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Abstract
Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting
routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive
ratio for general networks are tree-based, in the sense that routing is performed according to a
convex combination of trees. However, this restriction to trees leads to a construction that has time
quadratic in the size of the network and does not parallelize well.

In this paper we study oblivious routing schemes based on electrical routing. In particular,
we show that general networks with n vertices and m edges admit a routing scheme that has
competitive ratio O(log2 n) and consists of a convex combination of only O(

√
m) electrical routings.

This immediately leads to an improved construction algorithm with time Õ(m3/2) that can also be
implemented in parallel with Õ(

√
m) depth.
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1 Introduction

Oblivious routing schemes use static-precomputed routing tables for selecting routing paths
instead of routing paths that adapt dynamically to the observed traffic pattern of a parallel
system. While at first glance this restriction seems like a serious barrier to obtaining good
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55:2 Electrical Flows for Polylogarithmic Competitive Oblivious Routing

performance, it has been shown that in undirected networks oblivious routing does not only
provide good theoretical guarantees [26, 13, 27], but is also an excellent choice for practical
implementations [2, 18] due to its simple structure.

Formally an oblivious routing scheme provides a unit flow fs,t between every source-target
pair (s, t) in the network. When a demand ds,t between s and t appears, this unit flow is
scaled by the demand to provide the required flow between source and target. When using
an oblivious routing scheme for packet routing the path of a packet is chosen according to
the flow so that the probability that the packet takes a certain edge is equal to the flow
value along that edge. The main strength of any oblivious routing algorithm stems from the
fact that determining the next hop for a packet can be done via a simple table lookup after
precomputing the necessary routing tables.

In this paper we consider oblivious routing algorithms that aim to minimize network
congestion, i.e., the maximum flow on any edge of the network. Most existing oblivious
routing algorithms for this congestion cost-measure are tree based [26, 27, 13, 28, 7]. This
means a convex combination of trees is embedded into the network. A routing path between
two vertices s and t is then in principle chosen by first sampling a random tree and then
following the path between s and t in this tree.

Another approach for oblivious routing is to use electrical flows. In an electrical flow
routing one assigns a resistance (or its inverse, which is called conductance) to each edge
of the graph. The flow between two vertices s and t is then defined by the current that
would result when adding a voltage source between s and t. Lawler and Narayanan [20]
studied the performance of electrical flows as an oblivious routing scheme. They show that
if every edge is assigned unit resistance, then electrical routing has a competitive ratio of
min{

√
m, O(Tmix)} against any ℓp-norm simultaneously, where the competitive ratio is the

ratio of the cost of routing any demand using oblivious routing to the cost of the optimal
routing for that demand, and Tmix is the mixing time of a random walk on the graph. Kelner
and Maymounkov [17] consider electrical routing on expander graphs (again with uniform
resistances) and show that this scheme achieves small competitive ratio and is quite robust
under edge deletions. Schild, Rao, and Srivastava [31] study the average length of electrical
flow paths, and as a consequence obtain O(log2 n) competitive ratio for the special family of
edge-transitive graphs. However, no non-trivial bound on the competitive ratio is known for
electrical routing on general networks. This leads to the following important question:

Does there exist an electrical routing (with non-uniform conductances) that obtains a
polylogarithmic competitive ratio with respect to the congestion cost-measure?

In this paper we give a partial answer to this question by showing how to obtain a
competitive ratio of O(log2 n) w.r.t. congestion with a convex combination of only O(

√
m)

electrical flows1.

▶ Theorem 1. Given a capacitated graph G = (V, E) with n vertices and m edges, there is an
algorithm that finds an oblivious routing scheme composed of a convex combination of O(

√
m)

electrical flows. The algorithm has competitive ratio O(log2 n), runs in time Õ(m3/2), and
can be implemented in parallel with Õ(

√
m) depth.

1 In personal communication, Sidford and Lee [32] claimed that they had also observed that there exists
an oblivious routing scheme based on a convex combination of O(

√
m) electrical flows that achieves

O(log2 n) competitive ratio.
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More specifically, we show that our competitive ratio is proportional to the best bound
on the localization of electrical flows (Lemma 2), which is currently shown to be O(log2 n).
Hence, any improvement on the localization bound would lead to an improvement in our
competitive ratio.

In contrast to this, all existing tree based oblivious routing schemes that guarantee
a polylogarithmic competitive ratio require at least Ω(m) trees2. The best achievable
competitive ratio with tree based schemes is O(log n). Note that electrical flows in particular
generalize oblivious routings that are based on a convex combination of spanning trees3

(as one could simply give all edges that are not part of the spanning tree a resistance of
infinity). Therefore, our work shows that going from trees to electrical flows allows us to
reduce the support of the convex combination from O(m) to O(

√
m) with a slight increase

in competitive ratio.
This reduction in the support of the convex combination also has an important implication

for the construction time, and in particular for the parallel depth of the construction. The
state of the art for constructing tree based oblivious routing schemes (with a polylogarithmic
guarantee on the competitive ratio) is the multiplicative weights update method [3]. One
iteration computes a low stretch spanning tree in time Õ(m) and updates weights/distances
on edges. This results in depth Õ(m) and work Õ(m2) for computing O(m) trees. Räcke,
Shah and Täubig [29] obtained a near-linear time algorithm for computing a single tree
flow sparsifiers with quality O(log4 n) using the near-linear time approximate maximum flow
result of Peng [24]. While their construction can be adapted to an O(log4 n) competitive
oblivious routing scheme, the best-known efficient implementations of such a scheme require
at least quadratic time in the size of the network.

We use the multiplicative weights update method with electrical flows. One iteration
computes a set of resistances/conductances that is good on average for the current edge-
weights and updates weights for the next iteration. We show that by using matrix sketching
we can implement one iteration in time Õ(m) as in the tree case. Because electrical flows
minimizes the ℓ2-squared norm of the flow values, we can show that we only require O(

√
m)

iterations to obtain a good oblivious routing scheme. This results in depth Õ(
√

m) and work
Õ(m3/2) for computing the convex combination of electrical flows4.

We show that our techniques also apply to oblivious routing measured with respect to
the ℓ1-norm of loads on the edges, where we obtain a competitive ratio of O(log2 n) with
O(

√
m) electrical flows. See Section 6 for details.

Related work

The study of oblivious routing was initiated by Valiant and Brebner [35], who developed
an oblivious routing protocol for routing in the hypercube that routes any permutation
in time that is only a logarithmic factor away from optimal. For the cost measure of
minimizing congestion, Räcke [26] proved the existence of an oblivious routing scheme with

2 The routing schemes in [26] and [28] are based on a single tree with different embeddings into the
network; for this discussion, this is viewed as several trees.

3 In general tree based routings may embed trees that contain Steiner nodes, i.e., vertices that are not
part of the network, and they may also use arbitrary paths to connect embedded vertices.

