
TFNP Intersections Through the Lens of Feasible
Disjunction
Pavel Hubáček #

Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Erfan Khaniki #

Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Neil Thapen #

Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic

Abstract
The complexity class CLS was introduced by Daskalakis and Papadimitriou (SODA 2010) to capture
the computational complexity of important TFNP problems solvable by local search over continuous
domains and, thus, lying in both PLS and PPAD. It was later shown that, e.g., the problem of
computing fixed points guaranteed by Banach’s fixed point theorem is CLS-complete by Daskalakis
et al. (STOC 2018). Recently, Fearnley et al. (J. ACM 2023) disproved the plausible conjecture
of Daskalakis and Papadimitriou that CLS is a proper subclass of PLS ∩ PPAD by proving that
CLS = PLS ∩ PPAD.

To study the possibility of other collapses in TFNP, we connect classes formed as the intersection
of existing subclasses of TFNP with the phenomenon of feasible disjunction in propositional proof
complexity; where a proof system has the feasible disjunction property if, whenever a disjunction
F ∨ G has a small proof, and F and G have no variables in common, then either F or G has a
small proof. Based on some known and some new results about feasible disjunction, we separate the
classes formed by intersecting the classical subclasses PLS, PPA, PPAD, PPADS, PPP and CLS. We
also give the first examples of proof systems which have the feasible interpolation property, but not
the feasible disjunction property.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Problems, reductions and completeness; Theory of computation → Complexity classes

Keywords and phrases TFNP, feasible disjunction, proof complexity, TFNP intersection classes

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.63

Funding Pavel Hubáček: Supported by the Czech Academy of Sciences (RVO 67985840).
Erfan Khaniki: Supported by the Czech Academy of Sciences (RVO 67985840), GAČR grant 19-
27871X and SVV-2023-260721.
Neil Thapen: Supported by the Czech Academy of Sciences (RVO 67985840) and GAČR grant
23-04825S.

Acknowledgements We would like to thank Lukáš Folwarczný, Tuomas Hakoniemi, Yuhao Li,
William Pires, Pavel Pudlák and Robert Robere for helpful discussions related to this work.

1 Introduction

Since the foundational work of Megiddo and Papadimitriou [40], various subclasses of total
search problems have been introduced to characterize the computational complexity of
problems for which a solution is guaranteed to exist [32, 43, 36, 31, 49, 34, 30, 26, 35]. Such
problems are naturally clustered based on the kind of reasoning, or “combinatorial lemma”,
used to prove that all instances have a solution; or viewed alternatively, based on the type of
an inefficient algorithm that can be used to solve them. A prime example is the class PLS

© Pavel Hubáček, Erfan Khaniki, and Neil Thapen;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 63; pp. 63:1–63:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hubacek@math.cas.cz
https://orcid.org/0000-0002-6850-6222
mailto:e.khaniki@gmail.com
mailto:thapen@math.cas.cz
https://doi.org/10.4230/LIPIcs.ITCS.2024.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 TFNP Intersections Through the Lens of Feasible Disjunction

of all total search problems solvable via a simple local search algorithm, which can also be
defined as the class of problems for which reasoning by induction over NP formulas is enough
to prove that a solution exists [9].

The complexity class CLS was introduced by Daskalakis and Papadimitriou [14] to capture
the computational complexity of important TFNP problems solvable by local search over
continuous domains and, thus, lying in both PLS and PPAD. It was later shown that,
e.g., the problem of computing fixed points guaranteed by Banach’s fixed point theorem is
CLS-complete by Daskalakis et al. [15]. Recently, Fearnley et al. [18] disproved the plausible
conjecture of Daskalakis and Papadimitriou that CLS is a proper subclass of PLS ∩ PPAD by
establishing that CLS = PLS ∩ PPAD. Their work motivates the natural question whether
there will be other surprising collapses of TFNP intersections; as noted by Fearnley et al. [18],
CLS is currently the only intersection class that has natural complete problems in the sense
that input is explicit and not represented succinctly via a Boolean circuit.

Among the well-studied subclasses of TFNP, a prime candidate for being an intersection
class is PPAD which is contained in the intersection of all the PPAq classes as well as
PPADS. As for other intersections of classical subclasses of TFNP, Göös et al. [21] gave
simple combinatorial complete problems for the intersections of PLS with PPADS and PPP
(respectively). Ishizuka [27] gave a combinatorial characterization of PLS ∩ PPA.

TFNP and proof complexity. Our understanding of the structural properties of subclasses of
TFNP is largely based on its interaction with proof complexity. The seminal paper of Beame
et al. [2] demonstrated that lower bounds in proof complexity can illuminate the relative
complexity of TFNP subclasses, which was subsequently developed further [41, 42, 4]. Recent
work pushed this connection further and characterized various subclasses of TFNP in terms
of corresponding proof systems, thus leading to oracle separations between various subclasses
of TFNP when conflicting bounds were known for the corresponding proof systems [22]. In
this work, we build upon the recent characterizations of subclasses of TFNP. We take a
generic approach to intersections of standard subclasses of TFNP employing the classical
notion of feasible disjunction in proof complexity.

Suppose F and G are propositional formulas with no variables in common. Then if the
disjunction F ∨ G is a tautology, it follows that either F is a tautology or G is. Thus a
natural property that a proof system may have is that, given a proof π of F ∨ G in the
system, there exists another proof, of a similar length to π or shorter, of either F or G by
itself. This property was called weak feasible disjunction by Pudlák [46] (see also [38, 48]); in
this paper we call it simply feasible disjunction1. It has been shown to hold for proof systems
such as resolution and cutting planes [44], Lovász-Schrijver with the rounding rule [45],
and polynomial calculus and sum-of-squares [24]. Up until now, the only negative result is
recent work by Garlík [19] showing that for k ≥ 2 the system Res(k), a small extension of
resolution, does not have feasible disjunction. Beyond [19], nothing was known (in classical
logic), even conditional on some hardness assumption. In particular, it is widely open for
strong proof systems such as Frege and extended Frege (more is known for non-classical logic,
see e.g. [10], [29]).

A related property of a proof system is feasible interpolation [37]. This holds if, given a
proof of F ∨G, where F and G may share variables, one can construct a small circuit which,
from any assignment to the common variables, computes which of F and G is a tautology

1 “Feasible disjunction”, without the word “weak”, is also used in the literature to mean the stronger
property, that there is a polynomial time algorithm which produces a proof of either F or G from a
proof of F ∨ G.

P. Hubáček, E. Khaniki, and N. Thapen 63:3

PPA PPP PLS

PPADS

PPAD

CLS

Figure 1 The relative complexity of the standard subclasses of TFNP.

under this assignment. This has been intensively studied because one can often guarantee
that the circuit is monotone, and thus obtain proof complexity lower bounds from monotone
circuit lower bounds. It was observed by Pudlák [46] that systems known to have feasible
disjunction also have feasible interpolation, and vice versa; this remains true for the more
recent work mentioned above, largely because the proof method for one typically also gives
the other.

The proof systems we use below are more naturally used to refute contradictions, rather
than to prove tautologies. For this reason when we use feasible disjunction, we actually use
the “dual” version of it which is appropriate for such systems, involving conjunction rather
than disjunction: if F ∧G has a small refutation, then either F has a small refutation, or G
does.

1.1 Our Results and Technical Overview
Below, we give a high-level discussion of our results and techniques. Detailed definitions and
the necessary background are provided in Section 2 and the formal details of our results in
the subsequent Sections 3–5.

1.1.1 Separation of TFNP intersections (Section 4)
Consider the six best-studied TFNP classes PLS, PPA, PPP, PPADS, PPAD, and CLS depicted
in Figure 1. We show that, other than the equality CLS = PLS ∩ PPAD, no nontrivial
intersection of two of these classes equals a third, and no two nontrivial intersections are
equal to each other (Theorem 32). This remains true if we include also all classes PPAq, for
all primes q (Theorem 33). Our method relies on the well-known connection between natural
TFNP classes and proof systems (in particular, as it is set out in [22]).

For a suitable family Qn of contradictory CNF formulas, we write Search(Qn) for the
search problem of finding a false clause in Qn, given an assignment. For a natural TFNP
class A, there typically exists a proof system P such that Search(Qn) ∈ A if and only if Qn has
small refutations in P , for some appropriate meaning of “small”. Now suppose that B,C ̸⊆ A

are TFNP classes and B ∩ C ⊆ A. Take CNF families Q and R, in disjoint variables, such
that Search(Qn) ∈ A and Search(Rn) ∈ B. It is easy to see that Search(Qn ∧Rn) ∈ B ∩ C,
and, thus, Qn ∧ Rn has small refutations in the system P . Therefore, if P has a suitable
form of feasible disjunction, we know that for each n either Qn has a small refutation in P ,
or Rn does. Now if we had the stronger conclusion that either (Qn has small refutations for
every n) or (Rn does, for every n), and we had chosen Q and R to be “complete” for the
classes B and C in some appropriate sense, it would follow that either B ⊆ A or C ⊆ A,
contradicting our assumption on B and C. In fact, whether it is Qn or Rn can in principle

ITCS 2024

63:4 TFNP Intersections Through the Lens of Feasible Disjunction

be different for each n, so we use more ad hoc arguments which directly use proof complexity
lower bounds for Qn and/or Rn in P to get a contradiction (where these may be the same
lower bounds that were used to show B,C ̸⊆ A in the first place).

