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Abstract
The prior independent framework for algorithm design considers how well an algorithm that does
not know the distribution of its inputs approximates the expected performance of the optimal
algorithm for this distribution. This paper gives a method that is agnostic to problem setting for
proving lower bounds on the prior independent approximation factor of any algorithm. The method
constructs a correlated distribution over inputs that can be described both as a distribution over i.i.d.
good-for-algorithms distributions and as a distribution over i.i.d. bad-for-algorithms distributions.
We call these two descriptions equivocal blends. Prior independent algorithms are upper-bounded
by the optimal algorithm for the latter distribution even when the true distribution is the former.
Thus, the ratio of the expected performances of the Bayesian optimal algorithms for these two
decompositions is a lower bound on the prior independent approximation ratio.

We apply this framework to give new lower bounds on canonical prior independent mechanism
design problems. For one of these problems, we also exhibit a near-tight upper bound. Towards
solutions for general problems, we give distinct descriptions of two large classes of correlated-
distribution “solutions” for the technique, depending respectively on an order-statistic separability
property and a paired inverse-distribution property. We exhibit that equivocal blends do not
generally have a Blackwell ordering, which puts this paper outside of standard information design.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis; The-
ory of computation → Algorithmic game theory; Theory of computation → Algorithmic mechanism
design

Keywords and phrases prior independent algorithms, lower bounds, correlated decompositions,
minimax, equivocal blends, mechanism design, blackwell ordering

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.59

Related Version Full Version: https://arxiv.org/abs/2107.04754

Funding Jason Hartline: Supported in part by NSF CCF 1618502.
Aleck Johnsen: Supported in part by NSF CCF 1618502.

1 Introduction

This paper develops a novel method for establishing lower bounds on prior independent
approximation algorithms.

Frameworks for stochastic analysis are enabling theoretical understanding of algorithms
beyond those provided by classical worst-case treatments (see [19]). These models are
especially interesting for algorithm design problems with information theoretic constraints
such as online algorithms, mechanism design, streaming algorithms, etc. The Bayesian
algorithm design problem can be viewed as a two stage process. In the first stage the input
is the prior distribution and an algorithm is constructed for the distribution. In the second
stage the constructed algorithm is run on the realized input. The Bayesian optimal algorithm
maximizes expected performance.
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59:2 Equivocal Blends: Prior Independent Lower Bounds

The prior independent framework evaluates algorithms, which are ignorant of the (first
stage) prior distribution of inputs, against a benchmark defined as the performance of the
Bayesian optimal algorithm that is constructed for this prior. With no constraints on the prior
distribution, this problem is equivalent to classical worst-case algorithm design. Alternatively,
prior independent analyses in mechanism design (e.g., [7]) and online learning (e.g., [3])
restrict the distributions to be independent and identically distributed (i.i.d.), respectively
over values of agents in a mechanism and rounds of inputs in an online algorithm.

This paper develops a method for establishing lower bounds on the performance of prior
independent algorithms (for classes of i.i.d. distributions). The method is based on Yao’s
Minimax Principle [20]. The prior independent framework asks for the designer to pick one
algorithm that is good on an adversary’s chosen worst-case distribution. Yao’s minimax
principle allows the order of moves of the designer and adversary to be swapped. Thus,
the prior independent optimal approximation ratio can be equivalently identified by an
adversary choosing a distribution over prior distributions and then the designer choosing
a best algorithm. Note that the class of i.i.d. distributions is not closed under convex
combination, thus, the adversary’s distribution over distributions gives generally a symmetric,
correlated distribution over inputs.

Fixing a correlated distribution, a remaining challenge to apply Minimax is to upper
bound the performance of all algorithms. This paper gives a concrete method to identify such
bounds, specifically by reducing to calculation of expected performances of Bayesian optimal
algorithms.

The focus of this paper is equivocal blends, which are pairs of distinct distributions over
i.i.d. distributions of inputs that induce the same correlated distribution. To establish a
prior independent lower bound, we will be considering equivocal blends where one side of the
equivocal blend mixes over good-for-algorithms distributions and the other side mixes over
bad-for-algorithms distributions. The adversary can choose the mix over good-for-algorithms
distributions in which case the expectation over Bayesian optimal performances for this mix
defines the benchmark of the prior independent framework. On the other hand, the algorithm
cannot tell the two blends apart and thus its expected performance is upper bounded by the
expectation over Bayesian optimal performances for the bad-for-algorithms mix. The gap
that results from this Equivocal Blends Technique between these expected performances is a
lower bound on prior independent approximation.

As a simple example, consider the mechanism design problem of posting a price to a
single agent with value on [1, h]. (Here the restriction to i.i.d. distributions is trivial as there
is only one agent.) A class of good-for-algorithms distributions is given by point masses.
Note that the Bayesian optimal pricing mechanism for a point mass is to post identically the
same price as the value (and the agent always buys – an agent buys if value is at least the
price). A class of bad-for-algorithms distributions is given by the equal revenue distribution
with cumulative distribution F (x) = 1 − 1/x and a point mass of 1/h at h. The equal revenue
distribution has the property that the expected revenue from any posted price is 1. Now
consider the equivocal blend where on the good-for-algorithms side we have the equal revenue
distribution over point masses and on the bad-for-algorithms side we have a point mass
on the equal revenue distribution. The expected revenue over Bayesian optimal algorithms
from the good-for-algorithms side (in response to point mass distributions) is the expected
value of the equal revenue distribution on [1, h], i.e., 1 + ln h. The expected revenue from
the bad-for-algorithms side is 1. Thus, we have established a lower bound of 1 + ln h on the
approximation factor of single-agent posted pricing. (This example analysis is tight due to a
matching upper bound from [16].)2

2 This result is summarized as Theorem 18 and proved in detail in Section 6.1.
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There are two challenges in establishing prior independent lower bounds via equivocal
blends. The first challenge is in sufficiently understanding the Bayesian optimal algorithm
for the class of distributions under consideration. In several of the central studied areas
of Bayesian algorithms, this first challenge is solved in closed form. Bayesian optimal
mechanisms are identified broadly by [18]. For online learning with payoffs that are i.i.d.
across rounds, the Bayesian optimal algorithm is trivial: it selects the action with the
highest expected payoff (which is the same in each round). Of course, when closed forms
are not available, bounds on the Bayesian optimal performance can be employed instead.
An important observation of our approach is that not only are Bayesian optimal algorithms
used to define the prior independent benchmark, but they can also be used to get non-trivial
bounds on any algorithm’s approximation ratio.

The second challenge of the blends method is in identifying equivocal blends where the
expected Bayesian-optimal performances for good-for-algorithms and bad-for-algorithms
distributions are significantly separated. In pursuit of this challenge we give two general
approaches for constructing equivocal blends for inputs of size two. (Many of the challenge
problems in prior independent mechanism design are for inputs of size two, e.g., [14].) The
first approach shows that if the density function of a correlated distribution can be written
as a separable product of independent functions per order statistic of the inputs, then it can
be decomposed into two distinct distributions over i.i.d. distributions. The second approach
considers one side of the equivocal blend constructed from any scaled class of distributions
with the other side given by the inverse-distributions of these (for which, as a class, the roles
of values and scales are reversed in comparison to the original class). Both approaches are
easily applied to construct novel equivocal blends.

We apply the blends method to two canonical problems in mechanism design. Both are
two-agent single-item environments. One considers maximizing revenue under a standard
regularity assumption on the distribution. The other considers maximizing residual surplus
(i.e., the sum of agents’ utilities). Under the restriction to scale invariant mechanisms, [14]
identified the prior independent optimal mechanism for revenue (with approximation ≈ 1.907).
It is unknown if assuming scale-invariance is with loss. We use the blends method to establish
an unconditional lower bound of 23/18 ≈ 1.2777; this bound persists when distributions are
restricted to a smaller class (of Truncated Uniforms) for which we also prove a near-tight
upper bound of 1.292. For residual surplus, an upper bound of 4/3 exists as a corollary of [16].
We establish a lower bound of 1.00623 (no previous lower bound was known).

