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Abstract
This paper considers elections in which voters choose one candidate each, independently according
to known probability distributions. A candidate receiving a strict majority (absolute or relative,
depending on the version) wins. After the voters have made their choices, each vote can be inspected
to determine which candidate received that vote. The time (or cost) to inspect each of the votes is
known in advance. The task is to (possibly adaptively) determine the order in which to inspect the
votes, so as to minimize the expected time to determine which candidate has won the election. We
design polynomial-time constant-factor approximation algorithms for both the absolute-majority
and the relative-majority version. Both algorithms are based on a two-phase approach. In the first
phase, the algorithms reduce the number of relevant candidates to O(1), and in the second phase
they utilize techniques from the literature on stochastic function evaluation to handle the remaining
candidates. In the case of absolute majority, we show that the same can be achieved with only two
rounds of adaptivity.
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1 Introduction

We introduce the following problem. Consider an election with voters 1, . . . , n who each vote
for a single candidate out of 1, . . . , d. Each voter i chooses each candidate j with known
probability pi,j ∈ (0, 1), independently of all other voters. A candidate wins the election
if they receive a strict majority of the votes which may be, depending on the model, an
absolute or a relative majority. After the votes have been collected, it is possible to count
the vote of any voter i, taking a known time ci ≥ 0 (which can also be thought of as cost).
The present paper is concerned with the following question: In what order should votes be
counted so as to minimize the expected time (or cost) until it is known who won the election?
We allow adapting this order along the way.

The above problem is a stochastic function-evaluation problem (for a survey, see [20]):
The votes can be regarded as random variables taking one of d values, and the function maps
these variables to the index of the winning candidate or, if no such candidate exists, to 0.
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When d = 2, results on such problems can be applied to our problem. Note that for d = 2,
there is no difference between absolute and relative majority. If n is odd, the problem for
d = 2 is somewhat simpler because function value 0 is impossible. The function can then be
seen as a so-called k-of-n function, a Boolean function that is 1 if and only if at least k of the
n variables have value 1. For these functions, a beautiful optimal strategy due to Salloum,
Breuer, and (independently) Ben-Dov is known [19, 4]. In what follows, we refer to this
as the SBB strategy. In our setting, it translates to the following: A standard interchange
argument shows that, if it were known a-priori that candidate j is the winner, it would be
optimal to inspect votes in increasing order of ci/pi,j ratios. Since the two strategies, for
j ∈ {1, 2}, have to count ⌊n/2⌋+ 1 votes before they have verified the winner, there exists,
by the pigeonhole principle, a vote that is contained in both corresponding prefixes. An
unconditionally optimal strategy can safely inspect this vote and then recurse on the resulting
subinstance. In the case that d = 2 and n is even, determining who is the winner of the
election, or determining that there is no winner because of a tie, is equivalent to determining
whether there are precisely n/2 votes for both candidates, and an optimal strategy can be
derived in a similar way [1, 14].

For our general setting, where d can be greater than 2, we do not expect a similarly clean
strategy. For previously studied functions of Boolean variables that are slight extensions
of k-of-n functions, the stochastic evaluation problem is either known to be NP-hard or no
polynomial-time algorithms1 computing optimal strategies are known. A recent trend in
stochastic function evaluation has been to design (polynomial-time) approximation algorithms
instead, i.e., algorithms whose expected cost can be bounded with respect to the expected
cost of an optimal strategy, preferably by a constant factor [12, 14, 16, 18, 17, 8].

The problems considered in this paper have similarities to the stochastic function-
evaluation problem for Boolean linear threshold functions. Constant-factor approximation
algorithms have been developed for that problem, using two different approaches. The first
approach reduces the problem to Stochastic Submodular Cover through the construction of
a utility function and solves the problem with an algorithm called Adaptive Dual Greedy
[8]. We show that this approach yields an O(d)-approximation for our problems (but it is
conceivable that a more nuanced analysis could yield a better approximation factor). The
second approach generates a separate strategy for each of the possible values of the function,
by solving multiple instances of a constrained maximization problem, and interweaves
the resulting strategies together [12]. Applying this approach and current analysis to our
problems would involve interweaving at least d separate strategies, leading to (at least) a
linear dependence on d.

Instead, we develop a two-phase approach, where the first phase reduces the number of
relevant candidates to O(1) and the second phase handles the remaining candidates with
some of the aforementioned techniques. As we show, this approach yields O(1)-approximation
algorithms for both the absolute-majority and the relative-majority setting.

A strategy is considered particularly useful in practice if it is non-adaptive (e.g., [15, 16,
12]), i.e., it considers votes in a pre-specified order until the function is evaluated. For the
absolute-majority version, we give an O(1)-approximation algorithm with only two rounds of

1 For an algorithm for our problem to run in polynomial time, we require that, in every situation, it can
find the next vote to count in time polynomial in the input size. Note that the corresponding decision
tree may have exponential size. For an in-depth discussion of such issues, we refer to the survey by
Ünlüyurt [20, Section 4.1].
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adaptivity. In counting rounds, we use the “permutation” definition: In each round, votes
are inspected in an order that is pre-specified for that round, until some stopping condition is
reached. This definition is consistent with usage in a number of previous papers (e.g., [2, 11]).