We note that [16] used a similar approach, implicitly relying on the feasible disjunction
property, to show (independently of our work) that a certain TFNP intersection is not in PLS.
The independent work of Li, Pires, and Robere [39] develops some new characterizations of
intersection classes by proof systems.

1.1.2 Feasible disjunction (Section 3)
We define the feasible disjunction property for a general measure µ of proof complexity:

▶ Definition 1. Let P be a proof system and let µ be a measure for P . We say that P has
µ-feasible disjunction, or feasible disjunction for µ, if, for CNFs F,G in disjoint variables,

min(µ(F), µ(G)) ≤ poly(µ(F ∧G), logn)

where n is the total number of variables in F and G.

For our results on intersections, we use that the Nullstellensatz proof system has feasible
disjunction for degree, over any field, and that the Sherali-Adams system has feasible
disjunction for the measure µ∗

SA, defined as log(magnitude) + degree. The first result appears
already in [22] and the second is new (Corollary 26).

Both things are proved in a similar way: if a CNF F has no small proofs, then there exists
an object that behaves like an approximation of an assignment that satisfies F . If G also has
no small proofs, we can combine the object for F with the object for G to get something
that behaves like an approximation of an assignment satisfying F ∧G, exploiting the fact
that F and G share no variables. This is then enough to show that F ∧G has no small proofs.
Hakoniemi [25] used this approach to show feasible disjunction for degree for Sherali-Adams,
and feasible disjunction for combined degree and magnitude for the sum-of-squares proof
system. The same approach can show feasible disjunction for width in the resolution proof
system, as in [16].

For our result for Sherali-Adams, we develop a new “semantic” characterization of Sherali-
Adams in small magnitude and degree, modelled on the result for sum-of-squares in [25].
Precisely, we define an ε-pseudoexpectation over degree d for a set of polynomials Q and show
that such an object exists, for a small error ε, if and only if Q has no degree-d Sherali-Adams
refutation of small magnitude (Lemmas 21 and 23). We note that a characterization of size
in unary Sherali-Adams of a similar nature will appear in [17].

Finally we return to the standard meaning of feasible disjunction, which is for the size
measure. We show that neither of the systems reversible resolution and reversible resolution
with terminals has feasible disjunction in this sense (Lemma 30). This is interesting because
both of them have feasible interpolation, which they inherit as subsystems of resolution [37].
As far as we know, these are the first examples of systems with feasible interpolation but
not feasible disjunction, addressing the issue raised by Pudlák [46]. Our proof uses known
upper and lower bounds from proof complexity, together with the characterization from [22]
of RevResT as a kind of intersection of resolution and unary Nullstellensatz.

1.1.3 Combinatorial characterization of PPA ∩ PPADS (Section 5)
Our separations, in particular, show that PPAD ⊂ PPA ∩ PPADS ⊂ PPA ∩ PPP, i.e., the two
intersections PPA ∩ PPADS and PPA ∩ PPP that were not explicitly studied in the literature
yet might be of independent interest. As a first step towards improving our understanding of

P. Hubáček, E. Khaniki, and N. Thapen 63:5

these intersection classes, we introduce a complete combinatorial problem for PPA ∩ PPADS.
The new total search problem, which we call Leaf-Or-Sink, is close to End-Of-Line and
other similar combinatorial problems characterizing the standard classes PPA, PPAD, and
PPADS. It is an interesting open problem to provide a similar combinatorial problem for
the higher intersection PPA ∩ PPP. In particular, it is known that (under randomized
reductions) PPA ∩ PPP contains integer factoring [5, 30], and, thus, a concise complete
problem for PPA ∩ PPP could, for example, help in characterizing the search complexity of
integer factoring.

For the formal definition of Leaf-Or-Sink, see Definition 35. Here, we give an informal
description of the problem. Recall that an instance of End-Of-Line is given via a succinctly
represented directed graph with vertices of in-degree and out-degree at most one (i.e., a
collection of directed paths and cycles) with a known distinguished source. A solution is
any sink in the graph or a source distinct from the distinguished source. Our PPA ∩ PPADS-
complete problem Leaf-Or-Sink is defined on a generalization of an End-Of-Line graph.
The instance is given via a succinctly represented directed graph, where each vertex has at
most two neighbors (i.e., we allow vertices of in-degree or out-degree two) with a distinguished
source of degree one. A solution is any sink (of degree one or two) or a leaf (i.e., a vertex
with a single neighbor) distinct from the distinguished source.

The containment of Leaf-Or-Sink in PPA∩PPADS follows via straightforward reductions
to the PPA-complete problem Leaf (i.e., the undirected variant of End-Of-Line) and
PPADS-complete problem Sink (i.e., the variant of End-Of-Line where sources do not
constitute solutions). We establish the hardness for PPA ∩ PPADS via a reduction from the
canonical PPA ∩ PPADS-complete problem, where we are given an instance of Leaf and
an instance of Sink and we are asked to solve either one of them. Our reduction orients
the edges of the Leaf instance arbitrarily and resolves the “useless” solutions at sinks of
degree two that are unrelated to leaves of the Leaf instance (that are likely introduced by
the arbitrary orientation of the edges) using the instance of Sink. On a high level, for each
predecessor of any sink of degree two, we can create a copy of the Sink graph and, instead
of the sink of degree two, connect the predecessor to the distinguished source in its copy of
the Sink graph. In this way, any sink of in-degree two becomes isolated and is no longer a
solution to Leaf-Or-Sink. Unfortunately, even though we have resolved sinks of in-degree
two, the copies of the Sink graph might have added new sources of degree one, which would
constitute a solution to Leaf-Or-Sink but not to Sink. However, it is easy to take care of
these sources due to the fact that there are exactly two copies of the Sink graph for each
sink of in-degree two. For each sink of degree two that we were resolving, we can simply
add a new source of degree two with outgoing edges to the two copies of the source. By
such “gluing” of the Leaf graph with the copies of the Sink graph, we would construct an
instance of Leaf-Or-Sink without sinks of degree two and where the leaves are either leaves
in the Leaf graph or sinks in the Sink graph.

2 Preliminaries

2.1 Proof Systems and Measures
We recall some standard definitions. A clause is a disjunction of propositional literals, where
we write x̄i for the negation of the variable xi. A CNF is a conjunction of clauses. A
refutation of a CNF F in a proof system P is a witness that F is unsatisfiable, where the
form of witness that is allowed depends on the system P .

ITCS 2024

63:6 TFNP Intersections Through the Lens of Feasible Disjunction

▶ Definition 2. A measure µ for a proof system P is a function which assigns a non-negative
real number µ(π) to each P -refutation π.

For a CNF F we define µ(F) := min{µ(π) : π is a P -refutation of F}.

The standard measure for a system is the size (for example in bits) of a refutation, and
“feasible” proofs typically mean those of polynomial size in the size of the CNF F . However
in this paper, following e.g. [22], we use a different scaling, using for example the logarithm
of size, rather than size, and typically working with polylogarithmic measures (an exception
is Section 3.3).

We work mostly with the algebraic systems Nullstellensatz and Sherali-Adams and their
variants, which we introduce now. We also use two variants of the standard propositional
proof system resolution, which we describe at the end of this section.

In the algebraic systems we work with polynomials in some field F over some set of
variables x1, . . . , xn, together with twin/negated variables x̄1, . . . , x̄n. Usually we constrain
each xi to be 0/1-valued and constrain x̄i to take the opposite value. With this in mind we
define In to be the ideal generated by the Boolean axioms x2 − x and the negation axioms
1 − x− x̄. We write p ≡ q to mean that polynomials p and q are equal modulo this ideal.

A monomial is a product of variables, without any coefficient. We write Sd for the set of
all monomials of degree d or less and F [Sd] for the set of polynomials of degree d or less,
which we sometimes think of as a vector space spanned by Sd. We sometimes use the bound
|Sd| ≤ (3n)d. When working over the reals, we write R+[Sd] for the set of polynomials in
R[Sd] which only have positive coefficients. For a real polynomial p, we write ||p|| for the
maximum absolute value of any coefficient in p.

Over the ideal In we can convert any CNF F into a set of polynomials Q expressing the
same thing as F , by translating a clause C into the polynomial equation

∏
j∈J x̄j

∏
k∈K xk = 0

where J is the set of variables appearing positively in C and K is the set of variables appearing
negatively. In this way we can use algebraic proof systems to refute CNFs.

▶ Definition 3. Let F be a field and let Q be a set of polynomials over F . A nullstellensatz
refutation over F , or NSF refutation, of Q is an identity

1 ≡
∑
q∈Q

tqq

where each tq is a polynomial over F .

Our main measure for an NSF refutation is degree, sometimes written as deg, which we
define to be the maximum degree of the expressions tqq. Note that we do not explicitly
include the degree of the element of In hidden in the notation ≡ in this measure; but we may
assume without loss of generality that it is bounded by the degree of the expressions tqq, by
the following argument. Suppose p ≡ p′ where p′ is the multilinearization of p. Suppose we
multilinearize p term-by-term, starting with some term rx2 which we replace with rx. This
is the same as adding −r(x2 − x) from the ideal, and to do this we never need an element
of the ideal with degree higher than deg(p). A similar argument works for dealing with the
negation axioms.

Another natural measure we could consider here is the log of the monomial size of a
refutation, where monomial size counts the total number of monomials that appear. However,
since we can bound the number of monomials in a polynomial by |Sd| ≤ (3n)d, from our
point of view this would be essentially the same as the degree measure.

