviating player can identify, within ϵ total variation distance in expectation, the strategy of
the rest of the players after H = O( log T

ϵ2 ) repetitions of the game.

ITCS 2024



5:6 Lower Bounds for No-Regret Learning in Games

1.2 Further related work

The line of work endeavoring to characterize the performance of no-regret learners in games,
beyond the adversarial regime [17, 11], was pioneered by Daskalakis et al. [23] in the context
of two-player zero-sum games. Thereafter, it has attracted considerable interest in the
literature [31, 68, 71, 77, 51, 50, 19, 34, 55, 42, 89, 86, 26], culminating in the breakthrough
result of Daskalakis et al. [24] highlighted earlier in Section 1.

Yet, despite the significant progress, little is known in terms of lower bounds, with
some notable exceptions. First, Syrgkanis et al. [77] showed that if one player follows MWU
and the other player is best responding in the context of a two-player zero-sum game, one
of the players must incur Ω(

√
T ) regret, no matter how the learning rate is set. With a

more elaborate argument, Chen and Peng [19] established the same lower bound when both
players follow MWU in a two-player game, again for any choice of learning rate. Both of
those results were constructed based on binary-action games, and as such, they did not
provide any meaningful lower bounds in terms of the dimensions of the game. Furthermore,
Hadiji et al. [45] recently investigated the first-order query complexity of computing ϵ-Nash
equilibria in m × m two-player zero-sum games (cf. [43, 37, 3, 36, 61]). They showed that
Ω(m) (first-order) queries are needed when ϵ = 0, and roughly Ω(log( 1

mϵ )) when ϵ = O( 1
m4 ),

thereby leaving a substantial gap with the upper bound of O( log m
ϵ ) attained via OMWU. The

lower bounds we establish in this paper are quite different, being of computational nature.
Indeed, we have already explained that in the more permissive (potentially centralized) model
that we study here, there are no obstacles in attaining zero regret in a single iteration of a
two-player zero-sum game.

Finally, one of our main results (Theorem 1.2) establishes a superpolynomial separation
between no-regret learning in extensive- and normal-form games. It is worth stressing thus
that learning in extensive-form games has been a particularly popular research topic in the
literature (e.g., [90, 33, 57, 38, 6, 5, 32, 62, 63, 31, 44, 48, 27, 80, 34, 30, 76, 87, 69, 39], and
the numerous references therein). This emphasis stems to a large extent from the fact that
the extensive-form representation is more suited to capture realistic settings that feature
sequential moves and imperfect information.

2 Preliminaries

In this section, we provide the necessary background on normal- and extensive-form games,
as well as the setting of online density estimation. Specifically, Section 2.1 formalizes the
refinement of CCE we focus on; Section 2.2 introduces the extensive-form representation;
and Section 2.3 describes Vovk’s aggregation algorithm [84] in the context of online density
estimation. For further background on learning in games, we refer to the excellent book of
Cesa-Bianchi and Lugosi [17].

Conventions

We let N = {1, 2, . . . , } be the set of natural numbers. We oftentimes use the O(·), Ω(·), Θ(·)
notation with a non-asymptotic semantic so as to suppress absolute constants. For a finite set
S, we let U(S) denote the uniform distribution over S. log(·) denotes the natural logarithmic
(with base e). We generally use subscripts to indicate the player and superscripts (with
parentheses) to specify the (discrete) time index.
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2.1 Sparse coarse correlated equilibria
As we explained earlier in our introduction, our main focus here is on the problem of
computing a refinement of the standard coarse correlated equilibrium (CCE) [64] satisfying
a certain sparsity constraint. To formally introduce that refinement, let us first introduce
the normal-form representation of finite games.

Normal-form games

Let G be a finite n-player game represented in normal form. The set of players will be
denoted by [[n]] ≜ {1, 2, . . . , n}, and will be indexed by variables i, i′ ∈ [[n]]. In the normal-form
representation, every player i ∈ [[n]] has a finite and nonempty set of available actions Ai.
For notational convenience, we will let m ≜ max1≤i≤n |Ai|. For every possible combination
of actions a ≜ (a1, . . . , an) ∈ ×n

i=1 Ai, there is a utility function ui : ×n

i=1 Ai → [−1, 1]
that specifies the utility (or reward) ui(a) of player i ∈ [[n]] under that joint action; the
range of the utilities here can be normalized to be in [−1, 1] without any loss of generality.
Each player i ∈ [[n]] is allowed to randomize by selecting a (mixed) strategy, a distribution
over the available actions: xi ∈ ∆(Ai) ≜ {xi ∈ RAi

≥0 :
∑

ai∈Ai
xi[ai] = 1}. For a joint

strategy (x1, . . . , xn) ∈×n

i=1 ∆(Ai), we will denote by
⊗n

i=1 xi the product distribution on
∆(×n

i=1 Ai) defined so that (
⊗n

i=1 xi)[(a1, . . . , an)] ≜
∏n

i=1 xi[ai].
We are now ready to recall the standard concept of an approximate coarse correlated

equilibrium (CCE) [64, 2]. Below, for a joint action a = (a1, . . . , an) ∈×n

i=1 Ai, we use the
usual shorthand notation a−i ≜ (a1, . . . , ai−1, ai+1, . . . , an) ∈×i′ ̸=i

Ai′ .

▶ Definition 2.1 (Coarse correlated equilibrium). Let G be an n-player game in normal form.
A distribution over joint action profiles µ ∈ ∆

(×n

i=1 Ai

)
is said to be an ϵ-coarse correlated

equilibrium (ϵ-CCE), with ϵ ∈ R, if for any player i ∈ [[n]] and any deviation a′
i ∈ Ai,2

E
a∼µ

[ui(a)] ≥ E
a∼µ

[ui(a′
i, a−i)] − ϵ. (1)

For convenience, we will sometimes use the shorthand notation ui(µ) ≜ Ea∼µ[ui(a)] and
ui(a′

i, µ−i) ≜ Ea∼µ[ui(a′
i, a−i)]. A CCE is typically modeled via a trusted third party – a

so-called mediator – who privately makes recommendations to each player; (1) guarantees
that no player can gain more than an additive factor of ϵ through a (unilateral) deviation,
before actually observing the mediator’s recommendation. A 0-CCE will simply be referred to
as a CCE. In this context, we will be concerned with a refinement of Definition 2.1 wherein
a certain sparsity constraint is imposed, in the following formal sense.

