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Abstract
The problem of sorting with priced information was introduced by [Charikar, Fagin, Guruswami,
Kleinberg, Raghavan, Sahai (CFGKRS), STOC 2000]. In this setting, different comparisons have
different (potentially infinite) costs. The goal is to find a sorting algorithm with small competitive
ratio, defined as the (worst-case) ratio of the algorithm’s cost to the cost of the cheapest proof of
the sorted order.

The simple case of bichromatic sorting posed by [CFGKRS] remains open: We are given two
sets A and B of total size N , and the cost of an A − A comparison or a B − B comparison is higher
than an A − B comparison. The goal is to sort A ∪ B. An Ω(log N) lower bound on competitive
ratio follows from unit-cost sorting. Note that this is a generalization of the famous nuts and bolts
problem, where A − A and B − B comparisons have infinite cost, and elements of A and B are
guaranteed to alternate in the final sorted order.

In this paper we give a randomized algorithm InversionSort with an almost-optimal w.h.p.
competitive ratio of O(log3 N). This is the first algorithm for bichromatic sorting with a o(N)
competitive ratio.
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1 Introduction and main results

In their seminal paper “Query strategies for priced information”, Charikar, Fagin, Guruswami,
Kleinberg, Raghavan and Sahai [4] [CFGKRS STOC 2000] study the problem of computing
a function f of n inputs, where querying an input has a certain cost associated to it, and one
wants to find the cheapest query strategy that computes f . The competitive ratio is defined
as the (worst case) ratio of the cost of the query strategy to the cost of the cheapest proof
of f . This work initiated a multitude of papers on priced information, studying problems
like learning with attribute costs [10], stochastic boolean function evaluation [5], searching
on trees [14, 13], priced information in external memory [3], and others.

The problem of sorting with priced information, or even a simple bichromatic version of
it (stated by (CFGKRS [4])), remains tantalizingly open. After describing their main results,
(CFGKRS [4]) mention in further directions: “Sorting items when each comparison has a
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distinct cost appears to be highly non-trivial. Suppose, for example, we construct an instance
of this problem by partitioning the items into sets A and B, giving each A-to-B comparison
a very low cost, and giving each A-to-A and B-to-B comparison a very high cost. We then
obtain a very simple non-uniform cost structure in the spirit of the well-known hard problem
of ‘sorting nuts and bolts’”

We will call the above problem bichromatic sorting. Observe that bichromatic sorting
is a special case of the general sorting with priced information problem defined as follows.
Given a weighted undirected complete graph G, with weights wij ∈ R≥0 ∪ {∞} indicating
the cost to compare keys (vertices) xi and xj , find the cheapest sorting algorithm. To define
the competitive ratio of an algorithm, one first needs to define the cheapest proof, which
here is simply the sum of the costs to compare pairs of keys that are adjacent in the final
sorted order. Restated, it is the (finite) cost of the directed Hamiltonian path that must be
present (if the keys can be sorted) in the underlying DAG G⃗ resulting after revealing the
directions of all edges in G. Note that the same weighted complete graph G can give rise to
different DAGs G⃗ depending on the values assigned to the keys; we write G⃗← G if there is
a valid assignment of values such that G⃗ is obtained from G after revealing all comparisons.
The competitive ratio of an algorithm A on a given family G of weighted complete graphs is
then defined as

max
G∈G

max
G⃗←G

CostG(A, G⃗)
CostG(HG⃗) ,

where CostG(A, G⃗) is the cost of the algorithm A on the input with underlying DAG G⃗, and
CostG(HG⃗) is the cost of the Hamiltonian path in G⃗.

With this notation, bichromatic sorting corresponds to the family G consisting of all
graphs G = (V = R ∪B, E = Err ∪ Erb ∪ Ebb), where the vertex set can be partitioned into
R (Red) and B (Blue), and the edges are of three types: Err is the set of red-red edges with
cost α ≥ 0, Erb the red-blue edges with cost 1, and Ebb the blue-blue edges with cost β ≥ 0
(w.l.o.g. we have normalized the bichromatic comparisons to cost 1). The classic unit-cost
setting corresponds to the complete graph with all weights equal to one. The competitive
ratio in the unit-cost setting is thus Θ(log n)1.

This paper addresses the question posed by (CFGKRS [4]): What is the competitive ratio
for bichromatic sorting. Is it close to the Θ(log n) competitive ratio in the unit-cost setting?

Note that there are different ways to interpret the open questions posed in [4]. Another
natural one would be to consider the case where monochromatic edges have uniformly the
cost of α and β, and the bichromatic comparisons have smaller, but individual costs. A
classical construction shows that this case is equivalent to sorting with arbitrary cost. We
show how an algorithm A′ for this variant of the bichromatic setting implies an algorithm A
for sorting with priced information. Let G = (V, E) be an instance of sorting with priced
information as defined above, and define G′ to be created from G by doubling the vertex set:
V ′ = V ×{A, B}. Edge weights and directions correspond directly to G: edges between copies
of the same vertex have the direction (x, A) < (x, B), otherwise (x, .) < (y, .) iff x < y in G.
Edge weights are w((x, .), (y, .)) = w(x, y) and w((x, A), (x, B)) = 0. The monochromatic
costs are set to α = β =

∑
e∈G w(e), which is effectively infinity: If the algorithm chooses

to test one of these edges, we can instead query all edges in G at the same cost, and hence
solve G. Now let x1 < x2 < · · · < xn ∈ V be the Hamiltonian in G, and observe that
(x1, A) < (x1, B) < (x2, A) < (x2, B) < · · · < (xn, A) < (xn, B) is the Hamiltonian in G′.

1 This is because the Hamiltonian Path costs n − 1, and comparison-based sorting costs Θ(n log n).
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The algorithm A runs A′ on G′, answering a comparison in G′ by doing the comparison
in G. By construction, the cost of A on G is at most the cost of A′ on G′, and the sorting
/ Hamiltonian found by A′ can be understood as the Hamiltonian in G of the same price.
Hence, the competitive ratio of A is at least as good as the competitive ratio of A′, perhaps
after adjusting for the size difference of a factor of 2.