Looking forward, the method of equivocal blends is a stochastic framework beyond
worst-case analysis of robust algorithms and it exposes important open questions. First,
determine whether there are non-trivial settings where the method from equivocal blends is
tight. (As just summarized for a standard two-agent auction in the prior independent setting
restricting to Truncated Uniform distributions, equivocal blends give a near-tight lower
bound which puts the optimal approximation factor in (1.2777, 1.292)). Second, develop
methods for optimizing the lower bound over classes of equivocal blends. Third, while there
are important problems in mechanism design with inputs of size two, other settings (like
online algorithms) would benefit from generalizing the method beyond two-input models.
Whereas this paper indicates structural obstacles to this generalization, a preliminary study
yields a partial extension which we defer to future work.

Related Work

Within the special structure of the prior independent setting, our method applies Yao’s
Minimax Principle [20].

ITCS 2024
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Alternatively in nonparametric estimation problems, constructions of lower bounds from
Minimax exist from Lecam’s Method [17] and Assouad’s Lemma [2]. While our method bears
some similarity to these, there is significant technical deviation. E.g., two optimally-chosen
correlated distributions may appear within the lower bound of Lecam’s Method, and their
measure of total variation is assumed to be strictly positive; versus, to the extent we use two
correlated distributions, we expect them to be identical. E.g, Lecam’s lower bound term uses
total variation applied directly to two distributions, whereas ours uses functions mapping
product-distributions to optimal-algorithm performances and compares them. We summarize
these points of differentiation by noting: we exhibit no obvious dependence on metric spaces.
An application of Lecam’s Method which approaches the prior independent setting is sample
complexity of testing [6] – it effectively uses blends, but other technical distinctions persist.

The prior independent model was introduced in mechanism design by [15] and further
refined by [7]. It was conjectured that the second-price auction was the prior independent
revenue-optimal mechanism for selling a single item to one of two agents with i.i.d. values from
a regular distribution, after [7] showed that it guaranteed an upper bound of 2-approximation.
[10] disproved this conjecture by identifying a mechanism with an improved upper bound. [1]
– with an additional restriction to scale-invariant mechanisms – proved a weaker version of the
conjecture (restriction to monotone hazard rate distributions); and for regular distributions:
improved the upper bound and gave the first non-trivial lower bound for prior independent
approximation (by establishing a gap for specific distributions). [14] proved the tight result
for regular distributions under the scale-invariance restriction. Our Theorem 8 – which
lower bounds prior independent revenue approximation – will fall outside of this line of
work because (a) we do not assume scale-invariance, and (b) our setting adopts finite value
support [1, h] for which the structure of algorithms achieving previous bounds is provably
sub-optimal.

[14] connected the prior independent model from mechanism design with the standard
model for online learning. Most relevantly in relation to our work on prior independent
lower bounds, they showed that the simple follow-the-leader algorithm is optimal for expert
learning in prior independent settings (by direct analysis rather than by showing a matching
lower bound).

Main Paper Outline

Section 2 gives setup of the prior independent setting and proves lower bounds by the
Equivocal Blends Technique. Section 3 gives an example of equivocal blends and applies it to
two distinct settings within mechanism design to show novel prior independent lower bounds.
Section 4 identifies two large classes of blends solutions, each distinctively motivated as a
generalization of the example of Section 3. Section 5 connects theoretical optimization of
blends to information design and Blackwell ordering. Section 6 gives further blends results
and discussion.

2 Prior Independent Setup and Lower Bound Technique

Let F be a class of probability distributions with known fixed support V (e.g., [0,∞)). In the
prior independent algorithm design setting, there is a distribution F which is known to come
from the class F and n inputs are drawn i.i.d. from F (thus input space is Vn). Critically,
the algorithm designer does not know the specific F ∈ F . The notation F is overloaded to be
the cumulative distribution function (CDF), and f is its probability density function (PDF).
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Fix an algorithm design problem that takes n i.i.d. inputs. Denote a class of feasible
algorithms by A and an algorithm A ∈ A with expected performance A(v) for inputs
v = (v1, . . . , vn). When evaluating the performance in expectation over inputs drawn from
a distribution F , we adopt the notation A(F ) = Ev∼F [A(v)]. An algorithm’s perform-
ance for an unknown distribution F is measured against the performance of the optimal
algorithm which knows F . With these abstractions, we formally define the Bayesian and
prior independent optimization problems.

▶ Definition 1. The Bayesian optimal algorithm design problem is given by a distribution F

and class of algorithms A; and solves for the algorithm OPTF with the maximum expected
performance:

OPTF = argmax
A∈A

A(F ). (OPTF )

Note that OPTF is an algorithm. Given a distribution F , the expected performance of the
optimal algorithm is OPTF (F ) and this is the benchmark that we use for prior independent
algorithms:

▶ Definition 2. The prior independent algorithm design problem is given by a class of
algorithms A and a class of distributions F ; and searches for the algorithm that minimizes
its worst-case approximation:

αF = min
A∈A

[
max
F ∈F

OPTF (F )
A(F )

]
(αF )

where the value of the program αF is the optimal prior independent approximation factor for
class F and class A (which we leave implicit).

2.1 Theoretical Lower Bounds from Minimax
Yao’s Minimax Principle (Theorem 3) illustrates the role of the adversary through a direct
connection to a 2-player zero-sum game. First we define additional terms for use in Theorem 3
and throughout the paper. Given a space Ω, denote the set of all possible distributions by
∆(Ω) – i.e., the probability simplex. Denote a distribution over elements ω ∈ Ω by γ ∈ ∆(Ω).
Given a function f : Ω1 × Ω2 → R where Ω1 and Ω2 have arbitrary dimensions, we denote
the expectation of f over arguments ωi ∈ Ωi according to γi ∈ ∆(Ωi) as f(γi, ωj ̸=i) =
Eωi∼γi [f(ωi, ωj)], e.g., in Theorem 3.

▶ Theorem 3 (Minimax Principle [20]). Given a 2-player zero-sum game G in which sequen-
tially player 1 chooses mixed action γ1 ∈ ∆(Ω1), then player 2 chooses action ω2 ∈ Ω2. Given
the players are cost minimizers and the cost functions on pure actions are (any real-valued
function) C1(ω1, ω2) ≥ 0 and C2 = −C1. Then the value of game G (the left-hand side)
satisfies:

inf
γ1∈∆(Ω1)

sup
ω2∈Ω2

C1(γ1, ω2) ≥ sup
γ2∈∆(Ω2)

inf
ω1∈Ω1

C1(ω1, γ2) (1)

2.2 A Technique for Prior Independent Lower Bounds: Equivocal Blends
There is a detailed explanation of the technique of lower bounds from Yao’s Minimax Principle
in [5]. A challenge left open is: how to upper bound all algorithms. This section gives an
approach that is specific to prior independent design. To outline, we: (a) fix a randomization
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59:6 Equivocal Blends: Prior Independent Lower Bounds

over adversary strategies in advance; (b) prove an upper bound on the expected performance
of the best-response algorithm from an alternative description of the adversary’s induced
correlated distribution over inputs; and (c) measure the gap between the adversary’s expected
optimal performance and the upper bound of (b). The key idea is the correlation in (b):

▶ Definition 4. A blend is a distribution-over-distributions δ ∈ ∆(F). (Thus, δ(F ) is the
density at F .) A blended distribution δn ∈ ∆(Vn) is the induced density function of the
correlated distribution resulting from n i.i.d. draws from a common distribution F̂ , with
F̂ ∼ δ.

Two blends δ1, δ2 are called equivocal blends if there exists correlated density g such that:

δn
1 (v) = g(v) = δn

2 (v) ∀ v

Each of δ1, δ2 are a side of the equivocal blend. Finally, define optn,i = EF ∼δi
[OPTF (F )]

to be the expected performance of an optimal algorithm which knows F over a blend δi.