▶ Definition 2.2 (Sparse CCE). Let G be an n-player game in normal form. A distribution
over joint action profiles µ ∈ ∆

(×n

i=1 Ai

)
satisfying Definition 2.1 is said to be k-sparse

if it can be expressed as a uniform mixture of k product distributions; that is, there exist
(x(1)

1 , . . . , x
(1)
n ), . . . , (x(k)

1 , . . . , x
(k)
n ) ∈×n

i=1 ∆(Ai) such that µ = 1
k

∑k
κ=1

⊗n
i=1 x

(κ)
i .

From a computational standpoint, a poly(n, m)-sparse CCE can be identified in polynomial
time for any game of polynomial type – meaning that m is a polynomial with respect to the
underlying description – satisfying the polynomial expectation property [66, 53]; the latter
property postulates that for any product distribution x with a polynomial representation,

2 As is standard, we abuse notation by parsing ui(a′
i, a−i) as ui(a1, . . . , ai−1, a′

i, ai+1, . . . , an); the same
convention is adopted for the mixed extension of the utilities as well.

ITCS 2024



5:8 Lower Bounds for No-Regret Learning in Games

the expectation Ea∼x[ui(a)] can be computed in time poly(n, m), an assumption known
to be satisfied in most succinct games of interest [66]. On the other end of the spectrum,
a 1-sparse CCE is, by definition, a Nash equilibrium, thereby making the problem PPAD-
hard [25]. Furthermore, specific no-regret learning algorithms, such as multiplicative weights
update, yield an O( log m

ϵ2 )-sparse ϵ-CCE in time poly(n, m, 1/ϵ), again under the polynomial
expectation property. As a result, the key question that arises is to characterize the threshold
of computational tractability in terms of the sparsity parameter k.

Online learning in games

Before we proceed, we also point out the folklore connection between no-regret learning and
CCE. In the online learning framework with full feedback, every repetition t ∈ N finds a
player i ∈ [[n]] selecting an action x

(t)
i ∈ ∆(Ai), and subsequently observing as feedback from

the environment the utility function xi 7→ ⟨xi, u
(t)
i ⟩, where u

(t)
i ∈ [−1, 1]Ai . The regret of

player i under a time horizon T ∈ N is defined as

RegT
i ≜ max

x⋆
i

∈∆(Ai)

T∑
t=1

⟨x⋆
i − x

(t)
i , u

(t)
i ⟩.

Specifically, in the setting of learning in games, the utility u
(t)
i observed by player i ∈ [[n]]

is defined so that

u
(t)
i [ai] ≜ E

a−i∼x
(t)
−i

[ui(ai, a−i)], (2)

where x
(t)
−i is the joint strategy of the other players at time t. In this context, the connection

between CCE and no-regret learning is summarized in the following folklore fact [11, 17].

▶ Proposition 2.3. Consider an n-player game in normal form, and suppose that each player
i ∈ [[n]] produces the sequence of strategies (x(t)

i ) under the sequence of utilities given by (2).
If each player i incurs regret RegT

i after T ∈ N repetitions, then the correlated distribution
µ̄ ≜ 1

T

∑T
t=1

⊗n
i=1 x

(t)
i is a 1

T max1≤i≤n RegT
i -CCE.

2.2 Extensive-form games
While every finite game can be represented in normal form, such a representation can be
dramatically inefficient in more structured classes of games. Specifically, in scenarios involving
sequential moves and imperfect information, the canonical representation is the extensive
form [75]. In such games, a rooted and directed tree T is explicitly given as part of the
input. We let H = H(T ) denote the set of non-leaf nodes of T . Each node τ ∈ H that is not
a leaf of T is uniquely associated with a player i ∈ [[n]] who selects an action from a finite
and nonempty set of available actions Aτ ;3 the set of all nodes where player i acts will be
denoted by Hi. The leaves of the tree T , which are also referred to as terminal nodes, are
denoted by Z. When the game transitions to a terminal node in Z, utilities are assigned to
each player i, as specified by an arbitrary utility function ui : Z → [−1, 1].

3 In general, extensive-form games also feature chance moves (for example, the roll of a dice), which can
be modeled via an additional fictitious “player;” our lower bounds in the sequel do not have to involve
chance moves. Nevertheless, it is worth noting that the addition of chance moves is known to crucially
affect the computational complexity of certain problems [83].
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To model imperfect information, the set of nodes Hi belonging to player i is partitioned
into information sets Ji; each information set groups together nodes that player i cannot
distinguish based on the information structure of the game. As is standard, we also tacitly
assume throughout this paper that players have perfect recall, in that players never forget
acquired information; in the absence of perfect recall, many natural problems immediately
become NP-hard [56, 81, 88, 21]. In what follows, we will use T to represent the underlying
extensive-form game, with the understanding that T indeed encodes all the information
pertinent for its complete description.
▶ Remark 2.4 (Simultaneous moves). Although the aforedescribed standard formulation of
extensive-form games features solely sequential moves, in that each node is associated with a
single player, one can readily model simultaneous moves as well through the use of imperfect
information. We will use this standard fact in the sequel to also incorporate simultaneous
moves in order to simplify the exposition.

A strategy for a player i ∈ [[n]] is a mapping Ji ∋ j → ∆(Aj). It turns out that the set of
each player’s strategies can be represented compactly via a convex polytope [82, 73], namely
the sequence-form polytope Xi, so that the utility of each player can be expressed as a linear
function (assuming that the rest of the players are fixed). This has been a crucial observation
for designing efficient algorithms for a number of fundamental problems in extensive-form
games. With a slight abuse of notation, for a sequence-form strategy xi ∈ Xi we will write
xi,j to denote the probability distribution over ∆(Aj) induced by xi at information set
j ∈ Ji; if xi,j is not well-defined, in that xi assigns zero probability to the subtree of j, we
may take xi,j to be an arbitrary distribution. For a joint strategy (x1, . . . , xn) ∈×n

i=1 Xi,
we use again the notation

⊗n
i=1 xi the express the product distribution on the induced

normal-form game, which is always represented implicitly.
Extensive-form games are not of polynomial type in that a player’s number of pure

stratagies is typically exponential in the description of the game, rendering the induced
normal-form representation largely inefficient. Nevertheless, polynomial (in the size of the tree
T ) algorithms for computing (exact) CCE are known to exist. In particular, Huang and von
Stengel [52] have shown how to adapt the algorithm of Papadimitriou and Roughgarden [66]
for certain correlated equilibrium concepts in extensive-form games. (CCE per Definition 2.2
is typically referred to as normal-form CCE (NFCCE) to differentiate with other notions
of coarse correlation in extensive-form games [29].) We clarify that a CCE in extensive-
form games can be indeed defined via Definition 2.1 through the induced normal-form
representation. Our results here revolve around the complexity of the more refined concept
introduced in Definition 2.2.