4 Note that computing the routing tables for quickly determining the outgoing edge from the header of a
packet adds additional work for tree-based and electrical-flow-based routing. For tree based routing this
can be done with work Õ(n2) per tree and depth Õ(1). For electrical flow based routing the work is
Õ(mn) per flow with depth Õ(1). See Section 7.

ITCS 2024
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polylogarithmic competitive ratio for any undirected network. This result was subsequently
improved to a competitive ratio of O(log2 n log log n) [13], and then to a competitive ratio
of O(log n) [27], which is optimal. Englert and Räcke [7] extend these results to oblivious
routing when the cost-measure is the ℓp-norm of the edge congestions.

Oblivious routing by electrical flows was first considered by Harsha et al. [14] for the goal
of designing oblivious routing schemes that minimize the cost-measure ∥ · ∥2

2, also known as
average latency, for the case of a single target. In this scenario, using electrical flows is a very
intuitive approach as it minimizes the ∥ · ∥2

2 of the flow. Specifically, in their algorithm, every
source in the oblivious routing scheme optimizes its flow as if no other source was active.
They show that this gives a competitive ratio of O(log n) for the ℓ2-norm squared of the flow.

Electrical flows also play a major role as a tool for speeding up flow computations (see
e.g. [23, 36, 10, 6, 4, 21, 16, 5]). This is due to the fact that electrical flow computations
reduce to solving Laplacian systems, which is a task that can be performed in nearly linear
time. In addition, flow algorithms usually aim to minimize the ℓ∞-norm in some way. The
fact that the ℓ2-norm is closer to the ℓ∞ than e.g. the ℓ1 norm helps in these optimizations.
Electrical flows have also been used to generate alternative routes in road networks [33].

Ghaffari, Haeupler, and Zuzic [11] introduced the concept of hop-constrained oblivious
routing. This is an oblivious routing scheme that is given an additional parameter h that
can be viewed as an upper bound on the dilation used by an optimum routing. They show
that one can obtain an oblivious routing scheme that guarantees a congestion of Õ(Ch)
and a dilation of Õ(h), where Ch is the optimum congestion that can be obtained with
routing paths of length at most h. However, their construction still suffers from the same
drawback as tree-based routing schemes in that it requires Ω(m) iterations of multiplicative
weights, which results in a depth of Ω(m). There has also been recent interest in computing
competitive routing schemes with small support, as shown in the work of Zuzic, Haeupler,
and Roeyskoe [37] in the context of semi-oblivious routing.

In the sub-polynomial competitive ratio regime, Kelner et al. [16] give an algorithm to
compute an no(1) competitive oblivious routing in m1+o(1) time, and use this as a subroutine
to compute a (1 + ϵ)-approximate maximum s-t flow and concurrent multicommodity flow in
almost-linear time. Haeupler et al. [12] present a construction of routing tables for h-hop
routing that runs in O(D+poly(h)) rounds of the CONGEST-model of distributed computing,
and guarantee a competitive ratio of no(1). This essentially means that the resulting packet
routing algorithm can schedule any permutation in time no(1) whenever this is possible, and
it’s extremely fast. However, the scheme crucially uses the fact that routing requests are
initiated from both communication partners; it requires name-dependent routing (the node
ids are changed during initialization to allow for compact routing tables), and it does not
achieve a polylogarithmic competitive ratio.

Technical Overview

For the so-called linear oblivious routing schemes (such as tree-based routing schemes or
electrical flows) it is well known that the worst demand is a demand of 1 along every edge in
the unweighted network. An optimal algorithm can trivially route this demand by sending 1
unit of flow along every edge in the network, and, hence, has maximum congestion 1. Let
loadw(e) denote the load on edge e generated by an electrical flow routing (with conductances
w) when routing this worst case demand. The competitive ratio of the routing scheme is
then maxe loadw(e). We can write the search for a good convex combination of electrical
flow routings wi as a linear program:
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min α

s.t. ∀e
∑

i λi · loadwi
(e) ≤ α∑
i λi = 1

∀i λi ≥ 0 .

We want to find a good solution to this problem, say with objective value β. For this the
multiplicative weights update method maintains a set of weights pe ≥ 0 on the edges with∑

e pe = 1. In each iteration it computes one routing Ri such that Ri fulfills
∑

e peloadRi(e) ≤
β, i.e., the weighted total load over all edges for Ri is at most β. Here loadRi

(e) denotes
the load induced on edge e when routing a demand of 1 along every edge using the routing
Ri. This means on average the edges have load at most β when using routing Ri. For
the next iteration the weight pe of edges with loadRi

(e) > β is increased while edges with
loadRi(e) < β decrease their weight. In the end the convex combination of all the routings
will have load at most β for every edge.

To apply this scheme we first need a bound β such that we always can (efficiently) find a
routing with

∑
e peloadRi

(e) ≤ β. For tree-based routing one can use small stretch trees [8, 1]
to solve this problem with β = O(log n). For electrical routing we show that we can bound
β using a specific choice of parameters in the so-called localization lemma due to Schild
et al. [31]. Informally, the localization lemma states that the average length of flow paths
in an electrical routing is small. In particular, we show that we can find parameters for
localization which guarantee the existence of conductances w such that the load when routing
via the electrical flow with conductances w (say loadw) fulfills

∑
e peloadw(e) ≤ β, with

β = O(log2 n).
Secondly we need to be able to efficiently compute the load on every edge after computing

the routing Ri in an iteration, in order to be able to adjust the weights for the next iteration.
Naïvely routing across each edge using Ri would require time O(m2) for solving m Laplacian
systems to compute the electrical flow between the end points of each edge. We use a
sketching result due to Indyk [15] for approximating the ℓ1-norm of vectors. This allows
us to approximate the loads due to all m electrical flows in time Õ(m). We show that this
approximation is still sufficient for the multiplicative weights method to work correctly.

The advantage of using electrical flows within the multiplicative weights update framework
is that it allows to derive a better bound on the convergence time. The number of iterations
required for the method is proportional to how far each inequality, namely loadw(e) ≤ β

for each e, is violated by the routing found in each iteration. This is the so-called width of
the algorithm, and we bound the width by O(

√
m) by regularizing the weights to be nearly

uniform. This in turn implies that we require only O(
√

m) iterations.

2 Preliminaries

For simplicity of presentation, we present the uncapacitated case in the following sections,
and explain the changes required for the capacitated case in Section 8.

2.1 Oblivious Routing
Graph. We will route on unweighted, undirected graphs. Choose an arbitrary orientation
of the edges and let B be the m × n incidence matrix of G. Denote by be the row of B

corresponding to edge e.

ITCS 2024
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Demand. A demand χ ∈ Rn encodes the flow deficit/surplus requirements for each vertex
in the graph. A demand is valid if

∑
i χi = 0, that is, the requirements at all the vertices

of the graph cancel out. Let X ⊆ Rn denote the space of all valid demands. Note that the
vector bT

e has unit demand across the endpoints of e (with the direction of demand decided
by the orientation of the edge). If the demands are only between pairs of vertices (s, t), then
we encode the demands between all pairs of vertices in a demand vector d ∈ R(n

2).