The point is: an arbitrary blend δ can be “flattened” to describe a specific (symmetric)
correlated distribution g = δn over input space Vn. Now suppose in fact two distinct blends
δ1 and δ2 induce the same correlated distribution, i.e., they satisfy Definition 4. Because
both induce the same description of correlated input profiles, every algorithm is limited
by the structure of either description. The lower bound of the technique has the following
intuition: the adversary chooses δ2 ∈ F which fixes the benchmark of the current scenario
to optn,2 = EF ∼δ2 [OPTF (F )];3 the blend δ2 induces the correlated distribution g and the
algorithm best responds to g; however the fact that δ1 also induces g means that every
algorithm is upper bounded by optn,1; if this upper bound is strictly smaller than the
benchmark, then a strict gap necessarily ensues. (Note, δ1 is unrestricted; if it exists, it is a
consequence-of-nature of δ2.) The proof of Theorem 5 appears in Appendix A.

▶ Theorem 5. Consider a prior independent setting with input space Vn, class of algorithms
A, and class of distributions F . Let Fall be all distributions. Assume there exist two
distinct equivocal blends δ1 ∈ ∆(Fall) and δ2 ∈ ∆(F) and correlated density function g (of
Definition 4) such that:

δn
1 (v) = g(v) = δn

2 (v) ∀ v

Then the optimal prior independent approximation factor αF is at least the ratio optn,2/optn,1:

αF = min
A∈A

max
F ∈F

OPTF (F )
A(F ) ≥

optn,2

optn,1
(2)

▶ Definition 6. The Equivocal Blends Technique is the proof technique for approximation
lower bounds which applies Theorem 5 to a specified prior independent design problem.

A detailed outline of the necessary computations to confirm that descriptions of δ1 and
δ2 are equivocal blends is given in the full version, which also includes a first non-trivial
n = 2 example. Construction of equivocal blends does not depend on problem domain –
e.g., mechanism design or online algorithms – but which side the adversary chooses does
depend on the problem. Subsequently in this paper we will (a) give examples of equivocal
blends and use them to prove lower bounds per Definition 6, and (b) give general methods
for identifying equivocal blends.

3 We prove expectation-over-ratios (Theorem 3) transitions to ratio-of-expectations (Theorem 5) in
Appendix A.
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3 Results in Blends Analysis

The first goal of this section is to exhibit a concrete example of equivocal blends. The
example proceeds in two steps: (1) we describe a relaxed solution that allows infinite weight
which is not directly usable for lower bounds but has simpler algebraic form; and (2), we
show that this relaxed solution can be modified to become proper equivocal blends.

The second part of the section uses the equivocal blends example to state novel lower
bounds for two distinct problems from mechanism design. We give a lengthy introduction to
mechanism design and proofs of these results in the full version of the paper. Interestingly,
the distinct objectives of these two problems results in the two sides of the equivocal blends
playing opposite roles (as either choice of the adversary, or inducing the upper bound). Later
in Section 5, we discuss the implications of this observation in terms of precluding Blackwell
ordering between the two sides.

3.1 A Concrete Equivocal Blends Example

This section provides an explicit example of equivocal blends – with motivation for the
chosen distributions from themes in mechanism design. First, we will describe a blends-type
solution that has unbounded input support and infinite total weight (so it is not a probability
distribution and it is not possible to re-normalize its weights to become one).4 Second, we
modify the infinite-weight solution to have finite weight in a bounded input space (thus, the
total weight can be normalized to 1, in particular without affecting our ratio-calculations).

For this running equivocal blends example, the δ1 side will be parameterized by a base
class of upward-closed Quadratics (called “equal revenue” in the mechanism design literature),
with PDF given by qudz(x) = z/x2 and CDF given by Qudz(x) = 1 − z/x on [z,∞). The δ2
side will be a base class of downward-closed Uniforms, with PDF given by ud0,z(x) = 1/z

and CDF given by Ud0,z(x) = x/z on [0, z]. (Generally, let Uda,b be the Uniform distribution
on [a, b].)

Infinite-weight Blends

We start by describing the weights oF corresponding to δ1 and weights ωF corresponding
to δ2. Because we first allow the total weight to be infinite, we only require the function g

(relaxed to be a “correlated function” rather than a correlated distribution) to match up its
output mass at every input (cf., density of a correlated distribution).

The weights of the upward-closed Quadratics blend (δ1) are:
weights oQz = 2

zdz on all upward-closed distributions Qudz for z ∈ (0,∞).
The weights of the downward-closed Uniforms blend (δ2) are:

weights ωUz = 2
zdz on all downward-closed distributions Ud0,z for z ∈ (0,∞).

Using symmetry, we analyze mass in the cone v1 ≥ v2 ≥ 0. The calculations of total
mass at any v ∈ (0,∞)2 are confirmed to be equal from either blend description of common
function g:

4 The elements of a blend δ are technically densities but we generally refer to them as weights, i.e., the
weight corresponding to a distribution F within the mixture over F according to δ. We do this to
accommodate a relaxed definition for blend which allows arbitrary total weight (including infinite).

ITCS 2024
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mass of Qudz blend =
∫ v2

0
oQz · qudz(v1) · qudz(v2) =

∫ v2

0

2
z

· z
v2

1
· z
v2

2
dz = 1

v2
1

= g(v)

(3)

mass of Ud0,z blend =
∫ ∞

v1

ωUz · ud0,z(v1) · ud0,z(v2) =
∫ ∞

v1

2
z

· 1
z

· 1
z
dz = 1

v2
1

= g(v)

(4)

The setup of these calculations is expanded in the full version. As desired, each side of the
equivocal blends describes exactly the same function g over V2. The remaining issue to be
addressed is that the total weight of all included distributions is divergent:

∫∞
0

2
zdz = ∞.

Modification to Finite-weight Blends

Next we show how to modify the infinite-weight solution above to a proper equivocal blends
solution with approximately the same elements. Consider input support V = [1, h] for
1 < h < ∞. First we define the weights oF and ωF , largely informed by the infinite-weight
solution. We let the total weight in the system be any constant and can assume that it gets
normalized to 1 later. In fact the total weight will be: 1 +

∫ h

1
2
zdz = 1 + 2 ln h.

The Quadratics have the same general description as the infinite-weight case but are now
top-truncated at h, with truncated density moved to a point mass at h.5 Formally, Quadratics
have PDF qudh

z (x) = z/x2 on [1, h) and point mass qudh
z (h) = 1/h, correspondingly CDF

Qudh
z (x) = 1 − z/x on [1, h) and Qudh

z (h) = 1.
The Uniforms have the same general description as the infinite-weight case but now

have domain lower bound at 1 and allow top-truncation at h. Formally, Uniforms without
truncation have PDF ud1,z(x) = 1/z − 1 and CDF Ud1,z(x) = x − 1/z − 1 on [1, z]. Uniforms
with truncation have PDF udh

1,b(x) = 1/b − 1 on [1, h) and point mass udh
1,b(h) = b − h/b − 1,

correspondingly Udh
1,b(x) = x − 1/b − 1 on [1, h) and Udh(h) = 1.

The weights of the upward-closed Quadratics blend (δ1) are:
point mass of weight opm = 1 on (truncated) distribution Qudh

1 ;
weights oQz = 2

zdz on all upward-closed (truncated) distributions Qudh
z for z ∈ [1, h].

The weights of the downward-closed Uniforms blend (δ2) are:
point mass of weight ωpm = (2h−1)2

h2 on (truncated) distribution Udh
1,2h;

weights ωUz = 2(z−1)2

z3 dz on all downward-closed distributions Ud1,z for z ∈ [1, h].
(In fact, we use only one uniform distribution with truncation: Udh

1,2h.) Calculations to show
that these blends give the same g over [1, h]2 are given in the full version.