P. Hubáček, E. Khaniki, and N. Thapen 63:7

▶ Definition 4. Let Q be a set of real polynomials. A Sherali-Adams refutation, or SA
refutation, of Q is an identity

−1 ≡ v +
∑
q∈Q

tqq

where v and the tq are real polynomials, and v only has positive coefficients.
A unary Sherali-Adams or uSA refutation is an SA refutation in which only integer

coefficients are allowed.

The degree of such a refutation is the maximum of the degrees of the expressions tqq
and v. The magnitude is the maximum of the absolute values of the coefficients appearing in
these expressions. The size of an SA refutation is the total number of monomials that appear
(counting repetitions). The unary size of a uSA refutation is the sum of the magnitudes of
the coefficients in front of all the monomials. We also define combined measures for SA as

µ∗
SA(π) := log(magnitude of π) + deg π

µuSA(π) := log(unary size of π) + deg π

where µuSA(π) is only defined if π is a uSA refutation. Note that for our purposes, the sum
in each measure could be replaced with the maximum, with essentially no change.

Turning to purely propositional systems, a resolution refutation of a CNF F is a sequence
of clauses, concluding with the empty clause, in which each clause is either from F , or follows
from earlier clauses either by the resolution rule, which derives C ∨D from C ∨ x and D ∨ x̄,
for any variable x, or by the weakening rule, which derives any clause D ⊇ C from C. The
width of such a refutation is the size of the largest clause, and is analogous to the degree
measure for algebraic systems. In Section 3.3 we need the following variants of resolution,
introduced in [22]. For these, we only use the standard size measure.

A reversible resolution, or RevRes, refutation of a CNF F is a sequence of multisets
M1, . . . ,Mt of clauses, where M1 contains only clauses in F ; Mt contains the empty clause;
and each Mi+1 is derived from Mi either by the reversible resolution rule, which deletes one
clause of the form C ∨x and one clause of the form C ∨ x̄ from Mi, replacing them both with
a single clause C; or by the reversible weakening rule, which is the same thing in reverse.

A reversible resolution with terminals, or RevResT, refutation of F is a RevRes refutation
of F with the extra condition that Mt contains exactly one copy of the empty clause and
every other clause in Mt is a weakening of a clause of F (in the usual sense of weakening).

2.2 Decision-Tree TFNP and Proof Complexity
We work with the non-uniform “decision tree” model of TFNP and model our definitions and
notation on [22]. A slight exception is Section 5, where we define a new class in terms of
graphs given by circuits, without any explicit reference to an oracle; but this can be made
into a definition in the decision-tree style without any difficulties.

▶ Definition 5. A total search problem is a sequence R = (Rn)n∈N of relations Rn ⊆
{0, 1}mn × On, where mn ∈ N, each On is a finite set, and for every input x ∈ {0, 1}mn

there is some solution y ∈ On such that (x, y) ∈ Rn.

▶ Definition 6 (TFNPdt). A total search problem, defined as above, is in TFNPdt if mn

is at most quasipolynomial in n and, for each y ∈ On, there is a decision tree Ty of depth
poly(logn), querying x and deciding whether (x, y) ∈ Rn.

ITCS 2024

63:8 TFNP Intersections Through the Lens of Feasible Disjunction

▶ Definition 7. Let Rm ⊆ {0, 1}r ×OR and Sn ⊆ {0, 1}s×OS be two total search problems. A
reduction of Rm to Sn is a pair of functions f : {0, 1}r → {0, 1}s and g : {0, 1}r × OS → OR

satisfying, for all x ∈ {0, 1}r and all y′ ∈ OS,

(f(x), y′) ∈ Sn −→ (x, g(x, y′)) ∈ Rm.

The reduction has depth d if each bit of f(x) and for every y′ ∈ OS, the function x 7→ g(x, y′)
is computable by a depth-d decision tree.

▶ Definition 8. Let R and S be total search problems in TFNPdt. We say R is reducible to S
if for each n there is m quasipolynomial in n such that there is a depth-poly(logn) reduction
of Rn to Sm. We write this as R ≤ S. If also S ≤ R we say R and S are equivalent.

This expresses in our non-uniform setting the idea that we can use solutions to S to find
solutions to R. Note that R ≤ S is equivalent to the condition Sdt(R) = poly(logn) of [22].
Unless stated otherwise, we use only the model of TFNP described above, so we omit the
superscripts dt in the names of classes that would otherwise be used to indicate this.

▶ Definition 9. A narrow family of CNFs is a sequence F = (Fn)n∈N in which in each Fn

the number of variables and clauses is quasipolynomial in n, and the width is polylogarithmic
in n.

As usual, we sometimes use the notation like “a narrow CNF Fn” to mean a family.

▶ Definition 10. Given an unsatisfiable CNF G, define Search(G) to be the problem of
finding a false clause in G, given a total assignment to the variables of G.

Now let F = (Fn)n∈N be a narrow family of unsatisfiable CNFs. Then the sequence
(Search(Fn))n∈N is in TFNP.

▶ Definition 11. Let P be a proof system and let µP be a measure for P . We say that
a TFNP class A is characterized by P under µP if, for every narrow family (Fn)n∈N of
unsatisfiable CNFs, we have (Search(Fn))n∈N ∈ A if and only if µP (Fn) ≤ poly(logn).

We use the word “characterized” because it is possible to present any TFNP problem as
a false clause search problem of this kind, as follows.

▶ Lemma 12. Let (Rn)n∈N be a TFNP problem. Let CNF(Rn) be a CNF asserting that x is
an input with no solution in Rn – that is, it asserts that for every y in the solution space,
the decision tree for y does not accept x. Then CNF(Rn) is a narrow family of unsatisfiable
CNFs and, as TFNP problems, Search(CNF(Rn)) and Rn are equivalent.

We list some connections between TFNP classes and proof systems; see [22] for a more
complete list.

▶ Proposition 13.
1. PPAq is characterized by NSFq under degree, for each prime q [20, 33]
2. PPADS is characterized by uSA under µuSA [22]
3. PLS is characterized by resolution under width [8].

P. Hubáček, E. Khaniki, and N. Thapen 63:9

2.3 Some Upper and Lower Bounds
We describe three families of unsatisfiable, narrow CNFs we use.

The bit pigeonhole principle BPHPn has variables for the bits of 2k + 1 binary strings,
each of length k, where k = ⌊logn⌋. It consists of a clause for each pair of strings, asserting
that those two strings are distinct. We think of total assignments to these variables as maps
from [n+ 1] pigeons (the indices of the strings) to [n] holes (the values of the strings), so the
principle asserts that no two pigeons go to the same hole.

▶ Proposition 14.
1. The problem Search(BPHPn) is in PPP
2. BPHPn requires degree n to refute in SA.

Proof. For 1, we use that we have essentially a 1-1 correspondence between the solutions of
the usual pigeonhole principle search problem and the clauses of BPHPn.

Item 2 is shown (implicitly) in [12]. Their way of encoding CNFs into SA refutations is
slightly different from ours, since they translate clauses into linear inequalities rather than
monomial equations, so we confirm that their proof works with our encoding. We translate
the principle BPHPn into a system of equations mi,i′,j = 0, for each pair i, i′ of distinct
pigeons and each hole j, where mi,i′,j is the natural monomial, of degree 2k, which is 1 if
and only if both i and i′ go to hole j. Suppose we have a SA refutation of this system of
degree at most n. We may write it as an equality

−1 = v +
∑

i,i′,j i̸=i′

ti,i′,jmi,i′,j +B

where v is a sum of monomials with positive coefficients, B is in the ideal generated by the
Boolean and negation axioms, and everything has degree at most n. We define an evaluation
E : Sn → R as follows. For any m ∈ Sn, let X be the set of pigeons whose variables appear
in m. Extend X arbitrarily to a set X ′ of exactly n pigeons, and let E(m) be the probability
that m evaluates to 1 under a random matching of X ′ to the set [n] of all holes. Observe
that E(m) is independent of the choice of X ′. We extend E to a linear map R[Sn] → R by
linearity.

Then E(1) = 1, since the empty monomial is always satisfied. Also E(v) ≥ 0, and for
each i, i′, j in the sum we have E(ti,i′,jmi,i′,j) = 0, since every matching with i and i′ in its
domain sets mi,i′,j to 0. Finally let z be any single variable and let m be any monomial of
suitable degree. Then E(mz2) = E(mz) by construction, and also E(mz) +E(mz̄) = E(m),
since we may assume that the pigeon associated with z is in X ′, so every matching under
consideration which satisfies m satisfies exactly one of mz and mz̄. Thus E(B) = 0. Together
these contradict the displayed equality above. (Such an E is called in the literature a
pseudoexpectation.) ◀

The sink-of-DAG principle SoDn has variables for a directed graph on [n], with a
distinguished source node, such that edges only go from smaller to larger nodes in [n]. It
asserts that this graph must have a sink.

▶ Proposition 15.
1. The problem Search(SoDn) is in PLS
2. For any prime q, any NSFq refutation of SoDn requires degree Ω(n).
3. Any no(1) degree SA refutation of SoDn has exponential magnitude.

ITCS 2024

63:10 TFNP Intersections Through the Lens of Feasible Disjunction

Proof. Item 1 is straightforward. Item 2 follows from lower bounds in [11, 6] on the closely-
related house-sitting principle. Item 3 is one of the main results of [22], but we must show
that it still holds with our definitions, which are not quite the same – in particular the version
of SA in [22] does not have negated variables, and they count the coefficients in the ideal In

towards the magnitude.
Let Q be the set of polynomials encoding SoDn. Suppose we have an SA refutation of Q

of degree d ∈ no(1) and magnitude R, of the form

−1 ≡ v +
∑
q∈Q

tqq.