1.1 Related Work
Prior to this work, we do not know of any algorithm for bichromatic sorting with a o(n)
competitive ratio. Apart from bichromatic sorting, another special case of sorting with
priced information was termed generalized sorting by Huang, Kannan, and Khanna [9]. Here
all costs are in {1,∞}; the input is an undirected graph G on the n vertices representing
the keys to be sorted, and the m edges of G indicate the allowed comparisons (with the ∞
cost edges missing in G, the “forbidden” comparisons). The goal is to sort the input while
querying as few edges as possible. [9] gave the first subquadratic algorithm for this {1,∞}
cost setting that has a total query cost of Õ(n1.5), or equivalently, has a competitive ratio of
Õ(
√

n). This ratio was recently improved by Kuszmaul and Narayanan [12] to O(
√

m/n).
Gupta and Kumar [8] consider the setting where the cost to compare two keys is well-

behaved; specifically, the cost function is monotone in the weight of the two keys being
compared, examples being the sum and the product. [9] also studied the stochastic version
of generalized sorting, when each edge in G exists with probability p. Subsequent work
considered settings where G is dense [2] and the setting where the costs induce a metric
space over the elements [15].
Nuts-and-Bolts: In this problem one is given n nuts (R) and n bolts (B), is only allowed to
compare a nut to a bolt (R-B), and is promised a matching between the nuts and the bolts.
The goal is to find this matching. Note that the result of a comparison can be <, > or =.
The problem is originally mentioned as an exercise in [16], page 293, and a simple Quicksort
type algorithm can be shown to solve this problem in O(n log n) comparisons with high
probability: Pick a random nut, compare to all bolts, find the matching bolt, and compare
that bolt to all nuts. The problem is now partitioned into two subproblems with the match
at the boundary; recurse. In a later work by Alon, Blum, Fiat, Kannan, Naor, Ostrovsky [1]
the authors developed a sophisticated deterministic algorithm in O(n polylog n) time, which
was then improved to an optimal O(n log n) by Komlós, Ma, Szémeredi [11]. Algorithms
for nuts-and-bolts problem cannot be used for bichromatic sorting because of the lack of
matches.

A preliminary version of this paper [6], that includes some further results, is published
on arXiv, a preprint of this article is on arXiv as [7].

1.2 Our Results
Let us consider bichromatic sorting with two sets R (Red) of size n and B (Blue) of size m,
and normalize the cost of R−B comparisons to be 1. Let N = n + m denote the total size
of the two sets. Let α and β denote the cost of R−R and B −B comparisons. Observe that
if α < 1 < β or β < 1 < α, then this can be solved as a monotonic structured cost [8]. The
case when α < 1 and β < 1 is discussed in Appendix A. Thus, the α > 1 and β > 1 version
posed in [4], where bichromatic comparisons are the cheapest, is the most interesting variant
of bichromatic sorting, and our focus here. Surprisingly, no results are known for it, even
though this is just “one step up" from unit-cost sorting! We show
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▶ Theorem 1 (Polylog Competitiveness of InversionSort). There exists an algorithm Inver-
sionSort for bichromatic sorting and a constant c > 0, such that for every instance I, the
cost of InversionSort on I, with probability at least 1− 1/N , is at most c(log N)3HI , where
HI is the cost of the Hamiltonian.

Clearly, the Ω(log N) lower bound on the competitive ratio carries over from unit-cost
sorting. The above result shows that bichromatic sorting is almost as easy as the unit-cost
setting. We remark that unlike most algorithms for generalized sorting (costs in {1,∞})
that have a high polynomial runtime, InversionSort runs in O(N2) time. Further, we sketch
(Appendix B) how InversionSort can be extended to a multichromatic-cost setting too, where
we assume that all bichromatic comparisons have cost 1 (independently of the colors involved,
as long as they are different), and the monochromatic comparisons have a higher cost,
depending on the color. In this setting, the competitive ratio of InversionSort is the same as
in the bichromatic setting. This result opens up the search for other, more complex variants
that also admit polylog competitive ratios.

Future Directions. We believe that the O(log3 N) competitive ratio of InversionSort can
likely be reduced to an optimal O(log N). While InversionSort is randomized, it would also
be very interesting to construct a deterministic algorithm for bichromatic sorting with similar
guarantees. As we mention, bichromatic sorting generalizes the nuts-and-bolts problem, for
which considerable effort was required [1, 11] to match the simple randomized O(N log N)
run time by a deterministic algorithm. We believe that due to the absence of matches, there
are interesting obstacles in this direction.

Roadmap. In Section 2 we describe InversionSort. Section 3 sketches the proof of the
guarantee presented in Theorem 1. Finally, Section 4 gives the detailed analysis. To keep
the flow of the exposition, some proofs are moved to the appendix.

2 InversionSort: Definition

We first start by describing the setup of InversionSort. The design principle behind Inver-
sionSort is to focus on identifying the monochromatic stretches of the Hamiltonian called
stripes. Intuitively, InversionSort operates like a variant of Quicksort, where the control flow
is BFS-like instead of the usual DFS-like recursive control flow. InversionSort focuses on
using bichromatic comparisons as much as possible. A generic state of InversionSort will be
defined using a backbone, which is a sequence of compared elements of alternating colors,
called representatives or pivots. Each representative will be assigned a bucket, which is a set
of elements of the same color, that lie between the two neighboring representatives of the
other color on the backbone. This backbone is refined if new inversions are found, giving
the algorithm its name. This leads to a ternary refinement tree, where every node stands
for a subproblem that was split in three by finding a new inversion. In this first (and only
interesting) phase of the algorithm, monochromatic comparisons are only used to increase the
probability of finding an inversion or to verify that no further inversions exist. Here, we use
a classical technique of balancing costs that does for each red-red comparison α bichromatic
comparisons, and for each blue-blue comparison β bichromatic comparisons

We first develop some notation to better explain InversionSort and explain how the
algorithm works. We summarize this discussion in pseudocode as Algorithm 1. For simplicity
of exposition, we add an artificial smallest red element and an artificial largest blue element
to the input. Doing comparisons with these artificial elements does not incur any cost.
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InversionSort makes progress from one state to the next by performing three steps: a)
finding an inversion (which we define soon) between neighboring representatives on the
backbone, b) inserting this inversion on the backbone, and c) pivoting with these two elements,
thereby refining the buckets.