3.2 Mechanism Design Lower Bounds for Revenue and Residual Surplus
We show two prior independent lower bounds in mechanism design from the same equivocal
blends solution (using finite-weight Quadratics-versus-Uniforms of Section 3.1 and the
Equivocal Blends Technique of Definition 6). Revenue and residual surplus are two objectives
within mechanism design (see definitions in the full version). Theorem 8 (below, for a revenue

5 We explain the notation F h. The overline modifies F with truncation. A circle-mark truncates to a
pointmass, a tick-mark truncates and re-normalizes density (e.g., F 1); a mark at the left end point is
bottom-truncation, at the right end point is top-truncation. The superscipts indicate the input(s) of
truncation, in order. Thus, F h is: top-truncated to a pointmass at h, i.e., the original CDF jumps to 1
at h.
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objective) uses an adversarial distribution over the Uniforms side of the equivocal blend. By
contrast, Theorem 10 (for a residual surplus objective) uses an adversarial distribution over
the Quadratics side. This dichotomy of the respective adversaries’ choices highlights how our
single example of equivocal blends can be distinctly applied – with blends’ roles reversed –
in distinct algorithm-objective settings (which moreover is sufficient to prove that there is no
Blackwell ordering between the blends, see Corollary 17).

A given prior independent lower bound is stronger if it holds for a smaller class of
distributions. Let LF be a lower bound on the optimal approximation factor αF for a class
F . Fact 7 makes clear that LF holds additionally for a superclass E :

▶ Fact 7. Given two classes of distributions E and F such that E ⊃ F . Then αE ≥ αF ≥ LF .

Thus, we give our results for the smallest classes of distributions in order to state the strongest
bounds from our analysis. Define two sub-classes: Uniforms Funif[1, h] = {Udh

1,b : 1 ≤
b} ≡ uniforms on [1, b] truncated at h; and Quadratics Fquad[1, h] = {Qudh

a : 1 ≤ a ≤
h} ≡ quadratics on [a, h] truncated at h. We explain the approach for both theorems but
full proofs are deferred to the full version of the paper.

▶ Theorem 8. Given a single-item, 2-agent, truthful auction setting with a revenue objective
and with agent values restricted to support [1, h] for h > 2. For the Uniforms class Funif, the
optimal prior independent approximation factor αFunif

h has upper and lower bounds:

1.292 > αFunif

h ≥
opt2,2

opt2,1
=

23h
6 − 7

2 − ln(h/2)
3h− 2 = LFunif

h where LFunif

∞ ≈ 1.2777 (5)

The 1.292-upper bound is obtained by the Second Price Auction. The lower bound LFunif

h →
23/18 ≈ 1.2777 as h → ∞ and this is the supremum of LFunif

h over h ≥ 1.

Lower bounds for Uniforms (without truncation) have previously been considered within
mechanism design, e.g., for a Bayesian, multi-dimensional setting [11]; and for prior inde-
pendence, with budgeted agents [8]; and with distribution samples [9]. Canonical revenue
maximization measures worst-case approximation with respect to the class of regular distribu-
tions F reg (formally defined in the full version). All of our Uniforms are regular: F reg ⊃ Funif.
As a corollary, we lower bound regular distributions: αFreg

h ≥ LFunif

h .
The proof of Theorem 8 follows the script of the Equivocal Blends Technique. We set

δ2 ∈ ∆(Funif) to be the Uniforms blend with finite weights (page 8) and we set δ1 ∈ ∆(Fall)
to be the corresponding Quadratics equivocal blend. The Second Price Auction (SPA) is
optimal for all Quadratics in Fquad ⊂ Fall; the lower bound h > 2 is necessary so that the
Second Price Auction is not also optimal for all Uniform distributions with positive weight
in δ2 (for h ≤ 2 there is no gap: opt2,2/opt2,1 = 1). Given these, the right-hand side of
equation (5) is simply the result of evaluating opt2,2/opt2,1 (and recalling from Definition 4
that optn,i = EF ∼δi

[OPTF (F )]).
The 1.292-upper bound for the Uniforms class in Theorem 8 follows from lemmas of [14]

and [7].
Previously for 2-agent auctions for revenue and unbounded value space, with the additional

restriction to scale-invariant mechanisms, [1] proved for monotone hazard rate distributions
(Fmhr) that the SPA is optimal and gave the optimal approximation αFmhr ≈ 1.398; and
also proved for regular distributions (F reg) the first-ever prior independent lower bound.
[14] gave the optimal mechanism and approximation αFreg ≈ 1.907; comparing this result
to Theorem 8, we have established an upper bound on the gap between optimal prior
independent approximation factors for infinite and finite value support:
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▶ Corollary 9. Fix a single-item, 2-agent, truthful auction setting with a revenue objective.
Consider alternatively unbounded agent values in (0,∞) and agent values restricted to support
[1, h] for h > 2. The gap between Freg

(0,∞) and Freg
[1,h] is at most (using conservative rounding):

1.908/1.2777 ≈ 1.495.

We switch now to the residual surplus objective:

▶ Theorem 10. Given a single-item, 2-agent, truthful auction setting with a residual surplus
objective and with agent values restricted to support [1, h] for h ≥ 8.56. For Quadratics class
Fquad, the optimal prior independent approximation factor αFquad

h has a lower bound:

αFquad

h ≥
opt2,2

opt2,1
>

4h2 − 2h− h ln h− e ln h− e

4h2 − 3h− h ln h = LFquad

h where LFquad

18 ≈ 1.00623 (6)

The lower bound LFquad

h → 1 as h → ∞. As an example bound: for h ∈ N, the maximum of
LFquad

h is achieved at h = 18 with LFquad

18 ≈ 1.00623.

Residual surplus maximization measures worst-case approximation with respect to the class
of all distributions Fall.6 As a corollary, we lower bound all distributions: αFall

h ≥ LFquad

h .
Once again, the proof of Theorem 10 uses the Equivocal Blends Technique. This time we

set δ2 ∈ ∆(Fquad) to be the Quadratics blend with finite weights and set δ1 ∈ ∆(Fall) to be
the corresponding Uniforms. The Lottery (i.e., uniform-random allocation) is optimal for
all Uniforms in Funif ⊂ Fall; the lower bound h ≥ 8.56 is necessary so that the Lottery is
not also optimal for all Quadratics with positive weight in δ2 (for h ≤ 8.55 there is no gap).
Note, the right-hand side of equation (6) is a simplified lower bound on the ratio opt2,2/opt2,1

as shown in the statement.
For residual surplus, there is no previous lower bound. Our mechanism design results

have not been optimized in order to identify best lower bounds from the Equivocal Blends
Technique.

4 General Equivocal Blends Solutions: Order-statistic Separability and
Inverse-distributions

This section describes two broad approaches for infinite-weight equivocal blends solutions
that may be useful for identifying good lower bounds for problems of interest, i.e., within a
search over equivocal blends for the one that yields the best lower bound.

The first blends structure exists when the common function g (describing mass) can be
written as multiplicatively-separable functions per order-statistic of the inputs (for n = 2).
The second blends structure generates one side of the equivocal blend by parameterizing
over scales of a fixed, base function F , and the other side is then automatically generated by
parameterizing over scales of the inverse-distribution of F . The example of Section 3.1 is a
special case of both approaches.

For simplicity, we describe these constructions allowing for infinite-weight blends. Similar
methods as used in the example of Section 3.1 can modify them to proper probability
distributions.

6 We note the contrast: Fall is standard for prior independent design with a residual surplus objective,
whereas Freg is standard with a revenue objective. As partial explanation: for the class Fall, [16] show
that constant-approximation is possible for residual surplus, and also show a super-constant lower bound
for revenue. Revenue maximization restricts to regular distributions which satisfy a natural concavity
property, and for which constant-approximation is possible. The first upper bound was from [7].
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4.1 Blends from Order-statistic Separability
This section introduces order-statistic-separable functions and subsequently describes a class
of equivocal blends based on these functions. Fix n = 2 and our inputs in the cone v1 ≥ v2 ≥ 0
in which v1 represents the first (largest) order statistic and v2 the second (smaller) order
statistic.

▶ Definition 11. Given n = 2. An order-statistic-separable function (with domain V2) is
symmetric across the line v1 = v2 and for inputs subject to v1 ≥ v2 ≥ 0, has the form:

g(v) = g1(v1) · g2(v2)

for which both g1 and g2 adopt the domain V.