We let a and b be the polynomials respectively in the ideal of Boolean axioms and the ideal
of negation axioms witnessing this equivalence. So we have the following equation, where we
may assume that any polynomial appearing in it has degree at most d.∑

q∈Q

tqq + a+ b = 1 + v.

Now we get rid of the negated variables by replacing each occurrence of x̄i with (1 − xi).
After this transformation b becomes 0, and we can write the result as∑

q∈Q

t′qq
′ + a′ = 1 + v′. (1)

By the proof of Lemma 3 of [22] there is a total assignment to the variables of (1) under
which the right-hand-side 1 + v′, and thus also 1 + v, evaluates to at least 1.4n. But the
maximum possible value of v is R(3n)d, since v contains at most (3n)d monomials. Therefore
R is exponential. ◀

For a prime p, the mod-p counting principle Countp
n has variables describing a partition

of [pn+ 1]. It asserts that every set in this partition has size precisely p.

▶ Proposition 16.
1. The problem Search(Countq

n) is in PPAq, or in PPA for q = 2.
2. For distinct primes p, q, any NSFq refutation of Countp

n requires degree nΩ(1).

Proof. Item 1 is straightforward. Item 2 is from [7]. ◀

3 Feasible disjunction

We show in this section that Nullstellsatz has feasible disjunction for degree; that Sherali-
Adams has feasible disjunction for the measure µ∗

SA; and that feasible disjunction for size
fails for RevRes and RevResT. What we would really like to show in the second case is that
uSA has feasible disjunction for the measure µuSA, but the result we prove is enough for
our argument about TFNP intersections, since the relevant lower bounds are on magnitude
rather than explicitly on unary size.

3.1 Feasible Disjunction for Degree for Nullstellensatz
This is shown in Lemma 2, Claim 2 of [22], but we include a proof for completeness. We first
need a “semantic” characterization of systems of polynomials with no low degree refutation.

P. Hubáček, E. Khaniki, and N. Thapen 63:11

▶ Proposition 17 ([6]). Let F be a field. Then a set of polynomials Q does not have
NSF -refutations of degree d if and only if there is a d-design for Q, that is, a linear function
D : F [Sd] → F satisfying firstly that D(1) = 1 and secondly that D(qr) = 0 for q, r

polynomials with deg(q) + deg(r) ≤ d, where q is either an axiom from Q or a Boolean or
negation axiom, and r is any polynomial.

▶ Theorem 18 ([22]). For any field F , NSF has deg-feasible disjunction.

Proof. Suppose Q(x⃗) and P (y⃗) are two families of polynomials over disjoint variables x⃗ and
y⃗ and moreover that NSF has a degree d refutation of Q ∪ P . For the sake of contradiction
assume neither Q nor P has an NSF refutation of degree d. By Proposition 17 degree
d-designs DQ and DP exist for Q and P respectively.

Any r ∈ F [x⃗, y⃗] can be written uniquely as a polynomial
∑k

i=1 aim
i
0m

i
1 where each

mi
0 ∈ F [x⃗] and mi

1 ∈ F [y⃗]. We define a map from such polynomials, of degree at most d, to
F as follows:

D(r) :=
k∑

i=1
aiDQ(mi

0) ·DP (mi
1).

We claim that D is a d-design for Q ∪ P . It is clear from the definition that D is linear and
D(1) = 1. For the second property, let q be an axiom and let r ∈ F [x⃗, y⃗] be as above, such
that deg(q) + deg(r) ≤ d. By the assumptions, q contains either only x variables or only
y variables. Let us assume it is x variables; the case for y variables is similar. From the
definition of D we obtain

D(qr) =
k∑

i=1
aiDQ(qmi

0) ·DP (mi
1).

Since DQ is a d-design for Q, we get that DQ(qmi
0) = 0 for each i, which implies that

D(qr) = 0, as required. Thus D is a d-design for Q ∪ P , which implies that Q ∪ P does not
have NSF refutations of degree d, contradicting our initial assumption. ◀

3.2 Feasible Disjunction for Size and Degree for Sherali-Adams
We show µ∗

SA-feasible disjunction for SA. We base our approach closely on the proof of
feasible disjunction for sum-of-squares in [25]. We need the notion of an SA derivation:

▶ Definition 19. An SA derivation of a polynomial p from a set of polynomials Q is a
polynomial identity

p ≡ v +
∑
q∈Q

tqq

where v only has positive coefficients. We think of such an expression as a witness that p ≥ 0
on every solution x⃗ of Q. A refutation of Q is then a derivation of −1 from Q.

Again the degree of the derivation is the maximum degree of the expressions on the right
hand side, without any cancellations. We say that the derivation is R-bounded if ||v|| ≤ R

and ||tq|| ≤ R for every q ∈ Q, in other words, if it has magnitude bounded by R.

Note that we do not bound the coefficients appearing in the polynomial in the ideal In

which witnesses the equivalence ≡ in the definition of R-boundedness.

ITCS 2024

63:12 TFNP Intersections Through the Lens of Feasible Disjunction

▶ Definition 20. For ε > 0, an ε-pseudoexpectation for Q over degree d is a linear function
E : R[Sd] → R satisfying
1. E(1) = 1
2. E(p) = E(q) if p ≡ q

3. E(m) ≥ −ε for any m ∈ Sd

4. |E(mq)| ≤ ε for any m ∈ Sd and q ∈ Q.

We show now that the existence of an ε-pseudoexpectation over degree d is a semantic
characterization of when Q has no degree-d SA refutations of small magnitude, and thus can
play a similar role to how d-designs characterized degree-d NSF in Section 3.1.

▶ Lemma 21 (Soundness). Over degree d, if there is an ε-pseudoexpectation for Q, then
there is no R-bounded refutation of Q for R < 1/2ε|Q|(3n)d.

Proof. Let E be an ε-pseudoexpectation for Q over degree d and suppose

−1 ≡ v +
∑
q∈Q

tqq

is a degree-d SA refutation of Q with coefficients bounded by R < 1/2ε|Q|(3n)d. By items 1
and 2 in Definition 20, we have E(v) + E(

∑
tqq) = −1.

Recall v is a sum
∑
λimi, where each mi ∈ Sd and 0 < λi < R. Since E(mi) ≥ −ε we

have E(λimi) ≥ −Rε, and thus E(v) ≥ −(3n)dRε > −1/2|Q|, since (3n)d is a bound on the
size of Sd. Similarly each tq is the sum of at most (3n)d monomials, so |E(tqq)| ≤ R(3n)dε <

1/2|Q|, and thus in particular E(
∑

q∈Q tqq) > −1/2. It follows that E(v) + E(
∑
tqq) > −1,

a contradiction. ◀

▶ Lemma 22. For any m ∈ Sd there is a sum v of at most d monomials in Sd, in which
every coefficient is 1, such that 1 −m ≡ v.

Proof. We prove this by induction. The base case is simply 1 − xi ≡ x̄i. For the inductive
step, suppose 1 −m ≡ v. Then

1 −mxi ≡ x̄i + xi −mxi = x̄i + xi(1 −m) ≡ x̄i + xiv.

We may assume that m is multilinear, so that we need to consider each variable at most
once. ◀

▶ Lemma 23 (Completeness). If there is no R-bounded refutation of Q of degree d, then
there is a (1/R)-pseudoexpectation for Q over degree d.

Proof. Suppose there is no R-bounded refutation of Q of degree d. Define sets A,B ⊆ R[Sd]
by

A := {p : p ≡ v some v ∈ R+[Sd] with ||v|| ≤ R}
B := {−1 +

∑
q∈Q tqq : tqq ∈ R[Sd] with ||tq|| ≤ R for all q}.

Then A and B are disjoint, since otherwise there would be an R-bounded refutation of Q
of degree d. Furthermore they are both nonempty and, considered as subsets of the vector
space R[Sd], are both convex.

Now let K be the quotient map R[Sd] → R[Sd]/In. Then K[A] and K[B] are still
nonempty and convex and, by the ≡ in the definition of A, even disjoint. Thus by the hyper-
plane separation theorem in R[Sd]/In there is a nontrivial linear function L′ : R[Sd]/In → R

P. Hubáček, E. Khaniki, and N. Thapen 63:13

and a scalar e ∈ R such that L′(p) ≥ e for p ∈ K[A] and L′(p) ≤ e for p ∈ K[B]. Composing
K with L′, we obtain a linear function L : R[Sd] → R with L(p) ≥ e for p ∈ A and L(p) ≤ e

for p ∈ B, with the extra property that L(p) = L(q) if p ≡ q.
Since 0 ∈ A we have e ≤ L(0) = 0 and since −1 ∈ B we have L(−1) ≤ e and thus

L(1) ≥ −e. We claim L(1) > 0. If e < 0 this is clear, so suppose L(1) = 0 and e = 0. Let
m ∈ Sd. Then m ∈ A so 0 ≤ L(m). On the other hand, by Lemma 22 also 1 −m ∈ A, so
0 ≤ L(1 −m) = L(1) − L(m) = −L(m). Thus L(m) = 0 for all m ∈ Sd, contradicting the
nontriviality of L.

We claim that E(p) := L(p)/L(1) is a 1/R-pseudoexpectation. By construction E is
linear and satisfies conditions 1 and 2 of Definition 20. It remains to show conditions 3 and 4.
We have that E(p) ≥ e/L(1) ≥ −1 for p ∈ A and E(p) ≤ e/L(1) ≤ 0 for p ∈ B.