2.3 Online density estimation
We finally conclude this section by recalling some basic results regarding online density
estimation, which will be useful in the sequel. Following Foster et al. [41], our proof will
make use of Vovk’s aggregating algorithm for online density estimation [84]. More precisely,
the setting here is as follows. There are two players, the nature and the learner. There is
also a set O called the outcome space, and a set C referred to as the context space; both can
be assumed to be finite for our applications. The interaction between the learner and the
nature proceeds for h = 1, 2, . . . , H as follows.

1. Nature first reveals a context ch ∈ C;
2. the learner then predicts a distribution q̂h ∈ ∆(O) over outcomes based on the observed

context ch; and
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5:10 Lower Bounds for No-Regret Learning in Games

3. Nature chooses an outcome oh ∈ O, and the learner incurs a logarithmic loss defined as
ℓh(q̂h) ≜ log

Ä
1

q̂h(oh)

ä
.

We measure the performance of the learner via the regret against a (finite) set of experts
E . In particular, every expert e ∈ E corresponds to a function p(e) : C → ∆(O), so that the
regret of an algorithm with respect to the expert class E is defined as

RegH
E ≜

H∑
h=1

ℓh(q̂h) − min
e∈E

{
H∑

h=1
ℓh

Ä
p(e)(ch)

ä}
.

It is important to note here that the algorithm of the learner has access to the expert
predictions {p(e)(ch)}e∈E . In this context, Vovk’s aggregating algorithm makes predictions
for h = 1, 2, . . . , H via

q̂h ≜ E
e∼q̃h

[p(e)(ch)], where q̃
(e)
h ≜

exp
Ä
−

∑h−1
υ=1 ℓυ(p(e)(cυ))

ä
∑

e′∈E exp
Ä
−

∑h−1
υ=1 ℓυ(p(e′)(cυ))

ä ∀e ∈ E . (3)

The convention above is that a summation with no terms is defined as 0, so that q̃1 is
the uniform distribution over E . We further take log( 1

0+ ) = +∞ and exp(−∞) = 0; under
realizability (see Proposition 2.5), the denominator in (3) can never be 0, so (3) is indeed
well-defined.

The main guarantee we will use for the aggregation algorithm (3) is summarized below.
We recall first that the total variation distance between two discrete distributions p, q ∈ ∆(O)
is defined as DTV(p, q) ≜ 1

2 ∥p − q∥1.

▶ Proposition 2.5 ([84]). Suppose that the distribution of outcomes is realizable under some
e⋆ ∈ E; that is, oh ∼ p(e⋆)(ch) | ch for each h ∈ [[H]]. Then, the predictions (q̂h)1≤h≤H

produced by the aggregation algorithm (3) satisfy

1
H

H∑
h=1

E
î
DTV(q̂h, p(e⋆)(ch))

ó
≤

 
log |E|

H
,

where the expectation above is with respect to the underlying random process whereby nature
selects the sequence of contexts (c1, . . . , cH) ∈ CH .

3 Lower Bounds for No-Regret Learning in Games

In this section, we present our main results regarding the problem of computing sparse CCE
in extensive-form games, as well as the implied lower bounds for no-regret learning in games.

To do so, we build on the reduction of Foster et al. [41] targeting Markov (aka. stochastic)
games. In particular, we assume that we are given as input a two-player general-sum game
G where each player has m ∈ N actions; that is, |A1| = |A2| = m ≥ 2. We may also posit
that every entry in the payoff matrices, say M1, M2 ∈ QA1×A2 , can be represented with a
number of bits polynomial in m. Further, we assume without any loss of generality that
|M1[a1, a2]|, |M2[a1, a2]| ≤ 1, for any combination of actions (a1, a2) ∈ A1 × A2. The key
idea of the reduction is to show that a sparse CCE in a suitably constructed extensive-form
game T = T (G) (described in Section 3.1) can be used to obtain a Nash equilibrium in
the original game G; in turn, the computational hardness of Nash equilibria in two-player
games [74] will preclude polynomial-time computation of sparse CCE under a certain sparsity
regime (Theorem 1.2).
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In what follows, Section 3.1 formally introduces the lifted extensive-form game T (G);
Section 3.2 describes the process whereby a sparse CCE in T yields a Nash equilibrium in
G (Algorithm 1); Section 3.3 establishes the correctness of Algorithm 1; and Section 3.4
provides the main implications for computing sparse CCE in extensive-form games, as well
as no-regret learning in normal- and extensive-form games.

3.1 The lifted extensive-form game
Foster et al. [41] introduce two separate reductions in order to prove hardness results
in Markov games, which differ depending on whether players’ policies are allowed to be
Markovian or not. In extensive-form games, strategies are of course not constrained to be
Markovian since they can depend arbitrarily on the information available to that player.
Accordingly, we will adapt the reduction of Foster et al. [41] that targets non-Markovian
policies, which in turn is based on the reduction of Borgs et al. [12], leading to the lifted
game described in this subsection.

As we explained in Remark 2.4, it will be convenient for our exposition to work with
extensive-form games that include simultaneous moves; again, this comes without any
essential loss since simultaneous moves can always be cast as sequential moves using imperfect
information, a transformation that does not qualitatively alters our results.