To be clear, the separate functions g1 and g2 are not independent factors of g because of
the condition v1 ≥ v2. The function g is correlated and is not a product itself. Let G1(z) =∫∞

z
g1(y)dy and G2(z) =

∫ z

0 g2(y)dy be respectively upward-cumulative and downward-
cumulative functions. (Intuitively, if G1(z) is finite, then a “normalized” function g1(x)/G1(z)

gives the PDF of a conditional probability distribution parameterized by z, on domain [z,∞);
and the analogous statement is true for finite G2(z) on domain (0, z].)

Before stating a formal result in Theorem 12 to construct equivocal blends, we show that
the Quadratics-versus-Uniforms example of Section 3.1 exhibits order-statistic separability.
The blends’ correlated density at every point v ∈ R2

+ for v1 ≥ v2 was calculated in equa-
tions (3) and (4) to be g(v) = 1/v2

1. It is easy to verify that g1(v1) = 1/v2
1 and g2(v2) = 1

satisfy Definition 11.

▶ Theorem 12. Consider non-negative functions g1(·) and g2(·) each with domain (0,∞).
For every z > 0, let g1,z be g1 restricted to the domain [z,∞) and g2,z be g2 restricted to the
domain (0, z].

Each δi blend is a distribution over the set {gi,z : z > 0}. Let og1(z) and ωg2(z)
be functions (as free parameters which we may design) to describe weights corresponding
respectively to each g1,z and to each g2,z.

First, assume g1(·) and g2(·) satisfy the following conditions:
1. The function χ(z) = g1(z)

g2(z) evaluated in the limit at ∞ is 0, i.e., limz→∞ χ(z) = 0;
2. the function ψ(z) = g2(z)

g1(z) evaluated in the limit at 0 is 0, i.e., limz→0 ψ(z) = 0;
3. χ(z) must be weakly decreasing, equivalently, ψ(z) must be weakly increasing;

Then the weights functions og1(z) = dψ(z) and ωg2(z) = −dχ(z) give an equivocal blends
solution with:

g(v) = g1(v1) · g2(v2) for v = (v1, v2 ≤ v1)

If the following condition additionally holds:
4. the integrals G1(z) =

∫∞
z
g1(y) dy and G2(z) =

∫ z

0 g2(y) dy are positive and finite for all
z ∈ (0,∞);

then for the same function g, there exists an equivocal blends solution (by modification from
the original solution) for which all of the g1,z and g2,z functions are distributions.

(The proof and discussion of Theorem 12 are given in the full version of the paper due to space
constraints.) The modification for the last part of Theorem 12 is defined by: the distributions
making up the blends classes are g̃1,z(x) = g1,z(x)/G1(z) and g̃2,z(x) = g2,z(x)/G2(z) and the
weights are õg1(z) = dψ(z) · (G1(z))2 and ω̃g2(z) = −dχ(z) · (G2(z))2. Two nested classes of
equivocal blends from Theorem 12 are given in Section 6.2.
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4.2 Dual Blends from Inverse-distributions
It is a remarkable feature of the infinite-weight Quadratics-versus-Uniforms equivocal blends
that both sides use the exact same weights parameters per z, namely oQz = ωUz = 2/z · dz.
This structure is not an anomaly – it is indicative of a special-case class of infinite-weight
dual blends solutions which we formalize in Theorem 13 (and give the key definitions and
proof below).

The critical structure is the multiplicative inverse “1/z”. Its importance is highlighted
from two perspectives: inverse-distributions and arbitrary distribution rescaling. Notably,
Quadratics and Uniforms are inverse-distributions to each other, which we see directly from
Qud1(x) = 1 − 1/x on [1,∞) for which the inverse-distribution CDF is 1 − Qud1(1/x) =
1 − (1 − 1/1/x) = x = Ud0,1(x) on [0, 1]. Additionally, the Quadratics blend assigns weights
to all rescalings of Qud1 and the Uniform blend assigns weights to all rescalings of Ud0,1.
Fundamentally, Theorem 13 shows that there is a duality between distribution values and
distribution scales, as observed in equations (7), (8).

▶ Theorem 13 (Dual Blends Theorem). Given distribution F, define members Fy of its
parameterized class of all possible rescalings y > 0, and its inverse-distribution i-F by

Fz(x) = F(x/z) = 1 − i-F(z/x) = 1 − i-Fx(z) (7)

For n = 2, Fz and i-Fz give classes that are dual blends using weights oz = ωz = 1/z, i.e.,
they describe a common function g at every v = (v1, v2 ≤ v1):∫ ∞

0

1
z

· fz(v1) · fz(v2) dz = g(v) =
∫ ∞

0

1
z

· i-fz(v1) · i-fz(v2) dz (8)

▶ Definition 14. Given a distribution F with domain [a, b] (or domain [a,∞)), i.e., F (a) = 0
and F (b) = 1. The inverse-distribution of F is defined by the CDF function i-F (x) = 1−F (1/x)
on domain [1/b, 1/a] (respectively domain (0, 1/a]). The PDF of the inverse-distribution is
denoted i-f . (Fact: as an operation, distribution inversion is its own inverse, i.e., it respects
the identity i-(i-F ) = F .)

▶ Fact 15. Given a distribution Fz=1 with default scaling parameter z = 1 and with domain
[a, b] (or domain [a,∞)). The distribution F1 can be arbitrarily re-scaled for z ∈ (0,∞) to
Fz(x) = F1(x/z) with domain [z · a, z · b] (respectively domain [z · a,∞)).

These concepts come together in Theorem 13 which proves that an infinite-weight blends
solution always exists effectively from fixing symmetric weights oz = ωz = 1/z · dz and then
choosing the g1 and g2 as inverse-distributions of each other. In Theorem 12 by comparison,
g1 and g2 were (relatively) free parameters to be chosen first, for which weights could then be
identified to complete an equivocal blends solution. We give a concise proof of Theorem 13
from the key ideas of this section (inverse-distributions and rescaling):

Proof. Given distribution F and its inverse-distribution i-F, the rescaled CDFs and PDFs
are:

Fz(x) = F(x/z) i-Fz(x) = i-F(x/z) = 1 − F(z/x)

fz(x) = 1
z

· f(x/z) i-fz(x) = z

x2 · f(z/x)

Starting from the right-hand side of equation (8), the following sequence completes the proof:∫ ∞

0

1
z

· i-fz(v1) · i-f(v2) dz =
∫ ∞

0

[
1
z

· dz
]

·
(
z

v2
1

· f(z/v1)
)

·
(
z

v2
2

· f(z/v2)
)
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(here we perform calculus-change-of-variables using z = ζ(y) = v1·v2
y ; recall that part of the

substitution is dz = ζ ′(y) · dy, and integral endpoints get mapped by ζ−1(·))

=
∫ 0

∞

[
1

v1·v2
y

·
(

−v1 · v2

y2 · dy
)]

·

(
v1·v2

y

v2
1

· f(v2/y)
)

·

(
v1·v2

y

v2
2

· f(v1/y)
)

=
∫ ∞

0

[
1
y

· dy
]

·
(

1
y

· f(v2/y)
)

·
(

1
y

· f(v1/y)
)

=
∫ ∞

0

1
y

· fy(v2) · fy(v1) dy ◀

An interesting property of (infinite-weight) dual blends that emerges from the proof of
Theorem 13 is: we do not have to solve for a closed-form expression for the function g in
order to prove equality of its dual descriptions. As a consequence, obtaining prior independent
lower bounds from dual blends may reduce to computation of expectations over optimal
performances OPTF (F ).

A dual blend from Theorem 13 based on optimal mechanism design is outlined in
Section 6.3.

5 Equivocal Blends Design is Information-Design-Design

This section connects theoretical optimization of the Blends Technique to the economics topic
of information design, specifically as a procedure of information-design-design. For a given
prior independent problem (parameterized by a class of distributions F), the main idea is
to separate into two modular problems the search for the optimal equivocal blend (i.e., the
one that yields the largest lower bound of any equivocal blend). (1) An “outer” problem
identifies an optimal correlated distribution g∗ ∈ G = {δn | δ ∈ ∆(F)}. The outer problem
searches over: (2) for any exogenous g ∈ G, an “inner” problem identifies two blends that
induce g – cf., the Equivocal Blends Technique: respectively the blends are an adversary
distribution over F and an alternative distribution over Fall – to maximally separate the
ratio of optimal performances given each blend.