For future work, we leave it open whether there are non-adaptive O(1)-approximate
strategies and, if so, whether they can be computed in polynomial time.

1.1 Our Contribution
We start with discussing the arguably simpler absolute-majority case. Here, a candidate
wins if they receive more than n/2 votes. Let us first formalize the termination condition,
i.e., the condition that we have enough information to determine the outcome of the election.
The condition is fulfilled if it is either known that (i) some particular candidate has won or
that (ii) it is no longer possible for any candidate to win. Clearly, (i) is fulfilled if, for some
candidate j, the number of votes candidate j has received is at least ⌊n/2⌋+ 1 and (ii) is
fulfilled if, for all candidates j, the number of votes received by candidates other than j has
reached at least ⌈n/2⌉.

Such conditions can be turned into submodular functions which map any state b (rep-
resenting the values of the votes counted so far) to a non-negative integer value such that
reaching a state whose value is equal to a certain goal value is equivalent to satisfying
the condition. For instance, as noted before, we can conclude that candidate j is not the
absolute-majority winner if and only if the number of votes for candidates other than j has
reached at least ⌈n/2⌉. We will later denote the number of votes for other candidates in
state b, capped at ⌈n/2⌉, by gj(b). By previous techniques (cf. [8]), such conditions can be
combined to obtain a submodular function g with the property that, once g has reached a
certain value, the termination condition is reached. As mentioned before, Adaptive Dual
Greedy can then be applied to the resulting submodular function, and the approximation
bound on Adaptivity Dual Greedy can then be shown to yield an approximation factor of
O(d). For completeness, we detail this analysis in the full version of the paper.

A second approach is based on the previously mentioned approach for d = 2. Note that,
using the SBB strategy, it is possible to evaluate at minimum expected cost whether any
fixed candidate j wins (by what can be viewed as merging the other candidates into a single
one). Clearly, the expected cost of this strategy does not exceed the expected cost of an
optimal strategy, as an optimal strategy also has to evaluate whether candidate j wins (and
more than that). Since concatenating the corresponding strategies (where repeated votes are
skipped) determines who is the winner, the resulting strategy has an approximation factor of
at most d. Unfortunately, such an approximation factor seems inherent to an approach which
consists of separate strategies for all d candidates, even if a more sophisticated round-robin
approach (e.g., [3, 18]) is used to merge them into a single strategy.

As a third approach, let us try something much more naive, namely inspecting votes
in increasing order of cost. Not surprisingly, this alone does not yield a constant-factor
approximation algorithm, as shown, e.g., by the following instance: Consider d = 2 with
n odd, and the following three types of votes: (i) (n − 1)/2 votes i with pi,1 = 1 − ε and
ci = ε, (ii) (n − 1)/2 votes i with pi,1 = ε and ci = 1 − ε, and (iii) a special vote i⋆ with
pi⋆,1 = 1− ε and ci⋆ = 1. When one considers votes in increasing order of cost, for ε→ 0,
with probability approaching 1 it will be necessary to inspect all n votes (at a total cost
approaching (n + 1)/2). However, one could instead first inspect the type (i) votes, and then
the special vote, and with probability approaching 1 this would be sufficient (at a total cost
approaching 1).

ITCS 2024
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Interestingly, a combination of the two latter approaches yields a constant-factor approx-
imation algorithm. The crucial observation is that inspecting votes in increasing order of cost
as long as more than two candidates can still win does not incur more cost than a constant
factor times the cost that an optimal strategy incurs. To get an intuition for why this is
true, consider the case in which all costs are either ε (for negligible ε) or 1. After all cost-ε
votes have been inspected, resulting in state b, let m2 be the second-smallest distance of a
function gj(b) from its goal value. It is not difficult to see that an optimum strategy still has
to inspect at least m2 votes. On the other hand, assume that, after inspecting 2m2 votes,
there are still more than two functions gj(b) that have not reached their goal values yet.
Noting that, for any pair of such goal functions, inspecting any vote adds 1 to at least one of
them readily yields a contradiction. Interestingly, using a more involved charging argument,
we are able to extend such an argument to arbitrary cost.

Next, consider the resulting situation, in which there are only two candidates left that
can still win, say, candidates 1 and 2. We can now use the SBB strategy to first evaluate
whether candidate 1 wins and then, again, to evaluate whether candidate 2 wins. Similarly
to the argument given before, it is easy to argue that the expected cost of this is no larger
than twice the expected cost of an optimal strategy. The resulting approximation guarantee
of the entire algorithm is therefore 4. By replacing each instance of the SBB strategy with a
2-approximation non-adaptive strategy during the process of evaluating if candidate 1 wins
and then if candidate 2 wins, we obtain an algorithm with only three rounds of adaptivity at
the cost of a larger approximation factor of 6. Additionally, we give another algorithm that
further reduces the rounds of adaptivity to 2 with a slightly subtle analysis, but it increases
the approximation factor to 10.

