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Abstract
We show that the Consensus Division theorem implies lower bounds on the chromatic num-
ber of Kneser hypergraphs, offering a novel proof for a result of Alon, Frankl, and Lovász
(Trans. Amer. Math. Soc., 1986) and for its generalization by Kriz (Trans. Amer. Math. Soc., 1992).
Our approach is applied to study the computational complexity of the total search problem Kneserp,
which given a succinct representation of a coloring of a p-uniform Kneser hypergraph with fewer
colors than its chromatic number, asks to find a monochromatic hyperedge. We prove that for every
prime p, the Kneserp problem with an extended access to the input coloring is efficiently reducible
to a quite weak approximation of the Consensus Division problem with p shares. In particular,
for p = 2, the problem is efficiently reducible to any non-trivial approximation of the Consensus
Halving problem on normalized monotone functions. We further show that for every prime p, the
Kneserp problem lies in the complexity class PPA-p. As an application, we establish limitations on
the complexity of the Kneserp problem, restricted to colorings with a bounded number of colors.
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1 Introduction

This paper is concerned with two classic problems: the graph-theoretic problem of determining
the chromatic number of Kneser hypergraphs and the consensus division problem from the
area of fair division, which lies at the intersection of economics, mathematics, and computer
science. We present a novel direct connection between the two problems, offering a new
proof for a result of Alon, Frankl, and Lovász [3] on the chromatic number of Kneser
hypergraphs as well as for its generalization by Kriz [28]. We use this connection to study the
computational complexity of the total search problems associated with Kneser hypergraphs
and with approximate consensus division. In what follows, we provide some background on
the two problems and on their computational aspects, and then describe our contribution.

Kneser hypergraphs

For an integer r ≥ 2 and a set family F , the r-uniform Kneser hypergraph Kr(F) is the
hypergraph on the vertex set F , whose hyperedges are all the r-subsets of F whose members
are pairwise disjoint. For integers n and k with n ≥ r · k, let Kr(n, k) denote the hypergraph
Kr(F), where F =

([n]
k

)
is the family of all k-subsets of [n] = {1, 2, . . . , n}. When r = 2,

the superscript r may be omitted. The chromatic number of a hypergraph H, denoted by
χ(H), is the minimum number of colors that allow a proper coloring of its vertices, that is, a
coloring with no monochromatic hyperedge.
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60:2 The Chromatic Number of Kneser Hypergraphs via Consensus Division

The study of the chromatic number of Kneser graphs was initiated in 1955 by Kneser [27],
who observed that the graph K(n, k) admits a proper coloring with n − 2k + 2 colors and
conjectured that fewer colors do not suffice, that is, χ(K(n, k)) = n − 2k + 2. Lovász [29]
confirmed Kneser’s conjecture in 1978, and his result was extended in multiple ways over the
years. One extension, due to Schrijver [34], showed that the subgraph S(n, k) of K(n, k),
induced by the k-subsets of [n] that are stable (i.e., include no two consecutive elements
modulo n) has the same chromatic number. Another extension, due to Alon, Frankl, and
Lovász [3], confirmed a conjecture of Erdös [13] by showing that χ(Kr(n, k)) = ⌈ n−r(k−1)

r−1 ⌉
for all integers r ≥ 2. Their lower bound on χ(Kr(n, k)) was further generalized by Kriz [28],
as stated below, using a quantity of set families, called the r-colorability defect and denoted
by cdr (see Definition 7; see also [12]).

▶ Theorem 1 ([28]). For every integer r ≥ 2 and for every family F of non-empty sets,

χ(Kr(F)) ≥
⌈cdr(F)

r − 1

⌉
.

While Theorem 1 implies the tight lower bound of Alon et al. [3] on the chromatic number of
Kr(n, k) (see Lemma 8), it does not cover the aforementioned result of Schrijver [34]. In an
attempt to simultaneously generalize both the results, additional extensions were established
by several authors, e.g., Meunier [32], Alishahi and Hajiabolhassan [1], Aslam et al. [5], and
Frick [18].

It is interesting to mention that although the statements of the above results are all
purely combinatorial, their proofs rely on topological tools. Lovász’s lower bound [29] on the
chromatic number of K(n, k) was based on the Borsuk–Ulam theorem [7], a fundamental
result in algebraic topology, and his approach pioneered the area of topological combinatorics.
The extension to hypergraphs by Alon et al. [3] was based on a theorem of Bárány, Shlosman,
and Szücs [6] that generalizes the Borsuk–Ulam theorem. It was shown by Matoušek [30]
that the chromatic number of K(n, k) can also be determined as an application of Tucker’s
lemma, a combinatorial analogue of the Borsuk–Ulam theorem. His machinery was further
developed by Ziegler [36] and later by Meunier [32] to provide alternative proofs for the
results of [3, 28, 34].

Consensus division

Another area that extensively applies topological tools is fair division, where the goal is to
find fair allocations of resources among several parties. In the consensus division scenario,
given m continuous valuation functions v1, . . . , vm defined on subsets of the unit interval
[0, 1], we aim to divide the interval into r (not necessarily connected) pieces A1, . . . , Ar using
as few cuts as possible, such that each function assigns the same value to the r pieces, namely,
vi(At) = vi(At′) for all i ∈ [m] and t, t′ ∈ [r]. For the case r = 2, referred to as consensus
halving, the Hobby–Rice theorem [25] asserts that for additive valuation functions, there
always exists such a division with at most m cuts. For a general r ≥ 2, Alon [2] used the
generalization of [6] of the Borsuk–Ulam theorem to show that if the valuation functions are
probability measures on [0, 1], then there exists a consensus division with at most (r − 1) · m

cuts. Note that this result played a central role in his proof of the Splitting Necklaces
theorem [2]. In fact, it turns out that if the number of desired pieces is a prime p, then
the existence of a consensus division with at most (p − 1) · m cuts is guaranteed for any
given continuous valuation functions, which unlike probability measures, are not required
to be additive nor non-negative. This extension was provided for p = 2 by Simmons and
Su [35] and for any prime p by Filos-Ratsikas, Hollender, Sotiraki, and Zampetakis [16] (see
Theorem 9).
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Computational aspects

The complexity class TFNP, introduced in [31], consists of the total search problems in NP,
i.e., the search problems for which every instance is guaranteed to have a solution, where the
solutions can be verified in polynomial time. In 1994, Papadimitriou [33] introduced several
sub-classes of TFNP that express the mathematical arguments which yield the existence of
the solutions for their problems. In particular, he defined for every prime p, the complexity
class PPA-p, associated with the principle that every bipartite graph that has a vertex whose
degree is not a multiple of p, has another such vertex. Consequently, PPA-p is the class
of problems in TFNP that are efficiently reducible to the corresponding canonical problem:
Given a Boolean circuit that represents a bipartite graph and given a vertex whose degree
is not a multiple of p, find another such vertex. This family of classes was further studied
and developed by Hollender [26] and by Göös, Kamath, Sotiraki, and Zampetakis [21], who
independently introduced the classes PPA-r for composites r. Note that the class PPA-2 is
denoted by PPA, and that its analogue for directed graphs, called PPAD, is known to be
contained in PPA-r for all integers r ≥ 2 [26, 21].

