
Exponential-Time Approximation Schemes via
Compression
Tanmay Inamdar #

Indian Institute of Technology, Jodhpur, India

Madhumita Kundu #

University of Bergen, Norway

Pekka Parviainen #

University of Bergen, Norway

M. S. Ramanujan #

University of Warwick, UK

Saket Saurabh #

Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Abstract
In this paper, we give a framework to design exponential-time approximation schemes for basic
graph partitioning problems such as k-way cut, Multiway Cut, Steiner k-cut and Multicut,
where the goal is to minimize the number of edges going across the parts. Our motivation to focus
on approximation schemes for these problems comes from the fact that while it is possible to solve
them exactly in 2nnO(1) time (note that this is already faster than brute-forcing over all partitions
or edge sets), it is not known whether one can do better. Using our framework, we design the first
(1 + ϵ)-approximation algorithms for the above problems that run in time 2f(ϵ)n (for f(ϵ) < 1) for
all these problems.

As part of our framework, we present two compression procedures. The first of these is a “lossless”
procedure, which is inspired by the seminal randomized contraction algorithm for Global Min-cut of
Karger [SODA ’93]. Here, we reduce the graph to an equivalent instance where the total number
of edges is linearly bounded in the number of edges in an optimal solution of the original instance.
Following this, we show how a careful combination of greedy choices and the best exact algorithm
for the respective problems can exploit this structure and lead to our approximation schemes.

Our first compression procedure bounds the number of edges linearly in the optimal solution,
but this could still leave a dense graph as the solution size could be superlinear in the number of
vertices. However, for several problems, it is known that they admit significantly faster algorithms
on instances where solution size is linear in the number of vertices, in contrast to general instances.
Hence, a natural question arises here. Could one reduce the solution size to linear in the number of
vertices, at least in the case where we are willing to settle for a near-optimal solution, so that the
aforementioned faster algorithms could be exploited?

In the second compression procedure, using cut sparsifiers (this time, inspired by Benczúr and
Karger [STOC ’96]) we introduce “solution linearization” as a methodology to give an approximation-
preserving reduction to the regime where solution size is linear in the number of vertices for certain
cut problems. Using this, we obtain the first polynomial-space approximation schemes faster than
2nnO(1) for Minimum bisection and Edge Bipartization. Along the way, we also design the first
polynomial-space exact algorithms for these problems that run in time faster than 2nnO(1), in the
regime where solution size is linear in the number of vertices. The use of randomized contraction
and cut sparsifiers in the exponential-time setting is novel to the best of our knowledge and forms
our conceptual contribution.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Approximation algorithms analysis

Keywords and phrases Exponential-Time Algorithms, Approximation Algorithms, Graph Algorithms,
Cut Problems

© Tanmay Inamdar, Madhumita Kundu, Pekka Parviainen, M. S. Ramanujan, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 64; pp. 64:1–64:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:taninamdar@gmail.com
https://orcid.org/0000-0002-0184-5932
mailto:Madhumita.Kundu@uib.no
https://orcid.org/0000-0002-8562-946X
mailto:Pekka.Parviainen@uib.no
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://orcid.org/0000-0002-2116-6048
mailto:saket@imsc.res.in
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Exponential-Time Approximation Schemes via Compression

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.64

Funding Tanmay Inamdar : This research was done when the author was affiliated with University of
Bergen, and was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416).
M. S. Ramanujan: Supported by Engineering and Physical Sciences Research Council (EPSRC)
grants EP/V007793/1 and EP/V044621/1.
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416), and Swarnajayanti
Fellowship (No. DST/SJF/MSA01/2017-18).

1 Introduction

In the area of exact exponential-time algorithms, the objective is to design algorithms that
outperform brute-force for computationally intractable problems [3, 5, 27, 25, 13, 31]. Because
the problems are intractable we do not hope for polynomial-time algorithms. Instead the aim
is to allow super-polynomial time and design algorithms that are significantly faster than
brute-force. For example, for NP-complete problems on graphs on n vertices and m edges
whose solutions are either subsets of vertices or edges, the brute-force or trivial algorithms
basically enumerate all subsets of vertices or edges. This mostly leads to algorithms of time
complexity 2nnO(1) or 2mnO(1), based on whether we are enumerating vertex sets or edge
sets. Thus our goal is typically to design an algorithm with running time cnnO(1) (cmnO(1))
for c < 2, and we try to minimize the constant c. We refer to the textbook of Fomin and
Kratsch [15] for an introduction to the field.

While there are numerous papers dedicated to designing algorithms with running time
cnnO(1) for NP-complete problems on graphs where the solution is a set of vertices, the same
cannot be said about edge-subset problems [13, 14, 24, 6, 9, 22, 31]. In this paper we focus
on NP-complete problems on graphs where the solution is subset of the edges. These include
basic graph partitioning problems such as k-way cut (delete a minimum set of edges such
that the resulting graph has at least k connected components) [16, 23], Multiway Cut
(remove a minimum set of edges such that every connected component contains at most one
out of a given set of terminal vertices) [11], Steiner k-cut (the task is to remove a minimum
set of edges whose removal results in k connected components, each of which contains at
least one of the given terminal vertices) [8], and Multicut (given a graph G and pairs of
terminals called requests, remove a minimum set of edges such that the vertices in each
request are disconnected, where the goal is to minimize the number of edges going across
the parts) [20]. For these problems it is straightforward to design either a 2mnO(1)-time
algorithm based on enumerating edge subsets or enumerating all partitions of V (G) into
desired number of parts, resulting in nnnO(1) = 2O(n log n)nO(1)-time algorithm. Further, it
is possible to solve these problems exactly in 2nnO(1) time (note that this is already faster
than brute-forcing over all partitions or edge sets), using subset convolution based dynamic
programming. So, the natural question that arises here and which has remained open in the
area, is the following.

Do the above-mentioned basic graph partitioning problems such as k-way cut,
Steiner k-cut, Multiway Cut, and Multicut admit an algorithm with running
time cnnO(1) for c < 2?

https://doi.org/10.4230/LIPIcs.ITCS.2024.64

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:3

In light of the lack of progress on the above question 1, the next best target would be an
algorithm with running time cnnO(1) for c < 2, if we are allowed to relax the condition of
finding an exact solution to one of finding an “almost-optimal” solution. That is, we ask

Is it possible to get an algorithm for the above problems with running time cnnO(1)

for c < 2, if we allow loss in the solution size. That is, is it possible to design
(1 + ϵ)-approximation algorithms for the above problems that run in time 2f(ϵ)nnO(1)

(for f(ϵ) < 1)?

This idea of relaxing the question of finding an exact solution to one of approximation
is motivated by similar research on Max-SAT (given a CNF-formula Φ on n variables
and m clauses, find an assignment that maximizes the number of satisfied clauses). It
is easily seen that we can solve this problem in time 2n(n + m)O(1), however it is a big
open question whether it is possible to design an algorithm for Max-SAT running in time
cn(n + m)O(1) for c < 2. In fact the decision version of Max-SAT, i.e., SAT, forms the
basis for the well-known Strong Exponential Time Hypothesis (SETH) and has been used
as a starting point for numerous lower bound results for problems solvable in polynomial
time as well as super-polynomial time [18, 7, 21, 26]. One the other hand, it is possible
to obtain a (1 − ϵ)-approximation algorithm for Max-SAT running in time 2f(ϵ)n (for
f(ϵ) < 1) [17, 1, 12]. See Alman, Chan and Williams [1] for the current best deterministic
and randomized (1− ϵ)-approximation algorithms for Max-SAT.

In this paper, we give a framework to design exponential-time approximation schemes
for graph partitioning problems such as k-way cut, Multiway Cut, Steiner k-cut and
Multicut. Using our framework, we design the first (1 + ϵ)-approximation algorithms for
the above problems that run in time 2f(ϵ)n (for f(ϵ) < 1) for all these problems.

▶ Theorem 1. For every ϵ > 0, Steiner k-cut and Multicut can be (1 + ϵ)-approximated
in time 2f(ϵ)nnO(1) for some f(ϵ) < 1.

Since Steiner k-cut generalizes both k-way cut (set the terminals to be the entire
vertex set) and Multiway Cut (set k to be the number of terminals), we have the following
corollary.

▶ Corollary 2. k-way cut and Multiway Cut can be (1 + ϵ)-approximated in time
2f(ϵ)nnO(1) for some f(ϵ) < 1.

To the best of our knowledge, this is the first exponential-time approximation scheme
explicitly designed for minimization problems.

The key component of our framework behind Theorem 1 is a “lossless” procedure, which
is inspired by the seminal randomized contraction algorithm of Karger [19] for Global
Min-cut. Here, we reduce the graph to an equivalent instance where the total number of
edges is linearly bounded in the number of edges in an optimal solution. Following this,
we show how a careful combination of greedy choices and the best exact algorithm for the
respective problems can exploit this structure and lead to our approximation schemes. In
order to give the reader more insight into our algorithm, let us take a simple example.
Suppose that the number of edges in the solution is denoted by OPT and the total number

1 One notable exception is the k-way Cut problem, which can be seen a special case of Steiner k-Cut.
Very recently, Lokshtanov et al. [23] designed a (2 − c)nnO(1) time exact algorithm k-Cut, where c is a
very small positive constant.

