
New Lower Bounds in Merlin-Arthur
Communication and Graph Streaming Verification
Prantar Ghosh #

Department of Computer Science, Georgetown Univeristy, Washington, D.C., USA

Vihan Shah #

Department of Computer Science, University of Waterloo, Canada

Abstract
We present novel lower bounds in the Merlin-Arthur (MA) communication model and the related
annotated streaming or stream verification model. The MA communication model extends the
classical communication model by introducing an all-powerful but untrusted player, Merlin, who
knows the inputs of the usual players, Alice and Bob, and attempts to convince them about the
output. We focus on the online MA (OMA) model where Alice and Merlin each send a single message
to Bob, who needs to catch Merlin if he is dishonest and announce the correct output otherwise.
Most known functions have OMA protocols with total communication significantly smaller than
what would be needed without Merlin. In this work, we introduce the notion of non-trivial-OMA
complexity of a function. This is the minimum total communication required when we restrict
ourselves to only non-trivial protocols where Alice sends Bob fewer bits than what she would have
sent without Merlin. We exhibit the first explicit functions that have this complexity superlinear
– even exponential – in their classical one-way complexity: this means the trivial protocol, where
Merlin communicates nothing and Alice and Bob compute the function on their own, is exponentially
better than any non-trivial protocol in terms of total communication. These OMA lower bounds
also translate to the annotated streaming model, the MA analogue of single-pass data streaming.
We show large separations between the classical streaming complexity and the non-trivial annotated
streaming complexity (for the analogous notion in this setting) of fundamental problems such as
counting distinct items, as well as of graph problems such as connectivity and k-connectivity in a
certain edge update model called the support graph turnstile model that we introduce here.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Streaming models

Keywords and phrases Graph Algorithms, Streaming, Communication Complexity, Stream Verifica-
tion, Merlin-Arthur Communication, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.53

Related Version Full Version: https://arxiv.org/abs/2401.06378

Funding Prantar Ghosh: Supported in part by NSF under award 1918989. Part of this work was
done while the author was at DIMACS, Rutgers University, supported in part by a grant (820931)
to DIMACS from the Simons Foundation.
Vihan Shah: Part of this work was done while the author was at Rutgers University and was
supported in part by an NSF CAREER Grant CCF-2047061.

Acknowledgements We are extremely grateful to Sepehr Assadi for many helpful conversations
regarding the project. Prantar Ghosh would also like to thank Amit Chakrabarti and Justin Thaler
for insightful discussions. Finally, we thank the anonymous reviewers of ITCS 2024 for their many
detailed comments and suggestions that helped with improving the presentation of the paper.

© Prantar Ghosh and Vihan Shah;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 53; pp. 53:1–53:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prantar.ghosh@gmail.com
https://orcid.org/0009-0006-9172-6553
mailto:vihan.shah@uwaterloo.ca
https://orcid.org/0009-0004-3024-9226
https://doi.org/10.4230/LIPIcs.ITCS.2024.53
https://arxiv.org/abs/2401.06378
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 New Lower Bounds in Merlin-Arthur Communication

1 Introduction

In the classical two-player communication model, the players Alice and Bob each receive
an input unknown to the other player and exchange as few bits as possible to compute a
function of the inputs. In their seminal paper on communication complexity classes, Babai,
Frankl, and Simon [6] defined the Merlin-Arthur (MA) communication model, where there
is also a “super-player” Merlin, who knows the inputs of both Alice and Bob (collectively
“Arthur”) and hence, also knows the output. However, Merlin is not trusted, and so he
provides Arthur a “proof” that should be thought of as a help message. After receiving this
message, Alice and Bob communicate between themselves to verify its correctness. It turns
out that for most well-studied functions, the total communication needed between the players
can be significantly reduced with the help of Merlin. This holds even in the most restrictive
version of the MA model, where both Merlin and Alice send just a single message to Bob,
from which he must verify the solution. This is known as the online Merlin-Arthur (OMA)
model. We focus on this setting and prove new lower bounds that also extend to a related
stream-verification model called annotated streaming [8, 9]. We discuss the motivation and
context of our results below.

1.1 Motivation and Context
Online Merlin-Arthur communication. The OMA complexity of a function is defined as
the total communication between the players, i.e., the sum of the lengths of Merlin’s and
Alice’s messages, in the optimal protocol that minimizes this sum. In a protocol, we denote
Merlin’s message length by hcost (shorthand for help cost) and Alice’s message length by
vcost (shorthand for verification cost), while the sum of their message lengths is termed tcost
(short for total cost). Thus, the OMA complexity of a function is the minimum tcost over
all possible OMA protocols computing the function. Naturally, a function with high OMA
complexity, possibly close to the input size N , is deemed “hard” in the OMA model. Over
the years, researchers have wondered what problems are hard in this model [6, 1, 9, 17].
Surprisingly, Aaronson and Wigderson [1] showed that even the “hardest” functions in
classical communication complexity, namely the disjointness and inner product functions,
have OMA complexity only O(

√
N log N). Although the same authors showed (via a simple

counting argument) the existence of functions with OMA complexity Ω(N), exhibiting an
explicit function even with OMA complexity ω(

√
N) remains a longstanding open problem.

Another notion of “hard functions” in this setting might be ones that need large hcost in
order to reduce the vcost from what Alice would have already needed to send without Merlin
(i.e., in the classical one-way communication model). This implies high OMA complexity of
these functions relative to their classical one-way complexity (which might be much smaller
than the input size, rendering them not hard in the earlier sense). Again, disjointness
or inner product are not hard in this sense either: Aaronson and Wigderson’s protocol
shows that for these problems, hcost and vcost can be smoothly traded off while keeping the
product Θ̃(N). This means even a proof of size slightly larger than log N suffices to reduce
Alice’s message size to o(N), whereas she would need to communicate Ω(N) in the classical
setting. Further, prior work has shown that for many other hard functions in classical
communication complexity, we can achieve the tradeoff hcost · vcost = O(N) [9, 7, 12], ruling
them out from being hard in the OMA model. Interestingly, there is a complementary
general lower bound that says that an OMA protocol solving any function f must have
hcost · vcost = Ω(R→(f)) [6], where R→(f) is the one-way communication complexity of f .

P. Ghosh and V. Shah 53:3

Observe that this lower bound implies that the OMA complexity MA→(f) of the function f

must be at least Ω(
√

R→(f)). Stronger lower bounds are hardly known, with a couple of
exceptions.1

Prior work has shown stronger lower bounds for the sparse version of the fundamental
index problem [7], and testing connectivity and bipartiteness of the XOR of two graphs [29].
All these functions have OMA complexity linear (or nearly linear) in their classical one-way
complexity. This means the trivial OMA protocol, where Merlin sends an empty string (or a
junk message) while Alice and Bob (optimally) solve the problem on their own, is (nearly) as
good as any other protocol for the problem. Further, since the lower bounds imply that an
OMA protocol for any of these functions f must have tcost Ω̃(R(f)), it follows that reducing
the vcost to o(R→(f)) necessitates hcost to be Ω̃(R→(f)). Hence, these problems are hard in
the second sense described above. Given this ray of hope on identifying hard OMA problems,
we pursue this thread. In this work, we define the notion of non-trivial OMA complexity
of a function f as follows. Call an OMA protocol computing f as non-trivial if its vcost is
o(R→(f)). Then, the non-trivial OMA complexity M̂A

→
(f) is the minimum tcost over all

non-trivial protocols for f .
Observe that for functions f with standard OMA complexity MA→(f) = o(R→(f)),

we have M̂A
→

(f) = MA→(f) (since the protocol minimizing tcost must be non-trivial);
whereas if MA→(f) = Ω(R→(f)), then hcost dominates vcost in any non-trivial protocol
for f , and M̂A

→
(f) essentially measures the minimum hcost required to achieve vcost =

o(R→(f)). Thus, non-trivial OMA complexity formally captures the “relative” notion of
hardness discussed above. Notably, in terms of the input size N , the best-known lower bound
on M̂A

→
(f) is Ω̃(

√
N) (since a bound better than Ω̃(MA→(f)) is unknown, and MA→(f)

has a longstanding
√

N -barrier).
It is now natural to ask the following questions.
Can we find a single problem with high non-trivial OMA complexity that can be used to
prove strong M̂A

→
lower bounds for multiple problems? It would then serve as a canonical

hard function for OMA in this sense.
Can we exhibit an explicit function f with M̂A

→
(f) (strongly) superlinear in R→(f)?

This would mean that the trivial OMA protocol is significantly better than any non-trivial
protocol in terms of total communication.
If the answer to the above question is “yes”, how large can this gap be – can it be
exponential?
Can we show an explicit function f with M̂A

→
(f) (strongly) superlinear in

√
N for

input size N? This would mean that while there is a strong
√

N -barrier for MA→

complexity [17], the situation is not at all similar for M̂A
→

.

In this work, we answer all these questions in the affirmative. We discuss these results in
detail in Section 1.2.