For any integer r ≥ 2, let Con-r-Division denote the computational problem, which
given an access to m continuous valuation functions v1, . . . , vm over [0, 1], asks to find a
consensus division into r pieces A1, . . . , Ar with at most (r − 1) · m cuts. In its approximate
version with precision parameter ε, the pieces should satisfy |vi(At) − vi(At′)| ≤ ε for all
i ∈ [m] and t, t′ ∈ [r]. The problem may be considered for various families of input functions,
ranging from piecewise-constant functions and probability measures to monotone functions
and general functions. While piecewise-constant functions can be explicitly represented by
the endpoints and values of the intervals on which they are nonzero, in the more general
settings the functions are given by some succinct representation, e.g., arithmetic circuits or
efficient Turing machines that compute them. It follows from [16] that for all primes p, every
instance of the Con-p-Division problem has a solution even for ε = 0, hence the problem is
total.

A considerable attention has been devoted in recent years to the Con-r-Division problem
with r = 2, referred to as Con-Halving. Filos-Ratsikas and Goldberg [14, 15] proved that
the problem is PPA-complete, even for piecewise-constant functions and inverse-polynomial
precision parameter ε, and derived the PPA-completeness of the Splitting Necklaces with
two thieves and Discrete Sandwich problems. Their result was strengthened and extended in
several ways. Deligkas, Filos-Ratsikas, and Hollender [9] proved that the problem remains
PPA-hard when the number of valuation functions is a fixed constant: for two or more general
functions, and for three or more monotone functions. Filos-Ratsikas, Hollender, Sotiraki, and
Zampetakis [17] proved that the problem remains PPA-hard when the valuation functions are
piecewise-uniform with only two blocks. More recently, Deligkas, Fearnley, Hollender, and
Melissourgos [8] proved that the problem is PPA-hard for any precision parameter ε < 1/5,
even when the valuation functions are piecewise-uniform with three blocks. An additional
version of the Con-Halving problem, where the goal is not to partition an interval but an
unordered collection of items, was studied by Goldberg, Hollender, Igarashi, Manurangsi,
and Suksompong [20].

The complexity of the Con-r-Division problem for a general r is much less understood.
It was proved by Filos-Ratsikas, Hollender, Sotiraki, and Zampetakis [16] that for every
prime p, Con-p-Division lies in the complexity class PPA-p, and the question of whether it
is PPA-p-hard was left open. Yet, for p = 3, it was shown in [17] that Con-3-Division is
PPAD-hard for an inverse-exponential precision parameter ε. On the algorithmic side, Alon
and Graur [4] proved that given an access to m probability measures over [0, 1], it is possible
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to find in polynomial time a partition of the unit interval into r pieces with at most (r −1) ·m
cuts, such that every piece receives at least 1

m·r of each measure. They also considered
the case where a larger number of cuts is allowed, and showed that for a given precision
parameter ε, it is possible to efficiently find a solution with O(ε−2 · m log m) cuts. Goldberg
and Li [19] proved that the Con-r-Division problem on m probability measures, where the
number of allowed cuts is 2(r − 1)(p − 1) · ⌈p/2⌉

⌊p/2⌋ · m for a prime p, lies in the complexity
class PPA-p. For example, the Con-Halving problem on m probability measures with 8m

allowed cuts lies in PPA-3.
Before turning to our results, let us introduce, for any integer r ≥ 2, the computational

search problem Kneserr associated with the family of r-uniform Kneser hypergraphs
Kr(n, k). The input consists of integers n and k with n ≥ r · k along with a Boolean circuit
that represents a coloring of the vertices of the hypergraph Kr(n, k) with ⌊ n−r(k−1)−1

r−1 ⌋ colors,
which is smaller by one than its chromatic number [3]. The goal is to find a monochromatic
hyperedge, that is, r pairwise disjoint vertices that are assigned the same color by the input
coloring. Omitting the superscript r when r = 2, the Kneser problem is known to lie
in PPA, and it is an open question whether it is PPA-hard, as suggested by Deng, Feng,
and Kulkarni [10]. More generally, it was asked in [16] whether for every prime p, the
Kneserp problem lies in PPA-p and if it is PPA-p-hard. While no hardness result is known
for these problems, it was shown in [22] that the Schrijver problem, which asks to find a
monochromatic edge in a graph S(n, k) given a coloring of its vertices with n − 2k + 1 colors,
is PPA-complete. It was recently shown in [24] that the problem of finding a monochromatic
edge in a graph S(n, k), given a coloring of its vertices with only ⌊n/2⌋ − 2k + 1 colors, is
efficiently reducible to the Kneser problem.

1.1 Our Contribution

This paper presents a novel direct connection between the chromatic number of Kneser
hypergraphs and the consensus division problem. As our first contribution, we offer a new
proof of Kriz’s lower bound on the chromatic number of Kneser hypergraphs [28], stated
earlier as Theorem 1. The proof relies on the Consensus Division theorem of Filos-Ratsikas
et al. [16]. Our technique borrows and extends ideas that were applied in [20] and in [23].

We then adopt a computational perspective and explore our approach to Theorem 1
as a reduction from the Kneserp problem to the Con-p-Division problem for any prime
p. Our main contribution is an efficient reduction from the Kneserp problem with an
extended access to the input coloring to a quite weak approximation of the Con-p-Division
problem. Before the precise statements, let us introduce the following variants of the studied
computational problems. Their formal definitions are given in Sections 4.1 and 4.2.

The Kneserp problem with subset queries: As in the standard Kneserp problem, the
input is a coloring of the vertices of a hypergraph Kp(n, k) with fewer colors than its
chromatic number, and the goal is to find a monochromatic hyperedge. Here, however,
the access to the coloring allows, in addition to queries for the colors of the vertices,
another type of queries called subset queries. Such a query involves a subset D of [n]
and a color i, and the answer on the pair (D, i) determines whether D contains a vertex
colored i. The notion of subset queries was proposed in [23].
The Con-p-Division[< ε] problem: As in the standard Con-p-Division problem, the
input consists of m continuous valuation functions v1, . . . , vm over [0, 1], and a solution
is a partition of the unit interval into p pieces A1, . . . , Ap with at most (p − 1) · m cuts.
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Here, however, the solution is required to satisfy

|vi(At) − vi(At′)| < ε (1)

for all i ∈ [m] and t, t′ ∈ [p]. Namely, the difference from the standard Con-p-Division
problem with precision parameter ε is that the inequality in (1) is strict. In particular,
for ε = 1, assuming that the valuation functions are normalized (i.e., return values in
[0, 1]), the solution is just required to be non-trivial. This means that the solution is
just not allowed to include two pieces At and At′ such that vi(At) = 1 and vi(At′) = 0
for some i ∈ [m], but the value of |vi(At) − vi(At′)| may approach 1 as m grows. When
p = 2, the problem is denoted by Con-Halving[< ε].