Now, let G be the original two-player game in normal form. The basic idea is to construct
an extensive-form game T = T (G) consisting of H repetitions of G, for a sufficiently large
parameter H ∈ N to be specified later (Theorem 3.5). Following the approach of Foster et
al. [41], a key ingredient is the addition of an auxiliary player, namely the Kibitzer, which
is in turn based on the hardness result of Borgs et al. [12] pertaining the computation of
Nash equilibria in repeated games. Specifically, Borgs et al. [12] reduced computing Nash
equilibria in two-player normal-form games to computing Nash equilibria in three-player
repeated games, thereby establishing that – the folk theorem notwithstanding – the latter
problem is hard. Interestingly, this is not the case for two-player repeated games where
polynomial-time algorithms do exist [60]; this suggests that proving hardness results for
two-player extensive-form games could require a very different approach. So, returning to our
reduction, T here is a three-player (extensive-form) game. By convention, player K ≜ 3 will
represent the Kibitzer; we often use the symbol K instead of the index i = 3 for convenience
in the presentation.

In each possible decision node (or simply state) s ∈ S of T each player simultaneously
selects an action.4 Specifically, each of the first two players select actions from A1 and A2,
respectively (where those action sets are as given in the original game G), while the action
set of the Kibitzer, AK, is defined as

AK ≜ {(i, ai) : i ∈ [2], ai ∈ Ai}.

As such, each state s ∈ S is in bijective correspondence with a sequence of joint actions;
it is critical in this construction that each player gets to observe the other players’ actions
from earlier rounds, for reasons that will become clear shortly. Further, the utilities of the
players are then defined as follows. For a repetition h ∈ [[H]] and a joint action profile
(a1,h, a2,h, aK,h) ∈ A1 × A2 × AK, with aK,h = (1, a′

1,h), we define

4 Here, we denote decision nodes with the symbol S instead of H as in Section 2.2 because T features
simultaneous moves as well. We clarify that S contains precisely the information sets of each player in
the sequential representation.

ITCS 2024



5:12 Lower Bounds for No-Regret Learning in Games

ui,h(a1,h, a2,h, aK,h) ≜


0 : i ̸= 1, K,
1
H

Ä
M1[a1,h, a2,h] − M1[a′

1,h, a2,h]
ä

: i = 1,
1
H

Ä
M1[a′

1,h, a2,h] − M1[a1,h, a2,h]
ä

: i = K;

the utility functions are defined symmetrically when aK,h = (2, a′
2,h). Specifically, we

assume here that those rewards are given to the corresponding node in the game tree;
while it is common – as we described earlier in Section 2.2 – to assign utilities only at
leaf nodes, it is clear that one can always push all the utilities in the corresponding leaf
nodes without altering the equilibria of the game. Indeed, for a sequence of joint actions
(a1, . . . , aH), which uniquely specifies a leaf node z ∈ Z, the cumulative utility can be defined
as ui : Z ∋ z 7→

∑H
h=1 ui,h(a1,h, a2,h, aK,h). We note that normalizing by the factor H in

ui,h(·) above ensures that the cumulative payoffs in T are indeed in [−1, 1]. We further
remark that T is a zero-sum game since

∑3
i=1 ui(z) = 0, for any z ∈ Z. Finally, it is evident

that T is indeed a perfect-recall game.
We next state a straightforward fact, which follows directly from the definition of each

utility function ui,h(·).

▶ Lemma 3.1. For any repetition h ∈ [[H]], player i ∈ [[3]], and strategies x−i,h ∈
×i′ ̸=i

∆(Ai′), it holds that maxai,h∈Ai
Ea−i,h∼x−i,h

[ui,h(ai,h, a−i,h)] ≥ 0.

Another simple but important observation regarding the representation of T is the
following bound on the number of nodes of T , which will be represented as |T |.

▷ Claim 3.2. Let G be a two-player m-action game. For the induced extensive-form game
T = T (G) it holds that |T | ≤ 2H+1m3H+3.

Proof. It is clear from our construction of the extensive-form game T that |T | can be
expressed as 1 + 2m3 + · · · + (2m3)H ≤ 2H+1m3H+3. ◁

In particular, the description of the extensive-form game T is polynomial in the description
of G when H is an absolute constant. In stark contrast, it is important to point out that
the normal-form representation of T is exponential even if H = 2. Indeed, each player
would have to specify an action in each of 1 + 2m3 decision nodes, which leads to at least
mm3 combinations in the normal-form representation for each player; this is why proving
non-trivial hardness results for normal-form games appears to require a different approach.
We also remark that the bound mΘ(H) of Claim 3.2 clearly holds after we convert T into a
sequential-move game, which suffices for our proof to carry over without simultaneous moves.

3.2 The algorithm
Based on the extensive-form game T described in Section 3.1, our main reduction is sum-
marized in Algorithm 1. Before we proceed, let us make some clarifications. First, the
function StateToSeq(·) in Line 7 takes as input a state sh ∈ Sh corresponding to the
hth repetition, and returns the unique sequence of joint actions (a1, . . . , ah−1) that leads
to that state; if h = 1, we can assume that it returns the empty sequence. Further, the
function PrevStates(·) in Line 8 takes again as input a state sh ∈ Sh and returns the
unique sequence of preceding states (s1, . . . , sh−1) ∈ S1 × · · · × Sh−1; if h = 1, this function
is again assumed to return the empty sequence. With those semantics in mind, we point
out that the condition in Line 10 is activated if and only if there exists t ∈ [[T ]] such that
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x
(t)
i,sυ

[ai,υ] > 0, for all υ = 1, 2, . . . h − 1; in the contrary case, the corresponding part of the
tree is reached with probability 0 under the random process of interest (as defined in the
proof of Theorem 3.5 below), in which case we may set q̃i,sh

to an arbitrary distribution over
[[T ]] (e.g., the uniform as in Line 13).

Algorithm 1 Reduction for Theorem 3.5.