For condition 3, let m ∈ Sd. Then Rm ∈ A so E(Rm) ≥ −1 hence E(m) ≥ −1/R.
For condition 4, we must show |E(mq)| ≤ 1/R for any m ∈ Sd and q ∈ Q. We have
−1 ±Rmq ∈ B so E(−1 ±Rmq) ≤ 0, where we are using ± to mean that the inequalities
hold whether we write + or −. Thus −1 ≤ ±RE(mq) giving |E(mq)| ≤ 1/R as required. ◀

We can now use our semantic characterization of bounded magnitude, degree-d SA to
prove feasible disjunction, similar to the proof of Theorem 18. We first need a technical
lemma.

▶ Lemma 24. If E is an ε-pseudoexpectation for Q over degree d, then E(m) ≤ 1 + dε for
every m ∈ Sd.

Proof. Let v be the sum of d monomials such that 1 − m ≡ v given by Lemma 22. Then
E(1 −m) = E(v) ≥ −dε, and then we can use linearity. ◀

▶ Theorem 25. Let Q(x) and P (y) be systems of polynomials in disjoint sets of variables x, y
and let R ≥ d. Suppose that neither Q nor P has an R-bounded SA refutation of degree d.
Then Q ∧ P has no R/2-bounded refutation of degree d.

Proof. By the assumption on P and Q and the completeness lemma, there are 1/R-
pseudoexpectations Ex and Ey for respectively P and Q (in their respective variables),
both over degree d.

Let S be the set of monomials of degree at most d in x-variables and also of degree at
most d in y-variables. We define E : R[S] → R on monomials mxmy ∈ S by E(mxmy) =
Ex(mx)Ey(my) and extend by linearity to the whole space. Note that for any polynomials
p =

∑
i mi in only x-variables and q =

∑
j nj in only y-variables we have

E(pq) = E(
∑

i

mi

∑
j

nj) =
∑

i

∑
j

E(minj)

=
∑

i

∑
j

Ex(mi)Ey(nj) = Ex(p)Ey(q).

We claim that conditions 1–4 of Definition 20 hold for E, with ε = 2/R, which gives the
result by the soundness lemma.

Condition 1 is clear. For condition 2, suppose p ≡ q modulo the ideal generated by the
Boolean and negation axioms for both x and y variables. Then p − q can be written as a
sum of terms of the form axi

bxcy or ayi
bxcy, where axi

and ayi
are axioms from the ideal for

a single x or y variable, and bx and cy are polynomials in only x or only y variables. But
Ex(axi

bx) = 0 and Ey(ayi
cy) = 0 for terms of this form, so E(p− q) = 0.

ITCS 2024

63:14 TFNP Intersections Through the Lens of Feasible Disjunction

For condition 3, let mxmy be a product of an x-monomial and a y-monomial. We have
−1/R ≤ Ex(mx), Ey(my) ≤ 2, where the upper bound is from Lemma 24 and the assumption
that R ≥ d. Thus E(mxmy) = Ex(mx)Ey(my) ≥ −2/R.

For condition 4 we must show |E(mq)| ≤ 2/R for any m = mxmy and any q ∈ P ∪ Q.
Suppose without loss of generality that q ∈ Q, so only has y-variables. Then |E(mq)| =
|Ex(mx)||Ey(myqy)|. As above, by Lemma 24 we have |Ex(mx)| ≤ 2, and |Ey(myqy)| ≤ 1/R
by condition 4 for Ey. ◀

As an immediate corollary we get

▶ Corollary 26. SA has µ∗
SA-feasible disjunction.

3.3 Two Failures of feasible Disjunction
In this section, we consider feasible disjunction for size, using the standard definition of
feasible disjunction. That is, for every pair F,G of CNFs over disjoint sets of variables,
if there is a refutation π of F ∧ G then there is a refutation either of F or of G of size
polynomial in the size of π. We show that this fails for RevRes and RevResT.

Let ϕn be the CNF SoDn ◦ ⊕, that is, the sink-of-DAG principle lifted by replacing each
variable with an XOR of size 2. The following proposition is based on a remark in [22].

▶ Proposition 27. The family ϕn has quasipolynomial size, polylog width resolution refuta-
tions. On the other hand, it requires super-quasipolynomial size refutations in uSA.

Proof. The upper bound is essentially by the robustness of polylog-width resolution. Let
F (x1, ..., xn) be a k-CNF with m clauses and n variables. Then (F ◦ ⊕)(y1, z1, ..., yn, zn)
is a 2k-CNF with at most m2k clauses (each xi is substituted by yi ⊕ zi). Note that
every clause in F turns into a 2k-CNF in F ◦ ⊕ with at most 2k clauses. So if k is
polylogarthmic in n, it is straightforward to see that Search(F ◦ ⊕) ≤ Search(F). This
means that Search(ϕn) ≤ Search(SoDn) which implies that Search(ϕn) ∈ PLS by Proposition
15. Therefore the family ϕn has quasipolynomial size, polylog width resolution refutations
by Proposition 13 and the fact that there are at most npoly(log n) many clauses of width
poly(logn).

For the lower bound, we follow the proof sketched in [22] (although we do not get as strong
a bound as claimed there). We adapt the argument used for resolution in Theorem 4.2 of [3].
Let π be a uSA refutation of ϕn. We apply the following random restriction ρ. Independently
for each i, select one of the pair (yi, zi) and set it to either 0 or 1, making each choice
uniformly at random. Note that ϕn ↾ρ is equivalent to SoDn up to renaming of variables and
literals. Let m be a monomial in π. We may assume that each variable appears in m at
most once. Then Pr[m↾ρ ̸= 0] ≤ (3

4)deg(m). The reason is that if one of yi or zi appears in
m (as a positive or negative literal), then this literal is set to 0 with probability 1

4 . If both
variables appear in m, then the probability that the product of these two literals is set to 0
is 1

2 < (3
4)2.

Thus for any d, the expected number of monomials in π of degree at least d which remain
in π ↾ρ is at most (3

4)d times the number of monomials in π, by linearity of expectation. Let
d := n

1
log log n . Now suppose for a contradiction that the size of π is less than (4

3)d. Then
there must exist a restriction ρ such that π ↾ρ has degree d. But, since ϕn ↾ρ is essentially
SoDn and π ↾ρ still has the form of an uSA refutation, this implies that SoDn has n

1
log log n

degree, (4
3)n

1
log log n size SA refutations, contradicting Proposition 15. ◀

P. Hubáček, E. Khaniki, and N. Thapen 63:15

In [28], Theorem 4.1, a family of bipartite graphs Gn is constructed, between n+1 pigeons
and n holes, with degree bounded by a constant, such that the perfect matching principle
PMPGn requires exponential size to refute in resolution. Let ψn be PMPGn , which we could
also call onto-FPHPGn, that is, the onto functional pigeonhole principle on Gn.

▶ Proposition 28. The family ψn has polynomial sized, polylog degree refutations in uNS.
On the other hand, it requires exponential sized refutations in resolution.

Proof. The lower bound is by [28]. The upper bound is by a small adaptation of the standard
proof of onto functional PHP in an algebraic system [47]. Suppose Gn has degree d, and
that PMPGn is written in variables xe for each edge e in Gn, where an edge is formally a pair
of nodes. PMPGn consists of degree d axioms

∏
e∋i x̄e for each node i and degree 2 axioms

xexf for each pair e, f of distinct edges sharing a node. For the uNS refutation, observe that∏
e∋i

x̄e ≡
∏
e∋i

(1 − xe) = 1 −
∑
e∋i

xe +Bi

where Bi is a degree at most d combination of the xexf axioms. Summing over the set P of
n+ 1 pigeon nodes and rearranging gives

n+ 1 −
∑
i∈P

∑
e∋i

xe ≡
∑
i∈P

(
∏
e∋i

x̄e −Bi),

where the double sum on the left is precisely the sum over all variables, and the right hand
side is a low-degree combination of axioms. Summing over holes instead of pigeons gives a
similar equivalence, with n in place of n+ 1. Subtracting the second equivalence from the
first gives the refutation. ◀

▶ Proposition 29 ([22]). uSA simulates RevRes

Proof. It was observed in [22] that the constructions for simulating resolution by SA in the
literature [13, 1] also give this simulation. We outline how this goes. Suppose we are given
a RevRes refutation of a CNF F . For each multiset Mi = {C1, . . . , Cm} of clauses in the
refutation, let pi be the polynomial r1 + · · · + rm, where rj is the standard translation of the
clause Cj into a monomial which is zero if and only if Cj is true (where the monomial may
used negated variables). Intuitively the equation pi = 0 says the same thing as “every clause
in Mi is true”. It is easy to see by the structure of the reversible resolution and reversible
weakening rules that pi ≡ pi+1 for each i, and in fact pi+1 − pi is simply a monomial times a
negation axiom. Moreover it follows from the other conditions on a RevRes refutation that
p1 is a sum of (translations into monomials of) axioms, and that the last line pt has the
form 1 + v where 1 is the translation of the empty clause and v is a sum of monomials with
positive coefficients. Thus we have p1 ≡ 1 + v, which we can rearrange as −1 ≡ v− p1, which
is the required uSA refutation of F . ◀

We may assume that ϕn and ψn use disjoint sets of variables. By the next lemma and
the fact that RevResT is a subsystem of RevRes we get the failure of feasible disjunction for
both systems.