Annotated Streaming. Next, we consider the analogous stream verification or annotated
streaming model [8, 9], where a space-restricted Verifier and an all-powerful Prover with
unlimited space simultaneously receive a huge data stream. Following the input stream, the
Prover (with knowledge of the entire stream) and Verifier (who could only store a summary)
invoke a scheme where the Prover tries to convince the Verifier about the answer to an
underlying problem, similar to the online MA model. The total cost of a scheme is defined

1 Indeed, these exceptions have R→(f) = o(N) and they do not break the
√

N -barrier for OMA complexity.

ITCS 2024

53:4 New Lower Bounds in Merlin-Arthur Communication

as the sum of the number of bits communicated by the Prover (hcost) and the number of
bits of space used by the Verifier (vcost). The non-trivial annotated-streaming complexity of
a function f is analogously defined as the minimum total cost over all non-trivial schemes
computing f , where a trivial scheme is one that uses as much space (up to polylogarithmic
factors) as is needed in classical streaming (without Prover).

Since all known lower bounds in annotated streaming are proven via reduction from
problems in OMA communication, our knowledge of lower bounds in the two models are
similar. We use our OMA results to prove strong lower bounds on the non-trivial complexity
in this model as well. We show that fundamental data streaming problems such as counting
distinct items have high non-trivial annotated streaming complexity when frequencies can
be huge. Further, we show that graph problems such as connectivity and more generally
k-connectivity have high non-trivial complexity under certain graph streams that we call
support graph turnstile (SGT) streams. It might be intuitive that these problems can be
hard in this model, even with a Prover. Perhaps surprisingly, we show that in the classical
(sans Prover) model, we can solve these problems under SGT streams – featuring as large
as exponential edge weights – almost as efficiently as under standard (unweighted) graph
streams. We do this by building strong ℓ0-samplers that can handle large frequencies and
might be of independent interest. These results set the stage for our lower bounds on
non-trivial annotated-streaming complexity: they provide the benchmark space for any
non-trivial scheme solving these problems.

Our final set of results give efficient annotated streaming schemes for k-connectivity on
(standard) dynamic graph streams. We exploit graph theoretic properties on k-connected
graphs to come up with short certificates for proving or disproving k-connectedness. This
might be of independent interest in the graph-theoretic literature. Furthermore, these results
establish a conceptual separation between classical streaming and annotated streaming: in
the former, graph connectivity problems have roughly the same complexity under dynamic
and SGT streams, whereas in the latter, they are much harder under SGT streams than
under dynamic. We discuss our annotated streaming results in detail in Section 1.2.

Basic Terminology. For the remainder of Section 1, it helps to define some basic terminology
for ease of presentation. Later, in Section 2, we describe all notation and terminology in
detail. An OMA protocol with hcost O(h) (resp. Õ(h)) and vcost O(v) (resp. Õ(v)) is
called an (h, v)-OMA-protocol (resp. [h, v]-OMA-protocol). Analogously, an annotated
streaming protocol is called an (h, v)-scheme or an [h, v]-scheme. For computing a function
f , a trivial OMA protocol is one that has vcost Ω(R→(f)), and a trivial scheme is one
that uses verification space Ω̃(S(f)), where S(f) is the classical streaming complexity of
f (the asymptotically optimal space for computing f in classical streaming). The “Index”
communication problem and its variants come up frequently in our discussions. In the
standard version idxN , Alice has a string x ∈ {0, 1}N and Bob has an index j ∈ [N], where
his goal is to output x[j], the jth bit of x.

1.2 Our Results and Contributions
First, we define the Equals-Index (henceforth, eq-idx) problem, which is the basis of our lower
bounds. For arbitrary natural numbers p and q, in the eq-idxp,q communication problem,
Alice holds strings x1, . . . , xp where each xi ∈ {0, 1}q. Bob holds a string y ∈ {0, 1}q and an
index j ∈ [p]. The goal is for Bob to output whether xj = y. This problem can be interpreted
as (a boolean version of) the Index problem on large domains: Alice has a p-length string
over the domain {0, . . . , 2q − 1} (instead of just {0, 1}). Bob needs to verify whether the jth
index of Alice’s string equals his value y.

P. Ghosh and V. Shah 53:5

Our main result on the non-trivial-OMA complexity of eq-idx is as follows.

▶ Theorem 1. For any p, q with p = Ω(log q), we have M̂A
→

(eq-idxp,q) = ω(q)

Observe that q can be as large as exp(Ω(p)). We also show that R→(eq-idxp,q) is only
Θ(p + log q) (Lemma 29). This immediately implies that the gap between M̂A

→
(f) and

R→(f) (or MA→(f)) can be exponential.

▶ Corollary 2. There is an explicit function f with

M̂A
→

(f) = exp(Ω(MA→(f))) and M̂A
→

(f) = exp(Ω(R→(f))).

Conceptually, this means that the trivial protocol where Merlin sends nothing and
Alice and Bob solve the problem on their own, is exponentially better (in terms of total
communication) than any other protocol2.

Recall that previously we did not know of any function f on input size N with M̂A
→

(f) =
ω̃(

√
N). While exhibiting a function f with (standard) OMA complexity MA→(f) = ω(

√
N)

remains a longstanding open problem, our results show that M̂A
→

complexity does not have
such a barrier. In fact, Theorem 1 implies that it can be as large as N/ log N .

▶ Corollary 3. For any C ∈ (
√

N, N/ log N), there is an explicit function f on input size N

with M̂A
→

(f) = ω(C).

Next, we turn to the related Sparse Index problem (henceforth sp-idx). Chakrabarti et
al. [7] defined the sp-idxm,N problem as the version of Index where Alice’s string is promised
to have hamming weight (i.e., number of 1’s) at most m. They identified sp-idxm,N for
m = log N as the first problem whose non-trivial-OMA complexity is nearly as large as
its one-way complexity.3 Via reduction from eq-idx, we improve upon their lower bound
for sp-idxm,N . In particular, our improved lower bound implies that sp-idx with sparsity
O(log log N) has non-trivial-OMA complexity exponential in its classical one-way complexity.

▶ Corollary 4. For m = log log N , we have M̂A
→

(sp-idxm,N) = ω(log N), whereas
R→(sp-idxm,N) = MA→(sp-idxm,N) = Θ(log log N).

We remark that en route to establishing the above result, we also improve upon [7]’s
upper bound on R→(sp-idxm,N) and settle its complexity in the classical one-way model.

The only other functions (to the best of our knowledge) that prior work has shown to
have OMA complexity (nearly) linear in its one-way complexity are the xor-connn and
xor-bipn problems [29]: in these problems, Alice and Bob have one graph each on the same
vertex set [n] (hence, the input size N = Θ(n2)), and they need to check connectivity and
bipartiteness (respectively) of the graph obtained by XOR-ing their graphs, i.e., the graph
induced by the symmetric difference of their edge sets. Thaler [29] showed that each of these
functions f have MA→(f) = Ω(n) = Ω̃(R→(f)), which implies the same about M̂A

→
(f).

We reduce from eq-idx to reproduce this result, thus making a convincing case for eq-idx
being a canonical problem for establishing high M̂A

→
complexity.

▶ Corollary 5 ([29], paraphrased). For f ≡ xor-connn or f ≡ xor-bipn, we have

M̂A
→

(f) = Ω(R→(f)) = Ω(n).

2 Here, we are discounting clearly-suboptimal protocols where Alice sends ω(R→(f)) bits or where Merlin
sends a non-empty message despite Alice sending Ω(R→(f)) bits. Hence, “any other protocol” essentially
means any non-trivial protocol.

3 It follows implicitly from their result establishing MA→(sp-idxlog N,N) = Ω̃(R→(sp-idxlog N,N))

ITCS 2024

53:6 New Lower Bounds in Merlin-Arthur Communication

We now turn to the annotated streaming model. Our OMA results can be used to prove
lower bounds on the total cost of any non-trivial scheme for certain problems.

First, consider the fundamental distinct items problem (henceforth, dist-itemN,F) on
turnstile streams, where frequencies of elements from universe [N] get incremented and
decremented, and we are promised that the absolute value of the max-frequency is bounded
above by F . At the end of the stream, we need to output the number of elements with
non-zero frequency. We show a separation between classical-streaming and non-trivial
annotated-streaming complexities for this problem, given as follows.

▶ Theorem 6. There is a setting of F such that dist-itemN,F can be solved in Õ(N) space
in classical streaming, but any non-trivial annotated-streaming scheme for the problem must
have total cost Ω(Npolylog(N)).

Next, we show a similar separation for graph streaming problems. We define a support
graph turnstile (SGT) stream to be one where an n-node graph is induced by the support
of the edge-frequency vector. SGT streams have a parameter α, the maximum possible
absolute frequency. For the (undirected) graph connectivity problem, asking to check if
all pairs of nodes are reachable from each other, and the k-vertex-connectivity (resp. k-
edge-connectivity) problem, where we need to check whether removal of some k − 1 vertices
(resp. edges) disconnects the graph, we show an Õ(n) vs Ω(npolylog(n)) separation between their
classical-streaming and non-trivial annotated-streaming complexities under SGT streams.

▶ Theorem 7. Under certain support graph turnstile streams on n-node graphs, connectivity
can be solved in Õ(n) space by a classical streaming algorithm, whereas any non-trivial
annotated streaming scheme for the problem must have total cost Ω(npolylog(n)).