We now discuss the relative-majority case. Here, a candidate wins if they receive more
votes than any other candidate. Again, the termination condition is fulfilled if it is either
known that (i) some particular candidate has won or that (ii) it is no longer possible for
any candidate to win. To formalize this, consider any state b and any two candidates j

and k. Note that j is known to have received more votes than candidate k if the number
of inspected votes for candidate k plus the number of uninspected votes is not larger than
the number of inspected votes for candidate j. Again, we can translate this to a goal-value
function gj,k(b). Then, (i) is fulfilled if, for some candidate j, the d− 1 functions gj,k(b) (for
k ∈ {1, . . . , d} \ {j}) have reached their goal values. For (ii), all votes have to be inspected.

Interestingly, a similar approach works: Again, we inspect votes in increasing order of
costs until only two candidates can win. We can bound the total cost of this phase by 4
times the cost of an optimal strategy. In the second phase, assume candidates 1 and 2 can
still win. We would like to evaluate whether g1,2(b) reaches its goal value. To do so, we
use Adaptive Dual Greedy. We adapt the analysis of Deshpande et al. for Boolean linear
threshold functions [8], to handle the fact each vote may contribute 0, 1, or 2 to g1,2(b). As
a consequence, we show that the cost is at most 3 times the expected cost of an optimal
strategy. After this algorithm has been applied, it is either known that candidate 1 is the
winner, or candidate 2 is the only candidate that can still possibly win. We use the SBB
strategy to handle the latter case. The resulting total approximation factor is 8.

1.2 Further Related Work
The stochastic function-evaluation problem we discussed is inspired by the seminal work of
Charikar et al. [7], where each input value is originally unknown but can be revealed by paying
an information price ci, and the goal is to design a query strategy to compute the value of
function f with minimum cost. However, in the work of Charikar et al., the distributions
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of input variables are unknown so the performance is measured using competitive analysis.
In our stochastic setting, we can compute the expected cost of query strategies since the
distributions are known, which allows us to use the standard analysis in approximation
algorithms. Recently, Blanc et al. [5] revisited the priced information setting of Charikar
et al., and they focus on a similar model to the Stochastic Boolean Function Evaluation
problem of Deshpande et al. [8], but allow an ϵ error in the evaluation result.

Most recent works related to stochastic discrete minimization problems concentrate on
designing non-adaptive strategies [12, 13, 16] or strategies that require small rounds of
adaptivity [2, 11]. Non-adaptive strategies have advantages in many practical applications.
For example, they typically require less storage space and they are amenable to parallelization.
In addition, the adaptivity gap is studied to measure the performance difference between an
optimal adaptive algorithm and an optimal non-adaptive algorithm. So if the adaptivity
gap is small, non-adaptive strategies are usually more desired. However, there are situations
where it is hard to design a non-adaptive strategy with good performance, e.g., when the
adaptivity gap is large. Surprisingly, sometimes allowing a few rounds of adaptivity can
greatly reduce the expected cost of an optimal non-adaptive strategy. Hence, it is interesting
to design strategies that permit small rounds of adaptivity to keep a subtle balance between
performance, storage space, and parallelizability.

Interestingly, economists study similar problems in deciding the winner of an election
while the goal is different [6, 10]. For example, in one of the settings of finding a first-best
mechanism, they seek to maximize the social welfare, which is the expected utility gain of
individuals if the value of f matches the input of any coordinate, minus the expected cost
spent in learning the input values that are needed to determine the value of f . In other words,
this approach generates a complicated rule for determining the value of election results. Our
approach can be considered as fixing the decision rule so the utility gain is constant, and
now the goal is equivalent to minimizing the cost of learning the value of f . Hence, our
algorithms can be potentially helpful in mechanism-design problems.

1.3 Overview
In Section 2, we give some needed definitions. In Sections 3 and 4, we give constant-
factor approximation algorithms for the absolute-majority and the relative-majority cases,
respectively. We conclude and state open problems in Section 5.

2 Preliminaries

Let n be the number of voters, and d be the number of candidates. We number the voters
from 1 to n, and the candidates from 1 to d. We sometimes use [k] to denote the set
{1, . . . , k}.

For X = (X1, . . . , Xn) ∈ {1, . . . , d}n we define Nj(X) to be the number of entries Xi

of X that are equal to j. The absolute-majority function f : {1, . . . , d}n → {0, 1, . . . , d} is
defined as follows:

f(X) =
{

j if Nj(X) ≥ ⌊n
2 ⌋+ 1,

0 otherwise.

Here f(X) = j means j is an absolute-majority winner, meaning j receives more than half
the votes, and f(X) = 0 means there is no absolute-majority winner. The relative-majority
function f : {1, . . . , d}n → {0, . . . , d} is as follows:

ITCS 2024
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f(X) =
{

j if ∀k ∈ {1, . . . , d} \ {j}, Nj(X) > Nk(X),
0 otherwise.

Similar to the previous function, the output of f is either the winner of the election, or 0 if
there is no winner. Here the winner must receive more votes than any other candidate.

The above two functions are symmetric functions, meaning that the results of the function
only depend on the number of 1’s, . . . , d’s in the input. (This property is called anonymity in
social-choice theory.) We assume that the vote of voter i is an independent random variable
Xi, taking a value in the set {1, . . . , d}. For each candidate j, we use pi,j to denote the
probability that Xi = j. We assume that each pi,j > 0.