ITCS 2024

64:4 Exponential-Time Approximation Schemes via Compression

of edges in the graph is 10 OPT. Then, if we pick an edge uniformly at random, it can be
correctly contracted without affecting a solution with probability 9/10, reducing the number
of vertices by 1. If we succeed in this contraction step for roughly αn consecutive steps, then
we would have reduced the number of vertices in the graph to (1− α)n. At this point, we
can solve the problem on the residual instance in time 2(1−α)nnO(1) (assuming such an exact
algorithm exists) and we would have succeeded with probability (9/10)αn. By repeating
this sufficiently (i.e., (10/9)αn times), we end up with a running time that is bounded by
2(1−α)nnO(1) · (10/9)αn and constant success probability. Clearly, this will beat 2nnO(1) for
any choice of α. Indeed, a success probability in any single step of more than 1/2 would
be sufficient to beat 2nnO(1). The only scenario where this algorithm does not succeed is
when the total number of edges in the graph is at most, say, 10 OPT. In this case, deleting
all the edges is obviously already a 10-approximation. In order to do better, we select a
subset of vertices of smallest degrees, take all the edges incident on them into the solution
and solve the problem exactly on the residual graph. A careful balancing of these two cases
gives us our algorithm. Note that this approach is oblivious to the actual problem as long as
it satisfies some basic conditions such as the existence of a 2nnO(1) algorithm and being able
to contract edges disjoint from a solution “safely”, i.e., the solution is not affected.

Our first compression procedure bounds the number of edges linearly in the optimal
solution, but this could still leave a dense graph as the solution size could be superlinear
in the number of vertices. However, for several problems, it is known that they admit
significantly faster algorithms on instances where solution size is linear in the number of
vertices, in contrast to general instances. Hence, a natural question arises here. Could one
reduce the solution size to linear in the number of vertices, at least in the case where we are
willing to settle for a near-optimal solution, so that the aforementioned faster algorithms
could be exploited?

In the second compression procedure, using cut sparsifiers (this time, inspired by
Benczúr and Karger [2]) we introduce “solution linearization” as a methodology to give
an approximation-preserving reduction to the regime where solution size is linear in the
number of vertices for certain cut problems. As before, we convey the main insights using the
following scenario. Fix ϵ > 0 and suppose that OPT is at least n/ϵ (we will need this lower
bound to apply union bound when performing our probability computation). Suppose we
aim to reduce the value of OPT to αn. Towards this, let us sample each edge with probability
p = αn/OPT. Notice that in the sampled instance, for any partition (A, B) of the vertex set,
the expected number of edges in this cut is p times the original size. Thus, the expected size
of the “new” optimal solution is αn. However, in order to show that an optimum solution to
the sampled instance leads to a (1 + ϵ)-approximation in the original instance, we argue that
with good probability, every cut is within a (1± ϵ) factor of its expected value. The choice
of lower bound on OPT enables us to achieve this using Chernoff bounds.

Using this compression procedure, we obtain the first polynomial-space approximation
schemes faster than 2nnO(1) for Minimum bisection (find a partition (A, B) of the vertex
set minimizing the number of edges in the cut and such that |A| and |B| differ by at most 1)
and Edge Bipartization (delete fewest number of edges to obtain a bipartite graph).

▶ Theorem 3. For every ϵ > 0, Minimum Bisection can be (1 + ϵ)-approximated in time
2f(ϵ)nnO(1) for some f(ϵ) < 1 and polynomial space.

▶ Theorem 4. For every ϵ > 0, Edge Bipartization can be (1 + ϵ)-approximated in time
2f(ϵ)nnO(1) for some f(ϵ) < 1 and polynomial space.

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:5

In a seminal paper, Williams [28] gave 2ωn/3nO(1)-time exponential-space algorithms
for both these problems. It has remained open since then whether it is possible to achieve
better than 2nnO(1) time with polynomial space [29, 30]. Using the insights gained while
proving the above results, we also design the first polynomial-space exact algorithms for both
problems above, that run in time faster than 2nnO(1), in the regime where solution size is
linear in the number of edges. Here, we would like to note that while Edge Bipartization
and Max Cut are the same as far as exact algorithms are concerned, they exhibit a stark
difference in terms of approximation. In particular, an exponential-time approximation
scheme for Max-SAT implies the same for Max Cut. However, this does not translate to
approximation for Edge Bipartization.

In summary, our use of randomized contraction and cut sparsifiers in the area of
exponential-time algorithms is novel to the best of our knowledge and forms the conceptual
contribution of our paper.

2 Our Framework: Compression Procedure 1

In this section, we present our first compression procedure based on randomized contraction
that leads to Theorem 1.

▶ Definition 5. The input to a graph partitioning problem Π is a multigraph G and a set of
constraints given implicitly or explicitly. The goal is to partition the vertex set of G such
that the constraints are met by the partition and the number of edges going across distinct
sets of the partition (called the solution size) is minimized.

Notice that k-way cut, Multiway Cut, Steiner k-cut, Multicut, Edge Bipar-
tization and Minimum Bisection are all graph partitioning problems. In the case of
Steiner k-cut, the constraints are implied by the set X of terminals and the number k.
Similarly, for Multicut, the terminal pairs express the constraints, and so on.

We next identify four properties that a graph partitioning problem is required to satisfy
in order to be amenable to our framework.

▶ Definition 6 (Well-behaved problems). We say that a graph partitioning problem Π is
well-behaved if it has the following properties.
1. It can be solved optimally in time 2nnO(1) on a given n-vertex (multi)graph G. Call this

algorithm ExactAlgorithm.
2. If S ⊆ E(G) is an optimal solution for Π, then S remains an optimal solution for the

graph G′ obtained by contracting an edge uv ̸∈ S and deleting any self-loops that arise.
3. There is a polynomial-time algorithm, called Contract, which takes a multigraph G

and an edge uv ∈ E(G), and returns a graph G′ such that the following holds. Either,
G′ is obtained by contracting the edge uv, as well as making some problem-specific
modifications 2 (e.g., modifying the set of terminal pairs when Π is Multicut); or if
the contraction of uv is disallowed (e.g., if the edge is between a pairs of a request for
Multicut or between terminals for Multiway Cut), then G′ := ⊥ is an invalid graph.
Further, there is a polynomial-time algorithm ValidityCheck(G′) that returns FAIL iff
G′ is ⊥.

2 We do not attempt to give a formal definition of problem-specific modifications. Intuitively speaking, if
G′ = G/uv, then these are the appropriate modifications to the other parts of the input, that make the
most sense depending on the edge uv and the problem.

ITCS 2024

64:6 Exponential-Time Approximation Schemes via Compression

4. Given any X ⊆ V (G), one can define a “projected instance” of Π on the (multi)graph
G′ = G − X, such that OPTΠ(G′) ≤ OPTΠ(G). Further, given a feasible solution
S′ ⊆ E(G′) for the projected instance and the corresponding partition P ′ of V (G) \X

obtained by deleting S′ from G′, there exists a polynomial-time algorithm to extend P ′

to a partition P of V (G) by appropriately adding the vertices of X to various parts (or
creating new parts) such that, if S ⊆ E(G) is the set of edges whose deletion leads to P,
then it must satisfy |S| ≤ |S′|+

∑
v∈X degG(v).

Property 2 is trivial to check for our problems in Theorem 1. To ensure that Property 3
holds, we do the following. For Steiner k-cut (and so, for Multiway Cut), if an edge
between a terminal and a non-terminal is contracted, then the new vertex is a terminal.
For Multiway Cut, it is forbidden to contract an edge between two terminals. Similarly,
for Multicut, if an edge between a terminal and a non-terminal is contracted, then the
new vertex is a terminal. If an edge uv is contracted where both endpoints are elements of
requests, say si, ti and sj , tj where u = si and v = sj , then the new vertex x forms a request
with both ti and tj . An edge between two endpoints of a request cannot be contracted.
Property 4 is not difficult to show for the problems in Theorem 1 and Corollary 2 as well.
Let X be a vertex set as described in this property. Indeed, for Multicut, we simply make
the vertices of X singleton sets of the new partition. For Steiner k-cut, we begin by
making the vertices of X singleton sets of the new partition and then merging sets (subject
to obeying the constraint) until we have only k sets in the partition. In the next section, we
show that Property 1 holds for these problems.

For the rest of this section, we assume that Π is a well-behaved problem.

2.1 Sparse Algorithm

We first prove that at any stage of our algorithm, if we are dealing with a graph where the
number of edges in the graph is at most β times the optimal solution in the original graph,
then Π can be (1 + ϵ)-approximated in better than 2nnO(1)-time. Formally, we prove the
following.