Effectively, the distributions that compose each blend are randomized signals (i.e, signal
a distribution F ) whose realizations are used to resolve the optimal algorithm OPTF . If
signals can be designed as outputs of a mapping from fixed states, then such signal-response
games are called information design. We exhibit the separation of problems first and defer
the formal presentation of information design to the full version of the paper.

Describing the sequence of inequalities below, the first line starts with a prior independent
problem and its right-hand side optimizes over lower bounds from the Blends Technique. This
step removes the algorithm design problem of the min-player and gives a new problem (which
is constrained with respect to the original, possibly with loss). Next, where an adversary
optimizes a sup − sup program, we rearrange these two successive choices to: (a) optimize
the correlated distribution g which represents both (flattened) sides of the equivocal blends
simultaneously; and then (b) optimize over blends which induce g to maximize the numerator
(using F) and minimize the denominator (using Fall).7 The final line is a reorganization
using independence of numerator and denominator which each comprise a sub-problem of the
Equivocal Blends Technique.

7 This optimization may be non-trivial – for a single exogenous g, there are generally multiple candidate
blends which induce g. Intuitively, this is true because the set {δ | δn = g} is closed under convex
combination. To illustrate, first consider two distinct equivocal blends examples ga = δn

1 = δn
2 and

gb = δn
3 = δn

4 . Then gab = ga
/2 + gb/2 has four blends solutions: δn

i /2 + δn
j /2 for all i ∈ {1, 2}, j ∈ {3, 4}.

(We ignore that, e.g., the δn
i /2 term may mix over δn

1 /2 and δn
2 /2 – an optimization never needs this mix

by linearity of expectation.) More generally the convex set {δ | δn = g} is a Hilbert space, e.g., if g is a
continuous mixture over a continuum of equivocal blends.
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αF = min
A∈A

max
F ∈F

OPTF (F )
A(F ) ≥ sup

δ2∈∆(F)

[
sup

δ1∈{δ | δn=g=δn
2 }

[
EF ∼δ2 [OPTF (F )]
EF ∼δ1 [OPTF (F )]

]]

= sup
g∈G

 sup
δ2∈{δ | δ∈∆(F) and δn=g}

δ1∈{δ | δn=g}

[
EF ∼δ2 [OPTF (F )]
EF ∼δ1 [OPTF (F )]

]
= sup

g∈G

[ supδ2∈{δ | δ∈∆(F) and δn=g} (EF ∼δ2 [OPTF (F )])
infδ1∈{δ | δn=g} (EF ∼δ1 [OPTF (F )])

]
(9)

▶ Definition 16. The optimization problem of equation (9) is Information-Design-Design.
Within the brackets, we refer to the optimizations respectively as the Numerator and Denom-
inator Games.

Thus, when g is fixed exogenously by an outer maximization, there is a reduction to
diametrically-opposite questions of constrained information design.

▶ Proposition 1. Consider the prior independent design problem (Definition 2) given a
class of distributions F , a class of algorithms A, and n inputs. Optimization of the Blends
Technique approach to prior independent lower bounds is described by:

αF ≥ sup
g∈G

[ supδ2∈{δ | δ∈∆(F) and δn=g} (EF ∼δ2 [OPTF (F )])
infδ1∈{δ | δ∈∆(Fall) and δn=g} (EF ∼δ1 [OPTF (F )])

]
Further, its Numerator Game and its Denominator Game can be independently instantiated
as problems of constrained information design.

To re-summarize: constraining the design is the key step – informally information design is a
signalling game, to which we add the requirement that signals be distributions F ∈ F or F ∈
Fall (which each induce an i.i.d. product distribution). At the same time, (a) each distribution
over signals is a blend, and (b) an optimal algorithm can be run in response to a given signal
F̂ (i.e., we recognize the use of distributions-as-signals in optn,i = EF ∼δi

[OPTF (F )]).
In the full version of the paper, we evaluate equivocal blends from the perspective of

Blackwell (partial) ordering, which compares two designs of signalling strategies, equivalently
in terms of both (a) a strong measure of their information content, and (b) a strong measure
of their usefulness for arbitrary optimization objectives. If two distinct optimizations prefer
expectation over optimal performances from distinct sides of an equivocal blend, then
Blackwell ordering is precluded ([4], the theorem is in the full version). Our example of
Quadratics-versus-Uniforms equivocal blends meets this condition and Corollary 17 (next)
is a consequence of our prior independent lower bounds in Section 3.2 whereby Theorem 8
(for revenue) used an adversarial distribution over the Uniforms side of the equivocal blend,
versus, Theorem 10 (for residual surplus) used an adversarial distribution over the Quadratics
side.

▶ Corollary 17. Finite-weight Quadratics-versus-Uniforms equivocal blends are an example
for which there is no relationship according to Blackwell ordering.

Most of this Section 5 has been deferred. In the full version of the paper, we give a
formal introduction to information design and describe the respective reductions of the
Numerator and Denominator Games to information design (thereby providing the proof for
Proposition 1).
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6 Further Analysis of Equivocal Blends

This section gives further detail of example equivocal blends, corollaries, and follow-up
discussion. Generally, material in this section was deferred to bring forward more-critical
material.

6.1 A Single-agent Auction with a Tight Bound

This section gives the extended details to support the 1-agent, tight result from blends
analysis as presented in the Introduction (Section 1). Although formal introduction of
mechanism design is deferred to the full version, the setting here is simple enough to outline
and provide the details. The result was for a 1-agent price-posting auction, in which the
auction commits to a fixed, take-it-or-leave-it price π to the agent who has private value v
from known support, and the agent buys if and only if v ≥ π. The following theorem states
the result as summarized in the Introduction:

▶ Theorem 18. Given a single-item, 1-agent price-posting auction with a revenue objective
and agent value in support V = [1, h]. The optimal prior independent approximation factor is
1 + ln h.

Theorem 18 exists from matching upper and lower bounds. The upper bound is from
[16]. We prove the lower bound from equivocal blends analysis as follows (consisting of
Quadratics-versus-Point-Masses).

The (truncated) Quadratics were defined in Section 3.1. For convenience: they have PDF
qudh

z (x) = z/x2 on [1, h) and point mass qudh
z (h) = 1/h, correspondingly CDF Qudh

z (x) =
1 − z/x on [1, h) and Qudh

z (h) = 1.
Point mass distributions Pmdz are paramaterized by a single point z with probability 1.

They have CDF given by Pmdz(x) = 0 on [0, x) and Pmdz(x) = 1 on [x,∞). (Regarding
the PDF of point masses, we make the obvious simplifications; for full formality, see the full
version.)

The blends are simple: on one side we have a point mass on Qudh
1 ; and on the other

side we have the distribution Qudh
1 over weights of parameter z corresponding to point mass

distributions Pmdz. Note, this simple structure is possible exclusively because equivocal
blends here for input-size n = 1 have a reduction that does not exist for n ≥ 2: for n = 1,
the underlying set of distributions – which are one-dimensional “product” distributions – is
closed under convex combination. Formally:

The (singular) weight of the Quadratic blend (δ1) is:
weight opm = 1 on Qudh

1 .
The weights of the Point-Mass blend (δ2) are:

weight ωz = qudh
1 (z) = 1/z2 · dz on Pmdz for z ∈ [1, h);

weight ωh = 1/h on Pmdh.
To confirm the blend at each v ∈ [1, h), we calculate:

result of Qudh
1 blend = opm · qudh

1 (v) = 1
v2 = g(v) (10)

result of Pmdz blend = ωv · [density of point mass at v] = 1
v2 = g(v)
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and at v = h, we calculate:

result of Qudh
1 blend = opm · qudh

1 (h) = 1
h

= g(h) (11)

result of Pmdz blend = ωh · [density of point mass at h] = 1
h

= g(h)

We evaluate the lower bound resulting from inserting this blend into Theorem 5. For Qudh
1 ,

posting any price π ∈ [1, h] gets the same revenue of 1, due to the following. The agent buys
if and only if random value v ∼ Qudh

1 is at least the price (we break ties in favor of the
auction). The calculated probability of buying for any π is 1 − Qudh

1 (π) = 1 − (1 − 1/π) = 1/π,
and the revenue conditioned on buying is the posted price π. Thus independent of π, revenue
is π · 1/π = 1.