▶ Definition 2 (Backbone, Representatives, and Buckets). The backbone consists of an ordered,
alternating list of representatives (u0, u1, u2, . . . , u2k, u2k+1) = (r0, b1, r2, . . . , r2k, b2k+1),
where r2i ∈ R and b2j+1 ∈ B with ri < bi+1 and bi < ri+1. Here, r0 is an artificial
red element that is smaller than all elements, and the last element b2k+1 is an artifi-
cial blue element that is larger than all elements. The representatives define the buck-
ets (X0, X1, X2, . . . , X2k, X2k+1) = (R0, B1, R2, . . . , R2k, B2k+1) by Ri = {x ∈ R | bi−1 <

x < bi+1} \ {ri} and Bi = {x ∈ B | ri−1 < x < ri+1} \ {bi}. Here, as a convention,
the representative is not included in the bucket. Again, R0 = {x ∈ R | x < b1} and
B2k+1 = {x ∈ B | r2k < x} are special cases.

▶ Definition 3 (active subproblems and buckets). As long InversionSort did not create a
certificate that there are no further inversions between xi and xi+1, the subproblem defined
by the buckets Xi and Xi+1 is called active, and so are Xi and Xi+1.

From now on, we will use ui and Xi when we don’t care about the color of the ith
representative and bucket, otherwise we will switch to ri/bi and Ri/Bi. We observe that the
buckets of two non-adjacent representatives on the backbone are ordered in the same way as
the representatives:

▶ Lemma 4. Let Xi and Xj be buckets (of arbitrary color) and assume i + 1 ≤ j − 1. Then
for all x ∈ Xi and y ∈ Xj we have x < y.

Proof. By definition, x < ui+1, and uj−1 < y. If i + 1 < j − 1, then ui+1 < uj−1 is implied
by transitivity on the backbone, otherwise ui+1 is the same element as uj−1. In either case,
we get that x < ui+1 ≤ uj−1 < y. ◀

2.1 Inversions and how to find them
We now define an inversion, which gives the algorithm its name. Consider adjacent repres-
entatives ui and ui+1, their corresponding adjacent buckets Xi and Xi+1, and a bichromatic
pair (x, y) of elements x ∈ Xi and y ∈ Xi+1. Unlike in Lemma 4, x and y are not ordered by
transitivity of the backbone. Because x and y are of different color, they can be compared at
cost 1, which is cheaper than any monochromatic comparison. If y < x, we call the pair an
inversion. This is because it allows us to extend the backbone: we get ui < y < x < ui+1,
which is a chain of actual comparisons between elements of alternating color.

The simplest way to find an inversion is to uniformly at random, from all pairs in Xi

and Xi+1, pick x and y. If the fraction of inversions is p, then the probability of finding an
inversion is p and the expected number of trials to find one is 1/p.

If α and β are really large, it is efficient to use only bichromatic comparisons to find
an inversion. Otherwise, some monochromatic comparisons can help. Using a well known
balancing technique, we proceed in rounds and do one (or constantly many) bichromatic
comparison per round, and every α rounds one red-red comparison, every β rounds one
blue-blue. Then, in an amortized sense, the monochromatic comparisons contribute cost
one per round. These monochromatic comparisons are used to maintain the max / min of
a sample of elements in the bucket as follows. The representative of the bucket is always
considered sampled, and hence it is initially the max and min of the sample. More precisely,

ITCS 2024
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we maintain the sample Si ⊂ Xi with ui ∈ Si. When sampling uniformly x ∈ Xi \ Si, we
perform one or two monochromatic comparisons to check if it is the new max or min of Si.
If it is, say x = max Si, we (bichromatically) test y = min Si+1 < x. If this test is successful,
we found an inversion ui < y < x < ui+1. To get the randomness of this inversion into our
framework, we use only one of its endpoints, say y to split Xi, by comparing all elements
of Xi with y leading to X ′i < y < X ′′i (< ui+1). Because x ∈ X ′′i and ui ∈ X ′i, both are
nonempty. Now we choose uniformly at random x′ ∈ X ′′i and use y, x′ as the inversion.

In every round of comparisons, we also chose a random x ∈ Xi and compare (ui−1 <)x <

max Si−1 and min Si+1 < x(< ui+1). If one of them is true, we found a sufficiently random
inversion.

If there is no further inversion to be found, this random sampling must fail. For two
buckets with A red and B blue elements, w.l.o.g. red smaller than blue, there are four
potential proofs that no further inversion exists:
1. all AB red-blue comparisons at total cost AB.
2. A− 1 red-red comparisons to find the maximal red, and B red-blue comparisons with

this maximum, total cost α(A− 1) + B.
3. B − 1 blue-blue comparisons to find the minimal blue, and A red-blue comparisons with

this minimum, total cost β(B − 1) + A.
4. A− 1 red-red comparisons to find the maximal red, B − 1 blue-blue comparisons to find

the minimal blue, and 1 red-blue comparison between the maximum and the minimum,
total cost α(A− 1) + β(B − 1) + 1. (This case is never the cheapest if α, β > 1)

Observe that the cost of these proofs only depends on the sizes of the stripes/buckets. Hence,
InversionSort computes these values and chooses the cheapest. If the accumulated cost of
randomized inversion finding exceeds the cost of this cheapest proof, it (deterministically)
performs all comparisons required by the proof. If this indeed shows that there are no
further inversions, this subproblem is finished, i.e. no longer active. Else, this attempt to
establish a proof must find one or more inversions. Similar to the case of finding an inversion
min Si+1 < max Si, We choose an inversion that is living up to our randomness requirements
(as spelled out in Lemma 9).