We prove the following theorem, which concerns the case p = 2.

▶ Theorem 2. There exists a polynomial-time reduction from the Kneser problem with
subset queries to the Con-Halving[< 1] problem on normalized monotone functions.

As alluded to before, the complexity of the Kneser problem (with or without subset
queries) is not well understood. Theorem 2 implies that any hardness result for the Kneser
problem with subset queries would imply a very strong hardness result for the Con-Halving
problem on normalized monotone functions, ruling out the possibility to obtain an efficient
algorithm for any non-trivial approximation of the problem. On the other hand, an efficient
algorithm for Con-Halving that guarantees some non-trivial approximation on normalized
monotone functions would imply an efficient algorithm for the Kneser problem with subset
queries. We find these consequences of the reduction quite surprising and unusual, especially
because of the discrete nature of the Kneser problem. For comparison, the efficient reduction
from the (discrete) Splitting Necklaces problem with two thieves to the Con-Halving
problem with precision parameter ε, which is given in [14] and builds on an argument
of [2], requires ε to be inverse-polynomial in the number of valuation functions (note
that those functions are additive, though). Let us stress that Theorem 2 addresses the
Con-Halving[< 1] problem when restricted to normalized monotone valuation functions
but not to probability measures. Recall that for this stronger restriction, an algorithm of [4]
does provide a non-trivial solution in polynomial time. We finally note that the proof of
Theorem 2 essentially supplies a reduction to the version of Con-Halving, studied in [20],
of finding a consensus halving of an unordered collection of items rather than of the unit
interval. This makes the result stronger, as this version is efficiently reducible to the standard
one.

Our next result relates the Kneserp problem with subset queries to the Con-p-Division
problem for every prime p ≥ 3. Here, the precision parameter of the latter is 1

2 .

▶ Theorem 3. For every prime p ≥ 3, there exists a polynomial-time reduction from the
Kneserp problem with subset queries to the Con-p-Division[< 1

2 ] problem on normalized
monotone functions.

It is noteworthy that Theorems 2 and 3 are proved in a more general form. Namely, we
reduce from a generalized variant of the Kneserp problem, where the input is a coloring of
a hypergraph Kp(F) for some set family F taken from a prescribed sequence of set families,
which is assumed to be efficiently computable (see Definitions 12 and 13). The number of
colors used by the input coloring may be any number smaller than Kriz’s lower bound on
the chromatic number of Kp(F), as given by Theorem 1. For the precise statements, see
Theorems 16 and 17.

ITCS 2024



60:6 The Chromatic Number of Kneser Hypergraphs via Consensus Division

We proceed with additional results on the computational complexity of the Kneserp

problem (in its standard version, without subset queries). The following theorem settles a
question of [16].

▶ Theorem 4. For every prime p, the Kneserp problem lies in PPA-p.

In fact, we provide two results that strengthen Theorem 4 in two incomparable forms. Firstly,
as before, we present a generalized result handling a variant of the Kneserp problem of
finding a monochromatic hyperedge in a hypergraph Kp(F), given a coloring that uses fewer
colors than Kriz’s lower bound on its chromatic number. Again, F is taken from a prescribed
sequence of set families satisfying certain computational assumptions (see Definition 20 and
Corollary 23). Secondly, we show that the membership in PPA-p holds for the Kneserp

s̃tab
problem. This problem asks to find a monochromatic hyperedge in the sub-hypergraph of
Kp(n, k) induced by the k-subsets of [n] that are almost stable (i.e., include no two consecutive
elements, but can include both 1 and n). The input coloring may use here any number of
colors smaller than the chromatic number of this hypergraph, which, as proved in [32], is
equal to that of Kp(n, k).

▶ Theorem 5. For every prime p, the Kneserp

s̃tab
problem lies in PPA-p.

The proofs of Theorems 4 and 5 crucially rely on the mathematical arguments due to
Ziegler [36] and Meunier [32], which imply the totality of the studied problems. We verify
that their arguments can be transformed into efficient reductions to a computational problem
associated with a Zp-variant of Tucker’s lemma, which was shown to lie in the complexity
class PPA-p by Filos-Ratsikas et al. [16].

Finally, we apply Theorems 4 and 5 to derive limitations on the complexity of variants
of the Kneserr problem, restricted to colorings with a bounded number of colors (see
Theorem 26 and Corollary 28). In particular, we show that the problem of finding a
monochromatic edge in a graph S(n, k) given a coloring of its vertices with ⌊n/2⌋ − 2k + 1
colors, lies in the complexity class PPA-3 (see Corollary 29). As mentioned earlier, it was
shown in [24] that the latter is efficiently reducible to the Kneser problem. It thus follows
that, unless PPA ⊆ PPA-3, this reduction cannot yield a PPA-hardness result for the Kneser
problem. We note that it is common to believe that the classes PPA-p for primes p do not
contain each other, and that an unconditional separation between their black-box versions
was provided in [26, 21].

1.2 Outline
The rest of the paper is organized as follows. In Section 2, we gather some definitions that
will be used throughout the paper. In Section 3, we present our novel proof of Theorem 1.
In Section 4, we consider this proof from a computational perspective and state generalized
forms of Theorems 2 and 3. Finally, in Section 5, we state a generalized form of Theorem 4
and obtain some limitations on the complexity of the Kneserr problem. All missing proofs
can be found in the full version of the paper.

2 Preliminaries

For integers n and k, let
([n]

k

)
denote the family of k-subsets of [n] = {1, 2, . . . , n}. A subset

of [n] is called stable if it does not include two consecutive elements modulo n, equivalently,
it forms an independent set in the cycle on the vertex set [n] with the natural order along the
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cycle. Let
([n]

k

)
stab denote the family of stable k-subsets of [n]. A subset of [n] is called almost

stable if it does not include two consecutive elements, equivalently, it forms an independent
set in the path on the vertex set [n] with the natural order along the path. Let

([n]
k

)
s̃tab

denote the family of almost stable k-subsets of [n]. Note that
([n]

k

)
stab ⊆

([n]
k

)
s̃tab ⊆

([n]
k

)
.

The family of Kneser hypergraphs is defined as follows.