Flow. A flow corresponding to a demand χ is a vector f ∈ Rm that ensures that the flow
out of a vertex satisfies the demand, namely, χv +

∑
u∼v fuv = 0 for all v ∈ V . For example,

an (s, t)-flow is one where the demands of every vertex except s and t are zero.

Oblivious routing. An m × n matrix M that maps vertex demands to edge flows is called
an oblivious routing scheme5 if for any valid demand χ the vertex demands created by the
flow generated by M are equal to the input vertex demands. Formally, we require that BTM

is identity on X, i.e., BTMχ = χ for all valid demands χ ∈ X.

Competitive ratio. For an oblivious routing M and any collection of demands D = {χi}i,
the flow across edge e for routing demand χi is given by |beMχi|. Thus the total flow
(without cancellations) across edge e when routing all the demands in D independently using
M is given by fe =

∑
χi∈D |beMχi|. We would like to minimize the ℓp norm (in this paper,

p ∈ {1, ∞}) of the flow resulting from routing these demands independently with an oblivious
routing M , as compared with the optimal routing that can adaptively choose the routing
based on the demands. If OPTp(D) is the cost resulting from the optimal routing, and f is
the flow described above, then the competitive ratio of the oblivious routing scheme M is
given by

βp(M) = max
D

∥f∥p

OP Tp(D)

Kelner and Maymounkov [17, Theorem 3.1] show that for a linear oblivious routing on an
uncapacitated graph, the worst case demand set is routing one unit of flow across every edge
of the graph, i.e., the worst case requests are the columns of BT. Since the optimal routing is
to route each demand across the same edge, OPT (BT) = 1. For p ∈ {1, ∞}, the competitive
ratio is then given by βp(M) = ∥MBT∥p.

Load. For oblivious routing M , the flow across edge e for the demand bf is given by
loadM (f → e). This can be obtained from the matrix M as loadM (f → e) = |(MbT

f )e|. The
sum of all flows across an edge e for every possible edge demand vector bf is then the load
across the edge e.

loadM (e) =
∑

f loadM (f → e) =
∑

f |(MbT
f )e|.

Note that the congestion, or the competitive ratio for the ℓ∞ norm, is then just the
maximum load on any edge in the graph by definition of ∥MBT∥∞.

5 While an oblivious routing scheme in general could be non-linear, we only consider linear routing
schemes in this paper.
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Convexity of load. Load is convex on oblivious routings. For two oblivious routings M0
and M1, let Mλ = λM1 + (1 − λ)M0 for λ ∈ (0, 1). Then

loadMλ
(f → e) = |((λM1 + (1 − λ)M0)bT

f )e| ≤ λ|(M1bT
f )e| + (1 − λ)|(M0bT

f )e|

= λloadM1(f → e) + (1 − λ)loadM0(f → e)

The simplex. We use ∆m = {x ∈ Rm :
∑

xi = 1, xi ≥ 0} to denote the m-simplex. Any
p ∈ ∆m then represents a probability distribution over the edges.

2.2 Electrical Flow
Graph. Let (G, w) be a weighted, undirected graph with edge weights {we}6. Choose an
arbitrary orientation of the edges. B is the m × n incidence matrix of G. If W = diag(w)
is the m × m diagonal matrix of edge weights, then the n × n Laplacian matrix is given by
L = BTWB, and L† is its pseudoinverse. Notationally, when we use L†, we always mean
the pseudoinverse of the Laplacian with respect to the current weighted graph and not the
underlying unit-weighted graph.

Electrical flow. Given a weighted graph (G, w) and a demand χ, the electrical flow corre-
sponding to χ is given by WBL†χ.

Load. By the above characterization of electrical flow, the load across an edge e for unit
current demand across f is given by loadw(f → e) = we|beL†bT

f |. The load on an edge
is the sum of all loads on the edge for demands bf for all edges f , given by loadw(e) =
we

∑
f |beL†bT

f |.

Weights determine electrical flow. An electrical flow is completely determined by the edge
weights. That is, given an edge weighting w of an unweighted graph G, there is a unique
routing WBL† corresponding to this network. If the unweighted graph G is fixed, we denote
the load due to weights w on an edge e as loadw(e).

Electrical flows are oblivious. Let G be an unweighted graph for which we wish to find
an oblivious routing. Then for any weighting w of the graph, the corresponding electrical
flow Mw = WBL† is an oblivious routing. This is easy to check, since BTWBL† =
(BTWB)(BTWB)†. We will refer to Mw as the electrical routing with respect to the weights
{we}.

Localization. We will repeatedly use the following so-called localization lemma. A concrete
instantiation with αlocal = c log2(n) for some constant c was given by Schild et al. [31].

▶ Lemma 2 (Localization [31]). Let G be a graph with weights {we}. Then for any vector
ℓ ∈ Rm

≥0,∑
e,f∈E ℓeℓf

√
wewf |beL†

GbT
f | ≤ αlocal · ∥ℓ∥2

2

6 Think of them as the conductances of the edges in an electrical network.

ITCS 2024
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Algorithm 1 ComputeRouting, to achieve O(αlocal)-competitive oblivious routing.
Input: An unweighted graph G.
Output: An oblivious routing scheme on G.

1 Set ρ←
√

2m and T ← 8ρ ln m
αlocal

2 Initialize x
(0)
e ← 1 for all e ∈ E, and X(0) ← m

3 for t = 1, 2, . . . , T do
4 Set p

(t)
e ← x

(t−1)
e /X(t−1) for all e ∈ E

5 Set w
(t)
e ← (pe + 1/m)−1 for all e ∈ E

6 Set W (t) ← diag(w)
7 Set M (t) ←W (t)B

(
BTW (t)B

)†

8 Set aloadw(t) ← GetApproxLoad(G, w, 1/2)
9 Set x

(t)
e ← x

(t−1)
e ·

[
1 + 1

2ρ
· aloadw(t) (e)

]
10 Set X(t) ←

∑
e

x
(t)
e

11 end
12 return M∗ = 1

T
·
∑T

t=1 M (t)

2.3 Matrix sketches
To speed up our algorithms we use a sketching result by Indyk [15, Theorem 3], adapted
from a formulation by Schild [30, Theorem 9.13].

▶ Theorem 3 ([15]). Given m ∈ Z≥1, δ ∈ (0, 1), and ϵ ∈ (0, 1), there is a sketch matrix
C = SketchMatrix(m, δ, ϵ) ∈ Rℓ×m and an algorithm RecoverNorm(s) for s ∈ Rℓ such
that the following properties hold:

(Approximation) For any v ∈ Rm, with probability at least 1 − δ over the randomness of
SketchMatrix, the value of r = RecoverNorm(Cv) is

(1 − ϵ)∥v∥1 ≤ r ≤ (1 + ϵ)∥v∥1

ℓ = c/ϵ2 · log(1/δ) for some constant c > 1
(running time) SketchMatrix and RecoverNorm take time O(ℓm) and poly(ℓ) re-
spectively.
We will require that our theorems hold with high probability, and thus we will set δ to be

1/poly(n). We will also set the approximation constant ϵ to be 1/2, which gives ℓ = O(log n).