Observe that the Hamiltonian is a proof of type 4 and that hence the chosen proof is at
most as expensive as that part of the Hamiltonian. This fits to the purpose of the proof to
only identify the stripes, not (yet) to sort the instance.

2.2 Description of InversionSort
InversionSort starts by (trivially) having the backbone consist only of the artificial smallest

red element r0 and largest blue element b1, and R0 = R and B1 = B.
For a given backbone (u0, u1, u2, . . . , u2k, u2k+1) = (r0, b1, r2, . . . , r2k, b2k+1), Inversion-

Sort first, for each pair Xi, Xi+1 of adjacent buckets that have no proof that there is no
further inversion, in a round-robin manner, does one round of comparison with amortized
constant cost, as spelled out in Section 2.1. If this leads to an inversion, the inverted pair is
saved and the algorithm moves to the next pair of adjacent buckets.

At the end of the round, all identified inversions are considered and used to extend the
backbone. Then InversionSort splits existing buckets by pivoting with new elements on the
backbone. Because there is at most one pair of inversions between each two neighboring
representatives on the backbone, each element is compared to at most two new representatives
in each round.
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Algorithm 1 Algorithm InversionSort.

Require: elements R red, B blue
create trivial backbone B from R and B, see Definition 2
r ← 0
while there is an active subproblem in B do

r ← r + 1
if r mod α == 0 then

for each active red bucket (see Definition 3) do
Sample one more red element, update max/min using red-red comparisons

if r mod β == 0 then
for each active blue bucket do

Sample one more red element, update max/min using blue-blue comparisons
for each active (see Definition 3) bucket s do

Sample one element xs

for each active subproblem between buckets s (left), and q (right) do
Test for inversion between, use the first one of

1. xs and xq

2. xs and min{sampled in q}
3. max{sampled in q} and xq

4. max{sampled in q} and min{sampled in q}
for each active subproblem where r - mark (age) > cheapest certificate based on sizes
(Section 2.1) do

do the comparisons of the cheapest certificate
if this leads to a certicate then

the subproblem is finished, i.e. no longer active
else

at least one inversion is found
for each found inversion do

update the backbone, including splitting buckets and resampling pivots (Section 2.1)
mark new subproblems with round r,

sort the monochromatic stripes individually

This reestablishes the backbone and creates some new pairs of neighboring buckets, for
which we initialize the inversion finding procedures. Existing buckets (identified by the
representative) might get smaller. Here, a new inversion finding might reuse some of the
already established samples and their structure. In the analysis we present here, this is not
used, so for the sake of simplicity, we assume the algorithm starts from scratch.

The algorithm stops once all neighboring pairs of buckets are no longer active, i.e., shown
to not have an inversion. In this case, the current buckets form the stripes of the instance.
The algorithm finishes by sorting these buckets (including the representatives) using an
optimal number of additional monochromatic comparisons.

3 InversionSort Analysis: Proof Structure

The analysis of InversionSort constitutes the technically challenging part of the paper. Let
us visualize a run of InversionSort as a ternary (refinement) tree, where nodes correspond to
subproblems. For an internal node v, there is a corresponding subinterval on the backbone
defined by two consecutive pivots, say a blue pivot followed by a red pivot, bv < rv. If

ITCS 2024
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InversionSort finds an inversion y < x (x is blue and y is red) between bv and rv, then v

has three children with the respective pivots (bv, y), (y, x), (x, rv). Note that at a snapshot
somewhere during a run of InversionSort, the tree explored so far may be far from being
a complete tree - InversionSort could be stuck on a large-sized problem in one region,
while refining and working way down a descendant of an interval in another region. Hence
InversionSort does not proceed layer-by-layer on this tree.

The random nature of the inversion searching of InversionSort, as made precise in Lemma 9
leads to the following insight:

▶ Theorem 5 (Height of the refinement tree). Let T be the refinement tree of running
InversionSort on an instance I with N = n + m elements. With high probability in N , the
height of T is O(log N).

As a second challenge in the analysis, because of the overlapping nature of the problem,
InversionSort cannot easily focus on elements between neighboring representatives. For
example, for the child indicated by pivots (y, x), instead of only getting the reds and blues
that actually lie in this range as input, InversionSort instead has to also work with the red
elements contained in (bv, y) and the blue elements inside (x, rv). This “spill-in” from the
neighboring subintervals on the backbone needs to be analyzed. See Figure 1 for an example.
Thus we distinguish between subinstances and subproblems.

Figure 1 The difference between a subproblem and a subinstance. bv and rv are on the backbone,
and y < x is the inversion found between them. The stripes in the subinstance (y, x) are solid,
whereas the stripes in the subproblem (y, x) are the union of the solid and shaded stripes.

As we will argue, the cost of inversion search procedure of InversionSort is justified
by the subinstance between the neighboring elements on the backbone. However, if the
spill-in for this subproblem is too large, inversion search is too costly. Hence, we will
identify subproblems that do not have too much spill-in from their neighbors - we call these
subproblems unaffected. Inversion search in unaffected subproblems can be charged to their
subinstance. What remains is to then show that many subproblems are actually unaffected.
In Lemma 18 we show that at any time, with high probability, at least roughly a 1/(log N)2

fraction of all current problems are unaffected. This requires a careful accounting of how the
unaffected nodes are distributed in the tree.
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Putting everything together

As mentioned above, a (log N)2 factor appears while accounting (with high probability)
for the affected nodes on one snapshot of the backbone. Accounting over the whole tree,
including the pivoting, introduces another log N factor corresponding to the depth of the
tree.