▶ Theorem 8. Under certain support graph turnstile streams on n-node graphs, k-vertex-
connectivity and k-edge-connectivity can be solved in Õ(kn) space by a classical streaming
algorithm, whereas any non-trivial annotated streaming scheme for the problem must have
total cost Ω(npolylog(n)).

We remark that while the classical streaming space bounds of Õ(n) for connectivity and
Õ(kn) for k-connectivity are known for standard dynamic graph streams [4, 5] where edge
multiplicities are 0 or 1 throughout the stream, it was not known whether the same can
be achieved for the harder SGT streams. We establish these upper bounds by designing
ℓ0-samplers that can handle frequency exponential in n while incurring just polylogarithmic
factors in space (Lemma 28). These might be of independent interest.

Next, we design efficient schemes for k-vertex-connectivity and k-edge-connectivity under
standard dynamic graphs streams. These schemes have total cost significantly smaller than
the lower bound proven for schemes processing SGT streams.

▶ Theorem 9. Under dynamic graph streams on n-node graphs, there exists a [k · (h+kn), v]-
scheme for k-vertex-connectivity for any h, v such that h · v = n2. In particular, under such
streams, the problem has non-trivial annotated streaming schemes with total cost Õ(k2n).

▶ Theorem 10. Under dynamic graph streams on n-node graphs, there exists a [k2n + h, v]-
scheme for k-edge-connectivity for any h, v such that h · v = n2. In particular, under such
streams, the problem has non-trivial annotated streaming schemes with total cost Õ(k2n).

▶ Theorem 11. Under dynamic graph streams on n-node graphs, there exists an [n, n]-
scheme for k-edge-connectivity (for any k). In particular, under such streams, the problem
has non-trivial annotated streaming schemes with total cost Õ(n).

P. Ghosh and V. Shah 53:7

Contrast this with our results for annotated streaming under SGT streams, where the
total cost for these problems can be as large as Ω(npolylog(n)). Thus, we can see a conceptual
separation between classical streaming and annotated streaming: the former can tolerate
SGT streams incurring negligible factors in complexity over dynamic graph streams, whereas
the latter incurs significantly large factors for SGT streams over dynamic.

Finally, we complement our annotated streaming lower bounds for k-connectivity under
SGT streams with an upper bound.

▶ Theorem 12. Under SGT streams with parameter α, there exists a [n2 log α+k2n, 1]-scheme
for k-vertex-connectivity and k-edge-connectivity.

1.3 Related Work
In their seminal paper, Babai, Frankl, and Simon [6] defined communication classes similar
to classes in computational complexity; this included the Merlin-Arthur (MA) communica-
tion class, which essentially defined the Merlin-Arthur communication model. Klauck [22]
proved that disjointness and inner product have MA complexity Ω(

√
N), which was surpris-

ingly proven to be tight (up to logarithmic factors) by Aaronson and Wigderson [1] who
gave a protocol with total cost O(

√
N log N). Chen[13] recently improved this bound to

O(
√

N log log log N). Chakrabarti et al. [9] were the first to consider the online version of
the MA model. They used it to show lower bounds for annotated streaming schemes, as
has been traditionally done by subsequent works. They proved that for any function f , an
[h, v]-OMA-protocol that computes it must have h · v ≥ R→(f). Further, for many problems
including frequency moments and subset checks, they gave annotated streaming schemes
(which imply OMA protocols with the same bounds), achieving this smooth tradeoff. [7] were
the first to exhibit a problem, namely sparse index, where such a tradeoff is not possible. In
fact, they showed that for sparse index with sparsity logarithmic in the input size, the OMA
complexity is as large as the one-way communication complexity. Later, Thaler [29] exhibited
two more problems with this property: XOR-connectivity and XOR-bipartiteness. The
motivation was to show the existence of graph problems that provably need semi-streaming
schemes (an [n, n]-scheme for n-node graphs) to solve and that they are equally hard in the
annotated streaming model as in classical streaming.

An “augmented” version of the Equals-Index was studied by Jayram and Woodruff [21]
in the classical communication model. They called it the “Augmented Index problem on
large domains”: here Bob also knows all the entries of Alice’s vector before his input index.

For the problem of computing distinct items, [9] gave an (n2/3(log n)4/3, n2/3(log n)4/3)-
scheme, which was later simplified and improved to an (n2/3 log n, n2/3 log n)-scheme by [18].
Note that both of these works assume that the stream length m is O(N), where N is the
universe size. Our results are for streams that are exponentially longer.

With the growing interest in graph streaming algorithms over the last couple of decades,
much of the recent literature on stream verification has focused on graph problems [15, 7, 2,
29, 11, 12]. Most of them design stream verification protocols for insert-only or insert-delete
graph streams. For the graph connectivity problem on n-node graphs, [9] gave an [h, v]-
scheme for any h, v with h ≥ n and h · v = n2. For sparse graphs with m edges, [7] designed
an [n + m/

√
v, v]-scheme. As mentioned above, [29] studied the problem in the XOR-edge-

update model and proved that any [h, v]-scheme must have (h + n) · v ≥ n2. A number of
works [15, 11, 12] studied verification schemes for shortest-path and s, t-connectivity related
problems. No prior work on stream verification, however, studied the k-connectivity problem.

ITCS 2024

53:8 New Lower Bounds in Merlin-Arthur Communication

In the classical streaming model, [4] gave the first algorithm for k-edge-connectivity in
dynamic streams using Õ(kn) space. [19] gave the first algorithm for k-vertex-connectivity in
dynamic graph streams, which was improved by a factor of k and made nearly optimal by [5]
using Õ(kn) space. [27] proved a lower bound of Ω(kn) bits for both problems, even for
insertion-only streams (see also [5] for extending the lower bound for k-vertex-connectivity
to multiple passes).

Other variants of stream verification include a prescient setting where Prover knows the
entire stream upfront, i.e., before Verifies sees it, and can send help messages accordingly [9, 7].
Versions where Prover sends very large proofs have also been considered [23]. Natural
generalizations to allow multiple rounds of interaction between the Prover and Verifier have
been investigated. These include Arthur-Merlin streaming protocols of Gur and Raz [20] and
the streaming interactive proofs (SIP) of Cormode et al. [16]. The latter setting was further
studied by multiple works [2, 10, 24]. Very recently, the notion of streaming zero-knowledge
proofs has been explored [14]. For a more detailed survey of this area, see [28].

1.4 Technical Overview
We give a high-level overview of the techniques and proofs in the paper.

1.4.1 Communication Lower Bounds
The Equals-Index lower bound. The basis of all our lower bounds is an OMA lower bound
on the eq-idx problem. Recall the classical index problem where Alice has a string x of
length N and Bob has an index j ∈ [N] such that he needs to know x[j]. Chakrabarti et al. [9]
showed that for any p, q with p · q = N , we can get a (q, p)-OMA-protocol as follows. The
string x can be partitioned into p chunks of length q each. Merlin sends Bob the purported
chunk where j lies, thereby sending q bits. Again, Alice sends Bob an O(1)-size equality
sketch for each chunk, thereby sending O(p) bits. Using the relevant sketch, Bob can figure
out whether the chunk sent by Merlin is accurate and find the solution if it is.

Note that from Alice’s perspective, the problem actually boils down to the following
subproblem: Alice has a string x and Bob has a string y, and she needs to help him verify
whether it is identical to her kth chunk, where she doesn’t know k. Our main observation is
that in the above protocol, to solve this subproblem, she spends as many bits as she would
have without Merlin: Θ(p) bits. So now that Alice and Bob have Merlin, why not take his help
and improve this communication to o(p)? If they could do this with at most O(q) bits of help,
then they would obtain an improved (q, o(p))-OMA Index protocol. But the known lower
bound for index [9] says that the product of hcost and vcost must be Ω(pq). Hence, Merlin
cannot bring down the vcost to o(p) without sending ω(q) bits. But q can be much larger
than p – even exponential in p – where Θ(p), as noted, is the communication needed for the
subproblem in the classical one-way model. Hence, we identify a problem whose non-trivial
OMA complexity can be much larger than their one-way complexity. We essentially abstract
out this subproblem as the eq-idxp,q problem and formalize the reduction.

The Sparse-Index lower bound. Although this lower bound follows by a reduction from
eq-idx, we discuss it separately to point out the challenges in proving its non-trivial-OMA
complexity. To show that M̂A

→
(sp-idxlog log N,N) is Ω(log N), we first prove a tight bound

on its one-way complexity. Prior work had shown that R→(sp-idxm,N) = O(m log m+log N)
for general m. Although the log m factor can be easily removed, it is not clear that the
additive log N factor can be removed since it comes from the minimum size of a hash family.

P. Ghosh and V. Shah 53:9

It would then not give us the desired bound of O(log log N). We remove it as follows. We
note that sp-idxm,N actually has input size

(
n
m

)
, use a public random hash function, and

then appeal to Newman’s theorem. This essentially implies that the existence of a better
hash function can be derived from Newman’s theorem, and can tighten the upper bound.