▶ Lemma 7. Let γ ∈ [0, 1] be fixed, α > 0, β > 2, and ϵ ∈ (0, 1). There exists an algorithm
SparseAlgorithm that, given (G′, α, β, ϵ) where G′ is a multigraph on n′ vertices satisfying:

γn ≤ n′ ≤ n,
|E(G′)| ≤ αβn, and
OPT(G′) = αn,

runs in time 2(1−c)n′ · nO(1) for some constant c = c(β, ϵ) > 0, and returns a solution
S ⊆ E(G′) such that |S| ≤ (1 + ϵ)OPT(G′).

Proof. Since |E(G′)| ≤ αβn ≤ αβn′

γ , the average degree of a vertex in G′ is bounded by 2αβ
γ .

Thus, there exists a subset X ⊆ V (G′) such that (1)
∑

v∈X d(v) ≤ ϵαn, and |X| ≥ γϵn
4β ≥

γϵn′

4β .
This can be computed greedily. Hence, we let S′ be an optimal solution for G′ −X returned
by calling ExactAlgorithm on the graph G′ − X. Then, we use Property 4 to obtain
a solution S ⊆ E(G′) with |S| ≤ |S′| +

∑
v∈X deg(v) ≤ OPT(G′ − X) + ϵ · OPT(G′) ≤

(1 + ϵ) · OPT(G′). The running time is dominated by ExactAlgorithm that takes time
2n′−|X| · nO(1) ≤ 2n′− γϵn′

4β · nO(1) = 2(1−c)n′ · nO(1) for c = γϵ
4β . Recall that γ is fixed. Hence,

this completes the proof of the lemma. ◀

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:7

Algorithm 1 RandomContraction(Gi, α, ϵ).

n = # vertices in the original graph G and α > 0 s.t. αn is a conjectured value of OPT(G)
β ≥ 2, γ ∈ [0, 1], and integer q ≥ 1, t ≥ 1 are parameters that can be suitably chosen

1: for r = 1, 2, . . . , t do ▷ Repeat each block inside t times
2: for ℓ = 0, 1, . . . , q − 1 do ▷ Start of a block
3: if ni+ℓ ≤ γn then
4: Sr ← ExactAlgorithm(Gi+ℓ)
5: continue to the next iteration of the outer for loop (line 1)
6: end if
7: if mi+ℓ = |E(Gi+ℓ)| ≤ αβn then
8: Sr ← SparseAlgorithm(Gi+ℓ, α, β, ϵ) ▷ Find (1 + ϵ)-apx via Lem. 7
9: continue to the next iteration of the outer for loop (line 1)

10: else ▷ i.e., mi+ℓ > αβn

11: Pick an edge uv of E(Gi+ℓ) uniformly at random ▷ accounting for parallel edges
12: Gi+ℓ+1 ← Contract(Gi+ℓ, uv) ▷ Gi+ℓ/uv with potentially some more modifications
13: if ValidityCheck(Gi+ℓ+1, α, ϵ) = FAIL then ▷ Problem-specific validity check
14: Sr ← ⊥ and continue to the next iteration of the outer for loop (line 1)
15: end if
16: end if
17: end for
18: Sr ← RandomContraction(Gi+q, α, ϵ) ▷ Recursive call on Gi+q after a completed block.
19: end for
20: return the best solution out of S1, S2, . . . , St ▷ avoiding invalid (⊥) solutions

Figure 1 This algorithm uses some problem-specific subroutines, namely ExactAlgorithm,
SparseAlgorithm, Contract, and ValidityCheck (denoted in blue color).

2.2 Random Contraction for Bounding the Number of Edges
In Algorithm 1, we describe a recursive algorithm called RandomContraction that takes as
an input a (multi)graph Gi and a parameter α > 0. When this algorithm is executed, we
will be assuming that αn = OPT(G), where G is the original graph and n = |V (G)|. Note
that α is not necessarily a constant and can be guessed. Roughly speaking, our strategy is
the following. As long as the “current” graph is not small enough compared to the original
graph (in which case we just use the assumed exact algorithm) and the total number of edges
in the current graph is not linearly bounded by the optimal solution for the original instance
(in which case we use the algorithm of Lemma 7), we randomly contract an edge and recurse.
We show that with good probability, this strategy succeeds.

We next formally describe RandomContraction (also see Algorithm 1). We run an outer
for loop for t = 6 iterations (lines 1-19), which we refer to as a block. We compute a candidate
solution Sr in each block r ∈ {1, . . . , t}, and in line 20 we return the best solution found over
each of the t blocks. The executions in different blocks are independent of each other; in
particular, each block starts with the input graph Gi.

Now we describe a particular block 1 ≤ r ≤ t. Each block consists of (up to) q = 17
iterations of the inner for loop (lines 2-17). At the start of iteration 1 ≤ ℓ ≤ q, we have a
current graph Gi+ℓ. First, in line 3 we check whether the number of vertices in the current

ITCS 2024

64:8 Exponential-Time Approximation Schemes via Compression

graph Gi+ℓ is at most γn, in which case we use ExactAlgorithm to find an optimal solution
to the problem on Gi+ℓ. Letting Sr denote the optimal solution for Gi+ℓ thus found, we
continue to the next block in line 5.

Then, in line 7 we check whether the number of edges in the graph mi+ℓ is at most αβn,
which forms our “base case”. In this case, we use the algorithm of Lemma 7 to find a (1 + ϵ)-
approximate solution (line 8). By Lemma 7, this algorithm runs in time 2(1−c)|V (Gi+ℓ)| ·nO(1)

time, where c = c(β, ϵ), and returns a solution Sr, such that |Sr| ≤ (1 + ϵ) · OPT(Gi+ℓ).
Then, in line 9, we continue to the next block.

Otherwise (line 10), the number of edges in the graph is more than αβn, i.e., at least
β times the conjectured upper bound on the size of an optimal solution in G. In this case,
in line 11, we sample an edge uv from E(Gi+ℓ) uniformly at random. In line 12, we use a
problem-specific subroutine Contract which essentially returns the graph Gi+ℓ+1 obtained by
contracting uv in Gi+ℓ (we keep parallel edges but remove self-loops); however this subroutine
may also perform additional problem-specific steps, such as modifying terminal sets (in a
problem such as Edge Multiway Cut). Then, in line 13, we perform a problem-specific
validity check of the graph Gi+ℓ+1, and if Gi+ℓ+1 fails the validity check (this may happen if
we just contracted an edge between a terminal pair, in case of Edge Multiway Cut), then
we define Sr to be an invalid solution.

Otherwise, we continue to the next iteration in the current block; and this happens up to
q iterations. If the block runs for exactly q iterations without satisfying the if conditions in
lines 7 or 13, then we refer to it as a completed block. At the end of a completed block, we
recursively call the algorithm on the graph Gi+q, and obtain a solution Sr.

We set the values of the parameters used in Algorithm 1, as follows. β = 10, t = 6 and
q = 17. These values are chosen so as to satisfy the following properties and make subsequent
probability computations go through.
1.

(
β

β−1

)q

≈ 5.996. In other words, 1.0006
(β−1

β)q ⪅ 6 = t.

2. Let β′ satisfy that 61/17 = 1.111152 = β′

β′−1 , then β′ ≈ 9.9966.

Now we are ready to prove that the running time of the algorithm is bounded away from
2n – note that throughout the proof, n denotes the number of vertices in the original graph.

▶ Lemma 8. There exists a constant γ ∈ [0, 1] such that for any 0 < ϵ < 1, α > 0, β > 2 and
any (multi)graph G with OPT(G) ≤ αn, RandomContraction(G, α, ϵ) runs in time O∗(c′n),
where c′ = max

{
1.112, 21−c

}
, and with probability at least 10−5, returns a solution S ⊆ E(G)

such that |S| ≤ (1 + ϵ) · OPT(G). Here, c is the constant from Lemma 7.

Proof. We divide the proof into two parts: (1) running time, and (2) approximation guarantee
and the success probability.

Running time. We initially call RandomContraction(G0, α, ϵ), where G0 = G is the original
graph with OPT(G) ≤ αn, where n = |V (G)|. Consider the execution of RandomContraction
on a graph Gi with ni = λn vertices for some γ < λ ≤ 1, and consider a particular block
1 ≤ r ≤ t.

Suppose the block does not complete. This can happen due to two reasons. (1) In line 3,
the number of vertices drops to at most γn, and we use ExactAlgorithm to compute an
optimal solution for Gi+ℓ, which takes at 2γnnO(1) time. Otherwise, (2) in some iteration
mi+ℓ ≤ αβn, in which case the if condition in line 7 holds. Then, the number of vertices in
Gi+ℓ is ni − ℓ, which is at least ni − q (recall that ℓ < q). Therefore, Lemma 7 implies that
SparseAlgorithm on Gi+ℓ runs in time at most 2q ·2(1−c)·(1−λ)n ·nO(1) = 2(1−c)·(1−λ)n ·nO(1),

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:9

since 2q is a constant. Further, recall that c = c(β, ϵ) is a constant. Finally, if the block
completes with q iterations, then we make a recursive call to RandomContraction on the
graph Gi+q.