3 Algorithm for routing

In this section, we give an algorithm that returns a routing which achieves competitive
ratio O(αlocal) by taking a convex combination of

√
m electrical flows, where αlocal is the

best localization result for electrical flows in Lemma 2. We use the multiplicative weights
update method (MWU) to obtain this guarantee. The algorithm is presented in Algorithm 1
(ComputeRouting). We are essentially solving the following linear program with MWU

min α

s.t. ∀e
∑

i λi · loadwi
(e) ≤ α∑
i λi = 1

∀i λi ≥ 0.
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Algorithm 2 GetApproxLoad, to compute approximate loads for electrical routing.
Input: A graph G, weights {we}e∈E on the edges, approximation factor ϵ.
Output: Approximation {aloadw(e)}e∈E to the load on the edges.

1 Let B be the edge-vertex incidence matrix of G

2 Let L := BTdiag(w)B be the Laplacian matrix
3 Set C ← SketchMatrix(m, n−10, ϵ)
4 Set X ← BTCT

5 Let X(i) be the ith column of X for all i ∈ [ℓ]
6 Set U (i) ← LapSolve(L, X(i)) for all i ∈ [ℓ]
7 Set U ← (U (1), U (2), . . . , U (ℓ)) ▷ U = (CBL†)T

8 Set aloadw(e)← we ·RecoverNorm(UTbe) for all e ∈ E

9 return aloadw

The primal asks for a convex combination of electrical routings that gives low competitive
ratio, where the coefficients of the convex combination are collected in λ. The dual of the
above linear program is equivalent to solving

maxp∈∆m mini

∑
e peloadwi

(e), (1)

Denote the optimal values of the primal and dual by α∗ and β∗ respectively. Since α∗ = β∗ by
strong duality, we can obtain an existential bound on α∗ by showing that β∗ ≤ αlocal. This
bound on β∗ is obtained by bounding (1) using the weighting returned by Lemma 4 which
returns, for any p ∈ ∆m, a weighting w for which the pe weighted average load is smaller
than 2αlocal. The proof of the bound in Lemma 4 uses localization, and we wish to convert
this existential result into an algorithmic one, which we do using MWU in Algorithm 1.

Our MWU algorithm can be described as the following primal-dual algorithm running
for T iterations: We initially start with the primal vector λ = 0 and dual vector p

(1)
e = 1/m.

We then build a primal solution incrementally as follows. At iteration t, we look at the
dual variables p

(t)
e of the edges, and find a particular set of weights w

(t)
e such that routing

with respect to these weights gives low average load with respect to the dual variables, i.e.,∑
e p

(t)
e loadw(t)(e) is low. As in the existential case, we show a bound of O(αlocal) on this

average load using localization.
Recall that the primal vector λ gives the coefficients for a convex combination of electrical

routings. We now increase the primal coefficient corresponding to the routing that was
found at this iteration, λM(t) , by 1/T . We essentially “add” this routing to the final convex
combination that we output at the end of the algorithm. Now we need to update the dual
variables for the next iteration. For the routing returned in the next iteration, we want to
reduce the load on edges that had really high load in the current iteration. To this end, we
compute the loads induced on each edge (using GetApproxLoad), and adjust the dual
variables based on how high the loads for the current routing M (t) are.

At the end of T iterations, λ is the uniform combination of all T electrical routings
computed during each iteration of the algorithm. The analysis of MWU shows that our dual
variable updates ensure low load on all the edges for the returned routing. The number of
iterations T is proportional to how far each primal inequality, namely loadw(t)(e) ≤ αlocal for
each e, is violated by the routing found in each iteration. This is the width of the algorithm,
and we bound the width by O(

√
m).

For the running time, note that evaluating loads for all the edges naïvely would take time
O(m2) in each iteration, since it would involve calculating |beL†bT

f | for every pair of edges
(e, f) ∈ E2. However, the load on each edge can also be expressed as the ℓ1 norm of the
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vector BL†be. We use a sketching result by Indyk [15] stated in Theorem 3, which gives a
sketch matrix C that preserves ℓ1 norms up to small multiplicative errors. Similar ideas have
been implicitly used by Schild [30], and later in other works [22, 9] as well. Our sketching
improves the running time from O(m2) to Õ(m) per iteration. Since there are T = O(

√
m)

iterations, we get a bound of Õ(m
√

m) for constructing our routing.
For simplicity, we first assume that in GetApproxLoad we have an exact Laplacian

solver that runs in time Õ(m), and present below the analysis in Section 4. The analysis
when using an approximate Laplacian solver is more technical, and we defer it to the full
version. The complication to overcome when using an approximate Laplacian solver in line 6
of GetApproxLoad is the following: The input to RecoverNorm might not necessarily
be of the form Cv for some v ∈ Rm, since we use the approximate Laplacian solver on BTCT,
and thus would have obtained approx(CBL†)be at the end. Note that if we instead had
Capprox(BL†be) this would be fine, since we would get that RecoverNorm(CBL†be) ≈
∥BL†be∥1 and ∥BL†be∥1 ≈ ∥approx(BL†be)∥1, and the resulting guarantee would be the
product of these two approximation guarantees.

At a high level, we have an approximation to the vector after sketching (approx(Cv))
instead of an approximation to the vector before sketching (Capprox(v)). Since the function
RecoverNorm is not a norm, we do not have a guarantee that it behaves well on inputs
that are close to each other. We need to argue that RecoverNorm still returns a useful
answer when given an input vector that is not in the column space of C, but is nevertheless
close in the L norm to the required vector Cv. This requires some technical analysis.

4 Proof of correctness

The proof is an adaptation of the multiplicative weight update proof to our setting. The proof
uses the following three lemmas. Due to their length we defer their proofs to Sections 4.1,
4.2, and 4.3 respectively. The first lemma shows that the (pe weighted) average edge load is
O(αlocal).

▶ Lemma 4. For any probability distribution p ∈ ∆m, the oblivious routing Mw corresponding
to the electrical network with weights we = (pe + 1/m)−1 satisfies

∑
e peloadw(e) ≤ 2αlocal.

We use the second lemma to show that in each iteration of ComputeRouting the true
loads on each edge are O(

√
m) away from αlocal.

▶ Lemma 5. For any probability distribution p ∈ ∆m, the oblivious routing Mw corresponding
to the electrical network with weights we = (pe + 1/m)−1 satisfies loadw(e) ≤

√
2m for every

edge e.
The third lemma shows that the error introduced by using matrix sketching while

computing GetApproxLoad is not too large, i.e., that GetApproxLoad approximates
the true loads well. Since existing Laplacian solvers work in the high-accuracy regime (with
error proportional to log(1/ϵ)), we assume here for simplicity that the Laplacian solver used
in GetApproxLoad is exact and runs in time Õ(m). The analysis with an approximate
solver is deferred to the full version.