▶ Definition 6 (Kneser Hypergraphs). For an integer r ≥ 2 and a set family F , the r-uniform
Kneser hypergraph Kr(F) is the hypergraph on the vertex set F , whose hyperedges are all
the r-subsets of F whose members are pairwise disjoint. For integers n and k with n ≥ r · k,
let Kr(n, k), Kr(n, k)s̃tab, and Kr(n, k)stab, respectively, denote the hypergraphs Kr(

([n]
k

)
),

Kr(
([n]

k

)
s̃tab), and Kr(

([n]
k

)
stab). When r = 2, the superscript r may be omitted.

For an integer t ≥ 1, a hypergraph H = (V, E) is said to be t-colorable if it admits a
proper t-coloring, that is, a coloring of the vertices of V with t colors such that no hyperedge
of E is monochromatic. The chromatic number of H, denoted by χ(H), is the smallest integer
t for which H is t-colorable. It is known (see [3, 32, 18]) that for all integers r ≥ 2, k, and
n ≥ r · k, it holds that

χ(Kr(n, k)) = χ(Kr(n, k)s̃tab) = χ(Kr(n, k)stab) =
⌈n − r(k − 1)

r − 1

⌉
. (2)

Theorem 1, proved by Kriz [28], relates the chromatic number of Kneser hypergraphs to
the notion of colorability defect, defined as follows.

▶ Definition 7 (Colorability Defect). For an integer r ≥ 2 and a family F of non-empty
subsets of a set X, the r-colorability defect of F , denoted by cdr(F), is the smallest size of a
set Y ⊆ X, such that the sub-hypergraph of (X, F) induced by X \ Y is r-colorable, that is,

cdr(F) = min
{

|Y | | (X \ Y, {e ∈ F | e ∩ Y = ∅}) is r-colorable
}

.

The following lemma, given in [36, Lemma 3.2], determines the r-colorability defect of
the family

([n]
k

)
.

▶ Lemma 8 ([36]). For integers n, k, r with n ≥ r · k, it holds that cdr(
([n]

k

)
) = n − r(k − 1).

We next state the Consensus Division theorem due to Filos-Ratsikas et al. [16, The-
orem 6.5]. In what follows, let B([0, 1]) denote the set of Lebesgue-measurable subsets of the
interval [0, 1], and let µ : B([0, 1]) → [0, 1] denote the Lebesgue measure on [0, 1]. In addition,
let △ stand for the symmetric difference of sets, defined by E1△E2 = (E1 \ E2) ∪ (E2 \ E1).

▶ Theorem 9 (Consensus Division Theorem [16]). Let p be a prime, and let m ≥ 1 be an integer.
Let v1, . . . , vm : B([0, 1]) → R be functions such that for each i ∈ [m], vi satisfies the following
continuity condition: for any ε > 0 there exists δ > 0 such that for all E1, E2 ∈ B([0, 1]) with
µ(E1△E2) ≤ δ, it holds that |vi(E1) − vi(E2)| ≤ ε. Then, there exists a consensus-p-division,
that is, it is possible to partition the unit interval into p (not necessarily connected) pieces
A1, . . . , Ap using at most (p − 1) · m cuts, such that vi(At) = vi(At′) for all i ∈ [m] and
t, t′ ∈ [p].

As for the continuity property, we will sometimes consider the stronger notion of Lipschitz-
continuity. For L ≥ 0, a function v : B([0, 1]) → R is said to be L-Lipschitz-continuous, if for
all E1, E2 ∈ B([0, 1]), it holds that |v(E1) − v(E2)| ≤ L · µ(E1△E2).

ITCS 2024



60:8 The Chromatic Number of Kneser Hypergraphs via Consensus Division

3 The Chromatic Number of Kneser Hypergraphs

In this section, we present our new proof of Kriz’s lower bound on the chromatic number of
Kneser hypergraphs [28], stated as Theorem 1. The proof applies the Consensus Division
theorem, stated as Theorem 9. Note that we focus here on the mathematical proof rather
than on its computational aspects, which will be explored in the next section. As is usual for
results of this type, we first consider the case where the uniformity r of the hypergraphs is a
prime number.

▶ Theorem 10. For every prime p and for every family F of non-empty sets,

χ(Kp(F)) ≥
⌈cdp(F)

p − 1

⌉
.

Proof. Let p be a prime, and let F be a family of non-empty sets. Assume without loss of
generality that all members of F are subsets of [n] for some integer n. Let m be an integer
satisfying m <

cdp(F)
p−1 , and suppose for the sake of contradiction that there exists a proper

coloring c : F → [m] of the p-uniform Kneser hypergraph Kp(F).
For each i ∈ [m], let ũi : {0, 1}n → {0, 1} denote the indicator function that determines

for every subset of [n] whether it contains a set of F whose color according to c is i, that
is, for every D ⊆ [n], define ũi(D) = 1 if there exists a set B ∈ F satisfying B ⊆ D and
c(B) = i, and define ũi(D) = 0 otherwise. Here and throughout, we identify the subsets of
[n] with their characteristic vectors in {0, 1}n. Note that the function ũi is monotone with
respect to inclusion.

For each i ∈ [m], consider the extension ui : [0, 1]n → [0, 1] of ũi that maps any vector
x ∈ [0, 1]n to the largest value a ∈ [0, 1] such that the set {j ∈ [n] | xj ≥ a} contains a set of
F colored i by c if such a value exists, and to 0 otherwise. Equivalently, for any x ∈ [0, 1]n,
let π be a permutation of [n] with xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n), and define ui(x) = xπ(j)
for the largest integer j satisfying ũi({π(j), π(j + 1), . . . , π(n)}) = 1 if such a j exists, and
ui(x) = 0 otherwise. Observe that, under the convention xπ(0) = 0, the value of ui(x) can be
written as

ui(x) =
n∑

j=1
(xπ(j) − xπ(j−1)) · ũi({π(j), π(j + 1), . . . , π(n)}).

Notice that the function ui is an extension of the function ũi. Notice further that ui is
monotone, in the sense that the value of ui(x) does not decrease when the value of some
entry of x increases. Finally, notice that changing some entry of x by ε changes ui(x) by at
most ε, hence the function ui is continuous.