In our vote-inspection problems, we are given as input the pi,j values for each voter i and
candidate j. For each voter i, we are also given a value ci ≥ 0. The only way to discover
the value of Xi, the vote of voter i, is to “inspect” vote i, which incurs cost ci. (We will
sometimes use the phrase “test variable Xi” instead of “inspect vote i”.) In other words, ci is
the cost of inspecting the vote of voter i. The problem is to determine the optimal (adaptive)
order in which to sequentially inspect the votes, so as to minimize the expected total cost of
determining the winner of the election.

An assignment a to the n variables Xi is a vector a ∈ {1, . . . , d}n, where ai is the value
assigned to xi. We use assignments to represent the values of the votes of the n voters. A
partial assignment is a vector b ∈ {1, . . . , d, ∗}n, where bi = ∗ indicates that the value of Xi

has not been determined. In discussing vote inspection strategies, we use a partial assignment
b to represent the current state of knowledge regarding the values of the votes inspected so
far, with bi equal to the value of voter i’s vote if it has been inspected already, and bi = ∗
otherwise. In the same way as for X, we use Nj(b) to denote the number of entries i of b

such that bi = j. So Nj(b) represents the number of inspected votes that are for candidate j.

3 Absolute Majority

We describe an adaptive 4-approximation algorithm for the absolute-majority version of our
problem. The general idea is as follows. Throughout, we keep a partial assignment b that
records the vote values known so far. For each candidate j, let gj(b) denote the number
of known votes for candidates other than j, capped at ⌈n/2⌉. We can rule out j as the
absolute-majority winner of the election iff gj(b) = ⌈n/2⌉. The algorithm has two phases. In
the first phase, we inspect the votes i in increasing order of their costs ci, until there are at
most two candidates j who could still get enough votes to win the election. Equivalently,
Phase 1 ends when the third-smallest value of gj(b), for all j, is ⌈n/2⌉. At this point, if we
have enough information to determine the outcome of the election, we are done. Otherwise,
for each of the at most two remaining potential winners j, we need to determine whether
the remaining uninspected votes include enough additional votes for candidate j to make
j the absolute-majority winner. (If neither do, then the election has no absolute-majority
winner.) We take one of these remaining potential winners, calculate the minimum number
k of votes they would need to win, and use the SBB strategy for evaluating k-of-n functions
to determine whether this candidate is the winner. If not, and if another candidate is still a
potential winner, we again use the SBB strategy to check if that candidate is the winner. If
not, we know there is no winner. Pseudocode for the algorithm is presented in Algorithm 1
(note that we are more verbose than necessary regarding the output, for readability).

We now prove an approximation bound on the algorithm.
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Algorithm 1 A 4-apx. adaptive algorithm for evaluating the absolute-majority function.

b← {∗}n

while the value of f is not certain do
if the 3rd-smallest gj(b) < ⌈n/2⌉ then

test the next untested variable in increasing order of ci

update b

else
α← any j ∈ arg minj∈{1,...,d} gj(b)
β ← any j ∈ arg minj∈{1,...,d}\{α} gj(b)
evaluate if f = α using the SBB strategy
update b

if f = α then
return f = α

else
if gβ(b) = ⌈n/2⌉ then

return f = 0
else

evaluate if f = β using the SBB strategy
if f = β then

return f = β

else
return f = 0

return the value of f

▶ Theorem 1. Algorithm 1 is an adaptive 4-approximation algorithm for evaluating the
absolute-majority function.

Proof. We analyze the two phases of Algorithm 1: Phase 1 ends when the third-smallest
gj(b) equals ⌈n/2⌉; note that Algorithm 1 cannot terminate before that happens. Phase
2 ends when the algorithm terminates. The key to our proof is to show that, in Phase 1,
Algorithm 1 spends at most 2 times the cost of an optimal strategy.

We first consider the following situation. Suppose we are in the process of executing
Algorithm 1 and Phase 1 has not yet ended. Let b′ be the current value of partial assignment
b, and without loss of generality, assume N1(b′) ≥ · · · ≥ Nd(b′). Let m1(b), . . . , md(b) denote
the distances of functions g1(b), . . . , gd(b) to ⌈n/2⌉, i.e.,

∀j ∈ {1, . . . , d}, mj(b) = ⌈n/2⌉ −min
{ ∑

ℓ∈{1,...,d}\{j}

Nℓ(b), ⌈n/2⌉
}

.

Since N1(b′) ≥ · · · ≥ Nd(b′), we have m1(b′) ≥ · · · ≥ md(b′). Since Phase 1 has not yet
ended, m3(b′) > 0. Let S′ denote the set of variables tested so far by Algorithm 1.

We will show that the following two facts hold:
Fact 1: During its execution, an optimal algorithm needs to test at least m2(b′) of the
variables not in S′.
Fact 2: To finish Phase 1, Algorithm 1 needs to test at most m2(b′) + m3(b′) additional
variables.