1.4.2 Streaming Algorithms
Some of our algorithms for SGT streams follow by replacing the ℓ0-samplers in existing
algorithms by the new ℓ0-samplers that we design in this work. However, an algorithm for
k-edge-connectivity does not immediately follow. So we design a new algorithm here, and
this is one of our significant technical contributions. Another key technical ingredient is our
“layering lemma” that we use to design efficient schemes for vertex connectivity on dynamic
graphs. We discuss these tools and techniques in detail below.

Strong ℓ0-samplers. We design new ℓ0-samplers that can handle very large frequencies
(hence called strong) and still take polylog(n) space. This is helpful because SGT streams
can have very large frequencies. Standard ℓ0-samplers usually assume that the frequencies
are poly(n) where n is the universe size.

The main tool we use to design our sampler is our decision counter. These counters,
given a stream of insertions and deletions, can detect if the number of insertions is exactly
equal to the number of deletions or not, using very little space. This even works when the
difference between the number of insertions and deletions is very large which is challenging
to do in small space deterministically. The idea is to maintain a standard counter modulo a
large random prime.

We then use ideas from the sparse recovery and ℓ0-sampling literature to build the strong
ℓ0-sampler. We first solve the problem when the non-zero support is 1 using non-adaptive
binary search. The problem here is that we are given a stream of insertion and deletions
over a universe of n elements and promised that at the end of the stream, there is exactly
one element with a non-zero frequency. The goal is to find that element. The usual idea
is to maintain one counter that keeps a track of the number of elements (i.e. number of
insertions minus deletions). Another counter is maintained which is used to find the value
of the non-zero frequency element. When an insertion/deletion for element i arrives it is
scaled by i and then added/subtracted from the counter. At the end of the stream, this
counter contains i times frequency of element i and the other counter has just the frequency
of element i thus recovering the non-zero frequency element i. This does not work when
the frequencies are large so we have to use non-adaptive binary search to solve the problem
which uses O(log n) counters to find i.

In the case with no promise, we want to reduce to the support 1 case. We do this by
guessing the support size s in powers of 2 and sampling the elements with probability 1/s.
This means that for the correct guess of s we reduce to the support 1 case with constant
probability. We can repeat O(log n) times for high probability. Finally, we need to distinguish
the support 1 case from the cases where the support is not 1. This is because we have many
problems and only a few of them are the support 1 case and in others the support can be
0 or larger than 1. We design a sketch for this by randomly partitioning the universe into
many parts, summing those parts up and checking how many parts are non-zero. The hope
is that if there are at least 2 elements then multiple parts will become non-zero.indicating
that the support is more than 1. If the non-zero support is 1 then exactly one part will
be non-zero and if the non-zero support is 0 then all parts will be 0. This happens with
constant probability so we repeat O(log n) times for high probability. Putting everything
together gives us the strong ℓ0-sampler sketch.

ITCS 2024

53:10 New Lower Bounds in Merlin-Arthur Communication

Edge Connectivity. We give a randomized algorithm for getting a certificate (a spanning
subgraph with the same answer to k-edge-connectivity) of k-edge-connectivity. The certificate
is of size Õ(kn), which is optimal up to polylog factors. The certificate needs to be of size
Ω(kn) because every vertex needs to have degree at least k. This algorithm can be easily
converted into a dynamic streaming algorithm using the dynamic streaming spanning forest
implementation of [4]. We also show that using our strong ℓ0-samplers, the spanning forest
streaming implementation of [4] can be extended to SGT streams in Õ(n) space. Using
our certificate along with the spanning forest algorithm in SGT streams, we can solve
k-edge-connectivity in SGT streams in Õ(kn) space.

[4] also give an algorithm for k-edge-connectivity in dynamic streams using Õ(kn) space.
However, this algorithm cannot be extended to SGT streams by simply replacing their
ℓ0-samplers with strong ℓ0-samplers. Their certificate is k edge-disjoint spanning forests. On
a high level, this does not work in SGT streams because the spanning forests depend on
each other (since they are edge-disjoint). In their algorithm, after recovering one spanning
forest T1 of G we essentially need to delete the edges of T1 from G and then recover a new
spanning forest T2 (to get a disjoint spanning forest). This is easy to do in dynamic streams
because the frequencies of the edges of T1 are exactly 1. So we can generate a new stream
which is the old stream appended with deletions of the edges of T1. Then T2 can be recovered
from this new stream. However, in SGT streams, the frequency of the edges of T1 could be
arbitrary, so we cannot easily generate another stream that represents the graph G − T1 (to
do this we need to know the exact frequencies of all edges in T1). This dependency between
the spanning forests makes extending this algorithm difficult. Our algorithm, on the other
hand, gets rid of this dependency and thus is extendable to SGT streams.

The randomized algorithm for getting a certificate of k-edge-connectivity is heavily
inspired by the randomized algorithm for getting a certificate of k-vertex-connectivity [5].
In the randomized algorithm, we independently sample every edge with probability 1/k

and find a spanning forest of the sampled subgraph. The certificate then is a union of the
spanning forests in Õ(k) such independent iterations. The analysis then shows that edges
whose endpoints are not very well connected in the original graph exist in the certificate,
and pairs of vertices that are very well connected in the original graph are well connected in
the certificate. This is enough to prove that the certificate preserves the answer to k-edge
connectivity.

We also give an [n, n]-scheme for k-edge-connectivity in the annotated dynamic streaming
model. We achieve this by simulating the two-pass streaming algorithm for minimum-cut
implied by [26]. During the stream, the verifier computes a cut sparsifier of the graph. After
the stream, the verifier compresses the vertices into supernodes (by compressing all large
cuts) such that only the small cuts remain. The prover then sends all the edges of this
supernode graph ([26] showed that there are only O(n) such edges). The verifier then can
compute the exact mincut of the graph, thus solving k-edge-connectivity for all values of k.

Vertex connectivity. We also get an algorithm for k-vertex-connectivity in SGT streams in
Õ(kn) space using the techniques used for edge connectivity. We use strong ℓ0-samplers in
the algorithm of [5].

We also give an [k2n, n/k]-scheme for k-vertex-connectivity in the annotated dynamic
streaming model. The heart of the algorithm is what we call the layering lemma, which
says that there exists a short proof (size Õ(kn)) to show that any arbitrary fixed vertex
has k vertex-disjoint paths to all other vertices. This proof can also be verified in Õ(n/k)
space. Also, when proving this for r vertices, we can reuse space and thus get a [r · kn, n/k]-

P. Ghosh and V. Shah 53:11

scheme instead of a [rkn, rn/k]-scheme. If we show the layering lemma for k vertices, then
using properties of k-vertex-connectivity, we can show that the graph is k-vertex-connected,
giving the desired bound. We also extend these ideas to k-edge-connectivity getting a
[k2n, n/k2]-scheme.

We show that a short proof exists for the layering lemma using the probabilistic method.
The idea is to cleverly partition the vertices into log n layers and show that vertices in the
first layer have k vertex-disjoint paths to the special vertex. Then we inductively show that
vertices in a layer have k vertex-disjoint path to the previous layer. Using the properties of
k-vertex-connectivity, this is enough to show that the special vertex has k vertex-disjoint
paths to all other vertices. The proof between any two layers is of size Õ(kn), giving us
the desired bound. The verification is more involved, but the verifier essentially checks just
two things using some tools. He first checks whether the edges sent by the prover belong to
the input graph (using a subset check). He then checks if what the prover sent are indeed
vertex-disjoint paths (using a duplicate-detection scheme).

We also give an [n2 log α+k2n, 1]-scheme for k-vertex-connectivity and k-edge-connectivity
in the annotated SGT streaming model with parameter α. The proof idea is the same as in
dynamic streams, but the verification is more complicated because the frequencies for the
edges could be large or even negative. The auxiliary information used for verification adds
an overhead of Õ(n2 log α) bits in the proof. The verification follows the same steps as in
the dynamic streaming case, except the subset check is not easy to do. So we came up with
a different way to do the subset check, which needs a large amount of auxiliary information.
One of the main ideas for this is to separate out the elements with positive and negative
frequencies and do a subset check for them separately.

2 Models, Notation, and Terminology

Here, we first formally describe the Merlin-Arthur communication model and the annotated
streaming model, with formal definitions of non-trivial complexity in each case. Next, we
give an account of notation and terminology used throughout the paper.

Merlin-Arthur Communication. In the Merlin-Arthur (MA) communication model [6], we
have the usual two players Alice and Bob (collectively called “Arthur”) with their inputs
x ∈ X and y ∈ Y respectively. They want to compute f(x, y), where f : X × Y → {0, 1}.
In addition, there is an all-powerful player Merlin who knows the inputs x and y. Merlin,
being untrusted, sends Alice and Bob a “proof” in support of his answer for f(x, y), following
which these two players interact between themselves to verify the proof. In this paper, we
focus on the online Merlin-Arthur (OMA) model which is an MA analog of the one-way
randomized communication model. We describe this model in more detail.
Online Merlin-Arthur communication. An OMA protocol Π works as follows. Merlin sends
Bob a help message H. Then Alice generates a random string R, based on which she sends
Bob a message msg. Bob then outputs out ∈ {0, 1, ⊥} as a function of (y, H, msg, R). An
OMA protocol Π is said to have completeness error δc and soundness error δs if the following
conditions are satisfied.