1 Input: Two-player m-action game G in normal form; accuracy ϵ > 0; sparsity T ∈ N
2 Output: A (9ϵ)-Nash equilibrium of G
3 Construct the three-player extensive-form game T (G) with H ≥ log T

ϵ2 (Section 3.1)
4 Compute a T -sparse ϵ-CCE 1

T

∑T
t=1

⊗3
i=1 x

(t)
i (Definition 2.2) in T

5 for h ∈ [[H]] do
6 for sh ∈ Sh do
7 (a1, . . . , ah−1) ≜ StateToSeq(sh)
8 (s1, . . . , sh−1) ≜ PrevStates(sh)
9 for i ∈ [[2]] do

10 if
∑T

t=1 exp
Å

−
∑h−1

υ=1 log
Å

1
x

(t)
i,sυ

[ai,υ]

ãã
> 0 then

11 Let

q̃
(t)
i,sh

≜
exp
Å

−
∑h−1

υ=1 log
Å

1
x

(t)
i,sυ

[ai,υ]

ãã
∑T

t′=1 exp
Å

−
∑h−1

υ=1 log
Å

1
x

(t′)
i,sυ

[ai,υ]

ãã ∀t ∈ [[T ]]

12 else
13 q̃i,sh

≜ U([[T ]])

14 q̂i,sh
≜ Et∼q̃i,sh

[x(t)
i,sh

] ∈ ∆(Ai)

15 if (q̂1,sh
, q̂2,sh

) ∈ ∆(A1) × ∆(A2) is a (9ϵ)-Nash equilibrium of G then
16 return (q̂1,sh

, q̂2,sh
) ∈ ∆(A1) × ∆(A2)

17 return FAIL

It is evident that as long as T = poly(|T |), all steps in Algorithm 1 can be implemented
in time polynomial in the description of T , with the exception of Line 4, which of course
depends on the underlying algorithm used to compute a sparse CCE. Along with Claim 3.2,
we arrive at the following conclusion.

▶ Proposition 3.3. Let A be an algorithm that takes as input an extensive-form game T
and computes a T -sparse ϵ-CCE of T in time at most Q(|T |, T, 1/ϵ). Then, Algorithm 1
instantiated with A in Line 4 runs in time at most Q(|T |, T, 1/ϵ) + TmΘ(H).

▶ Remark 3.4 (Bit complexity of exponential weights). Line 11 of Algorithm 1 updates q̃
(t)
i,sh

using exponential weights (in accordance with the aggregation algorithm (3)), which could
result in q̃

(t)
i,sh

taking irrational values. This can be addressed by simply truncating those
values to a sufficiently large polynomial number of bits, in which case the proof of Theorem 3.5
readily carries over. For simplicity, we assume in our analysis that q̃

(t)
i,sh

is updated per
Line 11, without taking into account the numerical imprecision.
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5:14 Lower Bounds for No-Regret Learning in Games

It is worth commenting here on a couple of differences with [41, Algorithm 2]. First,
Foster et al. [41] had to encode the joint action profile through the reward, so as to ensure
that each player has observed the prior sequence of joint actions. This is not necessary
in our setting since, by construction, the states of the extensive-form game T encode that
information. Further, their algorithm is randomized since – among other steps – they sample
a randomized trajectory under a certain random process. To obtain a deterministic algorithm,
we instead essentially search over all possible trajectories – all states of the extensive-form
game T – for a Nash equilibrium, which we can afford in our setting.

3.3 From sparse CCEin T to Nash equilibria in G
We are now ready to proceed with the key proof of this section, which establishes the
correctness of Algorithm 1.

▶ Theorem 3.5. When H ≥ log T
ϵ2 , Algorithm 1 returns a (9ϵ)-Nash equilibrium in the

two-player m-action game G.

Proof. We consider a sequence of joint strategies (x(1)
1 , x

(1)
2 , x

(1)
3 ), . . . , (x(T )

1 , x
(T )
2 , x

(T )
3 ) ∈

×3
i=1 Xi in the extensive-form game T with the property that µ̄ ≜ 1

T

∑T
t=1

⊗3
i=1 x

(t)
i is an

ϵ-CCE, and by construction T -sparse per Definition 2.2.
Let us fix a player i ∈ [[3]]. For each state s ∈ S, we define q̃i,s ∈ ∆([[T ]]) per Line 11;

q̂i,s ∈ ∆(Ai) per Line 14; and the deviation strategy x†
i ∈ Xi so that for each state s ∈ S

it holds that x†
i,s ≜ argmaxai,s∈Ai

Ea−i,s∼q̂−i,s
[ui,h(ai,s, a−i,s)]. We will now make use of

Proposition 2.5 regarding the aggregation algorithm (3) under a certain random process to be
described shortly. In particular, under a different player i′ ̸= i, to relate our problem with the
setup of online density estimation introduced earlier, we make the following correspondence:

the context space O corresponds to the set of all possible states or decision nodes S of
the extensive-form game T ;
the set of experts E coincides with the set {x

(1)
i′,s, . . . , x

(T )
i′,s}, with outcome space Ai′ ; and

the time index h ∈ [[H]] in the context of online density estimation will now (fittingly)
correspond to the repetition h ∈ [[H]].

We note that, by construction of the extensive-form game T , player i observes the underlying
state sh at each repetition h ∈ [[H]], which fully specifies the sequence of joint actions leading
up to that state. As a result, under a given random sequence of states (s1, . . . , sH) ∈ SH , we
can apply the aggregation algorithm (3) with the aforementioned parameterization to obtain
an estimate q̂i′,sh

∈ ∆(Ai′) for all repetitions h ∈ [[H]] and i′ ̸= i. Below, we overload the
notation by letting q̂i′,h ≜ q̂i′,sh

and q̃i′,h ≜ q̃i′,sh
so as to be consistent with the notation of

Section 2.3. Namely, we have that

q̂i′,h ≜ E
t∼q̃i′,h

[x(t)
i′,sh

], where q̃
(t)
i′,h ≜

exp
Ä
−

∑h−1
υ=1 ℓυ(x(t)

i′,sυ
)
ä

∑T
t′=1 exp

Ä
−

∑h−1
υ=1 ℓυ(x(t′)

i′,sυ
)
ä ∀t ∈ [[T ]].

Given that the sequence of states (s1, . . . , sH) is produced by a certain random process
(described next), q̂i′,h and q̃i′,h are random variables. We also recall that ℓυ(x(t)

i′,sυ
) =

log 1
x

(t)
i′,sυ

[ai′,υ ]
. Accordingly, the deviation x†

i,h ∈ ∆(Ai) for player i ∈ [[3]] is defined as

follows:

x†
i,h ≜ argmax

ai,h∈Ai

E
a−i,h∼q̂−i,h

[ui,h(ai,h, a−i,h)]. (4)
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We next argue about the deviation benefit of player i under the deviation strategy described
above. In particular, we are interested in the payoff player i obtains under the random
process wherein we first draw an index t⋆ uniformly at random from the set [[T ]], player i

plays according to the deviation strategy x†
i , while the rest of the players play according to

x
(t⋆)
−i . By definition of this random process, realizability is satisfied: the observed distribution

of outcomes obeys the law induced by x
(t⋆)
i′ : S → ∆(Ai′), conditioned on the time index t⋆.