▶ Lemma 30.
1. ϕn ∧ ψn has quasipolynomial sized refutations in RevResT
2. ϕn requires super-quasipolynomial sized refutations in RevRes
3. ψn requires exponential sized refutations in RevRes.

ITCS 2024

63:16 TFNP Intersections Through the Lens of Feasible Disjunction

Proof. For item 1 we use Theorem 6 of [22], which characterizes the proof measure of a
CNF in RevResT (that is, minimum degree plus log of size over all refutations) as the sum of
the measures in resolution and uNS. In particular, a CNF has quasipolynomial size, polylog
width refutations in RevResT if and only if it has such refutations in both resolution and
uNS. We have this for ϕn ∧ ψn by the two propositions above.

For item 2, if ϕn had small refutations in RevRes then by Proposition 29 it would also
have small refutations in uSA, contradicting Proposition 27. Item 3 follows directly from the
lower bound for resolution in Proposition 28. ◀

4 Results on intersections

For the purposes of this paper, we define the classical TFNP classes to be the six classes
PLS, PPA, PPP, PPADS, PPAD, and CLS depicted in Figure 1. Among these classes we have
the relations

PPP ⊃ PPADS ⊃ PPAD ⊃ CLS; PPA ⊃ PPAD; PLS ⊃ CLS

and no inclusions hold, other than those implied by the above inclusions [2, 41, 22]. This
structure does not change if we replace PPA with PPAq for any prime q, and, furthermore,
there is no inclusion between classes PPAq and PPAr, for distinct primes [31, 26].

We say that a nontrivial intersection is an intersection A ∩ B of two classical classes
where neither A ⊆ B nor B ⊆ A.

▶ Lemma 31. Suppose Fn, Gn are narrow CNF families and A,B are TFNP classes with
Search(Fn) ∈ A and Search(Gn) ∈ B. Then Search(Fn ∧Gn) ∈ A ∩B.

Proof. Clearly Search(Fn ∧Gn) ≤ Search(Fn), since an assignment to the variables of Fn ∧Gn

is in particular an assignment to the variables of Fn, and finding a false clause in Fn gives us
a false clause in Fn ∧Gn. Similarly Search(Fn ∧Gn) ≤ Search(Gn). ◀

▶ Theorem 32. With the exception of PPAD ∩ PLS = CLS, no nontrivial intersection is
equal to a classical class. No two distinct nontrivial intersections are equal to each other.

Proof. We start by going through each classical class in turn, and showing that intersecting
with that class does not lead to any unexpected collapses.

Intersections with PLS. We have

PLS ⊃ PPP ∩ PLS ⊇ PPADS ∩ PLS ⊇ CLS (= PPAD ∩ PLS);
PLS ⊃ PPA ∩ PLS ⊇ CLS.

Note that the intersection has collapsed PPAD and CLS together. We claim these classes are
all distinct. This follows from the following claims.
1. PPP ∩ PLS ̸⊆ PPADS. Suppose this inclusion held. By Propositions 14 and 15 we

have Search(BPHPn) ∈ PPP and Search(SoDn) ∈ PLS. By Lemma 31 it follows that
Search(BPHPn ∧ SoDn) ∈ PPADS. By the uSA characterization of PPADS (in Proposi-
tion 13) the conjunction BPHPn∧SoDn has uSA refutations of measure µuSA ≤ poly(logn),
and thus in particular has SA derivations of measure µ∗

SA ≤ poly(logn). We may assume
that BPHPn and SoDn have no variables in common, so we can apply µ∗

SA-feasible
disjunction for SA (Corollary 26) to conclude that either

P. Hubáček, E. Khaniki, and N. Thapen 63:17

a. for infinitely many n, BPHPn has SA refutations of measure µ∗
SA ≤ poly(logn). Hence

in particular they have degree poly(logn), which is impossible by Proposition 14.
b. for infinitely many n, SoDn has SA refutations of measure µ∗

SA ≤ poly(logn), that is,
simultaneously of degree poly(logn) and of magnitude quasipolynomial in n. This is
impossible by Proposition 15.

2. PPADS ∩ PLS ̸⊆ PPA. This item was proved in Lemma 2 of [22]. Here we repeat the
argument for the sake of completeness. Suppose this inclusion held. By Lemma 12 and
Proposition 15 we have Search(CNF(Qn)) ∈ PPADS and Search(SoDn) ∈ PLS, where Q is
any complete problem for PPADS. By Lemma 31 it follows that Search(CNF(Qn)∧SoDn) ∈
PPA, and hence this conjunction has poly(logn)-degree NSF2 refutations, by Proposition 13.
We may assume CNF(Qn) and SoDn have no variables in common, so we can apply deg-
feasible disjunction for NSF2 (Theorem 18) to conclude that either
a. for infinitely many n, SoDn has NSF2 refutation of degree poly(logn). This is impossible

by Proposition 15.
b. for all sufficiently large n, CNF(Qn) has NSF2 refutations of degree poly(logn). Then

by Proposition 13 and Lemma 12, we have Q ∈ PPA. This is impossible, as Q is
complete for PPADS.

3. PPA ∩ PLS ̸⊆ PPA3. This is proved in exactly the same way as the previous item, using
NSF3 instead of NSF2 and taking Q to be any complete problem for PPA.

By items 1 and 2 all inclusions in the first row are strict, where to apply 2 we use that
CLS ⊆ PPA. For PPA ∩ PLS, by item 2 it is distinct from the two classes in the middle of
the first row, and by item 3 it is distinct from CLS, since CLS ⊆ PPAD ⊆ PPA3.

Intersections with PPP. We have

PPP ⊃ PPADS ⊃ PPAD ⊃ CLS;
PPP ⊃ PLS ∩ PPP ⊇ CLS;
PPP ⊃ PPA ∩ PPP ⊇ PPAD

where PPADS, PPAD and CLS are unchanged by intersection with PPP. We claim the classes
above are all distinct. This follows for the classes in the first two rows by item 1 above. For
PPA ∩ PPP we have
4. PPA ∩ PPP ̸⊆ PPADS. Suppose this inclusion held. Then, using a similar argument to

item 2, CNF(Qn) ∧ BPHPn has SA refutations of measure µ∗
SA ≤ poly(logn), where Q is

any complete problem for PPA. We then get a contradiction from µ∗
SA-feasible disjunction

for SA, since BPHPn requires large SA-degree for all large n and Q /∈ PPADS.
Thus PPA ∩ PPP is different from anything in the top row. The remaining possible equality
is PPA ∩ PPP = PLS ∩ PPP, but this is impossible, as PPAD is included in the left hand side
but not in PLS.

Intersections with PPA. We have

PPA ⊃ PPAD ⊃ CLS;
PPA ⊃ PPP ∩ PPA ⊇ PPADS ∩ PPA ⊇ PPAD;
PPA ⊃ PLS ∩ PPA ⊇ CLS

where PPAD and CLS are unchanged by intersection with PPA. We claim the classes above
are all distinct. We have

ITCS 2024

63:18 TFNP Intersections Through the Lens of Feasible Disjunction

5. PPADS ∩ PPA ̸⊆ PPA3. Suppose this inclusion held. We get that CNF(Qn) ∧ Count2
n has

poly(logn)-degree NSF3 refutations, where Q is complete for PPADS. We then proceed as
in item 2, using deg-feasible disjunction for NSF3 and the degree lower bounds for NSF3

from Proposition 16.
Item 5, together with item 4, imply that the first two rows are all distinct. For PLS ∩ PPA,
by item 3 it is different from anything in the first row, and since PPAD ̸⊆ PLS it is different
from anything in the second row.

Intersections with PPADS. We have

PPADS ⊃ PPAD ⊃ CLS;
PPADS ⊃ PPA ∩ PPADS ⊇ PPAD;
PPADS ⊃ PLS ∩ PPADS ⊇ CLS

where PPAD and CLS are unchanged by the intersection, and PPP collapses to PPADS. We
claim the classes above are all distinct. PPA ∩ PPADS is distinct from everything in the first
row by item 5. Then PLS ∩ PPADS is distinct from everything else by item 2.

Intersections with PPAD. We have

PPAD ⊃ CLS.

Under the intersection, everything above PPAD collapses to PPAD, and PLS collapses to CLS.
So there is nothing to show.

We have now shown that no nontrivial intersection is equal to a classical class. It remains
to show that no two distinct nontrivial intersections are equal to each other. Suppose for
a contradiction that we have such an equality A ∩ B = C ∩ D. We have dealt with all
cases where one class appears on both sides, so we may assume the classes A,B,C,D are all
distinct. None of them can be CLS, by the condition that the intersections are nontrivial.
If we consider the four classes PPP,PPADS,PPAD,PPA, it is similarly impossible to form
two nontrivial intersections from these, since PPAD is contained in the other three classes.
So without loss of generality we may assume A = PLS and thus C ∩D ⊆ PLS. But this is
impossible, as for all remaining choices of C and D we have PPAD ⊆ C ∩D. ◀

▶ Theorem 33. Theorem 32 remains true if we add {PPAq : prime q > 2} to the set of
classical classes.

Proof. Everything in the proof of Theorem 32 goes through if we replace PPA with PPAq

– the only changes we need to make are replacing NSF2 with NSFq
and, if q = 3, replacing

NSF3 with NSF2 (or with NSFr for any prime r different from 3); all the relevant upper and
lower bounds still work.