4 InversionSort: Detailed Analysis

▶ Definition 6 (Stripe). Let x be an element of an instance I of bichromatic sorting. The
the stripe of x consists of all elements y of I where no element of the other color is between
x and y.

Refinement tree as a trace and mean to analyze. Looking only at the backbone, the
algorithm does an interval refinement. If we look back in time, the final backbone is given by
the instance, only the choice of the representative of a stripe is arbitrary (everything else is
determined by the instance). In contrast, the evolution of the backbone is very much driven
by the random choices of the algorithm and leads to a hierarchy of intervals on the backbone.
A new inversion and the pivoting steps split one interval of the backbone (not to be confused
with a bucket that somehow spans two intervals of the backbone) into three, as detailed in
the following definition.

▶ Definition 7 (Refinement tree). The root node of the tree has as bounding pivots the
artificial smallest red and largest blue element. Every node v of the tree has two pivots bv and
rv of the (final) backbone associated to it with the guarantee that bv and rv were neighbors on
the backbone at some stage of the algorithm. If rv < bv the node is said to have polarity “red
smaller than blue”, otherwise “blue smaller than red”. If the algorithm finds an inversion x, y

between bv and rv, then v has three children with the respective pivots (bv, y), (y, x), (x, rv)
or (rv, y), (y, x), (x, bv). The polarity of the middle child is the opposite of the polarity
of v, whereas the two outer children have the same polarity as v. See Figure 2. If the
algorithm finishes the subproblem by completing verification and concludes that bv and rv are
representing neighboring stripes of the output, then v is a leaf of the tree.

Figure 2 A parent node v and its three children o, p, q in the refinement tree. The pivots for
the parent are (bv, rv), and since the parent is of type blue < red, the inversion found is of type
red < blue. The left and right children have the same polarity as the parent, whereas the middle
child gets opposite polarity.

To analyse the refinement tree, it is convenient to work with a totally ordered list LI =
(x0, x1, . . . xn+m−1) of all red and blue elements. In the case of bichromatic sorting, this
total order is given by the sorted ordering.

ITCS 2024
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▶ Definition 8. [List subinstance, Stripe subinstance and subproblem] Let r ∈ R and b ∈ B

be two elements and let i, j be their indices in LI , i.e., xi = r and xj = b. Then, the instance
Irb given by the list (xi, . . . , xj) or (xj , . . . , xi) is called the list subinstance of LI defined by
r and b. Let I be an instance of bichromatic sorting and let xo, xp, xq, xr be four consecutive
pivots on the backbone of InversionSort at some point in time. Then the stripe subinstance
of xp and xq consists of the stripes of xp and xq and all elements between xp and xq. The
subproblem consists of the two buckets of xp and xq, i.e., the elements of the color of xp

between xo and xq, and the elements of the other color (that of xq) between xp and xr.

Observe that at any snapshot of the algorithm, any existing backbone corresponds to the
in-order leaf traversal of some subtree of the refinement tree that includes the root.2 This
traversal consists of internal nodes and leafs of the complete refinement tree. See Figure 3.

Figure 3 A sketch of the complete ternary refinement tree (in black) and the partial refinement
tree corresponding to a snapshot of the backbone during a run of InversionSort.

4.1 Inversion Finding
We start with a central insight about the randomness of inversion finding that has important
consequences for the depth of the refinement tree of InversionSort.

▶ Lemma 9 (Randomness in Inversion Finding). At any stage of the InversionSort, consider a
successful inversion finding procedure, which finds an inversion y < x between representatives
ui < y < x < ui+1. Say, w.l.o.g., that ui is red and ui+1 is blue, and hence x is red and y is
blue.

2 This subtree is obtained by removing from the full refinement tree subtrees of those internal nodes that
have not yet found inversions.
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1. For any y ∈ Xi+1, conditioned on y being in the inversion, we have P (x = a) ≤ P (x = b)
for a < b, i.e., x is uniformly distributed among all the red elements in Ry = {x ∈ Xi |
y < x < ui+1} or biased towards the left, which is the outside of Ry.

2. For any x ∈ Xi, conditioned on x being in the inversion, y is either uniformly distributed
in Bx = {y ∈ Xi+1 | ui < y < x}, or biased towards the right, which is outside, i.e.,
P (y = a) ≥ P (y = b) for a < b.

3. Either statement (1) holds with the uniform distribution, or statement (2) holds with the
uniform distribution.

Proof. Conditioned on one endpoint of the inversion being fixed, say the red x. Then there
is a set Bx of blue elements that can form an inversion with y (if not, x cannot be part of an
inversion). If the inversion was found by a uniformly sampled pair, each y ∈ Bx is chosen
with the same probability, showing the statement of the lemma. If the inversion was found
after sampling some of the elements, we actively choose one of the endpoints uniformly at
random. If this randomly chosen element is x, we get (1.) with the uniform distribution.
Hence, for the second part, we should assume that y is the minimum (by the choice of naming
in the lemma) of a set SB of sampled blue elements. Observe that y ∈ SB ∩ Bx, in fact
y = min(SB ∩Bx). Because SB is the result of uniform sampling, y is biased in the direction
expressed in the lemma. ◀

4.2 Bounding the depth of the refinement tree
▶ Definition 10. Let v be a node in the refinement tree with the pivots rv and bv, and let
Irvbv

the list-subinstance of v. Define Rv = Irvbv
∩R, Bv = Irvbv

∩B, and Pv as the number
of pairs of v as Pv = |Rv| · |Bv|.