As a result, Proposition 2.5 implies that for each player i ∈ [[3]] and i′ ̸= i it holds that

E
x†

i
×x

(t⋆)
−i

[
H∑

h=1
DTV

Ä
q̂i′,h, x

(t⋆)
i′,sh

ä]
≤

√
H log T , (5)

where the expectation and the sequence of states (s1, . . . , sH) ∈ SH is taken with respect to
the random process described above. As a result, we have that

ui(x†
i , µ̄−i) = E

t⋆∼U([[T ]])
[ui(x†

i , x
(t⋆)
−i )] = E

t⋆∼U([[T ]])
E

x†
i
,x

(t⋆)
−i

H∑
h=1

E
a−i,h∼x

(t⋆)
−i,sh

[ui,h(x†
i,h, a−i,h)]

≥ −2
…

log T

H
+ E

t⋆∼U([[T ]])
E

x†
i
,x

(t⋆)
−i

H∑
h=1

E
a−i,h∼q̂−i,h

[ui,h(x†
i,h, a−i,h)] (6)

≥ −2
…

log T

H
+ E

t⋆∼U([[T ]])
E

x†
i
,x

(t⋆)
−i

H∑
h=1

max
ai,h∈Ai

E
a−i,h∼q̂−i,h

[ui,h(ai,h, a−i,h)] (7)

≥ −2
…

log T

H
, (8)

where (6) uses (5) along with the fact that

E
a−i,h∼x

(t⋆)
−i,sh

[ui,h(x†
i,h, a−i,h)] ≥ E

a−i,h∼q̂−i,h

[ui,h(x†
i,h, a−i,h)] − 1

H
DTV

Ñ
x

(t⋆)
−i,sh

,×
i′ ̸=i

q̂i′,h

é
≥ E

a−i,h∼q̂−i,h

[ui,h(x†
i,h, a−i,h)] − 1

H

∑
i′ ̸=i

DTV
Ä
x

(t⋆)
i′,sh

, q̂i′,h

ä
,

since |ui,h(·, ·)| ≤ 1
H (by construction) and the total variation distance between two product

distributions is bounded by the sum of the total variation of the individual components [49];
(7) follows from the definition of x†

i,h in (4), which in particular implies that

E
a−i,h∼q̂−i,h

[ui,h(x†
i,h, a−i,h)] = max

ai,h∈Ai

E
a−i,h∼q̂−i,h

[ui,h(ai,h, a−i,h)];

and (8) follows from the fact that maxai,h∈Ai Ea−i,h∼q̂−i,h
[ui,h(ai,h, a−i,h)] ≥ 0 (Lemma 3.1).

Further, since µ̄ is assumed to be an ϵ-CCE, (8) implies that for each player i ∈ [[3]],

ui(µ̄) ≥ −2
…

log T

H
− ϵ. (9)

Given that T is zero-sum, we also have that
∑3

i=1 ui(µ̄) = 0; by (9), this in turn implies
that uK(µ̄) = −u1(µ̄) − u2(µ̄) ≤ 4

»
log T

H + 2ϵ. We next focus on analyzing the deviation
benefit of the Kibitzer. We define δ(q̂1,h, q̂2,h) as

max
®

max
a′

1,h
∈A1

{
M1[a′

1,h, q̂2,h] − M1[q̂−K,h]
}

, max
a′

2,h
∈A2

{
M2[q̂1,h, a′

2,h] − M2[q̂−K,h]
}´

.

ITCS 2024



5:16 Lower Bounds for No-Regret Learning in Games

By (7), we have that

uK(x†
K, µ̄−K) ≥ 1

H
E

t⋆∼U([[T ]])
E

x†
K,x

(t⋆)
−K

H∑
h=1

δ(q̂1,h, q̂2,h) − 2
…

log T

H
.

Since µ̄ is an ϵ-CCE, we also know that uK(x†
K, µ̄−K) ≤ uK(µ̄) + ϵ ≤ 3ϵ + 4

»
log T

H , which in
turn implies that

E
t⋆∼U([[T ]])

E
x†

K,x
(t⋆)
−K

1
H

H∑
h=1

δ(q̂1,h, q̂2,h) ≤ 9ϵ,

where we used that H ≥ log T
ϵ2 . Finally, given that δ(q̂1,h, q̂2,h) ≥ 0 (Lemma 3.1), we conclude

that there exists some repetition h ∈ [[H]] and a state s ∈ Sh such that δ(q̂1,sh
, q̂2,sh

) ≤ 9ϵ.
That is, (q̂1,sh

, q̂2,sh
) is a (9ϵ)-Nash equilibrium, concluding the proof. ◀

▶ Remark 3.6. It is direct to see that the proof of Theorem 3.5 can be extended under a more
general notion of sparse CCE, wherein µ̄ is not necessarily a uniform mixture of product
distributions; this notion of CCE is naturally associated with a weighted generalization of
regret. This observation is important since in practice taking a non-uniform average can lead
to significant gains in performance [15].

3.4 Implications
Having established Theorem 3.5, we are now ready to prove that computing approximate
CCE in a certain regime of sparsity is hard, at least under some well-established complexity
assumptions. In particular, we will leverage the hardness result of Rubinstein [74] (The-
orem 3.8), which rests on the so-called exponential-time hypothesis (ETH) for PPAD [4]. That
hypothesis pertains the complexity of solving EndOfALine, the prototypical PPAD-complete
problem [65].

▶ Conjecture 3.7 ([4]). Solving EndOfALine on m-bit circuits with Õ(m) gates requires
time 2Ω̃(m).

Assuming that this conjecture holds, Rubinstein [74] proved that the quasipolynomial
algorithm of Lipton et al. [58] is essentially optimal.

▶ Theorem 3.8 ([74]). Assuming Conjecture 3.7, there is an absolute constant ϵ0 > 0 such
that finding an ϵ0-Nash equilibrium in two-player m-action games requires time mlog1−o(1)

2 m.