Now we argue that that the algorithm runs in time 2(1−c)n. Note that the running time
is upper bounded by

T (n) ≤ max
{(

β′

β′ − 1

)(1−γ)n

· 2γn · nO(1), max
γ≤λ≤1

(
β′

β′ − 1

)(1−λ)n

· 2(1−c)λn · nO(1)

}

We analyze each of the two terms separately. Note that the first term is 2(lg(β′/(β′−1))(1−γ)+γ)n·
nO(1) ≤ 2(1−cγ)n · nO(1) for some constant cγ > 0, since γ can be chosen to be bounded away
from 1.

Now we bound the second term. Let f(λ) := lg
(

β′

β′−1

)
· (1− λ) + (1− c) · λ. Then, in

order to show that the running time of the algorithm is 2(1−c)n, we need to equivalently
argue that max

0≤δ≤1
f(λ) ≤ 1− c, where c = c(β, ϵ) > 0.

Consider,

d

dλ
f(λ) = − lg

(
β′

β′ − 1

)
+ (1− c) (1)

Recall that β′ = 9.9966 =⇒ lg
(

β
β−1

)
≈ 0.152. Now we consider two cases. First, if

d
dλ f(λ) ≥ 0, i.e., 0.152 ≤ (1 − c), then the function f(λ) is increasing in [γ, 1], and the
maximum is achieved at λ = 1. In this case, the running time of the algorithm is bounded
by 2(1−c)n · nO(1). Otherwise, d

dλ f(λ) < 0, i.e., 0.152 ≥ (1 − c), then the function f(λ) is
decreasing in [γ, 1], and the maximum is achieved at λ = γ. In this case, the running time of

the algorithm is bounded by
(

β′

β′−1

)(1−γ)n

· 2(1−c)γn · nO(1), which is bounded away from 2n

as argued for the first term.

Success Probability. We start with the following technical claim.

▷ Claim 9. Let Gi, Gi+1, . . . , Gi+t be a maximal sequence of multigraphs obtained during
the execution of a particular block (Algorithms 1–1) for some 0 ≤ t ≤ q − 1, where each
Gi+j+1 is obtained by contracting a random edge of Gi+j , such that mi ≥ mi+1 ≥ . . . ≥

mi+t ≥ αβn. Then, with probability at least
(

β−1
β

)t

≥
(

β−1
β

)q

≈ 0.16677, it holds that
OPT(Gi) = OPT(Gi+1) = . . . = OPT(Gi+t).

Proof. Since Gi+j+1 is a graph obtained after contraction of an edge in Gi+j , the set of feasible
solutions in Gi+j+1 is a subset of that in Gi+j . Thus, OPT(Gi+j+1) ≥ OPT(Gi+j), regardless
of which edge is contracted. It follows that OPT(Gi+t) ≥ . . . ≥ OPT(Gi+1) ≥ OPT(Gi).
Now we prove the other direction.

Let S ⊆ E(Gi) be the set of edges corresponding to an optimal solution for Gi. Then, in
the first iteration of the for loop, the probability that the edge uv is picked in line 11 belongs
to S, is at most |S|

mi
≤ αn

αβn = 1
β . Thus, with probability at least β−1

β , the set S remains in
E(Gi+1), and Property 2 implies that S is an optimal solution for Gi+1. 3 This lower bound on
the probability holds in each of the iterations, since the number of edges in Gi, Gi+1, . . . , Gi+t

is at least αβn. Thus, with probability at least β−1
β

t
≥

(
β

β−1

)q

=
(10

9
)17 ≈ 0.16677, it holds

that OPT(Gi+t) ≤ . . . ≤ OPT(Gi+1) ≤ OPT(Gi), which shows the claim. ◁

3 Note that due to vertex contraction, some edges in S may be incident to a contracted vertex, in which
case their “name” might change.

ITCS 2024

64:10 Exponential-Time Approximation Schemes via Compression

Let B(ni) be the event that RandomContraction(Gi, α) does not return a (1 + ϵ)-
approximate solution, where Gi is a multigraph on ni ≤ n vertices such that OPT(Gi) ≤ αn.
We inductively assume that Pr(B(n′

i)) ≤ δ = 0.99999 for all n′
i < ni, and aim to show

Pr(B(ni)) ≤ δ. In the base case, we use SparseAlgorithm on the current graph Gi+ℓ, and
due to Lemma 7, we find a (1 + ϵ)-approximate solution of Gi. Now we proceed to the
inductive case.

Now consider RandomContraction(Gi, α, ϵ) with |V (Gi)| = ni and OPT(Gi) ≤ αn. In
the execution of RandomContraction, we say that a block 1 ≤ r ≤ t is bad if the solution
Sr found is not a (1 + ϵ)-approximate solution for Gi; and good otherwise. We show the
following claim.

▷ Claim 10. For any block 1 ≤ r ≤ t, Pr(Block r is bad) ≤
(

1− (1− δ) ·
(

β−1
β

)q)
.

Proof. There are two cases.
In the first case, suppose that the block is incomplete, i.e., for some 0 ≤ ℓ < q − 1, the

line 7 does not hold, and Sr is equal to a (1 + ϵ)-approximation of Gi+ℓ, computed using
SparseAlgorithm(Gi+ℓ, α, ϵ). In this case, the block r is good iff OPT(Gi+ℓ) = OPT(Gi),
since SparseAlgorithm is a deterministic algorithm that always returns a (1+ϵ)-approximate
solution of the given graph. From Claim 9, the probability that the block is good is at least(

β−1
β

)q

, which implies that the probability that the block is bad is at most 1−
(

β−1
β

)q

≤

1− (1− δ) ·
(

β−1
β

)q

.
In the second case, suppose the block is complete. Then, Sr = RandomContraction(Gi+q).

Fix an optimal solution S of Gi. Note that the block is bad only if either of the following
two events happen:
1. B1 be the event that we contract an edge of S at any point during the block.
2. B2 be the event that, conditioned on B1 not occurring, i.e., conditioned on S surviving in

Gi+q, RandomContraction(Gi+q) does not return a (1 + ϵ)-approximate solution. Note
that, the number of vertices of Gi+q is smaller than Gi. Thus by induction hypothesis,
the event B2 happens with probability at most (1− Pr(B1)) · Pr(B(ni+q)).

Therefore,

Pr(|Sr| > (1 + ϵ) · OPT(Gi)) ≤ Pr(B1) + (1− Pr(B1)) · Pr(B(ni+q))
≤ Pr(B1) + (1− Pr(B1)) · δ

(Using inductive hypothesis on Pr(ni+q))

≤
(

1− (1− δ) ·
(

β − 1
β

)q)
(via Claim 9)

Thus, the claimed upper bound holds in each of the two cases. ◁

Given Claim 10, we finish induction as follows. Pr(B(ni)) is upper bounded by the probability
of the event that each of the r blocks is bad. Since the events corresponding to different
blocks are pairwise independent, it follows that,

Pr(B(ni)) ≤
(

1− (1− δ)
(

β − 1
β

)q)t

≤ exp
(
−(1− δ)t ·

(
β − 1

β

)q)
≤ exp (−(0.00001) · (1.0006))

(Recalling that 6 ·
(

β−1
β

)q

≥ 1.0006)

≤ 0.99998 ≤ δ.

This finishes the proof of the lemma. ◀

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:11

Note that the space complexity of our framework is effectively dominated by that of
the exact algorithm we use. To obtain Theorem 1, we use exact algorithms that may take
exponential space.

3 Applications of our Framework

In this section, we show how to apply this framework to obtain our approximation schemes
for Steiner k-Cut (which generalizes both k-Way Cut and Edge Multiway Cut), and
Edge Multicut.

Towards this, we need to show that the 4 properties stated in Definition 6 hold. We have
already argued that the last three properties hold. The only non-trivial property is Property
1 (i.e., existence of a 2nnO(1)-time exact algorithm) and so, we focus on that for the rest of
this section.

3.1 Property 1: Exact Algorithms for our Problems
Our algorithms use the fast subset convolution framework that we define below.

Subset Convolutions. Given two functions f, g : 2X → Z, the subset convolution of f and
g is the function (f ∗ g) : 2X → Z, defined as follows.

∀Y ⊆ X : (f ∗ g)(Y) =
∑

A∪B=Y
A∩B=∅

f(A) · g(B) (2)

It is known that, given all the 2n values of f and g in the input, all the 2n values of f ∗ g

can be computed in O(2n · n3) arithmetic operations (see, for example, Theorem 10.15 in
[10]). This is known as fast subset convolution. Now, let

(f ⊕ g)(Y) = min
A∪B=Y
A∩B=∅

f(A) + g(B).

We observe that f ⊕ g is equal to the subset convolution f ∗ g in the integer min-sum
semiring (Z ∪ {∞}, min, +), i.e., in Equation (2), we use the mapping + 7→ min, and
· 7→ +. This, combined with a simple “embedding trick” enables one to compute all values
of f ⊕ g : 2X → {−N, . . . , N} in time 2nnO(1) · O(N log N log log N) using fast subset
convolution – see [10, Theorem 10.17] and [4, Theorem 3]. We summarize this discussion in
the following proposition.