For Pmdz, the optimal price to post is z – when the agent identically has value z from
the point mass distribution, revenue is trivially maximized by always selling at posted price
π = z.

The lower bound ratio to calculate is opt2,2/opt2,1 (and we recall from Definition 4 that
optn,i = EF ∼δi

[OPTF (F )]). Thus we complete the proof of Theorem 18 by calculating:

EF ∼δ2 [OPTF (F )]
EF ∼δ1 [OPTF (F )] =

ωh · h+
∫ h

1 ωz · z
opm · 1 =

1
h · h+

∫ h

1
1

z2 · z dz
1 = 1 + ln h

6.2 Sub-classes of Equivocal Blends from Order-statistic Separability
Theorem 12 stated that equivocal blends exist from order-statistic-separable functions
(g(v) = g1(v1) · g2(v2) for v1 ≥ v2) under modest conditions. To apply Theorem 12, we need
the elements of an equivocal blend to be proper distributions. The theorem’s Conditions
(1, 2, 3) are sufficient for an algebraic solution. Additionally satisfying Condition (4) which
states, “the integrals G1(z) =

∫∞
z
g1(x)dx and G2(z) =

∫ z

0 g2(x)dx are positive and finite
for all z,” is sufficient for the special case in which we construct g̃1,z and g̃2,z to necessarily
be probability distributions. This is sufficient to avoid, e.g., g̃1,z(x) = g1,z(x)/G1(z) being not
well-defined or 0. (We give an example failing Condition (4) in the full version.)

The interpretation of Condition (4) is that g1 must be everywhere “positive and upward-
finite” and g2 must be everywhere “positive and downward-finite.”

▶ Definition 19. Given a non-negative function gi(·) with domain (0,∞). The function gi(·)
is upward-finite if

∫∞
z
gi(x) dx is finite for every z, and it is downward-finite if

∫ z

0 gi(x) dx
is finite for every z.

The simple structure of Conditions (1-4) in Theorem 12 are remarkably easy to satisfy. We
give a first example-class of solutions based on monomials (whose finiteness is easy to verify):

▶ Corollary 20. Consider parameterized functions gη(x) = 1/xη for any η ∈ R. Setting
g1 = gη+ for η+ > 1 and g2 = gη− for η− < 1 will meet conditions (1-4) of Theorem 12.
Thus, there is an equivocal blends solution for which elements are distributions (as modified)
from any gη+ and gη− .

Moreover, assume we drop Condition (4). Resetting g1 = gη+ and g2 = gη− subject to
only the weaker condition η− < η+ will meet all conditions (1-3) of Theorem 12.

The first statement of Corollary 20 (setting g1 = gη+ for η+ > 1 and g2 = gη− for η− < 1) is
itself a subset of a much larger class of (infinite-weight) equivocal blends whose elements will
be probability distributions (through the constructions of the g̃i,z):
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▶ Corollary 21. Consider arbitrary function g1 that is monotone strictly decreasing and
upward-finite; and arbitrary function g2 that is monotone strictly increasing and downward-
finite and also satisfies limx→0 g2(x) = 0 and limx→∞ g2(x) = ∞. The functions g1 and
g2 together satisfy all Conditions (1-4) of Theorem 12. Thus, there is an equivocal blend
solution for which the elements are distributions (as modified) from g1 and g2.

The class of solutions in Corollary 21 is still smaller than the class of all solutions to
Theorem 12 (for example, g1 need not be monotone). As just one of literally-unlimited
examples, Corollary 21 is satisfied by assigning g1(x) = 1/x3 and g2(x) = (ln(x + 1))2.
Additional discussion of Theorem 12 is given in the full version of the paper, including
discussion of structure – evident from this theorem – that suggests that there is no direct
generalization of our equivocal blends framework to n > 2.

6.3 A Dual Blend Example from Inverse-distributions
The goal of this section is to overview a dual blend example from the inverse-distribution
structure of Theorem 13, which states that a dual blend exists from using: all scales of a
distribution F on one side, all scales of its inverse-distribution i-F on the other, and weights
identically 1/z · dz on both sides. For our example, we use the exponential distribution, which
is motivated by a distribution chosen by a minimax-optimal adversary within optimal prior
independent mechanism design. (This adversary occurs in [1], in a setting that restricts to
the class monotone hazard rate distributions (Fmhr) – a class for which exponentials are on
the boundary.

The full analysis of the following dual blends is sufficiently technical that we defer it to
the full version of the paper, where we give a wholly-contained presentation of the example.

Exponentials versus Inverse-Exponentials

The standard exponential distribution is Exd1 which has CDF Exd1(x) = 1 − e−x on [0,∞)
and PDF exd1(x) = e−x.

Its inverse-distribution – as calculated from Definition 14 – is the inverse-exponential
distribution i-Exd1 which has CDF i-Exd1(x) = e

− 1/x and PDF i-exd1(x) = 1
x2 · e − 1/x.

Given the arbitrary re-scaling inherent in Theorem 13 (recall Fact 15), we will need all
possible scales of these distributions to compose our blend. Scalings of exponentials (and
inverse-exponentials) are naturally representable by hazard rate parameters β.

The distributions in the exponentials blend will have general description Exdβ(x) =
1−e−βx and exdβ(x) = β·e−βx on x ∈ [0,∞); and the distributions in the inverse-exponentials
blend will have general description i-Exdβ(x) = e

− β/x and PDF i-exdβ(x) = β
x2 · e − β/x on

[0,∞).
Lastly, towards implementing the desired blends of this section which will further support

modification to finite weight, we will truncate all of the distributions composing each side of
our dual blends: we use top-truncation to modify Exponentials into our downward-closed class
of Exponentials, and bottom-truncation to modify inverse-exponentials into our upward-closed
class of Inverse-Exponentials. (For full explanation of distribution note, recall footnote 5.)

To resummarize, we have:
arbitrary re-scaling, which is naturally represented as hazard rate parameters β;
truncations, parameterized by truncation point z;
and note that for each side of the dual blend, there will be a fixed, functional relationship
between z and β which also depends on the size of the truncated mass: quantile q̄ for
top-truncated Exponentials and percentile p̄ for bottom-truncated Inverse-Exponentials;
and even though we could replace either z or β (by writing one in terms of the other), we
keep them both to simplify the notation.
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We can now write our (infinite weight) dual blends result that follows from Theorem 13:

▶ Corollary 22. Fix q̄ = p̄ ∈ (0, 1). Given the class of downward-closed (top-truncated)
Exponentials with members Exdz

β and the class of upward-closed (bottom-truncated) Inverse-
Exponentials with members i-Exdz

β, each class including all z > 0 (equivalently all β > 0).
For n = 2 and oz = ωz = 1/z · dz, we have the following dual blends matching up at every
v = (v1, v2 ≤ v1) to describe a common function g:∫ v2

0

1
z

· exdz
β(v1) · exdz

β(v2) dz = g(v) =
∫ ∞

v1

1
z

· i-exdz
β(v1) · i-exdz

β(v2) dz (12)

The completion of this example with full details is deferred to the full version of the paper.
A partial list of its contents is:

full set up of the distributions composing our Exponentials and Inverse-Exponentials
blends, including mathematical details of the parameters;
confirmation of dual blends calculations;
modification to finite weight dual blends, based on the same elements, including all
necessary supporting calculations;
as a point of interest within mechanism design, confirmation that Exponential distributions
remain monotone hazard rate after their modification for use in the finite weight dual
blends (and thus, they are available to an adversary restricted to the class Fmhr);
and finally, as a second point of interest, we graph post-truncation revenue curves in
Figure 1 (below on page 19; revenue curves are defined along with mechanism design
in the full version); the remarkable observation is that we have concave revenue curves
of the top-truncated Exponentials on one side of the dual blend versus single-troughed
revenue curves of the bottom-truncated Inverse-Exponentials on the other side of the
dual blend.