Now, for each j ∈ [n], consider the open sub-interval Ij = ( j−1
n , j

n ), and associate it with
the element j. For each i ∈ [m], let vi : B([0, 1]) → [0, 1] be the function defined as follows.
For every E ∈ B([0, 1]), let xE ∈ [0, 1]n denote the vector that consists of the normalized
Lebesgue measures of E on the sub-intervals I1, . . . , In, that is, xE

j = n · µ(E ∩ Ij) for all
j ∈ [n], and define vi(E) = ui(xE). Note that the function vi is the composition of the
function ui with the function that maps any set E ∈ B([0, 1]) to the vector xE . Since the
function ui is monotone and continuous, it follows that so is vi

Applying Theorem 9, we obtain that there exists a consensus-p-division of v1, . . . , vm, that
is, a partition of the unit interval into p pieces A1, . . . , Ap using at most (p − 1) · m cuts, such
that vi(At) = vi(At′) for all i ∈ [m] and t, t′ ∈ [p]. Let Y denote the set of indices j ∈ [n] for
which the open sub-interval Ij includes a cut, and notice that |Y | ≤ (p − 1) · m < cdp(F).
Thus, every sub-interval Ij with j ∈ [n] \ Y is fully contained in one of the pieces A1, . . . , Ap.
Consider the coloring that assigns to every j ∈ [n] \ Y the index t ∈ [p] of the piece At that
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contains Ij . By |Y | < cdp(F), the hypergraph ([n] \ Y, {e ∈ F | e ∩ Y = ∅}) is not p-colorable.
This implies that for some t ∈ [p], there exists a set B ∈ F all of whose elements share the
color t, and thus, for all j ∈ B, it holds that Ij ⊆ At. Denoting by ℓ = c(B) the color assigned
to B by the given coloring c, it follows from the definition of vℓ that vℓ(∪j∈BIj) = 1. By
monotonicity, it further follows that vℓ(At) = 1, which yields, by Theorem 9, that vℓ(At′) = 1
for all t′ ∈ [p].

Finally, for every t′ ∈ [p], the fact that vℓ(At′) = 1 implies that there exists a set Bt′ ∈ F
with c(Bt′) = ℓ such that µ(At′ ∩ Ij) = 1

n for all j ∈ Bt′ . Since the pieces A1, . . . , Ap

are pairwise disjoint, so are the sets B1, . . . , Bp. It thus follows that these sets form a
monochromatic hyperedge in Kp(F), in contradiction to the assumption that the coloring c

is proper. This completes the proof. ◀

It is well known that Theorem 10 implies Theorem 1 (see, e.g., [36]). We provide the
quick proof for completeness.

Proof of Theorem 1. Theorem 10 shows that Theorem 1 holds whenever r is prime. It
therefore suffices to prove that for every pair of integers r1, r2 ≥ 2, if the theorem holds for
r ∈ {r1, r2} then it holds for r = r1r2. So suppose that it holds for r1 and r2. Let F be a
family of non-empty subsets of [n] for an integer n, and let c : F → [m] be a proper coloring
of the hypergraph Kr1r2(F) for an integer m. Our goal is to prove that m ≥ cdr1r2 (F)

r1r2−1 .
Consider the family

G =
{

G ⊆ [n]
∣∣∣ cdr1(F|G) > m(r1 − 1)

}
,

where F|G = {F ∈ F | F ⊆ G}. Define a coloring c′ : G → [m] as follows. For every G ∈ G,
let c′(G) be a color of some monochromatic hyperedge in Kr1(F|G) with respect to the
coloring c. The existence of such a hyperedge for every G ∈ G follows from our assumption
that the theorem holds for r1, which yields that χ(Kr1(F|G)) ≥ cdr1 (F|G)

r1−1 > m, where the
second inequality is due to the definition of G. We claim that c′ is a proper coloring of
Kr2(G), and thus χ(Kr2(G)) ≤ m. Indeed, otherwise there would exist r2 pairwise disjoint
sets G1, . . . , Gr2 ∈ G that are assigned the same color by c′. Since each set Gi with i ∈ [r2]
contains r1 pairwise disjoint sets of F|Gi

that are assigned by c the color c′(Gi), this gives
us r1r2 pairwise disjoint sets of F with the same color by c, contradicting the assumption
that c is a proper coloring of Kr1r2(F).

Finally, by the assumption that the theorem holds for r2, we have χ(Kr2(G)) ≥ cdr2 (G)
r2−1 ,

which implies that cdr2(G) ≤ m(r2 − 1). This means that it is possible to remove at most
m(r2−1) of the elements of [n] and to partition the remaining elements into r2 sets F1, . . . , Fr2 ,
such that no set of G is contained in any of them. In particular, for each i ∈ [r2], it holds
that Fi /∈ G, which implies that cdr1(F|Fi) ≤ m(r1 − 1). This means that it is possible to
remove at most m(r1 − 1) elements from each Fi and to partition the remaining elements
into r1 sets, such that no set of F|Fi is contained in any of them. It thus follows that one
can remove at most m(r2 − 1) + r2 · m(r1 − 1) = m(r1r2 − 1) elements from [n] and partition
the remaining elements into r1r2 sets, such that no set of F is contained in any of them.
This implies that cdr1r2(F) ≤ m(r1r2 − 1), providing the desired lower bound on m. ◀

We conclude this section by verifying that χ(Kr(n, k)) = ⌈ n−r(k−1)
r−1 ⌉ for all r ≥ 2. The

lower bound on χ(Kr(n, k)), originally proved in [3], follows by combining Theorem 1 with
Lemma 8. For the upper bound, which is given in [13], put t = ⌈ n−r(k−1)

r−1 ⌉, let X1, . . . , Xt−1
be t − 1 pairwise disjoint (r − 1)-subsets of [n], and observe that the number of elements
of [n[ that do not belong to any of these sets is n − (t − 1)(r − 1) ≤ rk − 1. Consider the
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coloring that assigns to every k-subset B of [n] a color i ∈ [t − 1] such that B ∩ Xi ≠ ∅ if
such an i exists, and the color t otherwise. It can be easily checked that this coloring of
Kr(n, k) is proper.

4 Reduction from Kneserp to Approximate Con-p-Division

In this section, we use the proof technique presented in Section 3 to obtain efficient reductions
from the computational problems associated with Kneser hypergraphs to those associated with
approximate consensus division. We start by formally introducing the involved computational
problems.

4.1 The Kneserr Problem
In order to make our results as strong as possible, we introduce a problem of finding
monochromatic hyperedges in general Kneser hypergraphs, defined as follows.

▶ Definition 11 (The Kneserr(F , m) Problem). For a set A, let F = (Fα)α∈A be a sequence
of set families, where for each α ∈ A, Fα is a family of non-empty subsets of [nα] for some
integer nα, and let m : A → N be a function. In the Kneserr(F , m) problem, the input
consists of

an element α ∈ A and
a Boolean circuit C : {0, 1}nα → [m(α)] that represents a coloring c : Fα → [m(α)]
of the sets of Fα with m(α) colors, in the sense that for every B ∈ Fα, it holds that
C(B) = c(B).

The goal is to find a monochromatic hyperedge in Kr(Fα), that is, r pairwise disjoint sets
B1, B2, . . . , Br ∈ Fα such that C(B1) = C(B2) = · · · = C(Br).