▶ Proposition 11. The subset convolution over the integer min-sum semiring can be computed
in 2nnO(1) · O(M log M log log M) time, provided that the range of the input functions is
{−M,−M + 1, · · · , M}.

3.1.1 Edge Multicut
Recall that the input to the Multicut problem consists of an undirected graph G and pairs
of terminals {s1, t1}, · · · , {sℓ, tℓ}; the task is to remove a minimum set of edges such that
si and ti are disconnected for every 1 ≤ i ≤ ℓ. A simple dynamic programming algorithm
running in time 3nnO(1) follows from the following recurrence. For a vertex subset X ⊆ V (G),
let f(X) denotes the size of a minimum set of edges required to delete from GX = G[X] in
order to separate the pairs si and ti for every 1 ≤ i ≤ ℓ, such that {s1, t1} ⊆ X (of course

ITCS 2024

64:12 Exponential-Time Approximation Schemes via Compression

from the graph GX). Let X ⊆ V is called valid if for every j ∈ [i], |X ∩ {sj , tj}| ≤ 1. For a
subset X ⊆ V (G), let ∂(X) denotes the set of edges with exactly one endpoint in X. Define
g : 2V (G) → Z, as g(X) = |∂(X)|, X ⊆ V (G). Clearly,

f(X) = min
X′⊊X

X′ is valid
f(X \X ′) + g(X ′)

Since, each term takes 2|X|nO(1) time for evaluation, we have that
∑n

i=0
(

n
i

)
2inO(1) = 3nnO(1).

Now to convert the above recurrence to fit into subset convolution framework, we define
“a ranked version of f”. Let fi(X) be the minimum number of edges required to delete from
GX = G[X] in order to separate the pairs sj and tj for every 1 ≤ j ≤ i (of course from the
graph GX). Hence fℓ(V (G))/2 is the solution to our problem (factor of 1/2 comes from the
fact that every cut edge is counted twice).

We evaluate the functions fi in the increasing order of i. The base function is f0, which is
defined as f0[X] = 0, for every subset X ⊆ V (G). Let gi : 2V (G) → Z be a function defined
as follows. For X ⊆ V (G), if X is valid and |X ∩ {si, ti}| = 1, then define gi(X) = |∂(X)|,
else gi(X) =∞ (here, ∞ just denotes a large positive integer). The recurrence for fi(X) is
defined as follows (and indeed it depends on fi−1(X)).

fi(X) = min
X′⊆X

{
fi−1(X \X ′) + gi(X ′)

}
For each integer i = 1, 2, . . . , ℓ, we assume that the function fi−1 is computed. Hence,

using Proposition 11 and the preceding discussion we get the following.

▶ Lemma 12. Given all the 2n values of fi−1 and g in the input, all the 2n values of fi can
be computed in time 2nnO(1). In particular, Multicut can be solved in time 2nnO(1).

3.1.2 Steiner k-Cut
Recall that the input to the Steiner k-Cut problem consists of an undirected graph G, a set
of terminals T ⊆ V (G) of size at least k; the task is to remove a minimum set of edges whose
removal results in k connected components, each of which contains at least one terminal. For
a vertex subset X ⊆ V (G), let fi(X) denotes the size of a minimum set of edges required to
delete from GX = G[X] such that removal of these edges results in i connected components,
each of which contains at least one terminal. For a subset X ⊆ V (G), recall that ∂(X)
denotes the set of edges with exactly one endpoint in X. Let g : 2V (G) → Z be a function.
For, X ⊆ V (G), if |X ∩ T | ≥ 1, then define g(X) = |∂(X)|, else define g(X) = ∞. Hence
fk[V (G)] is the solution to our problem. We evaluate the functions fi in the increasing order
of i. The base function is f1, which is defined as f1[X] = 0, for every subset X ⊆ V (G) such
that |X ∩ T | ≥ 1; and ∞ otherwise (here, ∞ just denotes a large positive integer). The value
of fi(X) is governed by the following recurrence.

fi(X) = min
X′⊆X

{
fi−1(X \X ′) + g(X ′)

}
For each integer i = 1, 2, . . . , k, we assume that the function fi−1 is computed. Hence,

using Proposition 11 and the preceding discussion we get the following.

▶ Lemma 13. Given all the 2n values of fi−1 and g in the input, all the 2n values of fi can
be computed in time 2nnO(1). In particular, Steiner k-Cut can be solved in time 2nnO(1).

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:13

4 Our Framework: Compression Procedure 2

First in Section 4.1 we define some necessary definitions and prove some basic properties.
Then, in Section 4.2, we state and prove the properties of our solution linearlization procedure.
This will then be used later to prove Theorem 3 and Theorem 4.

4.1 Notation and Basic Properties

Let G = (V, E) be a finite undirected multigraph without self loops (henceforth, simply
a multigraph). Let P be an ℓ-partition of V (G) for some ℓ ≥ 1, i.e., P is a partition of
V (G) with exactly ℓ non-empty parts. Then, we define cutG(P) as the multiset of edges
with endpoints in different parts of P, and κG(P) = |cutG(P)|. We also refer to the edges
in cutG(P) as the exterior edges of the partition P. We sometimes write cutG(V1, . . . , Vℓ)
(resp. κG(V1, . . . , Vℓ)) to denote cutG({V1, . . . , Vℓ}) (resp. κG({V1, . . . , Vℓ})), and may omit
the subscript from cutG(·) and κG(·) when the graph is clear from the context. Analogously,
we define intG(P) as the multiset of edges of G whose both endpoints belong to the same
part of P, and ιG(P) = |intG(P)|. We call the edges in ιG(P) the interior edges of the
partition P. The same notational conventions as cut·(·) apply to int·(·) and ι·(·). We say
that a partition P ′ coarsens another partition P if every set in P ′ is comprised of the union
of some subset of P.

▶ Proposition 14 (Chernoff bound). Let X1, X2, . . . , Xn be independent random variables
taking values in {0, 1}, and let X =

∑n
i=1 Xi with µ = E[X]. Then, for any 0 < δ < 1, the

following inequality holds:

Pr (|X − µ| ≥ δµ) ≤ 2 · e−µδ2/3 (3)

▶ Definition 15 ((α, β)-coarsening partition of P). Let G be a multigraph and let P be a
partition of V (G). We say that P ′ is a (α, β)-coarsening of P if the following hold.
1. P ′ coarsens P.
2. P ′ contains at most α parts.
3. κG(P ′) ≥ β · κG(P).

In the above definition, one can think of the partition P ′ as an approximation of the
partition P. Depending on the application, we will set α and β appropriately.

▶ Lemma 16. Let G be a multigraph. For any integer i ≥ 0, there exists a t-partition P of
V (G) such that (i) 1 ≤ t ≤ 2i, and (ii) κ(P) ≥ (1− 2−i) · |E(G)|.

Proof. We prove this by induction on i. Note that if i = 1, then the claim trivially follows
by placing all the vertices into a single part. Now suppose that the claim holds for some
i > 0 and we prove it for i + 1. To this end, let (V1, V2) be a maximum cut of V (G). It is a
well-known fact that κG(V1, V2) ≥ |E(G)|/2. Let Gj = G[Vj] and Ej = E(Gj) for j ∈ {1, 2}.
Note that E(G) = cutG(V1, V2) ⊎ E1 ⊎ E2. It follows that, |E1|+ |E2| ≤ |E(G)|/2.

By induction, there exists a t′-partition Pj of Vj such that κGj
(Pj) ≥ (1− 2−i) · |Ej | for

j ∈ {1, 2}, and each Pj contains at most 2i parts. We claim that P := P1 ∪ P2, which is a
partition of V (G), satisfies the desired properties. Note that number of parts in P is at most
2 · 2i = 2i+1. Now we prove the second property.

ITCS 2024

64:14 Exponential-Time Approximation Schemes via Compression

|cutG(P)| =
∑

Uq∈P
|∂G(Uq)| =

∑
Uq∈P1

|∂G(Uq)|+
∑

Uq∈P2

|∂G(Uq)|

= cutG1(P1) + cutG2(P2) + κG(V1, V2)
≥ (1− 2−i) · (|E1|) + (1− 2−i) · |E2|) + κG(V1, V2)
= |cutG(V1, V2)| − 2−i · (|E1|+ |E2|)

≥ |E(G)| − 2−i · |E(G)|/2 = (1− 2−(i+1)) · |E(G)|. ◀

▶ Corollary 17. Let G be a multigraph on n ≥ 1 vertices, and P be a partition of V (G).
Then, for any 0 < ϵ ≤ 1, there exists a partition P ′ of V (G) such that P ′ is a (⌈1/ϵ⌉, 1− ϵ)
coarsening of P.