The contrasting structures of the distributions’ revenue curves within the respective sides of
the dual blend are surprising and intriguing within mechanism design.
1. Intuitively, geometrically, it seems impossible that the adversary can possibly choose a

blend composed of distributions inducing concave revenue curves, and in response the
mechanism perceives a blend over distributions inducing inverted structure; but there
it is.

2. Generally, non-concave revenue curves are significantly more difficult to analyze and
optimize, especially for robust-design settings like prior independence in which the relaxa-
tion to the class of all distributions Fall allowing arbitrary non-concave revenue curves
results in super-constant lower bounds on approximation [12]; indeed, the definition of
the regular class F reg is the restriction to (weakly) concave revenue curves; and the
analytical-technical and mechanism-performance challenges that arise outside the class
F reg are the reasons that restriction to F reg is frequently assumed in the literature.

3. Technically, the possibility that the mechanism is responding to a distribution over
irregular distributions – with their associated technical challenges in the prior independ-
ent setting – is a salient weakness in its information that may ultimately govern the
approximation gaps induced by optimal dual blends design.

We give a second example dual blend from Theorem 13 (infinite weight only) in the full
version, to which we defer all details. It is also motivated by a distribution chosen by an
adversary within optimal mechanism design. Specifically, it is designed from a “shifted-
quadratic” distribution Sqd0,−1 which has CDF Sqd0,−1(x) = 1 − 1/x + 1 on [0,∞) and
PDF sqd0,1(x) = 1/(x + 1)2. Its presentation is largely analogous to the presentation of
infinite-weight Exponentials-versus-Inverse-Exponentials.
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(1,∼ 0.511)
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0 1qmq1 q2
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qm 11 − p2 1 − p1
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0

1

Truncations of Ri-Exd1

Figure 1 Example Ironings of Exponential and Inverse-Exponential.

The left figure shows the results of two examples of (dashed) top-truncation of the distribution
Exd1, respectively at q1 = 0.25 < qm and q2 = 0.6 > qm. The right figure shows the results of the
corresponding two examples of (dashed) bottom-truncation of the distribution i-Exd1, respectively
at 1 − p1 = 1 − q1 = 0.75 and 1 − p2 = 1 − q2 = 0.4; the (approximate) heights of the points on the
right describe the agent-values of the respective truncations.

An additional point of interest for the base class of (all rescalings of) Shifted-Quadratics
is: its class of inverse-distributions is identically itself: each element of the class of Shifted-
Quadratics which is indexed by a positive, real-valued shape parameter ϕ maps to the
Shifted-Quadratic with multiplicatively-inverted shape parameter 1/ϕ.
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A Proof of the Equivocal Blends Lower-Bound Theorem

For use in this section, recall our notation A(F ) = Ev∼F [A(v)] for the expected performance
of algorithm A on n i.i.d. draws from a distribution F .

First we state Lemma 23 which shows that for any fixed blend δ̄ (as implicit choice of the
adversary), we can obtain a lower bound on prior independent approximation [13]. (This
lower bound is used as an interim step within the proof of Theorem 5.)

Lemma 23 states that we can replace the adversary’s maximization problem within prior
independent design (for reference see equation (13)). In its place, the adversary effectively
sets a benchmark as the expectation of optimal performance over distributions drawn from δ̄

(thus, the benchmark is EF ∼δ̄ [OPTF (F )]). Symmetrically, the algorithm’s performance is its
expected performance over distributions drawn from δ̄ (thus, its performance is EF ∼δ̄ [A(F )]).

An algorithm’s approximation of the benchmark is measured as the ratio of this benchmark
to its performance, i.e., as ratio-of-expectations (ROE). The lower bound results from the
minimum ratio achieved by any algorithm A ∈ A. Practically, this interim lower bound is
only an abstraction because we don’t say anything about how to optimize the algorithm A.

▶ Lemma 23 (The Ratio-of-Expectations Benchmark Lemma [13]). Consider a prior inde-
pendent setting with input space Vn, class of algorithms A, and class of distributions F . Let
δ̄ ∈ ∆(F) be any fixed blend, i.e., a fixed distribution over the distributions of F . Then

αF = min
A∈A

max
F ∈F

OPTF (F )
A(F ) ≥ min

A∈A

[
EF ∼δ̄ [OPTF (F )]

EF ∼δ̄ [A(F )]

]
, for fixed δ̄ (13)

The key step in the proof of Lemma 23 is carved out as its own lemma and is noteworthy
here:

▶ Lemma 24 (The Randomized-state Relaxation Lemma [13]). Consider a prior independent
setting with input space Vn, class of algorithms A, and class of distributions F . Without loss
of generality for the value of prior independent optimization, we can simultaneously: relax

https://arxiv.org/abs/2311.17038
https://arxiv.org/abs/1412.8518
https://doi.org/10.1287/moor.6.1.58
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the distribution space F to allow any blend δ ∈ ∆(F), and transition EOR to ROE. I.e., the
following min-max programs necessarily have the same value:

min
A∈A

max
F ∈F

OPTF (F )
A(F ) = min

A∈A
max

δ∈∆(F)

[
EF ∼δ [OPTF (F )]

EF ∼δ [A(F )]

]
(14)

With the statement Lemma 23 in place (along with partial explanation for it via Lemma 24),
we are prepared to restate and prove Theorem 5.

▶ Theorem 5. Consider a prior independent setting with input space Vn, class of algorithms
A, and class of distributions F . Let Fall be all distributions. Assume there exist two
distinct equivocal blends δ1 ∈ ∆(Fall) and δ2 ∈ ∆(F) and correlated density function g (of
Definition 4) such that:

δn
1 (v) = g(v) = δn

2 (v) ∀ v

Then the optimal prior independent approximation factor αF is at least the ratio optn,2/optn,1:

αF = min
A∈A

max
F ∈F

OPTF (F )
A(F ) ≥

optn,2

optn,1

Proof. We start with the prior independent design problem and apply Lemma 23 (given
above; by assigning δ̄ = δ2 in its statement). Justifications for the next steps are given
afterwards.

min
A∈A

max
F ∈F

OPTF (F )
A(F ) ≥ min

A∈A

[
EF ∼δ2 [OPTF (F )]

EF ∼δ2 [A(F )]

]
= min

A∈A

[ optn,2

Ev∼g [A(v)]

]
= min

A∈A

[ optn,2

EF ∼δ1 [A(F )]

]
≥ min

A∈A

[ optn,2

EF ∼δ1 [OPTF (F )]

]
=

optn,2

optn,1
(15)

The second and third lines substitute using the definition of optn,i and the assumption in
the theorem statement that δn

1 (v) = g(v) = δn
2 (v).

Note, the adversary’s choice of δ2 is restricted to the set ∆(F) up front in the prior
independent problem (i.e., the parameter F is fixed exogenously), and δ2 induces g = δn

2 .
However given g, there may exist any alternative description δ1 with g = δn

1 , including a
δ1 ∈ ∆(Fall) that uses distributions outside the original class F . This freedom to design
δ1 is an inherent consequence of nature.
The fourth line inequality recognizes that expectation over locally optimal performances –
each knowing the true F when realized – must weakly dominate the performance of a
single algorithm run against all realizations of F (formally: Fact 25 after this proof).
The final equality substitutes and realizes that the algorithm no longer appears in the
function to be minimized, i.e., the objective is constant. ◀

The following holds because each OPTF algorithm is optimal pointwise per F , whereas
running A against each F is itself immediately upper bounded by OPTF :

▶ Fact 25. Given an arbitrary prior independent algorithm design setting with class of
distributions F and class of algorithms A, and given δ ∈ ∆(F). For any fixed algorithm
A ∈ A:

EF ∼δ [OPTF (F )] ≥ EF ∼δ [A(F )]
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