▶ Lemma 6. For any approximation factor 0 < ϵ < 1, and any weighted graph (G, w), let
loadw =

(
we

∑
f |beL†bT

f |
)

e∈E
be the true loads, and aloadw = GetApproxLoad(G, w, ϵ)

be the approximate loads computed by the algorithm. Then with probability ≥ 1 − 1/poly(n),

(1 − ϵ) · loadw(e) ≤ aloadw(e) ≤ (1 + ϵ) · loadw(e) for all e ∈ E
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We first track the potential function ∥x(t)∥1, and upper bound the increase in ∥x(t)∥1
throughout the algorithm.

▶ Lemma 7. For any t ≥ 1, ∥x(t)∥1 ≤ ∥x(t−1)∥1 ·exp(2αlocal/ρ). At the end of the algorithm,
∥x(T )∥1 ≤ m · exp(2αlocalT/ρ).

Proof. Once we prove the first statement, the implication for ∥x(T )∥1 follows from noting
that ∥x(0)∥1 = m. For any t ≥ 1, we have

∥x(t)∥1 =
∑

e x
(t)
e =

∑
e x

(t−1)
e ·

(
1 + 1

2ρ · aloadw(t)(e)
)

=
∑

e x
(t−1)
e + 1

2ρ ·
∑

e x
(t−1)
e · aloadw(t)(e)

≤
∑

e x
(t−1)
e + ∥x(t−1)∥1

ρ ·
∑

e
x(t−1)

e

∥x(t−1)∥1
· loadw(t)(e) (by Lemma 6)

≤ ∥x(t−1)∥1 + ∥x(t−1)∥1
ρ · 2αlocal (by Lemma 4)

≤ ∥x(t−1)∥1 · exp
(

2αlocal
ρ

)
◀

Next, we lower bound the weight x
(t)
e in terms of the load on each edge.

▶ Lemma 8. Let M∗ be the routing returned by the algorithm. For any edge e,

x
(T )
e ≥ exp

(
T
8ρ · loadM∗(e)

)
.

Proof. For any edge e and t ≥ 1, we have

x
(t)
e =

∏t
t′=1

(
1 + 1

2ρ · aloadw(t′)(e)
)

≥
∏t

t′=1

(
1 + 1

4ρ · loadw(t′)(e)
)

(by Lemma 6)

≥
∏t

t′=1 exp
(

1
8ρ · loadw(t′)(e)

)
(since ex ≤ 1 + 2x for 0 < x < 1, and Lemma 5)

= exp
(

1
8ρ ·

∑t
t′=1 loadw(t′)(e)

)
In particular, for t = T , we have

x
(T )
e ≥ exp

(
1

8ρ ·
∑T

t′=1 loadw(t′)(e)
)

≥ exp
(

T
8ρ · loadM∗(e)

)
(by convexity of load) ◀

▶ Theorem 9. The routing returned by Algorithm 1 has competitive ratio O(αlocal).

Proof. Combining Lemmas 7 and 8, for any edge e,

m exp
(

2αlocalT
ρ

)
≥ ∥x(T )∥1 ≥ x

(T )
e ≥ exp

(
T
8ρ · loadM∗(e)

)
which in particular gives the required upper bound on loadM∗(e) for any edge e, since

loadM∗(e) ≤ 16αlocal + 8ρ log m
T

= O(αlocal) ◀
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4.1 Bound on Average Loads
▶ Lemma 4. For any probability distribution p ∈ ∆m, the oblivious routing Mw corresponding
to the electrical network with weights we = (pe + 1/m)−1 satisfies

∑
e peloadw(e) ≤ 2αlocal.

Proof. Setting ℓe to 1/√
we and applying Lemma 2, we get∑

e peloadw(e) =
∑

e pe

∑
f loadw(f → e)

=
∑

e pe · we ·
∑

f |beL†bT
f | (by definition of load)

=
∑

e pe · (pe + 1/m)−1 ·
∑

f |beL†bT
f | (by definition of we)

≤
∑

e

∑
f |beL†bT

f |

=
∑

e,f
1/√

wewf · √
wewf · |beL†bT

f |

=
∑

e,f ℓeℓf · √
wewf · |beL†bT

f | (by choice of ℓe)

≤ αlocal · ∥ℓ∥2
2 (by Lemma 2)

= αlocal ·
∑

e
1/we

= αlocal ·
∑

e (pe + 1/m)
= 2αlocal,

as required. ◀

4.2 Bounding the Width
Next we show that the width is bounded above by O(

√
m). We first prove a couple of

properties of the Π matrix that we will use in our analysis.

▶ Lemma 10. The matrix Π is a projection matrix.

Proof. We show that Π2 = Π.

Π2 =
(
W 1/2BL†BTW 1/2

)
·
(
W 1/2BL†BTW 1/2

)
=

(
W 1/2B

)
·
(
L†BTWBL†)

·
(
BTW 1/2

)
=

(
W 1/2B

)
· L† ·

(
BTW 1/2

)
= Π.

as required. ◀

We will use the next lemma to bound the width for both the ℓ∞ and the ℓ1 case.

▶ Lemma 11. Let G be a graph with weights {we} and let L be the Laplacian matrix
associated with G. For any edge e, we have that∑

f wewf |beL†bT
f |2 ≤ 1.

Proof. By Lemma 10 we know that Π is a projection matrix. This in particular implies that
the diagonal entries of Π (and hence Π2) are less then 1. Thus,

∑
f wewf |beL†bT

f |2 =
∑

f

(√
wewf · |beL†bT

f |
)2

=
∑

f Π(e, f)2 = Π2(e, e) ≤ 1,

which was what we were after. ◀
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▶ Lemma 5. For any probability distribution p ∈ ∆m, the oblivious routing Mw corresponding
to the electrical network with weights we = (pe + 1/m)−1 satisfies loadw(e) ≤

√
2m for every

edge e.

Proof. Fixing an edge e,

loadw(e) = we

∑
f |beL†bT

f | ≤
∑

f

√
we/wf · √

wewf |beL†bT
f |

≤
√∑

f
we/wf ·

√∑
f wewf |beL†bT

f |2 (by Cauchy-Schwarz)

We now bound each of the two terms separately. For the first term, note that

we ·
∑

f
1/wf = (pe + 1/m)−1 ·

∑
f (pf + 1/m) ≤ 2 · (pe + 1/m)−1 ≤ 2 · 1/(1/m) = 2m.

For the second term, by Lemma 11, we know that∑
f wewf |beL†bT

f |2 ≤ 1.

Putting these two inequalities together, we get that loadw(e) ≤
√

2m for any edge e,
which gives the desired bound of

√
2m on the width. ◀

4.3 Proof of GetApproxLoad correctness assuming exact Laplacian
solver

We use the guarantees of SketchMatrix and RecoverNorm provided by Theorem 3 to
prove the following lemma.