Proof. Let H be a multigraph obtained by contracting each part of P into a single vertex.
The claim then follows by invoking Lemma 16 on H with i = ⌈log(1/ϵ)⌉. ◀

4.2 Properties of Solution Linearization
We next prove two lemmas for solution linearization. The first lemma (Lemma 18) “preserves”
interior edges of partitions with bounded number of parts. This makes it useful for problems
such as Edge Bipartization, where the solution edges are deleted from within the sets
of the optimal partition. On the other hand, the second lemma (Lemma 19) achieves the
same goal, but for exterior edges of partitions. This makes it useful for problems such as
Minimum Bisection. Moreover, the second lemma works for arbitrarily many parts, which
could find applications for other problems as well.

▶ Lemma 18. For any (multi)graph G on n vertices, 0 < ϵ < 1, and a parameter t ≥ 1
independent of n, if β ≥ τ ≥ 3

ϵ2 ln(3(t + 1)), then the (multi)graph H obtained by sampling
each edge of G independently with probability p, where p = τ

β , satisfies the following. With
probability at least 1− (2/3)n, for all t′-partitions P of V (G) with t′ ≤ t, and ιG(P) ≥ βn,
it holds that∣∣ιH(P)− ιG(P) · p

∣∣ ≤ ϵ · p · ιG(P) (4)

Proof. Fix a (multi)graph G and 0 < ϵ < 1 as in the statement of the lemma. Suppose
β ≥ τ ≥ 3

ϵ2 ln(3(t + 1)). Let H be a (multi)graph obtained by sampling as stated in the
lemma.

Consider a t-partition P with ιG(P) ≥ βn, and t ≥ 1 that is independent of n. Note
that each edge in E(G) is sampled independently with probability p, which implies that
E[ιH(P)] = p · ιG(P) ≥ τ

β · βn = τn ≥ 3
ϵ2 ln(3(t + 1))n. Using Chernoff Bound (Proposition

14), the following inequality holds:

Pr
(∣∣ιH(P) − p · ιG(P)

∣∣ ≥ ϵp · ιG(P)
)

≤ 1
exp (p · ιG(P)ϵ2/3) ≤ 2

exp
(

3
ϵ2 ln(3(t + 1))nϵ2/3

)
= 1

(3(t + 1))n
.

Note that we use the lower bound on p · ιG(P) ≥ 3
ϵ2 ln(3(t + 1))n in the second inequality in

the above.
Finally, note that the number of t′-partitions P satisfying ιG(P) ≥ βn is upper bounded

by the total number of t′-partitions with 1 ≤ t′ ≤ t, which is
∑t

t′=1(t′)n ≤ (t + 1)n. Thus,
by taking a union bound, we obtain that (4) holds with probability at least 1− 2·(t+1)n

(3(t+1))n ≥
1− (2/3)n. ◀

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:15

In the next lemma, we show an analogous bound that shows that the sparsification
procedure also preserves the cut sizes of partitions. However, this lemma is stronger, since
we do not require that the number of parts in the partition is bounded by a parameter
independent of n. By using Corollary 17, we ultimately reduce the general case to the
bounded parts case as in Lemma 18.

▶ Lemma 19. For any (multi)graph G on n vertices, and 0 < ϵ < 1, if β ≥ τ ≥ 24
ϵ2 ln(9

ϵ),
then the (multi)graph H obtained by sampling primitive (G, p), where p = τ

β , satisfies the
following with probability at least 1− (2/3)n.
1. For each partition P of V (G) with κG(P) ≥ βn, there exists RG(P) ⊆ cutG(P) such that
|RG(P)| ≤ ϵ/2 · κG(P), and if RH(P) ⊆ RG(P) is the subset of RG(P) that is sampled
in H, then the following holds.∣∣∣∣|cutH(P) \RH(P)| − κG(P) · p

∣∣∣∣ ≤ ϵ · p · κG(P) (5)

2. Furthermore, for any t′-partition P ′ with 1 ≤ t′ ≤ ⌈2/ϵ⌉ and κG(P ′) ≥ βn/2, then the
following stronger bound holds.∣∣∣∣κH(P ′)− κG(P ′) · p

∣∣∣∣ ≤ (ϵ/2) · p · κG(P ′) (6)

Proof. The initial setup is similar to Lemma 18 with minor differences. Fix a (multi)graph
G and 0 < ϵ < 1 as in the statement of the lemma. Let t := ⌈2/ϵ⌉, and suppose β ≥ τ ≥
24
ϵ2 ln(9

ϵ) ≥ 24
ϵ2 ln(3(t + 1)). Let H be a (multi)graph obtained by sampling primitive (G, p),

where p := τ/β – note that p ≤ 1.
First, we consider t′-partitions P ′ where (1) 1 ≤ t′ ≤ t, and κG(P ′) ≥ βn/2. Then, by

using an argument similar to Lemma 18, an application of Chernoff bound (Proposition 14)
implies the following.

Pr
(∣∣κH(P ′)− p · κG(P ′)

∣∣ ≥ (ϵ/2)p · κG(P ′)
)
≤ 2

exp (p · κG(P ′)ϵ2/12)

≤ 2
exp

(24
ϵ2 ln(3(t + 1))n ϵ2

24
)

= 2
(3(t + 1))n

.

where we use the assumption that E[κH(P ′)] = p · κG(P ′) ≥ τn/2 ≥ 24
ϵ2 ln(3(t + 1)) · n

2 . Now,
by taking a union bound over all t′-partitions P ′ with t′ ≤ t (there are at most (t + 1)n of
them), it follows that with probability at least 1− 2·(t+1)n

(3(t+1))n ≥ 1− (2/3)n, if κG(P ′) ≥ βn/2,
then the following bound holds:∣∣κH(P ′)− p · κG(P ′)

∣∣ ≤ (ϵ/2) · p · κG(P ′) (7)

This shows (6) holds for with probability at least 1/2. Henceforth, we condition on this
event, and prove that (5) holds for all partitions P with κG(P) ≥ βn. Consider one such
partition P satisfying κG(P) ≥ βn. Using Corollary 17, there exists a partition P ′ that is a
(⌈2/ϵ⌉, 1− ϵ/2) coarsening of P. In particular, it satisfies the following: (1) the number of
parts in P ′ is at most t = ⌈2/ϵ⌉, and (2) κG(P ′) ≥ (1 − ϵ/2) · κG(P) ≥ βn/2. Due to our
assumption, (7) holds for this P ′. Let RG(P) := cutG(P) \ cutG(P ′) denote the (multi)set
of edges of cutG(P) that do not appear in cutG(P), and note that |R| ≤ ϵ/2 · κG(P). Let
RH(P) ⊆ RG(P) denote the subset that is sampled and appears in E(H). For brevity, we
refer to RG(P) and RH(P) as R and R′, respectively. Now, consider

ITCS 2024

64:16 Exponential-Time Approximation Schemes via Compression

|cutH(P)\RH(P)| = |cutH(P ′)| = κH(P ′) ≤ (1+ ϵ/2) ·p ·κG(P ′) ≤ (1+ ϵ/2) ·p ·κG(P) (8)

|cutH(P)\RH(P)| = κH(P ′) ≥ (1−ϵ/2)·p·κG(P ′) ≥ (1−ϵ/2)2·p·κG(P) ≥ (1−ϵ)·p·κG(P) (9)

By combining (8) and (9), we obtain that (5) holds with probability at least 1/2 for all
partitions P satisfying κG(P) ≥ βn. ◀

5 Poly-space Approximation Schemes Faster than 2nnO(1)

In this section, we use the solution linearization procedures defined in the preceding section,
to obtain polynomial-space approximation schemes for Minimum Bisection and Edge
Bipartization (equivalently, Max Cut). The base case of both algorithms is the case
where the optimal solution is bounded linearly in n. Here, we exploit the fact that such
instances have a vertex cover of bounded size. In the following subsection, we first give
polynomial-space 2knO(1) algorithms for both these problems parameterized by the vertex
cover number k. We do this by working with a common generalization of both Minimum
Bisection as well as Max-Cut.

5.1 Cut Algorithms Parameterized by Vertex Cover
In this section, we consider the following problem, which generalizes (vertex-weighted)
Minimum Bisection as well as Max-Cut.

(s, c)-Cut
Input: A graph G = (V, E) with costs b : V → {0, 1, 2, . . . , B} and weights
w : E → {0, 1, . . . , W}, a vertex cover L ⊆ V ; and two integers s, c ≥ 0.
Task: Determine whether there exists a partition (V1, V2) of V , such that (1)∑

v∈V1
b(v) = s, and (2)

∑
e∈∂(V1) w(e) = c.

For this problem, we design a 2|L| · (nBW)O(1)-time algorithm that takes polynomial
space.