We now use Theorem 3.5 to prove the following hardness result. Below, we recall that we
use the notation |T | to represent the number of nodes in the extensive-form game T .

▶ Theorem 1.2. There is no algorithm that runs in time polynomial in the description of an
extensive-form game T and can compute a 2log1/2−o(1)

2 |T |-sparse ϵ-CCE, even for an absolute
constant ϵ > 0, unless ETH for PPAD (Conjecture 3.7) is false.

Proof. Suppose that algorithm A implementing Line 4 of Algorithm 1 runs in time polynomial
in the description of T and computes a T -sparse (ϵ0/9)-CCE of T , where T = 2logγ

2 |T | and
γ < 1

2 . Then, by Proposition 3.3, Algorithm 1 runs in time mΘ(H). As a result, it follows
from Theorems 3.5 and 3.8 that for H ≥ 81 log T

ϵ2
0

, it must hold that mΘ(H) ≥ mlog1−o(1)
2 m.

Further, Claim 3.2 implies that T = 2logγ
2 |T | ≤ 24Hγ logγ

2 m. As a result, for a sufficiently large
H = O(log

γ
1−γ

2 m) it follows that H ≥ 81 log T
ϵ2

0
, which in turn implies that H = Ω(log1−o(1)

2 m).
As a result, we conclude that γ ≥ 1

2 − o(1), leading to the desired conclusion. ◀
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A number of remarks regarding Theorem 1.2 are in order. First, Theorem 1.2 estab-
lishes a stark separation between extensive- and normal-form games. Indeed, as we have
seen, in normal-form games there are polynomial-time algorithms, such as multiplicative
weights update, that can compute an O(log m)-sparse O(1)-CCE in polynomial time. In
contrast, Theorem 1.2 precludes even computing a polylog|T |-sparse O(1)-CCE, unless the
quasipolynomial-time algorithm of Lipton et al. [58] can be improved. It is also worth pointing
out here that it is natural to expect that analogous lower bounds to Theorem 1.2 could be
established under the more plausible conjecture P ̸= PPAD (instead of Conjecture 3.7). Yet,
that seems to require a very different approach. Indeed, for the PPAD-hardness of ϵ-Nash
equilibria in two-player games to kick in, one must take ϵ to be inversely polynomial to
m [18]. In that case, the description of T becomes immediately mΩ(poly(m)), which renders
reductions analogous to Theorem 3.5 of little use. It is thus crucial for our approach to take
ϵ > 0 to be an (absolute) constant. Finally, we point out that Theorem 1.2 still applies by
taking T = 2C log1/2−o(1)

2 |T |, for any absolute constant C > 0.
To better contextualize Theorem 1.2, we remark that there are algorithms running in time

polynomial in T that can compute an O(k)-sparse O(1)-CCE in every extensive-form game
T with k ≤ max1≤i≤n log

Ä∏
j∈Ji

|Aj |
ä

= max1≤i≤n

∑
j∈Ji

log |Aj |; that is, k is at most
nearly-linear in |T |, and it can be much smaller depending on the information structure of T .
This is a direct consequence of the fact that algorithms such as multiplicative weights update
can be implemented in polynomial time in extensive-form games [35], thereby implying that
the regret of each player i will be bounded as O(

√
T log mi), where mi represents the number

of actions in the induced normal-form game: mi ≜
∏

j∈Ji
|Aj |. As a result, we see that there

is a gap between our lower bound (Theorem 1.2) and the aforementioned best-known upper
bound, which essentially amounts to improving the exponent 1

2 in the term 2log1/2−o(1)
2 |T | all

the way up to 1.

Lower bounds for no-regret learning in extensive-form games

Relatedly, we next proceed by pointing out some important implications of Theorem 1.2
for bounding the regret incurred by no-regret learning algorithms in extensive-form games.
In particular, a number of no-regret learning algorithms have been designed with iteration
complexity polynomial in the description of the extensive-form game (Section 1.2). For
example, one such broad class derives from the paradigm of follow the perturbed leader
(FTPL) [1, 54, 47]; indeed, FTPL can be implemented efficiently under a linear optimization
oracle, which can be in turn implemented in polynomial time in extensive-form games.
Theorem 1.2 circumscribes the performance of any of those algorithms – and combinations
thereof – when employed simultaneously by all players.

▶ Corollary 1.3. Suppose that each player follows an algorithm with polynomial iteration
complexity in the description of an extensive-form game T . If RegT

i is the regret incurred by
player i ∈ [[n]], there is an extensive-form game T and an absolute constant ϵ > 0 such that
at least T ≥ 2log1/2−o(1)

2 |T | repetitions are needed so that 1
T max1≤i≤n RegT

i ≤ ϵ, unless ETH
for PPAD (Conjecture 3.7) is false.

In words, obtaining an average regret below an absolute constant requires at least
2log1/2−o(1)

2 |T | repetitions, which again stands in stark contrast to the performance of learning
algorithms in normal-form games. Corollary 1.3 is an immediate consequence of Theorem 1.2,
along with the folklore fact that the average product distribution after T repetitions – by
definition T -sparse – constitutes a 1

T max1≤i≤n RegT
i -CCE (Proposition 2.3). We clarify that
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each regret RegT
i can be indeed computed in time poly(|T |, T ) since it amounts to computing

a best response, in turn implying that one can efficiently determine for each repetition
whether 1

t max1≤i≤n Regt
i ≤ ϵ.

A noteworthy feature of Corollary 1.3 is that it applies even if players are following
different no-regret algorithms, and the updates are not simultaneous. It is especially worth
stressing that last point. One popular way of improving the performance of no-regret
algorithms in games consists of alternation [79, 85], whereby players are updating their
strategies in an alternating fashion. Alternation is, of course, not a legitimate choice within
the framework of online learning as it trivializes the problem for the player who gets to play
last; for example, that player could always just best respond, which would accumulate at
most 0 regret for that player. Nevertheless, Corollary 1.3 still holds even under learning
dynamics that are beyond the framework of online learning. Furthermore, unlike the paper
of Daskalakis et al. [23], Corollary 1.3 does not limit the amount of memory players use, as
long as the running time stays polynomial.