▶ Lemma 11. Let v be a non-leaf node of the refinement tree of bichromatic InversionSort
and let o, p, q be its children. Then, with probability at least 1/2,

max
w∈{o,p,q}

Pw ≤
7
8Pv

Proof. Let b ∈ B, r ∈ R be the inversion and assume w.l.o.g rv < b < r < bv, and call the
three children of v as o, p, q with ro = rv, bo = bp = b, rp = rq = r and bq = bv. See Figure 2.
W.l.o.g., assume b is uniformly chosen given r, but r has a bias towards making the outer
child q smaller, i.e., since r is a max, |Pq| is smaller than if r were uniform. By Lemma 9, we
can conclude that with probability at least 3/4, max(|Bo|, |Bp|) ≤ 7/8(|Bo|+ |Bp|) ≤ 7/8|Bv|,
and |Rq| ≤ 3/4|Rv| with probability at least 3/4. By a union bound, we have both statements
with probability at least 1/2, and in the following we assume they both hold.

From the first statement follows (even if Ro = Rv or Rp = Rv) that Po ≤ 7/8Pv and
Pp ≤ 7/8Pv. From the second statement follows Pq ≤ 3/4Pv (even if Bq = Bv). ◀

With these tools in our hands, we can go back to

▶ Theorem 5 (Height of the refinement tree). Let T be the refinement tree of running
InversionSort on an instance I with N = n + m elements. With high probability in N , the
height of T is O(log N).

Proof. Let x be an element of I and consider the root-to-leaf path P of T that consists
of the nodes v that contain x in Iv. Let Q ⊂ P be the set of nodes where the number of
pairs is reduced by a factor 7/8, as in Lemma 11. Then |Q| = Θ(log N) and by a Chernoff
bound, with probability at least 1−N−2, |P | = O(|Q|). A union bound over all x gives the
statement of the theorem. ◀
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4.3 Pivoting Cost Analysis
Recall that InversionSort always pivots with the newly found inversion, and in doing so, it
compares all elements in a bucket Xi to at most two new pivots. Even though InversionSort
does not proceed layer-by-layer (in fact, different vertices of the same layer could have wildly
varying times of InversionSort finding inversions in them and refining them into children; see
Figure 3), we can still upper bound the total pivoting cost performed on a layer by O(n + m).
Using Theorem 5, we get that

▶ Theorem 12 (Pivoting Cost of InversionSort). Let N = n + m. With probability at least
1− 1/N , the pivoting cost of InversionSort on an instance of size N is at most O(N log N).

4.4 Inversion Finding Cost Analysis
What remains to be analysed is the cost, in number of comparisons, that is incurred to find
the inversions, i.e., pairs of new pivots, as described in Section 2.1

For every stage of InversionSort, the current backbone corresponds to a left-to-right
traversal of the current subtree (including the the root) of the refinement tree.

Recalling Definition 8, such an inversion search is performed for each subproblem, we
search for an inversion in the list subinstance, and, at least initially or if monochromatic
comparisons are expensive or disallowed, the stripe subinstance is the structure the algorithm
is faced with. Note that elements of the subproblem that are not in the subinstance make
inversion finding more difficult because such elements cannot form an inversion, but the
algorithm cannot distinguish them from elements in the subinstance. We say that such
elements in the bucket of one pivot spill in to the subproblem. This spill-in is the shaded
part in Figure 1.

▶ Definition 13 (unaffected subproblem). Let r, b be two neighboring pivots on the backbone
in some round of inversion search of InversionSort. Then the subproblem r, b is unaffected if
the number of red elements in the stripe subinstance of r, b is at least 1/4 of the number of red
elements in the subproblem of r, b and the number of blue elements in the stripe subinstance
of r, b is at least 1/4 the number of blue elements in the subproblem of r, b.

Note that in the course of running InversionSort, by refining the backbone, subproblems
can turn from affected to unaffected, but not vice versa.

Observe that neighboring subinstances share the stripe of the pivot; this stripe does not
constitute spill-in. Still, over a single pivot, there typically is spill-in of the same color in
both directions, but only one of them can affect the receiving subproblem: Rk consists of the
red elements in the two neighboring subproblems, the spill in is part of both, so one of the
two sets of spilling-in elements must be less than half of Rk, so clearly not both of them can
be more than 3/4 of Rk.

4.5 Constant local competitiveness of inversion finding
In this section, we will argue that inversion finding for unaffected subinstances is justified
by the cost of the Hamiltonian in the subinstance. In Section 2.1, we already argued that
non-successful inversion searches that lead to a certificate that there are no further inversions
are justified by parts of the Hamiltonian. Here, we (also) consider successful searches, and
relate their cost to the cost of the Hamiltonian between and including the stripes of the
representatives InversionSort has as neighbors on the backbone.

The proofs of the following Lemmas and Theorems are given in Appendix C.
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▶ Lemma 14 (local competitiveness of inversion finding). Let r, b be two neighboring pivots of
InversionSort, and let t be the number of rounds (up to a constant the cost of comparisons)
until InversionSort finds an inversion or concludes that there is none, starting from the first
round when the subproblem of r, b is unaffected. Let Hr,b be the cost of the Hamiltonian of
the stripe subinstance between the stripe of r and the stripe of b. Then E[t] = O(Hr,b), and
Pr[t ≤ E[t] + t′] ≥ 1− (1/8)t′

.

Overall cost of inversion finding in unaffected subproblems

Observe that each layer in the refinement tree almost partitions the original instance into
subinstances: Only the buckets of the pivots on the backbone are counted twice. In other
words, if we take all subinstances of the same polarity (every other) of one level of the
refinement tree, they are disjoint, and the sum of the cost of the Hamiltonian in the
subinstances is at most the cost of the Hamiltonian. By Theorem 5 we can hence bound
the total cost of inversion search / finding in unaffected subproblems to be only a O(log N)
factor higher than the cost of the Hamiltonian.

▶ Theorem 15. Let u be the total cost of comparisons that InversionSort performed in
unaffected subproblems when running on instance I of size N , and let HI be the cost of the
Hamiltonian of I. Then, with probability at least 1− 1/N , u = O(HI log N).