Let (A, B) be a partition of a subset U ⊆ V . Then, we say that (A, B) is an (p, q)-partition
of U iff the total value of the vertices in A is exactly p, and the total weight of the edges
going across (A, B) is exactly q. For U ⊆ U ′ ⊆ V (G), we say that a partition (A′, B′) of U ′

extends a partition (A, B) of U if A ⊆ A′ and B ⊆ B′.
Now we describe our algorithm FastCutbyVC(G, s, c, L) that takes as an input a graph G

with non-negative integer costs on vertices and weights on edges. s is the target cost and c is
the target weight for the cut. L ⊆ V (G) is a vertex cover of G. We iterate over all partitions
(A, B) of L. For each such partition (A, B), we run the dynamic programming algorithm,
which is described in the following paragraph, to determine whether (A, B) can be extended
to an (s, c)-partition of V (G), and return yes. Otherwise, if no partition can be extended,
then we say no.

Dynamic Programming. Let (A, B) be a given partition of a vertex cover L of V (G). Let s′

denote the cost of the vertices in A, and c′ denote the weight of the edges with one endpoint
in A and other endpoint in B. If s′ > s or c′ > c then we return no. Otherwise, we proceed as
follows. Let us arbitrarily order the vertices of I as {u1, u2, . . . , ut} and Ij = {u1, u2, . . . , uj}.

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:17

Then, we define a table T with boolean entries, where T [j, p, q] = true iff there exists a
subset I ′ ⊆ Ij such that (A ∪ I ′, B ∪ (Ij \ I ′)) is a (p, q)-partition of L ∪ Ij . We use the
following recurrence to compute the table entries.

T [j, p, q] =

true if j = 0, p = s′, q = c′

false if (j = 0) ∧ (p ̸= s′ ∨ q ̸= c′)
T [j − 1, p − b(uj), E(uj , B)] ∨ T [j − 1, p, E(uj , A)] otherwise

The final answer is given by the entry T [t, s, c]. This implies the following lemma.

▶ Lemma 20. For (G, s, c, L), FastCutbyVC(G, s, c, L) correctly solves (s, c)-Cut in time
2|L|·(nBW)O(1) time and (nBW)O(1) space. Furthermore, one can also find an (s, c)-partition
of V (G) in the same time and space.

We obtain the following corollaries.

▶ Corollary 21. Given a vertex-weighted (multi)graph G = (V, E), a vertex cover L ⊆ V for
G, such that (1) G′ has n′ ≤ n vertices, (2) the total weight of vertices is n, and (3) the
total number of edges is n2, one can find a minimum bisection of G in time 2|L| · nO(1) and
polynomial space.

▶ Corollary 22. Given a (multi)graph G = (V, E), a vertex cover L ⊆ V for G, such that
(1) G′ has n′ ≤ n vertices, and (2) the total number of edges is n2, one can find a maximum
cut in G in time 2|L| · nO(1) and polynomial space.

5.2 MINIMUM BISECTION

The framework from Section 2 can be used to obtain a 2f(ϵ)n · nO(1) time for some f(ϵ) < 1
and polynomial-space algorithm for Minimum Bisection that finds a (1 + ϵ)-approximation.
Note that although Minimum Bisection as it is usually defined does not satisfy Property
2 in Definition 6, this can be overcome by defining it as a vertex-weighted problem where
all the vertex weights are integers. The goal is to find a partition with fewest edges going
across subject to the condition that the total weights of the partitions differ by at most 1.
Moreover, every time we contract an edge while following our framework, the new vertex
gets the combined weight of both vertices. Then, the algorithm of Lemma 8 can be used for
this problem.

To this end, we work with vertex-weighted graphs (hence our motivation to define (s, c)-
Cut using weights). ExactAlgorithm simply iterates over all bisections (accounting for
weights) and returns the best solution – it is easy to see that this takes polynomial space.

However, in this section, we design an approximation algorithm for Minimum Bisection
with running time 2f(ϵ)n · nO(1) for some f(ϵ) < 1, polynomial-space, and the following
additional property. If the size of the minimum bisection is linear in n, then the algorithm
actually returns an optimal solution. Towards this, we need to use Procedure 1 (the random
contraction algorithm) along with sparsification (Lemma 19).

Let G be a graph, then bisection(G) denotes the size of the optimal solution to Minimum
Bisection on G. Our idea is to separate out the case where the optimal solution is bounded
linearly in n from the case where this is not true. In the former case, we use Lemma 8 and
in the latter case, with the knowledge of a lower bound on the size of the optimal solution,
we invoke Lemma 23 below to compute an approximate solution.

ITCS 2024

64:18 Exponential-Time Approximation Schemes via Compression

5.2.1 Sparsifying to Linear Solution Size
▶ Lemma 23. Let 0 < ϵ < 1, and τ = 24

ϵ2 ln(9
ϵ). There exists a randomized polynomial-time

algorithm that, given a graph G, and a parameter β ≥ τ , returns a subgraph H of G and a
real number r. Furthermore, if bisection(G) = βn, then the following properties hold with
high probability.
1. (1− ϵ) · bisection(G) ≤ r · bisection(H) ≤ (1 + ϵ) · bisection(G), and
2. bisection(H) ≤ τ(1 + ϵ)n, and if {V1, V2} is an optimal bisection in H, then κG(V1, V2) ≤

(1 + 2ϵ) · bisection(G).

Proof. Given the input parameters satisfying the given conditions, the algorithm defines
p := τ

β , and returns the graph G′ obtained by sampling each edge of G independently with
probability p, and r := 1/p. Now, suppose β satisfies βn = bisection(G). First, observe that
for each 2-partition P = {V1, V2} of V (G) with ||V1| − |V2|| ≤ 1, it holds that κG(P) ≥ βn.
Then, Lemma 19 (inequality (6)) implies that, with high probability, for each 2-partition P
of V (G),∣∣κH(P)− κG(P) · p

∣∣ ≤ ϵ

2 · p · κG(P) (10)

Henceforth, we assume that this event happens. Let P∗,P ′ denote the partitions correspond-
ing to a minimum bisection in G and H, respectively.

From (10), it follows that κH(P ′)/p = bisection(H)/p ≤ κH(P∗) ≤ (1 + ϵ
2) · κG(P∗) =

(1+ ϵ
2)·bisection(G). In the reverse direction, bisection(H)/p = κH(P ′)/p ≥ (1−ϵ/2)·κG(P ′) ≥

(1− ϵ/2) · bisection(G), since P ′ is a feasible solution for bisection in G. Finally, consider,

(1− ϵ/2) · pκG(P ′) ≤ κH(P ′) ≤ κH(P∗) ≤ (1 + ϵ/2) · p · κG(P∗)

From combining the first and the last term in the previous inequality, we obtain that
κG(P ′) ≤ 1−ϵ/2

1+ϵ/2 · κG(P∗) ≤ (1 + 2ϵ) · κ(P∗). ◀

▶ Theorem 24. There exists a randomized algorithm that, given a graph G and 0 < ϵ < 1,
runs in time 2(1−δϵ)n, and with high probability, returns a set S ⊆ E(G) such that |S| ≤
(1 + 2ϵ) · bisection(G). Furthermore, if bisection(G) ≤ 24

ϵ2 ln(9
ϵ), then with high probability, the

solution returned by the algorithm is an optimal solution.

Proof. In the first step, we run the algorithm in Lemma 8 with α := 24
ϵ2 ln(9

ϵ). If the algorithm
returns a solution within 2(1−δα)n steps, we keep it as a candidate solution; otherwise we
terminate the algorithm and proceed to the next step. In the second step, by trying each
value of ℓ = ⌈αn⌉, ⌈αn⌉ + 1, . . . , |E(G)|, we use the algorithm of Lemma 23, and obtain
a graph G′ and a number r. Then, we run the algorithm of Lemma 8 on each such G′.
Let α′ = α(1 + ϵ). If the algorithm in this iteration runs in time more than 2(1−δα′)n, we
terminate the algorithm and proceed with the next iteration. Otherwise, the algorithm
returns a candidate solution. Finally, we return the minimum solution found in step 1, as
well as over all iterations in step 2.

Now suppose bisection(G) ≤ αn. Then, we use a recursive procedure that is similar to
RandomContraction with some modifications. We keep contracting edges chosen uniformly
at random until the number of edges in the graph is at most αβn. Once the number of edges
in the current graph G′ is bounded by αβn (which is linear in n, since α and β are constants).
Suppose at this point, the number of vertices in the graph G′ is (1− λ)n. In this case, one
can argue using average degree arguments that the size of the minimum vertex cover in G′ is
at most n · 2αβ(1−λ)

2αβ+1−λ . Thus, we use Corollary 21 to find an optimal bisection in G′ in time

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:19

2vc(G′) ·nO(1) and polynomial space. By closely following the proof of Lemma 8, one can show
that the running time of the algorithm is bounded by O∗(cn), where c = max

{
1.49, 2

20α
1+20α

}
.

Furthermore, arguments similar to Lemma 8 imply that the algorithm returns an optimal
bisection with at least a constant probability. This concludes the proof of the theorem. ◀

Theorem 3 follows from the above by scaling ϵ← ϵ/2.