(Completeness) If f(x, y) = 1, then there exists a function H such that PrR[out ̸= 1] ≤ δc.
(Soundness) If f(x, y) = 0, then for all possible H, we have PrR[out = 1] ≤ δs.

We say that a protocol Π solves a function f if Π has δs, δc ≤ 1/3 for computing f .
For an OMA protocol Π, the help cost hcost(Π) is the maximum length of the message

H sent by an honest Merlin over all possible (x, y), and the verification cost vcost(Π) is the
maximum number of bits sent by Alice over all possible (x, R). The total cost tcost(Π) is
then defined as hcost(Π) + vcost(Π).

ITCS 2024

53:12 New Lower Bounds in Merlin-Arthur Communication

The OMA-complexity of f is defined as

MA→(f) := min{tcost(Π) : Π solves f}

We now define the non-trivial-OMA complexity of a function. To this end, we first
formally define trivial and non-trivial OMA protocols.

▶ Definition 13 ((Non-)Trivial OMA protocol). We say that an OMA protocol Π solving a
function f is trivial if vcost(Π) = Ω(R→(f)) and is non-trivial if vcost(Π) = o(R→(f)).

▶ Definition 14 (Non-trivial-OMA complexity). The non-trivial OMA complexity of a function
f is defined as

M̂A
→

(f) := min{tcost(Π) : Π is a non-trivial protocol that solves f}

Note that, by definition, M̂A
→

(f) ≥ MA→(f). We also make the following observation.

▶ Observation 15. If M̂A
→

(f) = ω(MA→(f)), then it must be that MA→(f) = Ω(R→(f)).

This is because if M̂A
→

(f) is larger than MA→(f), then the “optimal” protocol Π for which
MA→(f) = tcost(Π) must be a trivial protocol. Hence, tcost(Π) = Ω(vcost(Π)) = Ω(R→(f))
by definition.

Annotated Streaming. In the annotated streaming model of [8], we have a space-bounded
Verifier and an all-powerful Prover with unlimited space. Given an input stream σ, a scheme
for computing a function f(σ) is a triple P = (H, A, out), where H is a function that Prover
uses to generate the help message or proof-stream H(σ) that she sends Verifier after the
input stream, A is a data streaming algorithm that Verifier runs on σ using a random string
R to produce a summary AR(σ), and out is an algorithm that Verifier uses to process the
proof H(σ) and generate an output out(H(σ), AR(σ), R) ∈ range(f) ∪ {⊥}, where ⊥ denotes
rejection of the proof. Note that if the proof length |H(σ)| is larger than the memory of
the Verifier, then out is a streaming algorithm that processes H(σ) as a stream and stores a
summary subject to its memory.

A scheme P = (H, A, out) has completeness error δc and soundness error δs if it satisfies
(completeness) ∀σ : PrR[out(H(σ), AR(σ), R) ̸= f(σ)] ≤ δc;
(soundness) ∀σ, H′ : PrR[out(H′, AR(σ), R) /∈ {f(σ), ⊥}] ≤ δs.

We say that a scheme P solves a function f if P has δs, δc ≤ 1/3 for computing f .
The hcost (short for “help cost”) of a scheme P = (H, A, out) is defined as maxσ |H(σ)|,

i.e., the maximum number of bits required to express a proof over all possible inputs σ. The
vcost (short for “verification cost”) is the maximum bits of space used by the algorithms A
and out respectively, where the maximum is taken over all possible (σ, R). The total cost
tcost(P) is defined as the sum hcost(P) + vcost(P).

The annotated streaming complexity of a function f is defined as

AS(f) := min{tcost(P) : P solves f}.

We now define the non-trivial annotated-streaming complexity of a function. First, we
formally define trivial and non-trivial schemes.

▶ Definition 16 ((Non-)Trivial scheme). We say that a scheme P solving a function f is
trivial if vcost(P) = Ω̃(S(f)), and non-trivial otherwise.

P. Ghosh and V. Shah 53:13

▶ Definition 17 (Non-trivial Annotated Streaming complexity). The non-trivial annotated
streaming complexity of a function f is

ÂS(f) := min{tcost(P) : P is a non-trivial scheme that solves f}.

A scheme P with hcost(P) = O(h) and vcost(P) = O(v) is called an (h, v)-scheme. Again,
if hcost(P) = Õ(h) and vcost(P) = Õ(v), we call P an [h, v]-scheme.

Support Graph Turnstile Streams. We introduce support graph turnstile (SGT) streams
in this work. Conceptually, the graph is induced by the support of the frequency vector of
the input stream, which may be a turnstile stream. The formal definition is as follows.

▶ Definition 18 (Support graph turnstile streams). A turnstile stream σ is called a support
graph turnstile stream if it is of the form ⟨(u, v)i, ∆i) : i ∈ [m]⟩, where (u, v) ∈

([n]
2

)
and the

graph that it defines is given by G = ([n], {(u, v) : freq(u, v) ̸= 0}).

Basic Notation. We define some notation and terminology that we use throughout the
paper. All logarithms are base 2. The Õ(.), Ω̃(.), ω̃(.) notation hides factors polylogarithmic
in the input size. The notation [k] for a natural number k denotes the set {1, . . . , k}. We
use [a, b] for integers a < b to denote the set {a, . . . , b}. For a string z ∈ [α]d, we use z[k] to
denote the element at the kth index of z. We use the term “with high probability” to mean
with probability at least 1 − 1/poly(N), where N is the input size. Although the standard
notation to denote the input size in a communication problem is n, we use N instead to
avoid confusion with the number of nodes (for which we use n).

Graph Notation. All graphs in this paper are simple and undirected. Given a graph
G = (V, E), we use n for its number of nodes |V | and m for its number of edges |E| unless
specified otherwise. The degree of a vertex v ∈ V is denoted by deg(v), and N(v) denotes its
neighborhood. For a subset F of edges in E, we use V (F) to denote the vertices incident
on F ; similarly, for a set U of vertices, E(U) denotes the edges incident on U . We further
use G[U] for any set U of vertices to denote the induced subgraph of G on U . For any two
vertices s, t ∈ V , we say that a collection of s-t paths are vertex-disjoint if they do not share
any vertices other than s and t.

3 Preliminaries

In this section, we first list standard tools from the literature that we use throughout the
paper. Next, we give an account of the tools that we formulate in this work, and use to prove
the main theorems.

3.1 Standard tools
In the “Equality” problem eqN , Alice and Bob hold strings x, y ∈ {0, 1}N and need to check
whether x = y.

We use the following basic communication complexity facts.

▶ Fact 19 (Equality-sketch [25]). There is an O(1)-cost public random protocol for eqN for
any N with error probability at most 1/3.

▶ Fact 20 (Equality lower bound [25]). The one-way randomized communication complexity
R→(eqN) = Ω(log N).

ITCS 2024

53:14 New Lower Bounds in Merlin-Arthur Communication

▶ Fact 21 (Index lower bound [3]). The one-way randomized communication complexity
R→(idxN) = Ω(N).

▶ Fact 22 (Newman’s Theorem[25]). For any function f : {0, 1}N × {0, 1}M → {0, 1}, a
public coin protocol with communication cost C and error ε can be simulated by a private
coin protocol with communication cost at most O(C + log(N + M) + log(1/δ)) and error at
most ε + δ.

We often refer to the following lower bound in the OMA model and annotated streaming.

▶ Fact 23 (General OMA lower bound,[9]). For any function f , an (h, v)-OMA-procotol or
an (h, v)-scheme Π solving it must have: h · v ≥ Ω(C), where C = R→(f) in case Π is an
OMA protocol, and C = S(f) (the streaming complexity of f) in case it is an annotated
streaming scheme.

The standard schemes below are often used as subroutines in our protocols.

▶ Fact 24 (Subset-check and Intersection-count Scheme, [9], [12]). Given an insert-delete
stream of elements from sets X, Y ⊆ [N] (interleaved arbitrarily), for any h, v with h · v = N ,
there are [h, v]-schemes for checking whether X ⊆ Y and for counting |X ∩ Y | .

▶ Fact 25 (Duplicate-detection Scheme). Given an insert-only stream of elements from the
universe [N], for any h, v with h · v = N , there is an [h, v]-scheme for checking whether all
elements in the stream are distinct.

We give a new way to detect if two multi-sets are identical using ℓ0-samplers. The idea is
to insert elements of the first multi-set into an ℓ0-sampler and delete elements of the second
multi-set from the sampler, and at the end, check if the sampler is empty.

▶ Fact 26 (Equality-Detection Scheme). Given an insert-only stream of elements of two
multi-sets A, B in any order (interleaved arbitrarily) from the universe [N], we can check if
the two sets are identical with probability 1 − 1/poly(N) in space polylog(N).

3.2 New tools
In this subsection, we introduce the new tools we use to get our results. To prove the result
(Theorem 8) for k-edge connectivity, we need to come up with a new algorithm. All the
proofs and the algorithms are deferred to the full version of the paper.