▶ Lemma 6. For any approximation factor 0 < ϵ < 1, and any weighted graph (G, w), let
loadw =

(
we

∑
f |beL†bT

f |
)

e∈E
be the true loads, and aloadw = GetApproxLoad(G, w, ϵ)

be the approximate loads computed by the algorithm. Then with probability ≥ 1 − 1/poly(n),

(1 − ϵ) · loadw(e) ≤ aloadw(e) ≤ (1 + ϵ) · loadw(e) for all e ∈ E

Proof. Note that GetApproxLoad sends (L†BTCT)Tbe to RecoverNorm. This simplifies
to CBL†be. We get from the approximation guarantee of Theorem 3 that

(1 − ϵ) · ∥BL†be∥1 ≤ RecoverNorm(BL†be) ≤ (1 + ϵ) · ∥BL†be∥1

Since loadw(e) = we · ∥BL†be∥1, multiplying the above inequality by we, we get

(1 − ϵ) · loadw(e) ≤ GetApproxLoad(G, w) ≤ (1 + ϵ) · loadw(e)

as required. ◀

5 Running time analysis

In this section, we show that Algorithm 1 (ComputeRouting) runs in time Õ(m3/2). If
we show that each iteration of the for loop in ComputeRouting takes time Õ(m), then
since T = O(

√
m), the claimed running time then follows. We first show that Algorithm 2

(GetApproxLoad) runs in time Õ(m).

▶ Lemma 12. Algorithm 2 runs in time Õ(m).
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Proof. Calculating B and L takes time O(m). By Theorem 3, building the sketch matrix
C takes time O(ℓm). Since we set δ = n−10 and ϵ = 1/2 for the sketch matrix, we get
ℓ = O(log n), which gives O(ℓm) = Õ(m).

Each row of BTCT can be obtained as follows: Since the row of BT corresponding to
vertex u has deg(u) non-zero entries, the row of BTCT corresponding to vertex u can be
obtained by taking the sum of every row of CT corresponding to an edge that is incident to
u. Since each row of CT has ℓ entries, this involves O(deg(u) · ℓ) calculations for computing
row u of BTCT. Since

∑
u deg(u) = 2m, this gives an overall bound of Õ(m) for calculating

BTCT. Each Laplacian solver takes time Õ(m), and since we solve for ℓ vectors, all Laplacian
solves together take time Õ(m) as well.

Finally, we perform RecoverNorm for m edges. Each invocation of RecoverNorm
takes time O(ℓ) by Theorem 3, and thus all calls to RecoverNorm together run in time
Õ(m). This proves the lemma. ◀

We can use this to show that each iteration of the for loop in ComputeRouting runs
in time Õ(m), and thus the entire algorithm runs in time Õ(m3/2).

▶ Lemma 13. Algorithm 1 runs in time Õ(m3/2).

Proof. For each iteration of the for loop, normalizing the x
(t−1)
e s and calculating w

(t)
e (and

thus W (t)) takes time O(m). Calculating approximate loads is Õ(m) by Lemma 12. Since
computing x

(t)
e takes time O(m), each iteration runs in time Õ(m). Thus the algorithm runs

in time Õ(Tm) = Õ(m3/2) by choice of T = O(
√

m). ◀

6 Extension to the ℓ1 norm Oblivious Routing

In this section we prove that a convex combination of O(
√

m) electrical routings gives an
oblivious routing scheme with respect to the ℓ1 norm that achieves a O(log2 n) competitive
ratio. By the characterization of the competitive ratio as β1 = ∥MBT∥1, our goal is now to
bound the maximum stretch of an edge.

Consider the oblivious routing operator Mw = WBL†. The stretch of an edge e ∈ E with
respect to the routing operator Mw is given by:

stretchw(e) :=
∑

f wf |beL†bT
f |.

Similar to earlier, our goal is to solve the following linear program.

min α

s.t. ∀e
∑

i λi · stretchwi
(e) ≤ α

λ ∈ ∆m

Doing the same dual construction as for the load gives us that the dual is equivalent to
solving

maxp∈∆m mini

∑
e pestretchwi

(e), (2)

Then the only difference from earlier is having to show that we can bound the average
stretch and the width for stretch as well. In particular, we first show that for every p ∈ ∆m

we can produce a weighting w such that electrical routing on G with weights w gives low
average stretch, i.e.,

∑
e pestretchw ≤ αlocal.
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▶ Lemma 14. For any probability distribution p ∈ ∆m, the oblivious routing Mw correspond-
ing to the electrical network with weights we = (pe +1/m) satisfies

∑
e pestretchw(e) ≤ 2αlocal.

Proof. Setting ℓe to √
we and applying Lemma 2, we get∑

e pestretchw(e) =
∑

e pe ·
∑

f wf · stretchw(e → f)

=
∑

e pe ·
∑

f wf · |beL†bT
f | (by definition of stretch)

≤
∑

e(pe + 1/m) ·
∑

f wf · |beL†bT
f |

≤
∑

e we ·
∑

f wf · |beL†bT
f | (by definition of we)

=
∑

e

∑
f we · wf · |beL†bT

f |

=
∑

e,f

√
wewf · √

wewf · |beL†bT
f |

=
∑

e,f ℓeℓf · √
wewf · |beL†bT

f | (by choice of ℓe)

≤ αlocal · ∥ℓ∥2
2 (by Lemma 2)

= αlocal ·
∑

e we

= αlocal ·
∑

e (pe + 1/m)
= 2αlocal,

as required. ◀

We next bound the width by showing an upper bound on the stretch of every single edge.

▶ Lemma 15. For any probability distribution p ∈ ∆m, the oblivious routing Mw correspond-
ing to the electrical network with weights we = (pe + 1/m) satisfies stretchw(e) ≤

√
2m for

every edge e.

Proof. Fixing an edge e,

stretchw(e) =
∑

f wf |beL†bT
f |

≤
∑

f

√
wf/we · √

wewf |beL†bT
f |

≤
√∑

f
wf/we ·

√∑
f wewf |beL†bT

f |2 (by Cauchy-Schwarz)

We now bound each of the two terms separately. For the first term,

1/we ·
∑

f wf = (pe + 1/m)−1 ·
∑

f (pf + 1/m)

≤ 2 · (pe + 1/m)−1

≤ 2 · 1/(1/m)

= 2m.

For the second term, by Lemma 11, we know that∑
f wewf |beL†bT

f |2 ≤ 1.

Putting these two inequalities together, we get that stretchw(e) ≤
√

2m for any edge e,
which gives the desired bound of

√
2m on the width. ◀

With these two lemmas, the rest of the proofs of the bound on the competitive ratio are
exactly the same as in the ℓ∞ case. While most of the running time analysis holds, note
that we need to sketch slightly different matrices now. Earlier, we wanted to approximate
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loadw(e) = we ·
∑

f |beL†bT
f |. Thus we approximated ∥BL†be∥1 with our sketch matrix, and

then multiplied it with we to obtain approximate loads. Since we now need to approximate
stretchw(e) =

∑
f wf |beL†bT

f |, we instead sketch WBL†be to obtain the approximate stretch.
Note that load and stretch are simply the row and column 1-norms respectively of WBL†BT.