Note that for every sequence F = (Fα)α∈A and for every function m : A → N for which
it holds that m(α) < χ(Kr(Fα)) for all α ∈ A, the Kneserr(F , m) problem is total. In
particular, by Theorem 1, the Kneserr(F , ⌊ cdr(Fα)−1

r−1 ⌋) problem is total.
We next define a variant of the Kneserr(F , m) problem with an extended access to

the input coloring. This variant is referred to as the Kneserr(F , m) problem with subset
queries.

▶ Definition 12 (The Kneserr(F , m) Problem with Subset Queries). For a set A, let
F = (Fα)α∈A be a sequence of set families, where for each α ∈ A, Fα is a family of
non-empty subsets of [nα] for some integer nα, and let m : A → N be a function. In the
Kneserr(F , m) problem with subset queries, the input consists of

an element α ∈ A,
a Boolean circuit C : {0, 1}nα → [m(α)] that represents a coloring c : Fα → [m(α)]
of the sets of Fα with m(α) colors, in the sense that for every B ∈ Fα, it holds that
C(B) = c(B), and
a Boolean circuit S : {0, 1}nα × [m(α)] → {0, 1} that is supposed to allow subset queries
to the coloring c, namely, for every set D ⊆ [nα] and a color i ∈ [m(α)], it is supposed
to satisfy S(D, i) = 1 if there exists a set B ∈ Fα such that B ⊆ D and c(B) = i, and
S(D, i) = 0 otherwise.

The goal is to find either a monochromatic hyperedge in Kr(Fα) or a violation of the circuit
S, namely,

(false negative) two sets B, D ⊆ [nα] and a color i ∈ [m(α)] such that B ∈ Fα, B ⊆ D,
C(B) = i, and yet S(D, i) = 0, or
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(false positive) a set D ⊆ [nα] and a color i ∈ [m(α)] such that S(D, i) = 1 whereas for
every set D′ obtained from D by removing a single element it holds that S(D′, i) = 0, and
in addition, either D /∈ Fα or D ∈ Fα and C(D) ̸= i.

Note that by allowing the solutions of the Kneserr(F , m) problem with subset queries to
form violations of the circuit S, we obtain a non-promise problem.

We will be particularly interested in the following special cases of Definitions 11 and 12.
For any integer r ≥ 2, let A(r) denote the set of all pairs of integers (n, k) with n ≥ r · k, and
let F (r), F (r,stab), and F (r,s̃tab) denote, respectively, the sequences of set families defined by

F (r)
(n,k) =

(
[n]
k

)
, F (r,stab)

(n,k) =
(

[n]
k

)
stab

, F (r,s̃tab)
(n,k) =

(
[n]
k

)
s̃tab

for all (n, k) ∈ A(r). Consider the function m(r) : A(r) → N defined by m(r)(n, k) =
⌊ n−r(k−1)−1

r−1 ⌋, which by (2), satisfies m(r)(n, k) = χ(Kr(n, k)) − 1. We define the three
problems Kneserr, Kneserr

stab, and Kneserr

s̃tab
, respectively, to be Kneserr(F (r), m(r)),

Kneserr(F (r,stab), m(r)), and Kneserr(F (r,s̃tab), m(r)). For any function m : A(r) → N,
we let Kneserr

stab(n, k, m) denote the Kneserr(F (r,stab), m) problem. When r = 2, the
superscript r may be omitted. For any function m : A(2) → N, we let Kneser(n, k, m)
and Schrijver(n, k, m) denote the problems Kneser(F (2), m) and Kneser(F (2,stab), m)
respectively.

We will use the notion of polynomially computable sequences of set families, defined
below.

▶ Definition 13. For a set A, let F = (Fα)α∈A be a sequence of set families, where for each
α ∈ A, Fα is a family of non-empty subsets of [nα] for some integer nα. The sequence F is
polynomially computable if there exist polynomials q1, q2 such that
1. there exists an algorithm that given an element α ∈ A and a set B ⊆ [nα] runs in time

q1(nα) and determines whether B ∈ Fα, and
2. there exists an algorithm that given an element α ∈ A and a set D ⊆ [nα] runs in time

q2(nα), returns a subset of D that belongs to the family Fα if such a subset exists, and
declares that no such subset exists otherwise.

The following lemma gives simple examples of polynomially computable sequences.

▶ Lemma 14. For every integer r ≥ 2, the sequence F (r) is polynomially computable.

Proof. Fix an integer r ≥ 2. Recall that F (r)
(n,k) =

([n]
k

)
for all (n, k) ∈ A(r). We show that

F (r) satisfies the conditions of Definition 13. For Item 1, consider the algorithm that given
a pair (n, k) ∈ A(r) and a set B ⊆ [n], checks whether |B| = k. For Item 2, consider the
algorithm that given a pair (n, k) ∈ A(r) and a set D ⊆ [n], checks whether |D| ≥ k, and if
so, returns an arbitrary subset of D of size k. Clearly, these algorithms can be implemented
in time polynomial in n, hence F (r) is polynomially computable. ◀

4.2 The Con-p-Division Problem
We present now the formal definition of the approximate Con-p-Division problem for any
prime p. The definition essentially extends the one given for p = 2 in [9, Appendix B,
Definition 8]. One difference between the definitions is that we require a strict inequality in
the condition (3) below. For this reason, we denote the problem by Con-p-Division[< ε]
and deviate from the notation ε-Con-p-Division used in the literature. Note that we do
not make any assumptions on the input valuation functions, and therefore allow solutions
that demonstrate violations of their expected properties.

ITCS 2024



60:12 The Chromatic Number of Kneser Hypergraphs via Consensus Division

▶ Definition 15 (The Con-p-Division Problem). For an ε ∈ (0, 1], a prime p, and a fixed
polynomial q, the Con-p-Division[< ε] problem on normalized monotone functions is defined
as follows. The input consists of

a Lipschitz parameter L ≥ 0 and
m Turing machines v1, . . . , vm that are supposed to compute L-Lipschitz-continuous
normalized monotone valuation functions in B([0, 1]) → [0, 1].

The goal is to find either a partition of [0, 1] into p pieces A1, . . . , Ap using at most (p − 1) · m

cuts, such that

|vi(At) − vi(At′)| < ε for all i ∈ [m] and t, t′ ∈ [p], (3)

or a violation of some valuation function vi, namely,
a violation of the normalization of vi, or
a violation of the running time of vi, i.e., an input E on which vi does not terminate
within q(|E| + |vi|) steps, or
a violation of the monotonicity of vi, or
a violation of the L-Lipschitz-continuity of vi.

When p = 2, we refer to the Con-2-Division[< ε] problem as Con-Halving[< ε].

Theorem 9 implies that for any ε ∈ (0, 1] and for every prime p, the Con-p-Division[< ε]
problem is total and thus lies in TFNP.

4.3 From Kneser to Con-Halving[< 1]

We consider now the case p = 2 and state the following result that provides a reduction
from the general Kneser(F , m) problem with subset queries, where m is smaller by one
than the bound given by Theorem 1, to the Con-Halving[< ε] problem with ε = 1. As a
consequence, we will obtain Theorem 2. The proof can be found in the full version of the
paper.