Lower bounds for (optimistic) MWU

Beyond extensive-form games, our results also turn out to have implications for the per-
formance of certain no-regret learning algorithms in normal-form games. In particular, one
can always cast an extensive-form game in normal form, and then use a no-regret learning
algorithm on the induced normal-form game. In general, such an approach is not interest-
ing algorithmically since the iteration complexity would be exponential, thereby rendering
computational lower bounds of little use. However, it turns out there are certain algorithms
for which each iteration can be indeed implemented in polynomial time, even though they
operate over the – typically exponentially large – normal-form representation. This can be
accomplished by leveraging the underlying structure of the extensive-form representation, and
it is akin to the kernel trick [78, 8]. Perhaps most notably, such is the case for the celebrated
multiplicative weights updates (MWU), as well as its optimistic counterpart (OMWU) [35] (see
also [5, 20, 67]).

In particular, let us recall (O)MWU in the context of learning in games. In the vanilla MWU
algorithm each player i ∈ [[n]] updates its strategy for t = 1, 2, . . . as follows.

x
(t+1)
i [ai] =

x
(t)
i [ai] exp

Ä
ηiu

(t)
i [ai]

ä
∑

a′
i
∈Ai

x
(t)
i [a′

i] exp
Ä
ηiu

(t)
i [a′

i]
ä , ∀ai ∈ Ai. (MWU)

Here, u
(t)
i [ai] ≜ E

a−i∼x
(t)
−i

[ui(ai, a−i)]; x
(1)
i ≜ (1/|Ai|, . . . , 1/|Ai|); and ηi > 0 is the learning

rate. Beyond the uniform distribution, one can also initialize MWU to any point in the (relative)
interior of the simplex.5 Similarly, OMWU [70] is defined via the following update rule.

x
(t+1)
i [ai] =

x
(t)
i [ai] exp

Ä
ηi(2u

(t)
i [ai] − u

(t−1)
i [ai])

ä
∑

a′
i
∈Ai

x
(t)
i [a′

i] exp
Ä
ηi(2u

(t)
i [a′

i] − u
(t−1)
i [a′

i])
ä , ∀ai ∈ Ai. (OMWU)

OMWU can be seen as an variant of MWU in which a prediction term is incorporated into the
update rule. In the definitions above, the player’s strategies could take irrational values due
to the exponential function, but this can be readily addressed by truncating to a sufficiently
large number of bits, an operation that does not essentially alter any of the results.

5 We should note that the analysis of Farina et al. [35] pertaining the iteration complexity of MWU in
extensive-form games considers the uniform initialization, but can be directly generalized.
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In general, it is evident that (O)MWU requires time Ω(|Ai|) in each iteration, which is
typically exponential in the context of extensive-form games. However, it turns out that each
iteration of (O)MWU can be implicitly performed in time poly(|T |) [35]; the analysis of Farina et
al. [35] does not account for the numerical imprecision resulting from the exponential function,
but their argument readily carries over by truncating to a sufficiently large number of bits.
This leads to the following lower bound for the regret accumulated by such algorithms. Below,
we tacitly assume that each learning rate is given by an efficiently computable function.

▶ Corollary 3.9. Consider the class of n-player normal-form games where each player has m′

actions. If each player i ∈ [[n]] follows MWU or OMWU with any learning rate ηi = ηi(n, log m′, T )
and incurs regret RegT

i after T repetitions, there is a game G and an absolute constant
ϵ > 0 such that at least T ≥ 2(log2 log2 m′)1/2−o(1) repetitions of the game are needed so that
1
T max1≤i≤n RegT

i ≤ ϵ, unless ETH for PPAD (Conjecture 3.7) fails.

In proof, the extensive-form game T (G) described in Section 3.1 can be cast as a 3-player
m′-action normal-form game G′, where m′ = (2m)mΘ(H) . In this normal-form game G′, each
player can implement MWU or OMWU with per-iteration complexity polynomial in |T | [35], along
with a representation of the iterates in poly(|T |, T ) space. As a result, Corollary 1.3 implies
that, for any constant C > 0, at least T ≥ 2C log1/2−o(1)

2 |T | repetitions are needed so that
1
T max1≤i≤n RegT

i ≤ ϵ for each game T . The statement of Corollary 3.9 thus follows from
the fact that log2 |T | ≥ Ω(log2 log2 m′).

Let us point out another way to express the conclusion of Corollary 3.9. Suppose that the
regret of each player, who has m′ available actions, can be bounded as RegT

i ≤ R(m′)T 1−γ ,
for some constant γ ∈ (0, 1]; this is the canonical form regret bounds assume. Corollary 3.9
then implies that R(m′) ≥ 2γ(log2 log2 m′)1/2−o(1) .

We suspect that, at least under a specific parameterization, there should be a more
elementary way of proving unconditional dimension-dependent lower bounds when multiple
players follow algorithms such as MWU. The main advantage of our approach is that it applies
to any parameterization (potentially game-specific) and a broad class of algorithms; as
concrete examples, our approach is robust to considering alternating instead of simultaneous
dynamics, different players following different variants of MWU, as well as using more general
prediction mechanisms within the paradigm of optimistic MWU [77]. Beyond MWU-type update
rules, we suspect that Corollary 3.9 applies more broadly to any member of follow the
perturbed leader (FTPL).

4 Conclusions and Open Problems

In conclusion, we established the first dimension-dependent computational lower bounds
for no-regret learning in extensive- and normal-form games, beyond the well-understood
adversarial regime in online learning. A number of important questions remain open. Besides
the obvious avenue of bridging the gaps between the current upper and lower bounds in
extensive-form games, a fundamental question is to understand the complexity of computing
sparse CCE (Definition 2.2) in normal-form games. Indeed, even the complexity status
of that problem under a mixture of two product distributions is open, although the fact
that algorithms such as MWU and OMWU require a superconstant number of iterations under
any parameterization (Corollary 3.9) suggests that the problem is hard. Furthermore,
our lower bounds apply to coarse correlated equilibria; while those naturally translate to
stronger equilibrium concepts as well, such as correlated equilibria, it would be interesting
to understand whether stronger hardness results can be obtained for such refinements. In
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particular, in a surprising turn of events, it was recently shown that logarithmic sparsity is
possible even for approximate correlated equilibria [22, 67]; are those guarantees for swap
regret tight when learning in games? Interestingly, in a correlated equilibrium players observe
additional information, which could potentially speed up the online density estimation
procedure.
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