7 The Representation of Oblivious Routing and the Parallel
Complexity

We discuss the representation of our oblivious routing scheme and the parallel complexity of
our algorithms.

Representation of Oblivious Routing

Any linear oblivious routing scheme can be implemented using the following representation:
every edge e ∈ E stores the flow sent across edge e by an oblivious routing that sends one
unit of flow from u to x, for every vertex u ∈ V and some arbitrary but fixed target vertex
x ∈ V . We let fu,x(e) denote the value of such an oblivious flow. Thus every edge stores n

values and the total space is O(nm). Upon receiving a query for routing demand pairs ds,t of
demand vector d ∈ R(n

2), we can compute the (s, t)-flow along any edge e ∈ E by computing

ds,t · (fs,x(e) − ft,x(e)),

where the correctness follows from the fact that the oblivious routing operator is linear.
We need to show that our oblivious routing operator based on a convex combination of

electrical routings is linear. Note that Mw := WBL† is a linear routing operator for any
weighting on the edges {we}. Therefore, any convex combination

∑
i λiMwi with

∑
i λi = 1

is also a linear routing operator.
It remains to study the running time of constructing such a representation, which we

refer to as the preprocessing time. We start by considering the cost of constructing the
representation for a single electrical routing Mw := WBL†. Since fu,x(e) = (WBL†χu,x)e,
our goal is to compute WBL†χu,x, for every u ∈ V and the fixed vertex x, which can be
achieved by solving n Laplacian systems. Each such system can be solved in Õ(m) time using,
say, the solver of Spielman and Teng [34], which in turn leads to a processing time of Õ(mn)
for a single electrical routing. Since our oblivious routing scheme consists of O(

√
m) electrical

routings, it follows that the total preprocessing time for constructing the representation for
these electrical routings is Õ(m3/2n).

Parallel Complexity

We next bound the parallel complexity of (i) multiplicative weights updates for computing the
weights of our oblivious routing scheme (Algorithm 1) and (ii) the algorithm for computing
the representations of our scheme. Both results rely on the fact that a Laplacian system can
be solved to high accuracy with nearly-linear work and polylogarithmic depth.

▶ Theorem 16 ([25, 19]). Given a n-vertex m-edge graph G, a Laplacian matrix L, a demand
vector y ∈ Rn and an error bound ϵL, there is a parallel algorithm that achieves Õ(m) work
and Õ(1) depth and returns a vector x ∈ Rn such that

∥x − L†y∥L ≤ ϵL · ∥L†y∥L.

Our first result shows that our MWU-based oblivious routing can be implemented in
parallel with Õ(m3/2) work and Õ(

√
m) depth.
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▶ Lemma 17. There is a parallel implementation of Algorithm 1 that achieves Õ(m3/2) work
and Õ(

√
m) depth.

Proof. We start by analyzing the parallel complexity of Algorithm 1. Consider one iteration
of the for loop, and observe that the parallel complexity is dominated by the parallel cost of
computing approximate loads in Line 9, i.e., Algorithm 2. Hence, it suffices to bound the
parallel complexity of the latter. For generating the sketch matrix C, note that each edge
e ∈ E draws ℓ = O(log n) independent random variables from the Cauchy distribution [15],
and since these operations can be performed locally, it follows that constructing C takes
Õ(mℓ) = Õ(m) work and O(1) depth.

Next, we compute the (n × ℓ)-dimensional matrix X = BTCT in a row-wise fashion
(Algorithm 2, Line 4). The u-th row of BT contains deg(u) non-zero entries, and thus
an entry (X)u,i = (BTCT)u,i =

∑
e|e∼u bT

u,ecT
e,i can be evaluated with O(deg(u)) work and

O(log n) depth. As X has only ℓ = O(log n) columns, it follows that u-th row can be
computed with Õ(deg(u)) work and O(log n) depth. Summing the costs over all rows of X,
we conclude that X can be computed with Õ (

∑
u deg(u)) = Õ(m) work and O(log n) depth.

Finally, Lines 5 and 6 of Algorithm 2 involve solving ℓ = O(log n) Laplacian systems. By
Theorem 16, we can solve all these systems in parallel with Õ(m) work and Õ(1) depth.

Bringing all the above bounds together shows that an iteration of the for loop in
Algorithm 1 can be implemented in parallel with Õ(m) work and Õ(1) depth. Since in
total there are Õ(

√
m) iterations, we get that a parallel implementation of Algorithm 1 has

Õ(m3/2) work and Õ(
√

m) depth. ◀

Our second result show that the representation of our oblivious routing can be implemented
in parallel with Õ(m3/2n) work and Õ(1) depth.

▶ Lemma 18. The representation of the oblivious routing based on O(
√

m) electrical routings
can be implemented in parallel with Õ(m3/2n) work and Õ(1) depth.

Proof. We first analyze the cost of a single electrical routing given a weighting of the edges.
Recall that our representation requires that every vertex solves one Laplacian system. These
systems can be solved independently of each other (and thus in parallel), and by Theorem 16,
each of them can be implemented in parallel with Õ(m) work and Õ(1) depth. Thus, the
parallel complexity of a single electrical routing is Õ(mn) work and Õ(1) depth.

Now, note that our MWU algorithm has already computed Õ(
√

m) weightings of the
graph, each corresponding to a single electrical routing. Once computed, these weightings
are independent of each other and, thus, the electrical routings (one per vertex) for all of
these weightings can be computed in parallel. Therefore, the total complexity for computing
the representation of our routing scheme is Õ(m3/2n) work and Õ(1) depth.

To evaluate the average (oblivious) flow from the convex combination of Õ(
√

m) electrical
routings, each edge can locally compute the convex combination of the oblivious flows sent
along that edge with Õ(

√
m) work and O(log(

√
m)) = Õ(1) depth. Thus, it follows that the

total parallel complexity of this step is Õ(m3/2) work and Õ(1) depth.
Bringing the above bounds together proves the lemma. ◀

8 Routing on capacitated graphs

We detail the changes to obtain an oblivious routing on capacitated graphs.

Capacitated Graph. A capacitated graph G = (V, E, u) is a undirected graph along with a
function u : E → R+ that represents the capacity of each edge.
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Congestion. Given a flow f ∈ Rm, the congestion of an edge is the amount of flow on that
edge relative to its capacity, given by |fe|/ue.

Let U denote the m × m diagonal matrix with ue on the diagonals. Kelner and May-
mounkov [17, Theorem 3.1] show that the worst-case demands for a capacitated graph is
ue along each edge, i.e., the columns of BTU . Note that these can be routed optimally
with congestion 1, by simply routing each demand of ue across the same edge. In their
presentation, they use {we} for both the capacities and the conductances. We, on the other
hand, need to use conductances that are different from the capacities. While their proof
works for our case, for the sake of clarity, we present their proof of worst-case demands in
Section 8.4 using our notation. This then leads to the following definition of load.