4.6 Many unaffected subproblems

What remains to be shown is that there are sufficiently many unaffected subproblems, such
that the progress made there, by the previous section, justifies the cost of all performed
comparisons. The setup is that we consider some current state of InversionSort as defined
by one round of inversion search in all subproblems. We will show that for each unaffected
subproblem there are at most O((log N)2) affected ones (creating the same cost, but not
necessarily making progress).

A middle child with its three children currently being leafs is easy to analyse because the
inversion that defines the boundaries between the children is described by Lemma 9. We will
use the following lemma on partial refinement trees that describe any backbone InversionSort
might work with at some time.

▶ Lemma 16. Let T be a (subtree of a) ternary tree of height h and let L = (v1, . . . , vk) be
part of the left-to-right leaf-traversal of T of length k ≥ 4(h + 2). Then L must contain a
middle child whose 3 children are leaves.

Observe that finished pairs of neighboring pivots on the backbone, i.e., subproblems
where InversionSort verified that there are no further inversions, don’t spill out to their
neighbors, and remember that over one pivot, spilling can only be in one direction.

▶ Lemma 17. Let L be a list of consecutive subproblems on the backbone, and assume
there is no spill-in from the left to the first or from the right to the last (because of finished
subproblems or the instance ending). Then at least one of the subproblems must be unaffected.

▶ Lemma 18 (Not too many affected subproblems). Let a be the number of active subproblems
on the backbone at some stage of InversionSort and let u be the number of the unaffected
subproblems. There exists a constant c such that Pr[a ≤ cu(log N)2] ≥ 1− 1/N3.
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4.7 Putting everything together: Proof of Theorem 1
With these ingredients, we are ready for a proof of

▶ Theorem 1 (Polylog Competitiveness of InversionSort). There exists an algorithm Inver-
sionSort for bichromatic sorting and a constant c > 0, such that for every instance I, the
cost of InversionSort on I, with probability at least 1− 1/N , is at most c(log N)3HI , where
HI is the cost of the Hamiltonian.

Proof. The cost of InversionSort consists of pivoting and inversion finding. Theorem 12
shows that pivoting uses O(n log n) bichromatic comparisons. Observe HI ≥ n− 1, hence
pivoting costs O(HI log N). Let v be the cost of inversion finding, and u be the cost of such
comparisons in unaffected subproblems. Lemma 18 shows v ≤ u(log N)2 with probability
1 − 1/N (union bound over the at most N2 many rounds) and by Theorem 15 follows
u = O(HI log N), showing the statement of the theorem. ◀
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A Variations of bichromatic costs

A.1 Bichromatic most expensive: α < 1 and β < 1
In this case, it is natural to first sort both colors with monochromatic comparisons, to then
do binary merging using exponential searches. It is easy to see, that this algorithm is within
an O(log N) factor of the cost of the Hamiltonian.

A.2 Bichromatic middle expensive: α < 1 < β or β < 1 < α

This setting can be expressed as a monotone function in the framework of [8].
There is also a straight forward direct algorithm: W.l.o.g., assume α < 1 < β. Sort

the red elements using red-red comparisons at cost O(α|R| log |R|). For each blue element,
perform a binary search in these red, at total cost of O(|B| log |R|). Finally, sort the blue
stripes with total cost O(β

∑
|Bi| log |Bi|). Each of the three terms is justified by the need to

determine the rank of a certain type of elements, and the above procedure uses the cheapest
available comparisons for this task.

B More than two colors

There are many different natural definitions of a setting with several colors. One natural
extreme is sorting with priced information, which we get back if we allow k = n different
colors and an arbitrary matrix of costs between the colors. Our result extend to the setting
with several colors, where all bichromatic comparisons (between any to elements of any two
different colors) have the same small cost, which we can normalize to be 1. Here, the extreme
case of all elements having different colors is just classical unit cost comparison based sorting.

▶ Definition 19 (Multichromatic Sorting). Multichromatic Sorting is universal sorting, where
the elements are colored with k different colors. All bichromatic comparisons have cost 1, and
for each color i, the monochromatic comparisons have a cost γi > 1, where γi =∞ means
that these comparisons are forbidden and stripes of this color are reported as a whole.

To solve the multichromatic setting, run a natural variant of (bichromatic) InversionSort:
Pick one random elements from each color, sort these, and take this as the backbone. Consider
the remaining elements in random order. Place the element into the backbone using binary
search. If this leads to a new element on the backbone (neighbors are of different colors),
pivot the two current buckets. This maintains the invariants of the backbone and that
three consecutive elements on the backbone have three different colors. Observe that we so
far have used, with high probability, at most O(n log n) bi-chromatic comparisons of unit
cost, a O(log n) contribution to the competitive ratio as the Hamiltonian must have cost
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at least n− 1. Hence, all neighboring buckets are starting points of bi-chromatic problems,
and we can use InversionSort on them. Here we interleave the computation as if the whole
backbone was one backbone in the bichromatic setting. The overall competitive ratio is that
of bichromatic inversion sort.

C Omitted Proofs

▶ Lemma 14 (local competitiveness of inversion finding). Let r, b be two neighboring pivots of
InversionSort, and let t be the number of rounds (up to a constant the cost of comparisons)
until InversionSort finds an inversion or concludes that there is none, starting from the first
round when the subproblem of r, b is unaffected. Let Hr,b be the cost of the Hamiltonian of
the stripe subinstance between the stripe of r and the stripe of b. Then E[t] = O(Hr,b), and
Pr[t ≤ E[t] + t′] ≥ 1− (1/8)t′

.

Proof. Let C be the number of rounds of comparisons for which subproblem r, b is active.
Observe that InversionSort does on this subproblem C bichromatic comparisons, and samples
∼ C/α red elements and finds their max and min in O(C) cost. Similarly, the blue sample
consists of ∼ C/β elements, incurring cost O(C) for blue-blue comparisons. This is from the
round in which r, b are both on the backbone until either an inversion between r, b is found,
or a certificate that there is no such inversion is established with comparisons. Hence, C is
asymptotically upper bounded by the cost of the cheapest proof, if there were no further
inversions. We will show that these comparisons are justified by edges on the Hamiltonian,
by case analysis. Assume the Hamiltonian on the subinstance between r and b consists of hr

red and hb blue edges. Let nr ≥ 4 and nb ≥ 4 the number of red and blue elements in the
subinstance. Otherwise, if one of the colors has at most 4 elements, doing all bichromatic
comparisons is O(nr + nb) = O(OPT). W.l.o.g. (for naming), assume that the red pivot is to
the left and the blue is to the right, i.e., we are searching for an inversion blue is left of red.