▶ Theorem 16. Let F = (Fα)α∈A be a polynomially computable sequence of set families.
Then, there exists a polynomial-time reduction from the Kneser(F , cd2(Fα) − 1) problem
with subset queries to the Con-Halving[< 1] problem on normalized monotone functions.

We are ready to derive Theorem 2.

Proof of Theorem 2. By Lemma 14, the sequence F (2) is polynomially computable. This
allows us to apply Theorem 16, which yields that there exists a polynomial-time reduction
from Kneser(F (2), cd2(F (2)

(n,k))−1) with subset queries to Con-Halving[< 1] on normalized
monotone functions. By Lemma 8, it holds that cd2(F (2)

(n,k)) = n − 2k + 2. It thus follows
that the Kneser(F (2), cd2(F (2)

(n,k)) − 1) problem coincides with the Kneser problem, and
we are done. ◀

4.4 From Kneserp to Con-p-Division[< 1
2 ]

We next state the following result that provides a reduction, for any prime p ≥ 3, from the
Kneserp(F , m) problem with subset queries, where m is smaller than the bound given by
Theorem 1, to the Con-p-Division[< ε] problem with ε = 1

2 . As a consequence, we will
obtain Theorem 3. The proof can be found in the full version of the paper.
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▶ Theorem 17. Let p ≥ 3 be a prime, and let F = (Fα)α∈A be a polynomially com-
putable sequence of set families. Then, there exists a polynomial-time reduction from the
Kneserp(F , ⌊ cdp(Fα)−1

p−1 ⌋) problem with subset queries to the Con-p-Division[< 1
2 ] problem

on normalized monotone functions.

We are ready to derive Theorem 3.

Proof of Theorem 3. Fix a prime p ≥ 3. By Lemma 14, the sequence F (p) is polynomially
computable, allowing us to apply Theorem 17, which yields that there exists a polynomial-time

reduction from Kneserp(F (p), ⌊
cdp(F(p)

(n,k))−1
p−1 ⌋) with subset queries to Con-p-Division[< 1

2 ]
on normalized monotone functions. By Lemma 8, it holds that cdp(F (p)

(n,k)) = n − p(k − 1). It

thus follows that the Kneserp(F (p), ⌊
cdp(F(p)

(n,k))−1
p−1 ⌋) problem coincides with the Kneserp

problem, and we are done. ◀

5 Kneserp lies in PPA-p

This section is concerned with the membership of the Kneserp problem in the complexity
class PPA-p for every prime p (see Theorem 4). The result is proved in two stronger forms
through known connections between the chromatic number of Kneser hypergraphs and a
Zp-variant of Tucker’s lemma. We then establish limitations on the complexity of variants of
the Kneserr problem, restricted to colorings with a bounded number of colors. We start by
presenting the computational search problem associated with the Zp-Tucker lemma.

5.1 The Zp-Tucker Problem
The definition of the Zp-Tucker problem requires a few notations. For a prime p, we denote
the elements of the cyclic group Zp of order p by ωt for t ∈ [p]. A signed set over Zp is a
set whose elements are associated with signs from Zp. A signed subset of [n] over Zp can be
represented by a vector X ∈ (Zp ∪ {0})n, where the subset consists of the elements j ∈ [n]
with Xj ̸= 0, and the sign of every such j is Xj . For two signed sets X, Y ∈ (Zp ∪ {0})n, we
denote by X ⪯ Y the fact that for every j ∈ [n], if Xj ̸= 0 then Xj = Yj .

▶ Definition 18. (The Zp-Tucker Problem) For a prime p, the Zp-Tucker problem is
defined as follows. Its input consists of two integers n and s satisfying s ≤ ⌊ n−1

p−1 ⌋ along with
a Boolean circuit that represents a Zp-equivariant map λ : (Zp ∪ {0})n \ {0}n → Zp × [s], that
is, a function that maps every nonzero X ∈ (Zp ∪ {0})n to a pair λ(X) = (λ1(X), λ2(X)) in
Zp × [s], where for each t ∈ [p] it holds that λ(ωtX) = (ωtλ1(X), λ2(X)). The goal is to find
a chain of p signed sets X1 ⪯ X2 ⪯ · · · ⪯ Xp in (Zp ∪ {0})n \ {0}n that are assigned by λ

the same absolute value with pairwise distinct signs, that is, for some permutation π of [p]
and some ℓ ∈ [s], it holds that λ(Xt) = (ωπ(t), ℓ) for all t ∈ [p].

Note that the assumption that the map λ is Zp-equivariant can be enforced syntactically.
The existence of a solution for every instance of the Zp-Tucker problem was proved by
Ziegler [36]. Its membership in PPA-p, stated below, follows from a much more general result
due to Filos-Ratsikas et al. [16, Theorem 5.2].

▶ Theorem 19 ([16]). For every prime p, the Zp-Tucker problem lies in PPA-p.

In order to obtain the membership of the Kneserp problem in PPA-p for general sequences
of set families, we need the following definition.
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▶ Definition 20. For a set A, let F = (Fα)α∈A be a sequence of set families, where for each
α ∈ A, Fα is a family of non-empty subsets of [nα] for some integer nα. The sequence F is
strongly polynomially computable if it is possible to associate with each family Fα a linear
order on its members, denoted ≤, such that there exist polynomials q1, q2, q3 satisfying that
1. there exists an algorithm that given an element α ∈ A runs in time q1(nα) and returns a

Boolean circuit C1 : {0, 1}2nα → {0, 1} such that for every pair of sets B1, B2 ∈ Fα, it
holds that C1(B1, B2) = 1 if and only if B1 ≤ B2,

2. there exists an algorithm that given an element α ∈ A runs in time q2(nα) and returns a
Boolean circuit C2 : {0, 1}nα → {0, 1}nα such that for every set D ⊆ [nα], C2(D) is the
minimal subset of D, with respect to the order ≤, that belongs to the family Fα if such a
subset exists, and the empty set otherwise, and

3. for every prime p, there exists an algorithm that given an element α ∈ A runs in time
q3(nα) and returns the value of cdp(Fα).

The following lemma gives simple examples of strongly polynomially computable se-
quences.

▶ Lemma 21. For every integer r ≥ 2, the sequence F (r) is strongly polynomially computable.