ITCS 2024
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To prove Fact 1, note that if f = j ̸= 0, then during its execution, an optimal algorithm
needs to test at least ⌊n/2⌋ + 1 − Nj(b′) of the variables not in S′; if f = 0, an optimal
algorithm needs to test at least m1(b′) variables not in S′. Since

m2(b′) = ⌈n/2⌉ −N1(b′)−
d∑

j=3
Nj(b′) ≤ ⌊n/2⌋+ 1−N1(b′) ≤ ⌊n/2⌋+ 1−Nj(b′)

and m2(b′) ≤ m1(b′), we have shown that Fact 1 holds, regardless of the value of f .
We now show Fact 2. Suppose that after performing m2(b′) + m3(b′) additional tests,

Algorithm 1 still hasn’t terminated. Let b′′ denote the partial assignment after the m2(b′) +
m3(b′) additional tests are performed. If m2(b′′) ̸= 0, the number of 2’s among those
m2(b′) + m3(b′) variables must be more than m3(b′); if m3(b′′) ̸= 0, the number of 3’s among
those variables must be more than m2(b′). Those two conditions cannot occur simultaneously,
and if one of m2(b′′), m3(b′′) is not equal to 0, the remaining mj(b′′) for j > 3 are definitely
0. If both m2(b′′) = m3(b′′) = 0, we can use this argument again for m4(b′′) and m5(b′′). If
still not finished, we can use it for m6(b′′) and m7(b′′), etc. Hence, there are at most two
mj(b′′) that are not equal to 0 after testing the additional m2(b′) + m3(b′) variables because
only m1(b′′) and one other mj(b′′) could be greater than 0. Thus Phase 1 has ended, proving
Fact 2.

Having proved the above two facts, which relate to the status of Algorithm 1 when it has
not yet completed Phase 1, we now analyze the total cost spent in Phase 1, relative to the
total cost spent in an optimal algorithm. Let σ denote the indices of variables such that

cσ1 ≤ cσ2 ≤ · · · ≤ cσn .

Let k be the number of variables tested by Algorithm 1 in Phase 1. Thus the variables tested
in Phase 1 are {xσ1 , . . . , xσk

}.
Now let b′ be the partial assignment right after Algorithm 1 tests xσ1 , . . . , xσk−1 . We

define ϕ1, . . . , ϕd such that

mϕ1(b′) ≥ mϕ2(b′) ≥ · · · ≥ mϕd
(b′).

Since testing the next variable xσk
will end Phase 1, mϕ3(b′) = 1, and because testing

{xσ1 , ..., xσk−1} does not provide enough information to determine the value of f , an optimal
algorithm needs to test at least one variable from {xσk

, . . . , xσn} during its execution. Hence,
we can compare the most expensive variable tested by an optimal algorithm, which costs at
least cσk

, with the last two variables tested by Algorithm 1 in Phase 1, which cost cσk−1 + cσk
.

Now, suppose b′ is the partial assignment right after testing xσ1 , . . . , xσk−3 , and consider
the corresponding ϕ1, . . . , ϕd. Because there are exactly 3 variables tested in Phase 1 after
{xσ1 , . . . , xσk−3}, and by Fact 2, mϕ2(b′) + mϕ3(b′) is an upper bound on the number of
additional variables tested in Phase 1, we have that 3 ≤ mϕ2(b′)+mϕ3(b′). Since the mj ’s are
integer-valued functions, we have mϕ2(b′) ≥ 2. By Fact 1, an optimal algorithm needs to test
at least mϕ2(b′) variables not in {xσ1 , . . . , xσk−3} during its execution, so it needs to test at
least two variables from {xσk−2 , . . . , xσn}. Hence, we can compare the second-most expensive
variable tested by an optimal algorithm, which costs at least cσk−2 , with the third-last and
the fourth-last variables tested by Algorithm 1 in Phase 1, which cost cσk−3 + cσk−2 .

More generally, let b′ denote the partial assignment right after having tested variables
xσ1 , . . . , xσk−ℓ

where 1 ≤ ℓ ≤ k − 1, and again consider the corresponding ϕ1, . . . , ϕd.
Algorithm 1 does ℓ tests in Phase 1 after testing xσ1 , . . . , xσk−ℓ

, where ℓ ≤ mϕ2(b′)+mϕ3(b′) ≤
2mϕ2(b′) by Fact 1. Applying Fact 2 then yields that an optimal algorithm needs to test at
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least mϕ2(b′) ≥ ⌈ℓ/2⌉ variables from {xσk−ℓ+1 , . . . , xσn}. Hence, the ⌈ℓ/2⌉th-most expensive
variable tested by an optimal algorithm costs at least cσk−ℓ+1 . On the other hand, the ℓth-last
and the (ℓ + 1)st-last variable tested by Algorithm 1 in Phase 1 cost cσk−ℓ+1 + cσk−ℓ

in total.
To conclude our analysis of Phase 1, the cost Algorithm 1 spends in Phase 1 is upper-

bounded by twice the total cost of the ⌈k/2⌉ most expensive variables tested by an optimal
algorithm, and hence it is also upper-bounded by twice the total cost of all variables tested
by an optimal algorithm.