▶ Theorem 27. Given any graph G = (V, E) and any integer k ≥ 1, there is an algorithm
that outputs a certificate H of k-edge-connectivity of G with O(kn · log n) edges with high
probability. This algorithm can be implemented in dynamic streams in Õ(kn) space and in
SGT streams in Õ(kn · polylogα) space.

The following is the ℓ0-sampling problem when the frequencies are large:

▶ Problem 1. Given a stream containing insertions and deletions of elements in [n], output
an element whose frequency is non-zero. The promise is that the value of each coordinate is
between −α and α at the end of the stream.

▶ Lemma 28. There is a randomized algorithm that solves Problem 1 with probability
1 − 1/polylog(α) · poly(n) and uses poly(log log α + log n) bits of space.

P. Ghosh and V. Shah 53:15

4 OMA Lower Bound for Equals-Index and its Implications

4.1 The Equals-Index Problem
We formally define the eq-idxp,q communication game between two players Alice and Bob
as follows.

Let p and q be arbitrary integers. Alice gets p strings x1, . . . , xp such that xi ∈ {0, 1}q

for each i ∈ [p]. Bob gets a string y ∈ {0, 1}q and an index j ∈ [p]. The output is 1 if y = xj ,
and 0 otherwise.

First, let us show tight bounds on its one-way (Alice → Bob) randomized communication
complexity.

▶ Lemma 29. R→(eq-idxp,q) = Θ(p + log q)

Proof. First consider the following protocol using public randomness. For each i ∈ [p],
Alice sends Bob an O(1)-size equality sketch (Fact 19) for xi. Bob uses only the jth sketch
to check if xj = y. Thus, Rpub(eq-idxp,q) = O(p). By Newman’s theorem (Fact 22),
R→(eq-idxp,q) = O(p + log(pq)) = O(p + log q).

The lower bound R→(eq-idxp,q) = Ω(p + log q) easily follows from the facts that
eq-idxp,1 ≡ idxp and eq-idx1,q ≡ eqq. Therefore, we have

R→(eq-idxp,q) ≥ R→(eq-idxp,1) = R→(idxp) = Ω(p) (Fact 21).
Again, R→(eq-idxp,q) ≥ R→(eq-idx1,q) ≥ Ω(log q) (Fact 20). ◀

Now we prove an OMA lower bound for eq-idx.

▶ Lemma 30. Any (h,v)-OMA-protocol solving eq-idxp,q must have

(h + q) · v ≥ Ω(pq)

Proof. We show that given any (h, v)-OMA-protocol Π for eq-idxp,q, we can design an
(h+q, v)-OMA-protocol Π′ for idxpq. The lower bound of (h+q) ·v ≥ Ω(pq) then immediately
follows from the OMA lower bound for idxpq (Fact 21).

Suppose Alice and Bob have inputs x ∈ {0, 1}pq and k ∈ [pq] in the idxpq problem. Then
the protocol Π′ is as follows. Alice partitions x into p chunks x1, . . . , xp, each of size q. Bob
sets j = ⌈k/p⌉. Merlin sends y ∈ {0, 1}q to Bob and claims that it equals xj . The players
can now interpret (x1, . . . , xp) and (y, j) as inputs to the eq-idxp,q problem, and run the
protocol Π to verify that y is indeed equal to xj . If the check passes, then Bob knows x[k]
since it lies in xj = y. If not, he outputs ⊥, i.e., rejects the proof.

We analyze the completeness and soundness errors of Π′. If Merlin is honest, then y

is indeed xj , and the protocol fails only if Bob rejects because the check in Π doesn’t go
through. The probability of this is exactly the completeness error of Π. Hence, Π′ has the
same completeness error as Π. Again, if Merlin is dishonest, then the protocol fails only
when Bob outputs the incorrect bit-value for x[k]. This happens only when y ̸= xj , but the
check passes in Π. This has the same probability as the soundness error of Π. Therefore, Π′

also has the same soundness error as Π. Thus, by definition, since Π solves eq-idxp,q, the
protocol Π′ solves idxp.

Finally, we analyze the cost of Π′. Merlin sends Bob y as well as his message due to
Π. Thus, hcost(Π′) = O(h + q). Alice sends Bob only her message due to Π, implying
that vcost(Π′) = v. Thus, Π′ is an (h + q, v)-OMA-protocol as claimed. This completes the
proof. ◀

ITCS 2024

53:16 New Lower Bounds in Merlin-Arthur Communication

Our main result on the non-trivial OMA complexity M̂A
→

(eq-idxp,q) follows from the
above two lemmas.

▶ Theorem 1. For any p, q with p = Ω(log q), we have M̂A
→

(eq-idxp,q) = ω(q)

Proof. By Lemma 29, we have R→(eq-idx) = Θ(p) for this setting of p and q. Therefore, any
non-trivial OMA protocol Π for the problem must have vcost(Π) = o(p). But by Lemma 30,
if hcost(Π) = O(q), then vcost(Π) = Ω(p). Therefore, hcost(Π) must be ω(q), which means
tcost(Π) = ω(q). Then, by definition, M̂A

→
(eq-idx) = ω(q). ◀

▶ Corollary 2. There is an explicit function f with

M̂A
→

(f) = exp(Ω(MA→(f))) and M̂A
→

(f) = exp(Ω(R→(f))).

Proof. Set f = eq-idxp,q with p = log n and q = n/ log n. Indeed, p ≥ log q. Hence, by
Theorem 1, we have M̂A

→
(f) = ω(q) = exp(Ω(p)).

By Lemma 29, we have R→(f) = Θ(p). Also, by definition MA→(f) ≤ R→(f) = Θ(p).
Therefore, the claimed result holds. ◀

▶ Corollary 3. For any C ∈ (
√

N, N/ log N), there is an explicit function f on input size N

with M̂A
→

(f) = ω(C).

Proof. Set f = eq-idxp,q with p = n/C and q = C. Since q = C ≤ n/ log n, we have

p = n/C ≥ log n > log q

By Theorem 1, M̂A
→

(f) = ω(C). ◀

We also give a tight bound on the (standard) OMA complexity of eq-idxp,q.

▶ Theorem 31. For any p, q with p ≥ log q, we have MA→(eq-idxp,q) = Θ(min{√
pq, p}).

Proof. First, we prove the lower bound. Given an (h, v)-OMA-protocol for eq-idxp,q, first
consider the case that h > q. Then, by Lemma 30, we have h · v = Ω(pq), which means
h + v = Ω(√pq). Otherwise, i.e., if h ≤ q, then by the same lemma, we have q · v = Ω(pq),
which means v = Ω(p), and hence, h + v = Ω(p). Therefore, we conclude

MA→(eq-idxp,q) = Ω(min{√
pq, p}).

For the upper bound, we first show that if q ≤ p, then we can design a (√pq,
√

pq)-OMA-
protocol for eq-idxp,q. Alice combines x1, . . . , xp into a single pq-bit string x, and then
again splits x into √

pq chunks z1, . . . , z√
pq, each of which has √

pq bits. Observe that since
q ≤ p, we have q ≤ √

pq, and hence, xj lies entirely in (the concatenation of) at most two
consecutive chunks zk ◦ zk+1. Merlin sends Bob zk and zk+1 that he claims are identical
to z′

k and z′
k+1. This takes O(√pq) bits. If they are indeed as claimed, Bob can determine

whether y = xj . The problem now reduces to checking whether z′
k = zk and z′

k+1 = zk+1
without Merlin. To this end, it suffices to show that there exists a one-way randomized
private-coin protocol of cost O(√pq). The protocol is very similar to the one mentioned
in the proof of Lemma 29. An O(√pq) public-coin protocol can be obtained by having
Alice send an O(1)-size equality sketch (Fact 19) for each zi, while Bob uses only zk and
zk+1 for the check. Newman’s theorem (Fact 22) now gives a private-coin protocol of cost
O(√pq + log(pq)) = O(√pq). Therefore, we obtain an OMA protocol of total cost O(√pq)
for q ≤ p.

Finally, note that MA→(eq-idxp,q) is always trivially upper bounded by R→(eq-idxp,q),
which, by Lemma 29, is O(p) for this setting of p ≥ log q. Hence, we can conclude that
whenever p ≥ log q, MA→(eq-idxp,q) ≤ O(min{√

pq, p}). ◀

P. Ghosh and V. Shah 53:17

4.2 Implications of the Equals-Index Lower Bounds
By reduction from eq-idxN , we prove the following theorem (proof given in full version).

▶ Theorem 32. M̂A
→

(sp-idxlog log n,n) = ω(log n).

Compare this with the fact that MA→(sp-idxlog log n,n) = R→(sp-idxlog log n,n) =
Θ(log log n). Hence, we show an exponential separation between MA→ and M̂A

→
com-

plexity of sp-idx with sparsity log log n.

▶ Corollary 4. For m = log log N , we have M̂A
→

(sp-idxm,N) = ω(log N), whereas
R→(sp-idxm,N) = MA→(sp-idxm,N) = Θ(log log N).

We also get the following results by reduction from eq-idx. The proofs appear in the full
version.