This leaves equalities involving at least two classes PPAq, PPAr, with q, r distinct primes.
We consider the possible forms these could take.

The form PPAq ∩ B = PPAr. This implies PPAr ⊆ PPAq, which is false.

The form PPAq ∩ PPAr = C. By the previous case, C must be a classical class, so C can
only be PPAD (since we know PPAD ⊆ PPAq ∩ PPAr). But by Section 7.2 of [23], this is not
the case.

P. Hubáček, E. Khaniki, and N. Thapen 63:19

The form PPAq ∩ B = PPAr ∩ D. By feasible disjunction for NSFq , for each n we get a
low-degree NSFq

refutation of either Countr
n or CNF(Dn). Since the first of these is impossible

for large n, it must asymptotically be a refutation of CNF(Dn), implying D ⊆ PPAq. Thus
D must be either PPAD or CLS, contradicting that the right hand side was a nontrivial
intersection.

The form PPAq ∩ PPAr = C ∩ D. By the above case neither C nor D can be PPAs for
a prime s. Since C ∩ D ⊇ PPAD and PLS ̸⊆ PPAD, we must have that C and D are two
classes from the list PPP,PPADS,PPAD; but in this case C ∩D is a trivial intersection. ◀

5 A Combinatorial Characterization of PPADS ∩ PPA

In this section, we give a combinatorial characterization of the intersection of PPADS and
PPA. Unlike the separations for the decision tree variants of TFNP classes established in
the previous section, the characterization holds also in the standard “white-box” model of
TFNP. As discussed in Section 1.1.3, the search problem Leaf-Or-Sink is to find a leaf (i.e.,
a vertex with a single neighbor) distinct from 0n or a sink in a directed graph where each
vertex is of degree at most two and 0n is a source of degree one.

Next, we give the formal definition of the problem. To avoid cumbersome notation, we
first define graph induced by a triple of Boolean circuits.

▶ Definition 34. Given Boolean circuits N0, N1 : {0, 1}n → {0, 1}n, and D : {0, 1}2n → {0, 1},
we define a directed graph GN0,N1,D = (V,E), where V = {0, 1}n and, for u, v ∈ {0, 1}n,
(u, v) ∈ E if and only if u ̸= v, u ∈ {N0(v)} ∪ {N1(v)}, v ∈ {N0(u)} ∪ {N1(u)}, D(u, v) =
D(v, u), and either
1. u < v and D(u, v) = 1, or
2. u > v and D(u, v) = 0.

Note that the above definition induces a graph on {0, 1}n, where each vertex is of degree
at most two and, for any pair of vertices u and v, there is at most one directed edge adjacent
to u and v.

▶ Definition 35 (Leaf-Or-Sink). The search problem Leaf-Or-Sink is defined by the
relation:
Instance: Boolean circuits N0, N1 : {0, 1}n → {0, 1}n, and D : {0, 1}2n → {0, 1} such that,

in the corresponding graph GN0,N1,D, the vertex 0n is a source of degree one.
Solution: Either a vertex of degree one distinct from 0n or any sink in GN0,N1,D.

Next, we show that Leaf-Or-Sink is complete for PPADS ∩ PPA. The containment in
PPADS ∩ PPA is trivial. The high-level overview of our proof of PPADS ∩ PPA-hardness is
provided in Section 1.1.3.

Below, we recall the formal definitions of the PPA-complete problem Leaf and the
PPADS-complete problem Sink. Similarly to the above definition of Leaf-Or-Sink, we
phrase the definition in terms of the graph induced by the Boolean circuit(s) given as input
to the problem. For a Leaf instance N : {0, 1}n → {0, 1}2n, GN is a graph on {0, 1}n and
there is an undirected edge between u and v iff u ̸= v, u ∈ N(v) and v ∈ N(u). Similarly, for
a Sink instance S, P : {0, 1}n → {0, 1}n, GS,P is a graph on {0, 1}n and there is a directed
edge from u to v iff u ̸= v, S(u) = v and P (v) = u.

ITCS 2024

63:20 TFNP Intersections Through the Lens of Feasible Disjunction

▶ Definition 36 (Leaf). The search problem Leaf is defined by the relation:
Instance: Boolean circuit N : {0, 1}n → {0, 1}2n such that, in the corresponding undirected

graph GN , the vertex 0n is a leaf.
Solution: A leaf in GN distinct from 0n.

▶ Definition 37 (Sink). The search problem Sink is defined by the relation:
Instance: Boolean circuits S, P : {0, 1}n → {0, 1}n such that, in the corresponding directed

graph GS,P , the vertex 0n is a source of degree one.
Solution: A sink in GS,P .

Finally, we state and prove the main theorem of this section.

▶ Theorem 38. Leaf-Or-Sink is complete for PPADS ∩ PPA.

Proof. Any instance (N0, N1, D) of Leaf-Or-Sink can be reduced to both the PPA-complete
problem Leaf and the PPADS-complete problem Sink-Of-Line. First, the circuits N0 and
N1 specify an undirected Leaf graph where all the solutions, i.e., leaves distinct from
0n, correspond either to a source of degree one distinct from 0n or a sink (of degree one)
in GN0,N1,D, i.e., to a solution of the Leaf-Or-Sink instance (N0, N1, D). Second, the
directed graph GN0,N1,D can be locally transformed into a directed graph satisfying the
stronger requirement that any vertex v ∈ {0, 1}n is of in-degree and out-degree at most
one: for any vertex of in-degree two or out-degree two, simply erase the adjacent edges.
The resulting graph is an instance of Sink-Of-Line where all the solutions, i.e., sinks, are
either sinks or neighbors of a sink in GN0,N1,D and, thus, can be used to efficiently find a
solution to the Leaf-Or-Sink instance (N0, N1, D). Therefore, Leaf-Or-Sink is contained
in PPADS ∩ PPA.2

Next, we show that Leaf-Or-Sink is PPADS ∩ PPA-hard, i.e., we give a reduction from
a PPADS ∩ PPA-complete problem to Leaf-Or-Sink. Consider an arbitrary problem in
PPADS ∩ PPA given by an instance (S, P) of Sink and instance N of Leaf. For ease of
exposition, suppose that all the circuits S, P , and N take n-bit inputs (the general case can
be handled easily by padding to the same input length).

Using the instances (S, P) and N , we define an instance of Leaf-Or-Sink on 2n bits in
the following phases, starting with only isolated vertices:
1. Put an undirected edge between vertices (u, 0n) and (v, 0n) if there is an edge between u

and v in the undirected graph induced by the Leaf instance N .
2. Orient the edges in the graph w.r.t. the lexicographic order on {0, 1}n.
3. Erase both edges adjacent to any sink (w, 0n) of in-degree two and, for any neighbor u

of w in the Leaf instance N , embed the instance (S, P) of Sink-Of-Line on the vertices
of the form (u, ·). Formally, add the edge ((u, x), (u, y)) iff (x, y) is an edge in the directed
graph induced by (S, P). For any source s ̸= 0n in the graph induced by (S, P) and
neighbors (u, 0n) and (v, 0n) of any sink (w, 0n) of degree two, add edges ((w, s), (u, s))
and ((w, s), (v, s)).

2 In more detail, we need to provide an implicit representation of the PPADS instance via a successor
and predecessor circuit. Note that these can be implemented via a constant number of queries to the
circuits (N0, N1, D).

P. Hubáček, E. Khaniki, and N. Thapen 63:21

Note that we can assume without loss of generality that, in the graph constructed after
the second phase, any sink of in-degree two is connected only to vertices of in-degree and
out-degree at most one.3 In particular, no pair of sinks of in-degree two share a predecessor
and, therefore, the steps of the third phase are well defined as each embedding performed in
the third phase involves distinct vertices.

The resulting graph is clearly an instance of Leaf-Or-Sink. Importantly, neither the new
sources of degree two of the form (w, s) nor the balanced vertices (u, s) and (v, s) of in-degree
and out-degree one added during the third phase constitute a solution to Leaf-Or-Sink.
Let (u, x) be a sink in the resulting graph. By our construction, either x = 0n and u ̸= 0n is
a leaf in the Leaf graph induced by N or x is a sink in the Sink-Of-Line graph induced
by (S, P). Let (u, x) be a source in this graph of degree one. By our construction, it must
be the case that x = 0n and u ̸= 0n is a leaf in the Leaf graph induced by N or x is a sink
in the Sink-Of-Line graph induced by (S, P). ◀

Note that, by allowing fewer or more types of vertices as solutions in the definition
of Leaf-Or-Sink, we can provide alternative formulations for the problems defining PPA,
PPADS, and PPAD. The variant, where we search only for leaves distinct from the distin-
guished source is PPA-complete. The variant, where we search for any sink or source (of
degree one or two) distinct from the distinguished source is PPAD-complete. The variant
where we search only for sinks is PPADS-complete.

References
1 Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally

long. ACM Trans. Comput. Log., 17(3):19, 2016. doi:10.1145/2898435.
2 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.

The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.
doi:10.1006/jcss.1998.1575.

3 Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing, 38(6):2511–
2525, 2009.

4 Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and proposi-
tional proof systems. In 19th Annual IEEE Conference on Computational Complexity (CCC
2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67. IEEE Computer Society, 2004.
doi:10.1109/CCC.2004.1313795.

5 Joshua Buresh-Oppenheim. On the TFNP complexity of factoring. https://www.cs.toronto.
edu/~bureshop/factor.ps, 2006.

6 Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs. In Proof complexity
and feasible arithmetics, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 59–71. American Mathematical Society, Providence, RI, USA, 1998.