5.3 EDGE BIPARTIZATION

For a graph G, let edbip(G) denote the size of the smallest cardinality edge set S such that
G − S is bipartite. Similar to Minimum Bisection, the idea for Edge Bipartization
is to separate out the case where the optimal solution is bounded linearly in n from the
case where this is not true. In the former case, we show that this bounds the size of the
minimum vertex cover, in which case one can use fast fixed-parameter algorithms for Edge
Bipartization parameterized by the vertex cover number of the graph. In the latter case,
with the knowledge of a lower bound on the size of the optimal solution, we invoke Lemma 26
(see below) to compute an approximate solution.

We begin by using average-degree arguments to bound the minimum vertex cover size
when edbip(G) is bounded linearly in n.

▶ Lemma 25. If edbip(G) ≤ αn, then minimum vertex cover is ≤ (1+8α)
2(1+4α) n.

▶ Lemma 26. Let α > 0 be a fixed constant and G be a graph on n vertices. Then, in time
2(1−δα)n we can either return a set S ⊆ E(G), such that G−S is bipartite and edbip(G) = |S|
or conclude that edbip(G) ≥ αn.

Proof. First we find a minimum vertex cover of G in (1.22)n time [31]. Let V C(G) be a
minimum vertex cover of G with size |V C(G)| = vc(G). We consider two cases now:

Case 1: If vc(G) ≤ (1+8α)
2(1+4α) n < n, then we find minimum edge bipartization S ⊆ E(G) by

finding a maximum cut of G in 2vc(G)nO(1) = 2(1−δα)n time exactly where δα = 1
2(1+4α) .

So in this case, edbip(G) = |S|.
Here, we are using the algorithm of Corollary 22 and the fact that computing a maximum
cut in the graph is equivalent to computing a minimum solution to edge bipartization.
Case 2: If vc(G) > (1+8α)

2(1+4α) n, then using Lemma 25, we can conclude that edbip(G) >

αn. ◀

Due to the above lemma, the “interesting” regime for us is when edbip(G) is at least αn,
in which case we can rely on Lemma 18.

▶ Lemma 27. There exists a randomized polynomial time algorithm that given a graph
G, 0 < ϵ < 1, and a parameter 3 ln 9

ϵ2 ≤ β ≤ m
n , returns a graph H and a real number r.

Furthermore, if edbip(G) = βn, then the following properties hold with high probability.
1. (1− ϵ)edbip(G) ≤ r · edbip(H) ≤ (1 + ϵ)edbip(G)
2. edbip(H) ≤ τ(1 + ϵ)n and if P ′ = (V1 ⊎ V2) is an optimum edge bipartization in H, then

ιG(P ′) ≤ (1 + 4ϵ)edbip(G)

Lemma 26 and Lemma 27 combined, give us the following.

▶ Theorem 28. Let ϵ > 0 be a constant and G be a graph on n vertices. Then, in time
2(1−δϵ)n we can return a set S ⊆ E(G), such that G−S is bipartite and |S| ≤ (1+4ϵ)edbip(G).

Theorem 4 follows from the above by scaling ϵ← ϵ/2.

ITCS 2024

64:20 Exponential-Time Approximation Schemes via Compression

6 Conclusion and Discussion

In this paper, we have given a framework to design exponential-time approximation schemes
for basic graph partitioning problems. Our work points to several interesting directions for
follow-up work.

1. A natural set of questions in this direction is that of obtaining exact algorithms faster
than 2nnO(1) for Steiner k-cut and Multicut. For k-way cut, such an algorithm
has been recently obtained [23]. In fact, the same question is open for 2-CSP, also Min
2-SAT.

2. Note that our techniques lead to randomized algorithms. Obtaining deterministic versions
of our algorithms is an interesting question.

3. Could one design an appropriate “solution linearization” procedure for Multicut when
the number of requests is unbounded? If the number of requests is constant, then
Lemma 19 can be used to obtain such a procedure.

4. Our techniques (e.g., random contraction) break down for directed graphs. Could one
build a similar framework that can handle directed problems?

References
1 Josh Alman, Timothy M. Chan, and R. Ryan Williams. Faster deterministic and las vegas

algorithms for offline approximate nearest neighbors in high dimensions. In Shuchi Chawla,
editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 637–649. SIAM, 2020. doi:10.1137/1.
9781611975994.39.

2 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55. ACM,
1996. doi:10.1145/237814.237827.

3 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius:
fast subset convolution. In STOC 2007, pages 67–74, New York, 2007. ACM.

5 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

6 Ivan Bliznets, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. Largest chordal
and interval subgraphs faster than 2n. Algorithmica, 76(2):569–594, 2016. doi:10.1007/
s00453-015-0054-2.

7 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact
Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science,
pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6.

8 Chandra Chekuri, Sudipto Guha, and Joseph Naor. The steiner k-cut problem. SIAM J.
Discret. Math., 20(1):261–271, 2006. doi:10.1137/S0895480104445095.

9 Rajesh Chitnis, Fedor V. Fomin, Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan,
and Saket Saurabh. Faster exact algorithms for some terminal set problems. J. Comput. Syst.
Sci., 88:195–207, 2017. doi:10.1016/j.jcss.2017.04.003.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

https://doi.org/10.1137/1.9781611975994.39
https://doi.org/10.1137/1.9781611975994.39
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/110839229
https://doi.org/10.1137/070683933
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1137/S0895480104445095
https://doi.org/10.1016/j.jcss.2017.04.003

T. Inamdar, M. Kundu, P. Parviainen, M. S. Ramanujan, and S. Saurabh 64:21

11 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.
doi:10.1137/S0097539792225297.

12 Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Approximating MAX SAT
by moderately exponential and parameterized algorithms. Theor. Comput. Sci., 560:147–157,
2014. doi:10.1016/j.tcs.2014.10.039.

13 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

14 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–307,
2008. doi:10.1007/s00453-007-9152-0.

15 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. An
EATCS Series: Texts in Theoretical Computer Science.

16 Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res., 19(1):24–37, 1994. doi:10.1287/moor.19.1.24.

17 Edward A. Hirsch. Worst-case study of local search for max-k-sat. Discret. Appl. Math.,
130(2):173–184, 2003. doi:10.1016/S0166-218X(02)00404-3.

18 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

19 David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21–30.
ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.

20 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999. doi:
10.1145/331524.331526.

21 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/index.
php/beatcs/article/view/92.

22 Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý. Solving multicut faster than 2 n. In An-
dreas S. Schulz and Dorothea Wagner, editors, Algorithms – ESA 2014 – 22th Annual European
Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes
in Computer Science, pages 666–676. Springer, 2014. doi:10.1007/978-3-662-44777-2_55.

23 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Breaking the all subsets
barrier for min k-cut. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 90:1–90:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.90.

24 Matthias Mnich and Eva-Lotta Teutrine. Improved bounds for minimal feedback vertex sets
in tournaments. J. Graph Theory, 88(3):482–506, 2018. doi:10.1002/jgt.22225.

25 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

26 Aviad Rubinstein and Virginia Vassilevska Williams. SETH vs approximation. SIGACT News,
50(4):57–76, 2019. doi:10.1145/3374857.3374870.

27 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 410–414. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814612.

28 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

ITCS 2024

https://doi.org/10.1137/S0097539792225297
https://doi.org/10.1016/j.tcs.2014.10.039
https://doi.org/10.1145/3284176
https://doi.org/10.1007/s00453-007-9152-0
https://doi.org/10.1287/moor.19.1.24
https://doi.org/10.1016/S0166-218X(02)00404-3
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://dl.acm.org/citation.cfm?id=313559.313605
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1007/978-3-662-44777-2_55
https://doi.org/10.4230/LIPIcs.ICALP.2023.90
https://doi.org/10.1002/jgt.22225
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/3374857.3374870
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1016/j.tcs.2005.09.023

64:22 Exponential-Time Approximation Schemes via Compression

29 Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization – Eureka, you shrink!, volume 2570 of LNCS, pages 185–207. Springer-Verlag,
Berlin, 2003.

30 Gerhard J. Woeginger. Space and time complexity of exact algorithms: Some open problems.
In IWPEC 2004, volume 3162 of LNCS, pages 281–290. Springer-Verlag, Berlin, 2004.

31 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf.
Comput., 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

https://doi.org/10.1016/j.ic.2017.06.001

	1 Introduction
	2 Our Framework: Compression Procedure 1
	2.1 Sparse Algorithm
	2.2 Random Contraction for Bounding the Number of Edges

	3 Applications of our Framework
	3.1 Property 1: Exact Algorithms for our Problems
	3.1.1 Edge Multicut
	3.1.2 Steiner k-Cut

	4 Our Framework: Compression Procedure 2
	4.1 Notation and Basic Properties
	4.2 Properties of Solution Linearization

	5 Poly-space Approximation Schemes Faster than 2^{n}n^{{O}(1)}
	5.1 Cut Algorithms Parameterized by Vertex Cover
	5.2 MINIMUM BISECTION
	5.2.1 Sparsifying to Linear Solution Size

	5.3 EDGE BIPARTIZATION

	6 Conclusion and Discussion