▶ Corollary 5 ([29], paraphrased). For f ≡ xor-connn or f ≡ xor-bipn, we have

M̂A
→

(f) = Ω(R→(f)) = Ω(n).

▶ Theorem 6. There is a setting of F such that dist-itemN,F can be solved in Õ(N) space
in classical streaming, but any non-trivial annotated-streaming scheme for the problem must
have total cost Ω(Npolylog(N)).

4.2.1 Connectivity Problems in Support Graph Turnstile Streams
We prove Theorems 7 and 8 here. We first make the following claim about classical streaming
complexities of connectivity and k-connectivity.

▷ Claim 33. In the classical streaming model under SGT streams, graph connectivity can be
solved in Õ(n) space, and each of the k-vertex-connectivity and k-edge-connectivity problems
can be solved in Õ(kn) space. These bounds match (up to polylogarithmic factors) the
space-bound known for each problem under dynamic graph streams.

Proof. The upper bounds of connectivity and k-vertex-connectivity follow by using the [4]
and [5] algorithms respectively, and replacing their ℓ0 samplers with our strong ℓ0 samplers
(Lemma 28). For the k-edge connectivity problem, it is not clear that the algorithm by [4] can
be implemented under SGT streams. So we design a new Õ(kn)-space k-edge-connectivity
algorithm under such streams. The claim then follows. ◁

We show a lower bound for connectivity in this model.

▶ Lemma 34. Any (h, v)-scheme for connectivity satisfies (h + qn) · v ≥ n2 · q. In particular,
when q = npolylog(n), for v = o(n) we need h ≥ npolylog(n).

The proof of this lemma is along the same lines as the proof of XOR-Connectivity except
that we use eq-idxn,qn. Alice and Bob construct the same graph, but now for each pair of
vertices there could be multiple edge insertions (up to 2q).

We now prove lower bounds for k vertex and edge connectivity in this model.

▶ Lemma 35. Any (h, v)-scheme for k-vertex-connectivity or k-edge-connectivity satisfies
(h + q) · v ≥ kn · q. In particular, when q = 2polylog(n), for v = o(kn) we need h ≥ 2polylog(n).

ITCS 2024

53:18 New Lower Bounds in Merlin-Arthur Communication

Say that we are given an (h, v)-scheme for k-vertex-connectivity or k-edge-connectivity
in the Support Graph Turnstile streaming model. Given an instance of eq-idxkn,q, Alice
constructs the following graph stream (see Figure 1). Let VL = {u1, . . . , un} and VR =
{v1, . . . , vk}. For each ℓ ∈ [kn], Alice inserts an edge between the ℓth pair of vertices xℓ

times. Given his inputs y ∈ {0, 1}q and j ∈ [kn], Bob creates the following graph stream.
Bob deletes an edge between the jth pair of vertices y times. Bob also adds an edge between
every pair of vertices except the jth pair. Alice runs the (h, v)-scheme on her graph stream
and sends the memory content to Bob, who then continues running the scheme on his graph
stream. Iff the graph is k-connected, then output 0 for the eq-idxkn,q instance and output 1
otherwise. Note that the complete bipartite graph is k-connected, but even if you remove
one edge it is not k-connected. The correctness follows from the following claim.

▷ Claim 36. The graph formed by the stream is k-connected in the support graph turnstile
model iff the eq-idxkn,q instance has value 0.

Proof. Consider the case when the eq-idxkn,q instance has value 1. We have xj = y, so the
jth pair of vertices has y edge insertions and y edge deletions. This means that there is no
edge between the jth pair of vertices, implying that the support graph is not k-connected.

Now consider the case when the eq-idxkn,q instance has value 0. We have xj ̸= y, so
the jth pair of vertices has a different number of edge insertions and edge deletions. This
implies that the jth pair of vertices has a non-zero support implying that the jth edge exists.
Every other pair of vertices has only edge insertions, including exactly 1 edge insertion by
Bob. This implies that every other pair of vertices has a non-zero support implying that
the edge exists. Thus, the support graph is a complete bipartite graph implying that the
support graph is k-connected. ◁

Claim 36 shows that this protocol solves eq-idxkn,q. We know by Lemma 30 that the
following holds for any protocol that solves eq-idxkn,q: (h + q) · v ≥ kn · q.

The only help from Merlin is h bits for the (h, v)-scheme. The only communication from
Alice is sending the memory content that takes v bits of space. This bound implies that even
if h = O(q), v = Ω(kn). So for v = o(kn) we need h = ω(q). Setting q = 2polylog(n) implies
that for v = o(kn) we need h ≥ 2polylog(n). However, using the strong ℓ0-Samplers gives us
h = 0 and v = Õ(kn).

n k

u

v
...

...

(a) Alice adds xi edges for pair i.

n k

u

v
...

...

(b) Bob deletes (u, v) y times and adds every
other pair once.

Figure 1 The gadget graphs for reduction to k-connectivity from eq-idx.

5 Annotated Streaming Schemes for Dynamic Graph Streams

In this section, we prove Theorem 9 . First we prove our layering lemmas for vertex and
edge connectivity that will be useful in our algorithms. We will show complete proofs for
vertex-connectivity and then only mention the differences for edge-connectivity because the
proofs are very similar. We first show two simple claims (proofs apear in full version):

P. Ghosh and V. Shah 53:19

▷ Claim 37. Let G be k-vertex-connected. Consider a new vertex v and attach it to ≥ k

arbitrary vertices of G and call this new graph G′. Then G′ is k-vertex-connected.

▷ Claim 38. Let G = (V, E) be a graph and let T ⊆ V be a set of vertices. We know that
there are at least k vertex-disjoint (edge-disjoint) paths from every vertex of T to a special
vertex t ̸∈ T . If a vertex v ̸∈ T ∪ {t} has k vertex-disjoint (edge-disjoint) paths to T then
there are k vertex-disjoint (edge-disjoint) paths between v and t.

The following lemmas show short proofs for k disjoint paths from a fixed vertex to all
other vertices.

▶ Lemma 39. Let G = (V, E) be a k-vertex-connected graph, and let t ∈ V be an arbitrary
vertex. There is a Õ(kn) size proof which shows that there are k vertex-disjoint paths from t

to v for all v ∈ V − {t}.

▶ Lemma 40. Let G = (V, E) be a k-edge-connected graph, and let t ∈ V be an arbitrary
vertex. There is a Õ(k2n) size proof which shows that there are k edge-disjoint paths from t

to v for all v ∈ V − {t}.

We will show that a short proof exists using the probabilistic method. We first set up the
structure of the proof. Note that we will write disjoint paths without specifying edge-disjoint
or vertex-disjoint to mean either of those because the layering structure for both is the same.
We want a proof that shows that the special vertex t has k disjoint paths to all vertices in
V − {t}. The idea is to first build a set of vertices T0 and show that every vertex in T0 has
k disjoint paths to t. The next step is to inductively build sets T1, T2, . . . Tℓ and show that
every vertex in Ti has k disjoint paths to the set Ti−1. Using Claim 38, this shows that every
vertex in Ti has k disjoint paths to t (since every vertex in Ti−1 has k disjoint paths to t).
We keep doing this till we cover all the vertices using the sets Ti and thus, everyone has k

disjoint paths to t. This proves the correctness of Lemma 39 and Lemma 40.
We now show how these sets are constructed and bound the proof size. Let ℓ := log(n/k).

For i ∈ [0, ℓ], let T L
i , T R

i be the sets where every vertex is independently sampled with
probability pi := k

n · 2i. Ti = T L
i ∪ T R

i . Note that we sample all vertices in Tℓ, so we cover all
the vertices. Also, note that it is okay if a vertex is sampled in multiple Ti’s. The expected
size of Ti is 2i+1k for all i ∈ [0, ℓ]. We will now show that for any vertex, the proof for k

disjoint paths to Ti is small in expectation.

▷ Claim 41. For any vertex v the proof for k disjoint paths to Ti takes size at most n
2i words

in expectation.

Proof. Consider the vertex v and its k disjoint paths P1, P2, . . . Pk to T L
i (this exists because

the graph is k-connected). For any path Pj , we truncate it at the first occurrence of a
vertex from T R

i (since we want paths to Ti = T L
i ∪ T R

i). We now use the randomness of T R
i .

Every vertex on Pj is independently sampled in T R
i with probability pi = k

n · 2i. Thus, in
expectation, the truncated length of Pj is at most 1

pi
= n

k·2i . Therefore, in expectation, the
k disjoint paths to Ti together have size at most n

2i (by linearity of expectation). ◁

In expectation, the total proof size for k-vertex-connectivity is O(kn log(n/k)) words.

▷ Claim 42. The expected total proof size for k-vertex-connectivity is O(kn log(n/k)) words.

Proof. The proof of k vertex-disjoint paths for a fixed vertex in T0 takes size at most O(n)
words because the summed length of all paths is O(n) (any vertex belongs to at most one
vertex-disjoint path). This gives a total expected size of O(kn) words for all vertices in

ITCS 2024

53:20 New Lower Bounds in Merlin-Arthur Communication

T0. The proof for vertices in Ti+1 takes size at most n
2i (by Claim 41) which gives a total

expected size of 2i+2k · n
2i = 4kn words for all vertices in Ti+1. We have ℓ = log(n/k) sets Ti

implying the claim. ◁

▷ Claim 43. The expected total proof size for k-edge-connectivity is O(k2n log(n/k)) words.