Load. For a linear oblivious routing M , the congestion of edge e for routing uf · bT
f is given

by loadM (f → e) = u−1
e · uf · |(MbT

f )e|. The load on edge e is then given by summing this
congestion up for each f ∈ E, giving

loadM (e) =
∑

f loadM (f → e) = u−1
e ·

∑
f uf · |(MbT

f )e|

While congM (e) would be better than loadM (e) in the capacitated case, we continue using
loadM for continuity with the main body of the paper. For an electrical flow with weights
(i.e. conductances) {we}, the corresponding oblivious routing is then WBL† (where the
Laplacian is with respect to W , given by BTWB), and the load is

loadw(e) = we

ue
·
∑

f uf · |beL†bT
f |

To show the bound on competitive ratio for capacitated graphs, we then need to give a
set of weights {we} for each pe ∈ ∆m such that the MWU algorithm can be performed, and
we need to show that we can still use sketching to get approximate loads in Õ(m) time.

Concretely, we use the weights we = u2
e · (pe + 1/m)−1 in the algorithm. We need to prove

analogues of Lemmas 4 and 5, and we need to provide a version of GetApproxLoad that
works in the capacitated case. We do so in the next three sections, which gives Theorem 1.

8.1 Bound on Average Loads
▶ Lemma 19. For any probability distribution p ∈ ∆m, the oblivious routing Mw correspond-
ing to the electrical network with weights we = u2

e · (pe + 1/m)−1 satisfies
∑

e peloadw(e) ≤
2αlocal.

Proof. Setting ℓe to ue/√
we and applying Lemma 2, we get∑

e peloadw(e) =
∑

e pe ·
∑

f loadw(f → e)

=
∑

e pe · we/ue ·
∑

f uf · |beL†bT
f | (by definition of load)

=
∑

e pe · ue · (pe + 1/m)−1 ·
∑

f uf · |beL†bT
f | (by definition of we)

≤
∑

e

∑
f ueuf · |beL†bT

f |

=
∑

e,f
ueuf/√

wewf · √
wewf · |beL†bT

f |

=
∑

e,f ℓeℓf · √
wewf · |beL†bT

f | (by choice of ℓe)

≤ αlocal · ∥ℓ∥2
2 (by Lemma 2)

= αlocal ·
∑

e
u2

e/we

= αlocal ·
∑

e (pe + 1/m)
= 2αlocal ◀
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8.2 Bound on Width
We will use Lemma 11 again in our proof of the following lemma.

▶ Lemma 20. For any probability distribution p ∈ ∆m, the oblivious routing Mw correspond-
ing to the electrical network with weights we = u2

e · (pe + 1/m)−1 satisfies loadw(e) ≤
√

2m

for every edge e.

Proof. Note that by definition of we, we have ue =
√

we · (pe + 1/m). Fixing an edge e,

loadw(e) = we/ue ·
∑

f uf · |beL†bT
f |

≤
√

we/(pe+1/m) ·
∑

f

√
wf · (pf + 1/m) · |beL†bT

f | (by definition of ue and uf )

≤
∑

f

√
(pf +1/m)/(pe+1/m) · √

wewf · |beL†bT
f |

≤
√∑

f
(pf +1/m)/(pe+1/m) ·

√∑
f wewf · |beL†bT

f |2 (by Cauchy-Schwarz)

We now bound each of the two terms separately. For the first term, note that

(pe + 1/m)−1 ·
∑

f (pf + 1/m) ≤ 2 · (pe + 1/m)−1 ≤ 2 · 1/(1/m) = 2m.

For the second term, by Lemma 11, we know that∑
f wewf |beL†bT

f |2 ≤ 1.

Putting these two inequalities together, we get that loadw(e) ≤
√

2m for any edge e,
which gives the desired bound of

√
2m on the width. ◀

8.3 Capacitated GetApproxLoad

Algorithm 3 GetApproxLoad, to compute approximate loads for electrical routing.
Input: A graph G, weights {we}e∈E and capacities {ue}e∈E on the edges, approximation

factor ϵ.
Output: Approximation {aloadw(e)}e∈E to the load on the edges.

1 Let B be the edge-vertex incidence matrix of G

2 Let L := BTdiag(w)B be the Laplacian matrix
3 Set C ← SketchMatrix(m, n−10, ϵ)
4 Set X ← BTUCT

5 Let X(i) be the ith column of X for all i ∈ [ℓ]
6 Set V (i) ← LapSolve(L, X(i)) for all i ∈ [ℓ]
7 Set V ← (V (1), V (2), . . . , V (ℓ)) ▷ V = (CUBL†)T

8 Set aloadw(e)← weu−1
e ·RecoverNorm(UTbe) for all e ∈ E

9 return aloadw

Algorithm 3 contains the changes to GetApproxLoad for the capacitated case. Cor-
rectness follows from noting that loadw(e) is the ℓ1 norm of the eth row of U−1WBL†BTU .

8.4 Worst-case demands
We present the proof of the worst-case demands for oblivious routing on a capacitated graph
G = (V, E, u) being BTU from Kelner and Maymounkov [17, Theorem 3.1], using {ue} for
the edge capacities, and M as any linear oblivious routing.
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Since congestion of a linear oblivious routing scales linearly when the demands are
multiplicatively increased, it suffices to consider demands that can be routed optimally with
congestion 1. Let {χi}i be some set of demands that can be optimally routed with congestion
1, and let {fi}i be such an optimal routing. The claim follows from noting that demands
{
∑

i |fi,e|}e, i.e., demands of
∑

i |fi,e| across each edge e, can still be (non-linearly) routed
with congestion 1.

β∞(M) ≤ max
e′

u−1
e′ ·

∑
i

|be′Mχi| for any {χi}i with OPT({χi}i) = 1

= max
e′

u−1
e′ ·

∑
i

∣∣∣∣be′M

(∑
e

fi,ebT
e

)∣∣∣∣ (since f routes {χi}i)

= max
e′

u−1
e′ ·

∑
i

∣∣∣∣∑
e

fi,e · be′MbT
e

∣∣∣∣ (by linearity of M)

≤ max
e′

u−1
e′ ·

∑
i,e

∣∣fi,e · be′MbT
e

∣∣ (since |
∑

·| ≤
∑

| · |)

= max
e′

u−1
e′ ·

∑
e

∣∣∣∣∑
i

|fi,e| · be′MbT
e

∣∣∣∣
≤ max

e′
u−1

e′ ·
∑
e

∣∣ue · be′MbT
e

∣∣ (since {fi}i has congestion 1)

= max
e′

u−1
e′ ·

∑
e

∣∣·be′M(uebT
e)

∣∣
= ∥U−1MBTU∥∞

as required.
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