After Phase 1, there are three remaining possibilities: f = α, f = β and f = 0. Let
OPT denote an optimal adaptive strategy for the problem. If f = α, clearly, our algorithm
queries the remaining variables optimally; if f = β, since we always need to prove f ̸= α,
our algorithm spends at most 2E[OPT] in Phase 2; if f = 0, we need to show f ̸= α and
f ̸= β, hence, our algorithm spends at most 2E[OPT] in Phase 2 as well. Combining the
cost we spent in Phase 1, Algorithm 1 is a 4-approximation algorithm for evaluating an
absolute-majority function when ci > 0. ◀

The SBB strategy is a highly adaptive strategy; it is easy to see that Algorithm 1 may
require Ω(n) rounds of adaptivity. Motivated by this, we also sketch a modification of
this algorithm such that the new algorithm needs only 3 rounds of adaptivity, but the
approximation ratio is increased slightly from 4 to 6. Specifically, we replace Phase 2 which
contains the two runs of the SBB strategy. After Phase 1 is completed, if we are still uncertain
about the result of the election, we can first evaluate if α is the absolute-majority winner by
using the non-adaptive 2-approximation algorithm for evaluating a k-of-n function, which was
introduced in Gkenosis et al. [13]. This algorithm performs a modified (cost-sensitive) round
robin between two orderings, one in increasing order of ci/pi,α, and the other in increasing
order of ci/(1− pi,α). The modified round robin is due to Allen et al. [3] and we present the
pseudocode in the full version of the paper. It keeps track of the next vote to be inspected
in each ordering, and the total cost incurred so far for each ordering. It computes, for each
ordering, the sum of the cost incurred so far, plus the cost of the next test. It performs the
next test from the ordering for which this sum is smaller (breaking ties arbitrarily). We call
this Phase 2.

Since the problem of evaluating f requires determining whether or not α is the winner,
the cost spent in Phase 2 is upper-bounded by twice the expected cost of evaluating the
value of f . If we know α is not the absolute-majority winner after Phase 2, we start Phase 3
by evaluating if β is the winner using the same algorithm in Gkenosis et al. This will again
add at most twice the expected cost of evaluating f . Clearly, if both α and β are not the
winner, there is no absolute-majority winner in the election.

We thus have the following theorem.

▶ Theorem 2. There exists a 6-approximation algorithm for evaluating the absolute-majority
function with 3 rounds of adaptivity.

We note that it is possible to reduce the rounds of adaptivity from 3 to 2 using a modified
round-robin applied to 4 different non-adaptive orderings. We give details in the full version
of the paper.
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4 Relative Majority

We now turn our attention to the relative-majority version of our problem and present an
8-approximation algorithm. Similar to our previous approach, we keep a partial assignment
b to track the values of inspected votes and also to indicate which vote values are not yet
known. To show that a candidate j has more votes than a candidate k is equivalent to
showing that

Nk(b) + N∗(b) < Nj(b).

The fact that N∗(b) = n−
∑

k∈{1,...,d} Nk(b) motivates designing

gj,k(b) = min
{

Nj(b) +
∑

ℓ∈{1,...,d}\{k}

Nℓ(b), n + 1
}

such that gj,k(b) = n + 1 iff candidate j is guaranteed to have more votes than candidate k.
Hence, to conclude that j is a relative-majority winner, we must have gj,k(b) = n + 1 for
all k ∈ {1, . . . , d} \ {j}. Our algorithm again has two phases. In Phase 1, we still inspect
the votes in increasing order of their costs. We end Phase 1 when there are at most two
candidates who can possibly win and let α, β denote the two candidates. Then, there are
at most three possible results of the election: α wins, β wins, or it is a tie. We will first
determine if α wins or not. Recall that, if α wins, they must have more votes than β, which
means gα,β(b) needs to be at least n + 1 at some point. Since having a vote for α,β, or
any candidate in {1, . . . , d} \ {α, β} contributes 2, 0, or 1 to gα,β , respectively, we can use
the Adaptive Dual Greedy algorithm introduced by Deshpande et al. [8] to evaluate if the
remaining votes cause gα,β(b) to reach the threshold n + 1. If yes, clearly α is the winner.
If not, then we test the remaining variables in increasing order of ci/(1 − pi,α) until it is
certain whether β is the winner or there is a tie. As shown below, if all remaining votes
are for α, then α and β are tied, otherwise β is the winner. The pseudocode is presented in
Algorithm 2 (again, this is slightly more verbose than necessary for readability).

We now give an analysis of the algorithm.

▶ Lemma 3. The cost that Algorithm 2 spends in Phase 1 is at most 4 times the cost of an
optimal algorithm.

Proof. For each j ∈ {1, . . . , d} and k ∈ {1, . . . , d} \ {j}, we define mj,k(b) to be the distance
from gj,k(b) to n + 1, so we have

mj,k(b) = n + 1− gj,k(b),

and define Mj(b) such that

Mj(b) = max
k∈{1,...,d}\{j}

mj,k(b),

which is the largest distance among the d− 1 utility functions gj,k of candidate j to n + 1.
Recall the definition of the relative-majority function f . We can see that, when f = 0,

which means it is a draw situation, clearly we need to test all variables. When there exists a
relative-majority winner, let b′ be the partial assignment at any moment before Algorithm 2
terminates, and let j∗ be an arbitrary element in the set arg minj∈{1,...,d} Mj(b′). Then, any
optimal algorithm needs to test at least ⌈Mj∗(b′)/2⌉ variables from the untested variables
since any single test can contribute at most 2 to any gj,k. Here we note that Mj∗(b′) > 0,
otherwise j∗ would have strictly more votes than all other candidates, and we can conclude
f = j∗.
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Algorithm 2 An 8-apx. adaptive algorithm for evaluating the relative-majority function.