Proof. The only difference from the proof of Claim 42 is that the proof for vertices in T0 takes
size at most O(kn) since each path can be of size at most n. This happens because edge-
disjoint paths can use the same vertices. This gives us an overall proof size of O(k2n log(n/k))
words. ◁

If we can show that vertices T0 have k edge-disjoint paths to t in smaller space then we can
improve the overall proof size (since this is the main bottleneck). For instance, if the graph
has a subgraph on O(k) vertices that is k-edge-connected then that set could be T0 and the
overall proof size would be O(kn log(n/k)) (this would increase the verification space by an
additive O(k2) words).

Proof of Lemmas 39 and 40. We have proved the correctness and the size bounds in ex-
pectation. There must be some random string that achieves a proof size of at most the
expected size (by definition) implying that there exists a proof of size O(kn log(n/k)) words
for k-vertex-connectivity and a proof of size O(k2n log(n/k)) words for k-edge-connectivity
(which an all powerful prover can find). Thus, the prover sends this proof to the verifier. ◀

We now show that the prover can send some auxiliary information so that the verifier
can verify the proof.

▷ Claim 44. The layering proof of Lemma 39 for k-vertex-connectivity can be verified using
a [kn + h, v]-scheme for any h, v such that h · v = n2.

Proof. The prover sends k vertex-disjoint paths for each vertex using the layering idea
mentioned above (Lemma 39). There are three things that need to be verified. First, all the
edges that the prover sends should be a part of the input graph. Second, the edges sent by
the prover should form paths. Finally, the paths for a vertex should be vertex disjoint.

The prover sends a list of all edges used in the proof along with their multiplicities in
Õ(kn) space. It is easy to do a subset check for the edges (ignoring multiplicities) using an
[h, v]-scheme since there are at most n2 edges (Fact 24). The problem now is to check if the
prover was truthful about the multiplicities, which can be done using the ℓ0-sampler trick
using Õ(1) space (Fact 26). The verifier can maintain an ℓ0-sampler where he inserts all
edges along with their multiplicities when they are provided upfront. He then deletes all
edges used in the proof of k vertex-disjoint paths for each vertex. Finally, he checks whether
the sampler is empty. If it is not then the two sets of edges are not the same and thus, the
verifier catches the lying prover. The probability of failure is at most 1 − 1/poly(n).

The prover will send the edges of the paths one path at a time, so it is easy to verify that
the edges form a path. Finally, we need to verify that the paths for every vertex are vertex
disjoint. For this, the prover sends the vertices he is going to use in the proof upfront in
increasing order. The verifier can verify this in Õ(1) space by just checking the increasing
order. The problem now is to check if the prover lied so we can run an equality check on
the stream of vertices sent upfront and the vertices used in the proof. This can be done
using the ℓ0-sampler trick in Õ(1) verification space (Fact 26). We have to do this for all
vertices so the worry is that the proof size or verification space might blow up. Since the
auxiliary information is just repeating the vertices used in the proof in sorted order, adding

P. Ghosh and V. Shah 53:21

this auxiliary information can at most double the space used. Also, the space on the verifier
side is Õ(1) words for each vertex, but this space can be reused implying Õ(1) words of
verification space for the entire disjointness check.

Therefore, the proof along with the auxiliary information takes size Õ(kn) + Õ(h) bits
and can be verified in Õ(v) + Õ(1) bits of space, proving the [kn + h, v]-scheme. ◁

▷ Claim 45. The layering proof of Lemma 40 for edge-connectivity can be verified using a
[k2n + h, v]-scheme for any h, v such that h · v = n2.

The proof is almost identical with the only difference being that the proof for k-edge-
connectivity is of size Õ(k2n) opposed to Õ(kn) for k-vertex-connectivity.

This establishes Theorem 9.

▶ Theorem 9. Under dynamic graph streams on n-node graphs, there exists a [k · (h+kn), v]-
scheme for k-vertex-connectivity for any h, v such that h · v = n2. In particular, under such
streams, the problem has non-trivial annotated streaming schemes with total cost Õ(k2n).

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. In

Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 731–740, 2008.
2 Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian.

Streaming verification of graph properties. In Proc. 27th International Symposium on Al-
gorithms and Computation, pages 3:1–3:14, 2016.

3 Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. Theoretical Computer Science, 175(2):139–159, 1996.

4 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages
459–467, 2012.

5 Sepehr Assadi and Vihan Shah. Tight bounds for vertex connectivity in dynamic streams. In
Symposium on Simplicity in Algorithms (SOSA), pages 213–227. SIAM, 2023.

6 László Babai, Péter Frankl, and Janos Simon. Complexity classes in communication complexity
theory. In Proc. 27th Annual IEEE Symposium on Foundations of Computer Science, pages
337–347, 1986.

7 Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations for sparse
data streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
687–706, 2014.

8 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Annotations in data streams.
In Proc. 36th International Colloquium on Automata, Languages and Programming, pages
222–234, 2009.

9 Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. Annotations in
data streams. ACM Trans. Alg., 11(1):Article 7, 2014.

10 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Venkata-
subramanian. Verifiable stream computation and Arthur-Merlin communication. In Proc. 30th
Annual IEEE Conference on Computational Complexity, pages 217–243, 2015.

11 Amit Chakrabarti and Prantar Ghosh. Streaming verification of graph computations via
graph structure. In Proc. 33rd International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 70:1–70:20, 2019.

12 Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for graph
problems: Optimal tradeoffs and nonlinear sketches. To appear in RANDOM, 2020. arXiv:
2007.03039.

13 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product.
Theory Comput., 16:1–50, 2020. doi:10.4086/toc.2020.v016a004.

ITCS 2024

https://arxiv.org/abs/2007.03039
https://arxiv.org/abs/2007.03039
https://doi.org/10.4086/toc.2020.v016a004

53:22 New Lower Bounds in Merlin-Arthur Communication

14 Graham Cormode, Marcel Dall’Agnol, Tom Gur, and Chris Hickey. Streaming zero-knowledge
proofs. CoRR, abs/2301.02161, 2023. arXiv:2301.02161.

15 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming graph computations
with a helpful advisor. Algorithmica, 65(2):409–442, 2013.

16 Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proc. VLDB Endowment, 5(1):25–36, 2011.

17 Dmitry Gavinsky. The layer complexity of arthur-merlin-like communication. Theory Comput.,
17:1–28, 2021.

18 Prantar Ghosh. New verification schemes for frequency-based functions on data streams.
In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa
Campus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 22:1–22:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

19 Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge connectivity in
dynamic graph streams. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 241–247, 2015.

20 Tom Gur and Ran Raz. Arthur–Merlin streaming complexity. In Proc. 40th International
Colloquium on Automata, Languages and Programming, pages 528–539, 2013.

21 T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26:1–26:17,
2013.

22 Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity.
In Proc. 18th Annual IEEE Conference on Computational Complexity, pages 118–134, 2003.

23 Hartmut Klauck and Ved Prakash. Streaming computations with a loquacious prover. In
Proc. 4th Conference on Innovations in Theoretical Computer Science, pages 305–320, 2013.

24 Hartmut Klauck and Ved Prakash. An improved interactive streaming algorithm for the
distinct elements problem. In Automata, Languages, and Programming - 41st International
Colloquium (ICALP), volume 8572 of LNCS, pages 919–930, 2014.

25 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
Cambridge, 1997.

26 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum
cuts without knowing the graph. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science, ITCS 2018, Leibniz International Proceedings in Informatics, LIPIcs,
Germany, January 2018. Schloss Dagstuhl – Leibniz-Zentrum fur Informatik GmbH, Dagstuhl
Publishing. doi:10.4230/LIPIcs.ITCS.2018.39.

27 Xiaoming Sun and David P Woodruff. Tight bounds for graph problems in insertion streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015.

28 Justin Thaler. Data stream verification. In Encyclopedia of Algorithms, pages 494–499. Springer
Berlin Heidelberg, 2016.

29 Justin Thaler. Semi-streaming algorithms for annotated graph streams. In Proc. 43rd
International Colloquium on Automata, Languages and Programming, pages 59:1–59:14, 2016.

https://arxiv.org/abs/2301.02161
https://doi.org/10.4230/LIPIcs.ITCS.2018.39

	1 Introduction
	1.1 Motivation and Context
	1.2 Our Results and Contributions
	1.3 Related Work
	1.4 Technical Overview
	1.4.1 Communication Lower Bounds
	1.4.2 Streaming Algorithms

	2 Models, Notation, and Terminology
	3 Preliminaries
	3.1 Standard tools
	3.2 New tools

	4 OMA Lower Bound for Equals-Index and its Implications
	4.1 The Equals-Index Problem
	4.2 Implications of the Equals-Index Lower Bounds
	4.2.1 Connectivity Problems in Support Graph Turnstile Streams

	5 Annotated Streaming Schemes for Dynamic Graph Streams