7 Samuel R. Buss, Russell Impagliazzo, Jan Krajíček, Pavel Pudlák, Alexander A. Razborov,
and Jiri Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with
modular counting. Computational Complexity, 6:256–298, 1996.

8 Samuel R. Buss, Leszek Aleksander Kołodziejczyk, and Neil Thapen. Fragments of approximate
counting. The Journal of Symbolic Logic, 79(2):496–525, 2014.

9 Samuel R. Buss and Jan Krajíček. An application of boolean complexity to separation problems
in bounded arithmetic. Proceedings of the London Mathematical Society, 3(1):1–21, 1994.

3 This property could be achieved by a simple additional transformation. For every edge (u, v) ∈ E,
we can introduce a new vertex wu,v and add the edges (u, wu,v) and (wu,v, v). This transformation
is locally computable, preserves the structure of the graph, and ensures the claimed structure w.r.t.
degrees of vertices.

ITCS 2024

https://doi.org/10.1145/2898435
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1109/CCC.2004.1313795
https://www.cs.toronto.edu/~bureshop/factor.ps
https://www.cs.toronto.edu/~bureshop/factor.ps

63:22 TFNP Intersections Through the Lens of Feasible Disjunction

10 Samuel R. Buss and Grigori Mints. The complexity of the disjunction and existential properties
in intuitionistic logic. Annals of Pure and Applied Logic, 99(1-3):93–104, 1999.

11 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 174–183, 1996.

12 Stefan Dantchev, Nicola Galesi, Abdul Ghani, and Barnaby Martin. Proof complexity and
the binary encoding of combinatorial principles. arXiv preprint arXiv:2008.02138, 2020.

13 Stefan Dantchev, Barnaby Martin, and Mark Rhodes. Tight rank lower bounds for the
Sherali–Adams proof system. Theoretical Computer Science, 410(21-23):2054–2063, 2009.

14 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In Dana
Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 790–804.
SIAM, 2011. doi:10.1137/1.9781611973082.62.

15 Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A converse to Banach’s
fixed point theorem and its CLS-completeness. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 44–50.
ACM, 2018. doi:10.1145/3188745.3188968.

16 Ben Davis and Robert Robere. Colourful TFNP and propositional proofs. In Amnon Ta-Shma,
editor, 38th Computational Complexity Conference, CCC 2023, July 17-20, 2023, Warwick, UK,
volume 264 of LIPIcs, pages 36:1–36:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.CCC.2023.36.

17 Susanna de Rezende, Aaron Potechin, and Kilian Risse. Clique is hard on average for unary
Sherali-Adams. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2023, Santa Cruz, CA, USA, November 6-9, 2023, 2023. To appear.

18 John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. J. ACM, 70(1):7:1–7:74, 2023. doi:10.1145/3568163.

19 Michal Garlík. Failure of feasible disjunction property for k-DNF resolution and NP-hardness
of automating it. CoRR, abs/2003.10230, 2020. arXiv:2003.10230.

20 M. Göös, P. Kamath, R. Robere, and D. Sokolov. Adventures in Monotone Complexity and
TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference
(ITCS 2019), volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages
38:1–38:19, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ITCS.2019.38.

21 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in TFNP. In Shachar Lovett, editor, 37th Computa-
tional Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume
234 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CCC.2022.33.

22 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 1150–1161. IEEE, 2022. doi:10.1109/FOCS54457.2022.00111.

23 Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the complexity of
modulo-q arguments and the Chevalley-Warning theorem. In 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169, pages 19:1–19:42, 2020.

24 Tuomas Hakoniemi. Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares. In
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020),
volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 63:1–63:14,
2020.

https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1145/3188745.3188968
https://doi.org/10.4230/LIPICS.CCC.2023.36
https://doi.org/10.1145/3568163
https://arxiv.org/abs/2003.10230
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.4230/LIPIcs.CCC.2022.33
https://doi.org/10.1109/FOCS54457.2022.00111

P. Hubáček, E. Khaniki, and N. Thapen 63:23

25 Tuomas Hakoniemi. Size bounds for algebraic and semialgebraic proof systems. PhD thesis,
Universitat Politècnica de Catalunya, 2022.

26 Alexandros Hollender. The classes PPA-k: Existence from arguments modulo k. Theor.
Comput. Sci., 885:15–29, 2021. doi:10.1016/j.tcs.2021.06.016.

27 Takashi Ishizuka. The complexity of the parity argument with potential. J. Comput. Syst.
Sci., 120:14–41, 2021. doi:10.1016/j.jcss.2021.03.004.

28 Dmitry Itsykson, Vsevolod Oparin, Mikhail Slabodkin, and Dmitry Sokolov. Tight lower
bounds on the resolution complexity of perfect matching principles. Fundamenta Informaticae,
145(3):229–242, 2016.

29 Emil Jeřábek. Frege systems for extensible modal logics. Annals of Pure and Applied Logic,
142(1-3):366–379, 2006.

30 Emil Jeřábek. Integer factoring and modular square roots. J. Comput. Syst. Sci., 82(2):380–394,
2016. doi:10.1016/j.jcss.2015.08.001.

31 Alan Johnson. Reductions and propositional proofs for total NP search problems. PhD thesis,
University of California, San Diego, 2011.

32 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? (extended abstract). In 26th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, USA, 21-23 October 1985, pages 39–42, 1985.

33 Pritish Kamath. Some hardness escalation results in computational complexity theory. PhD
thesis, Massachusetts Institute of Technology, 2019.

34 Leszek Aleksander Kolodziejczyk, Phuong Nguyen, and Neil Thapen. The provably total NP
search problems of weak second order bounded arithmetic. Ann. Pure Appl. Log., 162(6):419–
446, 2011. doi:10.1016/j.apal.2010.12.002.

35 Leszek Aleksander Kolodziejczyk and Neil Thapen. Approximate counting and NP search prob-
lems. J. Math. Log., 22(3):2250012:1–2250012:31, 2022. doi:10.1142/S021906132250012X.

36 Jan Krajíček, Alan Skelley, and Neil Thapen. NP search problems in low fragments of bounded
arithmetic. J. Symb. Log., 72(2):649–672, 2007. doi:10.2178/jsl/1185803628.

37 J. Krajíček. Interpolation theorems, lower bounds for proof systems, and independence results
for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.

38 Jan Krajíček. Bounded arithmetic, propositional logic, and complexity theory, volume 60 of
Encyclopedia of mathematics and its applications. Cambridge University Press, 1995.

39 Yuhao Li, William Pires, and Robert Robere. Intersection classes in TFNP and proof
complexity. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer
Science Conference, ITCS 2024, January 30 - February 2, 2024, University of California,
Berkeley, California, USA, LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
To appear.

40 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991. doi:10.1016/
0304-3975(91)90200-L.

41 Tsuyoshi Morioka. Classification of search problems and their definability in bounded arithmetic.
Electron. Colloquium Comput. Complex., TR01-082, 2001. arXiv:TR01-082.

42 Tsuyoshi Morioka. The relative complexity of local search heuristics and the iteration principle.
Electron. Colloquium Comput. Complex., TR03-051, 2003. arXiv:TR03-051.

43 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

44 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

45 Pavel Pudlák. On the complexity of the propositional calculus. In S. Barry Cooper and
John K. Truss, editors, Sets and Proofs, London Mathematical Society Lecture Note Series,
pages 197–218. Cambridge University Press, 1999.

ITCS 2024

https://doi.org/10.1016/j.tcs.2021.06.016
https://doi.org/10.1016/j.jcss.2021.03.004
https://doi.org/10.1016/j.jcss.2015.08.001
https://doi.org/10.1016/j.apal.2010.12.002
https://doi.org/10.1142/S021906132250012X
https://doi.org/10.2178/jsl/1185803628
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://arxiv.org/abs/TR01-082
https://arxiv.org/abs/TR03-051
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.2307/2275583

63:24 TFNP Intersections Through the Lens of Feasible Disjunction

46 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theor. Comput. Sci.,
295:323–339, 2003. doi:10.1016/S0304-3975(02)00411-5.

47 Søren Riis. Independence in Bounded Arithmetic. PhD thesis, Oxford University, 1993.
48 Steven Rudich. Super-bits, demi-bits, and NP/qpoly-natural proofs. In José D. P. Rolim,

editor, Randomization and Approximation Techniques in Computer Science, International
Workshop, RANDOM’97, volume 1269 of Lecture Notes in Computer Science, pages 85–93.
Springer, 1997. doi:10.1007/3-540-63248-4_8.

49 Alan Skelley and Neil Thapen. The provably total search problems of bounded arithmetic.
Proceedings of the London Mathematical Society, 103(1):106–138, 2011.

https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.1007/3-540-63248-4_8

	1 Introduction
	1.1 Our Results and Technical Overview
	1.1.1 Separation of TFNP intersections (Section 4)
	1.1.2 Feasible disjunction (Section 3)
	1.1.3 Combinatorial characterization of PPA capPPADS (Section 5)

	2 Preliminaries
	2.1 Proof Systems and Measures
	2.2 Decision-Tree TFNP and Proof Complexity
	2.3 Some Upper and Lower Bounds

	3 Feasible disjunction
	3.1 Feasible Disjunction for Degree for Nullstellensatz
	3.2 Feasible Disjunction for Size and Degree for Sherali-Adams
	3.3 Two Failures of feasible Disjunction

	4 Results on intersections
	5 A Combinatorial Characterization of PPADS capPPA