Observe that if there are at least nr/4 ≥ 1 red-red edges on the Hamiltonian in the
subinstance, i.e. hr ≥ nr/4, the cost of finding the rightmost red element is justified, i.e., at
the latest after doing comparisons for cost Θ(αnr) = O(OPT), InversionSort has identified
this element. Otherwise, there are at most hr < nr/4 red-red edges on the Hamiltonian.
If there were no red-red edges, there would be nr red stripes, each red-red edge reduces
this number by one, so there are more than nr − nr/4 = 3/4nr (red) stripes, and a total of
at least 3/4nr elements (because each stripe has at least one element) in stripes different
from the leftmost stripe (possible inversions). In this case, the right half of the (red) stripes
must contain at least 3/8nr red elements. Similarly, if there are nb/4 blue-blue edges on the
Hamiltonian, finding the leftmost blue is justified, or the left half of the stripes contains at
least 3/8nb blue elements.

Now consider the different cases. Assume hr ≥ nr/4 red-red and hb ≥ nb/4 blue-blue
edge on the Hamiltonian in the subinstance. Then finding the rightmost red and the leftmost
blue is justified, and InversionSort finds these two elements and hence an inversion (or a
proof that there is none) in cost at most 3(αna + βnb) = O(OPT).

Assume hr ≥ nr/4 red-red and hb < nb/4 blue-blue edges on the Hamiltonian. Then,
after comparisons for cost Θ(αnr) = O(OPT), InversionSort has identified the rightmost red
element rm, and there must be at least 3/4b blue elements left of rm. From then on, the
probability of InversionSort finding an inversion in one round is at least 3/4 > 1/8. The
symmetric argument holds if the role of red and blue is interchanged.

The last case is hr < nr/4 red-red and hb < nb/4 blue-blue edges on the Hamiltonian.
Then the probability of finding an inversion that crosses the middle is (3/8)2, and InversionSort
finds an inversion with expected O(1) cost (whp O(log N)) (relying only on bichromatic
inversion search).
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Hence, at the latest after a setup of cost Hr,b, the probability of finding an inversion is at
least (3/8)2 = 9/82 > 1/8. ◀

▶ Theorem 15. Let u be the total cost of comparisons that InversionSort performed in
unaffected subproblems when running on instance I of size N , and let HI be the cost of the
Hamiltonian of I. Then, with probability at least 1− 1/N , u = O(HI log N).

Proof. The refinement tree is a tree with at most N leaves and hence at most N − 1 internal
nodes, and the additive terms from these Bernoulli experiments total to O(N log N). As
argued in the preceding paragraph, the setup cost of each of the O(log N) layers of the
refinement tree are O(HI) each. ◀

▶ Lemma 16. Let T be a (subtree of a) ternary tree of height h and let L = (v1, . . . , vk) be
part of the left-to-right leaf-traversal of T of length k ≥ 4(h + 2). Then L must contain a
middle child whose 3 children are leaves.

Proof. If there are 5 consecutive vertices in L of the same depths, 3 of them must be the
children of the same vertex, showing the lemma. Otherwise, no such 5 consecutive vertices
exist. Then, by the bound on k, there must be at most 4 vertices (internal, i.e. not starting
with v1) that are a local maximum with depths D, i.e., the preceding and following element
in L have smaller depths. The first vertex with depths D must be the left child of some
node v, and it is a leaf. Hence, its two right siblings exist, and because the next vertices
on L have depths ≤ D, the siblings cannot have children. This shows the statement of the
lemma. ◀

▶ Lemma 17. Let L be a list of consecutive subproblems on the backbone, and assume
there is no spill-in from the left to the first or from the right to the last (because of finished
subproblems or the instance ending). Then at least one of the subproblems must be unaffected.

Proof. There are |L| − 1 internal pivots over which a spill-in into subproblems could happen,
but there are |L| subproblems. By the pigeon-hole principle, there must be a subproblem
without spill-in, i.e., unaffected. ◀

▶ Lemma 18 (Not too many affected subproblems). Let a be the number of active subproblems
on the backbone at some stage of InversionSort and let u be the number of the unaffected
subproblems. There exists a constant c such that Pr[a ≤ cu(log N)2] ≥ 1− 1/N3.

Proof. Let L be a list of consecutive active subproblems on the backbone. If we can show
the statement of the lemma for each individual such list, the lemma follows.

If a = |L| ≤ c(log N)2, the claim follows from Lemma 17 because there is at least one
unaffected subproblem.

Otherwise let h = O(log N) be the height of the refinement tree. By Lemma 16, there
are at least a′ = a/(4h + 2) many subproblems corresponding to a vertex whose children
are leafs. Now, by Lemma 9, one of the boundaries is chosen uniformly at random, and its
probability of having spill-over to the left is 1/4, and so is for spill-over to the right. Now
encode, from left to right, these spill-overs by a 1-bit if it is different from the previous. Let k

be the number of 1s in this sequence, and observe that the number of ones is a lower bound
on the number of subsequences with the same direction of spill-over. Every other of these
subsequences must have an unaffected subproblem. E[k] = a′/2 ≥ c(log N)2)/h ≥ 2 log N if
the constant c is sufficiently large. Hence, by a Chernoff bound, with probability 1−N3, we
get u ≥ a′/4 ≥ a/(12h)≫ a/c(log N)2 and u ≥ a/c(log N)2 for sufficiently large c. ◀
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