b← {∗}n

while the value of f is not certain do
if there are more than 2 candidates that can possibly win then

test the next untested variable in increasing order of ci

update b

else
α← any j ∈ arg maxj∈{1,...,d} Nj(b)
β ← any j ∈ arg maxj∈{1,...,d}\{α} Nj(b)
evaluate if f = α by using the Adaptive Dual Greedy algorithm (cf. [8])
if f = α then

return f = α

else
evaluate if f = β by testing remaining variables in increasing order of

ci

(1−pi,α)

if f = β then
return f = β

else
return f = 0

return the value of f

Now we define γ, δ ∈ {1, . . . , d} \ {j∗} such that

∀k ∈ {1, . . . , d} \ {γ, δ, j∗}, Mj∗(b′) = mj∗,γ(b′) ≥ mj∗,δ(b′) ≥ mj∗,k(b′),

which implies that

∀k ∈ {1, . . . , d} \ {γ, δ, j∗}, Nγ(b′) ≤ Nδ(b′) ≤ Nk(b′)

since mj∗,k(b′) = n + 1− gj∗,k(b′) for any k ∈ {1, . . . , d} \ {j∗}.
Suppose Phase 1 has not ended, meaning that there are more than two candidates who

can still win at this moment. Then, we claim that testing any mj∗,γ(b′)+mj∗,δ(b′) additional
variables will end Phase 1.

We now prove this claim. Let mγ = mj∗,γ(b′), mδ = mj∗,δ(b′). Let b′′ denote the
partial assignment after testing any mγ + mδ additional variables. Suppose there exists a
µ ∈ {1, . . . , d} \ {j∗} such that mj∗,µ(b′′) > 0. Then

mj∗,µ(b′′) > 0
⇔ mj∗,µ(b′)− (Nj∗(b′′)−Nj∗(b′))−mγ −mδ + (Nµ(b′′)−Nµ(b′)) > 0
⇔ Nµ(b′′)−Nµ(b′) > mγ + mδ + Nj∗(b′′)−Nj∗(b′)−mj∗,µ(b′′)
⇔ Nµ(b′′)−Nµ(b′) > (n + 1− gj∗,γ(b′)) + (n + 1− gj∗,δ(b′))

+ Nj∗(b′′)−Nj∗(b′)− (n + 1− gj∗,µ(b′))
⇔ Nµ(b′′)−Nµ(b′) > (n + 1)− gj∗,γ(b′)− gj∗,δ(b′) + gj∗,µ(b′) + Nj∗(b′′)−Nj∗(b′).

Similarly, if there exists a ν ∈ {1, . . . , d} \ {j∗, µ} such that mj∗,ν(b′′) > 0, we have

Nν(b′′)−Nν(b′) > (n + 1)− gj∗,γ(b′)− gj∗,δ(b′) + gj∗,ν(b′) + Nj∗(b′′)−Nj∗(b′).
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Then, we can see that if both mj∗,µ(b′′) > 0 and mj∗,ν(b′′) > 0 hold, we have

Nµ(b′′)−Nµ(b′) + Nν(b′′)−Nν(b′)
> 2(n + 1− gj∗,γ(b′)− gj∗,δ(b′)) + gj∗,µ(b′) + gj∗,ν(b′) + 2(Nj∗(b′′)−Nj∗(b′))
≥ 2(n + 1)− gj∗,γ(b′)− gj∗,δ(b′) + 2(Nj∗(b′′)−Nj∗(b′))
≥ mγ + mδ,

where the second inequality comes from gj∗,µ(b′) + gj∗,ν(b′) ≥ gj∗,γ(b′) + gj∗,δ(b′) and the
third inequality comes from Nj∗(b′′) − Nj∗(b′) ≥ 0. We have thus shown that Nµ(b′′) −
Nµ(b′) + Nν(b′′)−Nν(b′) > mγ + mδ, which is a contradiction because it implies that more
than mγ + mδ additional votes were inspected. Therefore, there is at most one k such that
mj∗,k(b′′) > 0. This proves the claim that inspecting any mγ + mδ additional votes will end
Phase 1.

By definition, mj∗,k(b′′) = 0 is equivalent to gj∗,k(b′′) = n+1, which means j∗ has strictly
more votes than k. This eliminates the possibility that k is the winner. Since there exists at
most one k∗ that satisfies mj∗,k∗ ̸= 0, there are at most two candidates, j∗ and k∗, who can
possibly win.

Now we can use a similar argument as in the proof of Theorem 1 to prove the rest of
the lemma. Let σ1, . . . , σn denote the indices of variables such that cσ1 ≤ cσ2 ≤ · · · ≤ cσn

.
In an arbitrary realization, we assume at the time Phase 1 ends, Algorithm 2 has tested
xσ1 , . . . , xσk

.
Let b′ denote the partial assignment when we have obtained the values of xσ1 , . . . , xσk−ℓ

where ℓ ≥ 1. From our previous claim, we know that

ℓ ≤ mj∗,γ(b′) + mj∗,δ(b′) ≤ 2 ·mj∗,γ(b′).