Proof. Fix an integer r ≥ 2. Recall that F (r)
(n,k) =

([n]
k

)
for all (n, k) ∈ A(r). We associate

with the sets of F (r)
(n,k) the linear order ≤, defined by B1 ≤ B2 if B1 = B2 or the smallest

element of B1△B2 belongs to B1. Similarly to the proof of Lemma 14, it can be verified that
F (r) satisfies the conditions of Definition 20. Note that Item 3 follows from Lemma 8. ◀

5.2 From Kneserp to Zp-Tucker
The following theorem asserts that the Kneserp(F , m) problem is efficiently reducible to
the Zp-Tucker problem for every strongly polynomially computable sequence F , whenever
the number of colors m is smaller than the bound given by Theorem 1. Its proof verifies
that a mathematical argument of Ziegler [36] can be transformed into an efficient reduction.
We present it with the details for completeness in the full version of the paper.

▶ Theorem 22. Let p be a prime, and let F = (Fα)α∈A be a strongly polynomially computable
sequence of set families. Then, Kneserp(F , ⌊ cdp(Fα)−1

p−1 ⌋) is polynomial-time reducible to
Zp-Tucker.

By combining Theorem 19 with Theorem 22, we derive the following corollary.

▶ Corollary 23. Let p be a prime, and let F = (Fα)α∈A be a strongly polynomially computable
sequence of set families. Then, the Kneserp(F , ⌊ cdp(Fα)−1

p−1 ⌋) problem lies in PPA-p.

As a special case of Corollary 23, we derive Theorem 4.

Proof of Theorem 4. Fix a prime p. By Lemma 21, the sequence F (p) is strongly polyno-

mially computable, hence by Corollary 23, the Kneserp(F (p), ⌊
cdp(F(p)

(n,k))−1
p−1 ⌋) problem lies

in PPA-p. By Lemma 8, it holds that cdp(F (p)
(n,k)) = n − p(k − 1), hence the latter problem

coincides with the Kneserp problem, and we are done. ◀

We next consider the Kneserp

s̃tab
problem associated with the hypergraph Kp(n, k)s̃tab,

that is, the sub-hypergraph of Kp(n, k) induced by the almost stable k-subsets of [n].
Corollary 23 can be applied to obtain a membership result in PPA-p for this setting, however,
it does not give the largest possible number of colors. To obtain the result with an optimal
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number of colors, which is smaller than the chromatic number only by one, we apply a
modified argument of Meunier [32], verifying that it provides an efficient reduction. Let us
mention, though, that the proof of [32] applies a slightly different variant of the Zp-Tucker
lemma, whose proof relies on Dold’s theorem [11]. Our proof, which can be found in the full
version of the paper, uses the version of the lemma that corresponds to our definition of
the Zp-Tucker problem, which lies in PPA-p. See [16, Remark 1] for a discussion on the
computational aspects of Dold’s theorem.

▶ Theorem 24. For every prime p, Kneserp

s̃tab
is polynomial-time reducible to Zp-Tucker.

By combining Theorem 19 with Theorem 24, the proof of Theorem 5 is completed.

5.3 Limitations on the Complexity of Kneserr Problems
We next show that the results from the previous section imply limitations on the complexity
of variants of the Kneserr problem, restricted to colorings with a bounded number of colors.
We start with the following simple lemma, which says that the Kneserr(F , m) problem
does not become easier when r increases.

▶ Lemma 25. Let r1 ≤ r2 be integers, let F = (Fα)α∈A be a sequence of set families,
and let m : A → N be a function such that m(α) < χ(Kr2(Fα)) for all α ∈ A. Then,
Kneserr1(F , m) is polynomial-time reducible to Kneserr2(F , m).

Proof. Fix two integers r1 ≤ r2. Consider an instance of the Kneserr1(F , m) problem, that
is, an element α ∈ A and a Boolean circuit that represents a coloring of Fα with m(α) colors.
We simply apply the identity reduction to the Kneserr2(F , m) problem. A solution for the
obtained instance of Kneserr2(F , m), whose existence follows by m(α) < χ(Kr2(Fα)), is
a collection of r2 pairwise disjoint sets of Fα with the same color. By r1 ≤ r2, any r1 sets
from this collection form a solution for the same input as an instance of Kneserr1(F , m).
The correctness of the reduction follows. ◀

By combining Lemma 25 with Theorem 4, we obtain the following result.

▶ Theorem 26. For every integer r and for every prime p such that r ≤ p,

Kneserr(F (p), ⌊ n−p(k−1)−1
p−1 ⌋)

lies in PPA-p.

Proof. Fix an integer r and a prime p such that r ≤ p. Put m(n, k) = ⌊ n−p(k−1)−1
p−1 ⌋,

and apply Lemma 25 to obtain that Kneserr(F (p), m) is polynomial-time reducible to
Kneserp(F (p), m). The latter coincides with the Kneserp problem, which, by Theorem 4,
lies in PPA-p. It thus follows that Kneserr(F (p), m) lies in PPA-p, as required. ◀

Theorem 26 yields, for any integer r, a limitation on the complexity of the Kneserr

problem, restricted to colorings with a bounded number of colors. For example, consider the
Kneser problem, which asks to find a monochromatic edge in a graph K(n, k) colored with
n − 2k + 1 colors, and recall that it lies in PPA. By Theorem 26, applied with r = 2 and
p = 3, the Kneser(n, k, ⌊ n−3k+2

2 ⌋) problem, which asks to find a monochromatic edge in a
graph K(n, k) colored with only ⌊ n−3k+2

2 ⌋ colors, lies in PPA-3. This implies that the latter
problem is not PPA-hard, unless PPA ⊆ PPA-3. We next present analogue consequences for
the Schrijver problem.

We need the following simple lemma, whose proof is given in the full version of the paper.
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▶ Lemma 27. For every integer r, Kneserr
stab(n, k, ⌊ n−rk

r−1 ⌋) is polynomial-time reducible to
Kneserr

s̃tab
.

By combining Lemma 27 with Theorem 5, we derive the following.

▶ Corollary 28. For every prime p, the Kneserp
stab(n, k, ⌊ n−pk

p−1 ⌋) problem lies in PPA-p.

We further derive the following corollary.

▶ Corollary 29. The Schrijver(n, k, ⌊ n−3k
2 ⌋) problem lies in PPA-3.

Proof. Put m(n, k) = ⌊ n−3k
2 ⌋. By Lemma 25, the Schrijver(n, k, m) problem, which can

be written as Kneserstab(n, k, m), is polynomial-time reducible to Kneser3
stab(n, k, m). By

Corollary 28, the latter lies in PPA-3. It thus follows that Schrijver(n, k, m) lies in PPA-3
as well. ◀

We finally state the following consequence of Corollary 29 regarding the
Schrijver(n, k, m) problem with the function m(n, k) = ⌊n/2⌋ − 2k + 1 considered in [24].
We use here the fact that for all integers n and k ≥ 2, it holds that ⌊n/2⌋ − 2k + 1 ≤ ⌊ n−3k

2 ⌋.

▶ Corollary 30. The Schrijver(n, k, ⌊n/2⌋ − 2k + 1) problem lies in PPA-3.
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