On the other hand, we know that an optimal algorithm needs to test at least ⌈mj∗,γ(b′)/2⌉
variables outside of {xσ1 , . . . , xσk−ℓ

}, which implies that an optimal algorithm needs to test
at least ⌈ℓ/4⌉ variables from {xσk−ℓ+1 , . . . , xn}. Hence, for example, by setting ℓ = 1, we can
compare the most expensive variable tested by an optimal algorithm, which costs at least
cσk

, with the total costs of {xσk−3 , xσk−2 , xσk−1 , xσk
}; by setting ℓ = 5, we can compare the

second-most expensive variable tested by an optimal algorithm, which costs at least cσk−4 ,
with the total costs of {xσk−7 , xσk−6 , xσk−5 , xσk−4}. Generalizing these observations, we can
see that the ⌈ℓ/4⌉th-most expensive variable tested by any optimal algorithm costs at least
cσk−ℓ+1 . Hence, the total cost that Algorithm 2 spends in Phase 1, cσ1 + · · ·+ cσk

, is at most
4 times the cost of an optimal algorithm. ◀

▶ Theorem 4. Algorithm 2 is an adaptive 8-approximation algorithm for evaluating the
relative-majority function.

Proof. Let OPT denote an optimal algorithm. By using Lemma 3, we know that Algorithm 2
spent at most 4E[OPT] in Phase 1. Hence, we just need to solve the induced problem after
Phase 1.

Let α, β denote the two candidates who can possibly win. We know that evaluating
function f will also evaluate if f = α. Hence, the expected cost of an optimal algorithm
for evaluating if α wins is upper-bounded by the expected cost of an optimal algorithm for
evaluating the result of the election. Since there are only two candidates α, β remaining,
evaluating if f = α is equivalent to evaluating if α has more votes than β. This problem
can be understood as evaluating a variant of a linear threshold formula that was studied by
Deshpande et al. [8]. In particular, let b′ denote the partial assignment right after we figured
α, β, we need to determine whether or not the following inequality holds:



L. Hellerstein, N. Liu, and K. Schewior 61:13

Nα(b′) +
( ∑

k∈{1,...,d}\{β}

Nk(b′)
)

+
∑

i:b′
i
=∗

yi ≥ n + 1.

Here yi = 2 if we find xi = α; yi = 1 if xi ∈ {1, . . . , d} \ {α, β}; and yi = 0 if xi = β. This is
a linear threshold evaluation problem, involving ternary rather than binary variables. The
Adaptive Dual Greedy algorithm of Deshpande et al. can be used to solve this ternary linear
threshold function evaluation problem, and determine whether f = α. A slight modification
of the analysis used by Deshpande et al. shows that it spends at most 3E[OPT]. We defer
details of the use of Adaptive Dual Greedy and its approximation bound to the full version
of the paper.

Suppose f ̸= α, what remains is to decide if f = 0 or f = β. Recall that at the point we
know f ̸= α, let b′ be the partial assignment, we have

Nα(b′) + N∗(b′) ≤ Nβ(b′).

This means that, when the equality does not hold, we know f = β, since even if all the
remaining variables have value α, β will have strictly more votes. Therefore, the induced
problem can be considered as evaluating a conjunction (i.e., checking whether xi = α for
all untested xi’s), which can be solved optimally by using the SBB strategy that tests the
remaining variables in increasing order of ci/(1− pi,α).

Hence, Algorithm 2 spends at most 4E[OPT] + 3E[OPT] + E[OPT] = 8E[OPT]. ◀

5 Conclusion

In this paper, we have introduced the problem of quickly determining the winner of an election.
We have also given the first constant-factor approximation algorithms for this problem in both
the absolute-majority and the relative-majority case. While the approximation guarantees are
one-digit numbers, we have no reason to believe that they match some type of approximation
hardness. In fact, even NP-hardness remains an open problem. Assuming our problem is
NP-hard, proving this is the case might require new techniques. Some stochastic evaluation
problems are known to be NP-hard, for example, evaluation of Boolean linear threshold
functions (cf. [20]) and evaluation of s-t connectivity in general graphs [9]. However, it is
open whether a number of Stochastic Score function evaluation problems, related to our
problem, are NP-hard [1, 14, 16]. The question of whether the stochastic evaluation problem
for Boolean read-once formulas is NP-hard has been open since the 1970’s (cf. [20]).

A structural question left open by our work is whether the adaptivity gap of our problem
is constant. The strongest lower bound on the adaptivity gap that we are aware of comes from
the lower bound of 1.5 for k-of-n functions [18]. Extending the corresponding construction,
one may try to consider an instance in which there are some votes of negligible cost that
determine a forerunner, who can then be proved to be a winner cheaply by an adaptive
strategy (by selecting the corresponding votes) but not by a non-adaptive strategy (because
it does not know which votes to inspect). The extensions is, however, not straightforward.
One is restricted to certain distributions of who is the forerunner, and even votes for another
candidate make progress on goal functions associated with other candidates.

Many natural extensions and variants of our model are possible, e.g., to other voting
systems. A relatively small extension would concern larger target numbers of votes than
n/2, possibly even candidate-specific ones. Such scenarios can be approached by adding an
appropriate number of 0-cost votes for each candidate (i.e., with probability close enough
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to 1) and then using our algorithm for the absolute-majority version. Similarly, one could
consider weighted voting systems (with modern applications in liquid democracy or voting in
shareholder meetings). Ranked-voting systems could also be investigated.
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