
FPT Approximation for Capacitated Sum of Radii
Ragesh Jaiswal #

CSE, IIT Delhi, India

Amit Kumar #

CSE, IIT Delhi, India

Jatin Yadav1 #

CSE, IIT Delhi, India

Abstract
We consider the capacitated clustering problem in general metric spaces where the goal is to identify k

clusters and minimize the sum of the radii of the clusters (we call this the Capacitated k-sumRadii
problem). We are interested in fixed-parameter tractable (FPT) approximation algorithms where
the running time is of the form f(k) · poly(n), where f(k) can be an exponential function of k

and n is the number of points in the input. In the uniform capacity case, Bandyapadhyay et al.
recently gave a 4-approximation algorithm for this problem. Our first result improves this to an FPT
3-approximation and extends to a constant factor approximation for any Lp norm of the cluster radii.
In the general capacities version, Bandyapadhyay et al. gave an FPT 15-approximation algorithm.
We extend their framework to give an FPT (4 +

√
13)-approximation algorithm for this problem.

Our framework relies on a novel idea of identifying approximations to optimal clusters by carefully
pruning points from an initial candidate set of points. This is in contrast to prior results that rely
on guessing suitable points and building balls of appropriate radii around them.

On the hardness front, we show that assuming the Exponential Time Hypothesis, there is a
constant c > 1 such that any c-approximation algorithm for the non-uniform capacity version of this

problem requires running time 2Ω
(

k
polylog(k)

)
.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Approximation algorithm, parameterized algorithm, clustering

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.65

Related Version Full Version: https://arxiv.org/abs/2401.06714

Funding Ragesh Jaiswal: The author acknowledges the support from the SERB, MATRICS grant.

1 Introduction

Center-based clustering problems are important data processing tasks. Given a metric D on
a set of n points X and a parameter k, the goal here is to partition the set of points into k

clusters, say C1, . . . , Ck, and assign the points in each cluster to a corresponding cluster center,
say c1, . . . , ck, respectively. Some of the most widely studied objective functions are given by
the k-center, the k-median and the k-means problems. The k-center problem seeks to
find a clustering such that the maximum radius of a cluster is minimized. Here, radius of
a cluster is defined as the farthest distance between the center of the cluster and a point
in the same cluster. Another important center based objective function is the k-sumRadii
problem where the goal is to minimize the sum of the radii of the k clusters. Besides being
an interesting problem in its own right, the k-sumRadii problem is sometimes preferred
over the k-center problem because it avoids the so-called dissection effect: an optimal
k-center solution may place several pairs of close points in two different clusters ([12, 6]).

1 corresponding author

© Ragesh Jaiswal, Amit Kumar, and Jatin Yadav;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 65; pp. 65:1–65:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rjaiswal@cse.iitd.ac.in
https://orcid.org/0009-0002-4475-0922
mailto:amitk@cse.iitd.ac.in
https://orcid.org/0000-0002-3965-6627
mailto:csy237549@cse.iitd.ac.in
https://orcid.org/0009-0003-5022-3878
https://doi.org/10.4230/LIPIcs.ITCS.2024.65
https://arxiv.org/abs/2401.06714
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 FPT Approximation for Capacitated Sum of Radii

The problem is known to be NP-hard even in metrics defined by weighted planar graphs and
in metrics of constant doubling dimension [10]. Gibson et al. [10] gave an exact randomised
algorithm with running time nO(log n·log ∆), where ∆ denotes the aspect ratio (i.e., max. to
min. interpoint distance). They also gave a randomised (1 + ε)-approximation algorithm
with running time nO(log n·log n

ε). Interestingly, there is a polynomial time algorithm [11] for
a special case of points on a plane, where the problem is to cover points using disks.

The k-sumRadii problem was first considered from the approximation algorithms per-
spective by Doddi et al. [8]. They gave a bi-criteria logarithmic approximation algorithm
with O(k) clusters for k-sumRadii. Charikar and Panigrahy [5] improved this result to give
the first constant factor 3.504-approximation algorithm for this problem. Using coreset based
techniques of Bădoiu et al. [4], one can obtain a (1 + ε)-approximation 2O(k log k

ε2) · dnO(1)-time
algorithm in the Euclidean setting. Note that all the works mentioned above have been on
the uncapacitated version of the problem where there is no upper limit on the number of
points that can be assigned to a center.

In this paper, we consider the Capacitated k-sumRadii problem, where each data point
p also specifies a capacity Up – this is an upper bound on the size of a cluster centered at p. It
is worth noting that we only consider the so-called hard capacitated setting: multiple centers
cannot be opened at the same point. Capacitated versions of clustering problems have been
well-studied in the literature and arise naturally in practical settings. Although constant
factor approximation algorithm is known for the Capacitated k-center problem, obtaining
a similar result for the Capacitated k-median remains a challenging open problem.

Motivated by the above discussion, we consider the Capacitated k-sumRadii problem
in the FPT setting. We seek algorithms which have constant approximation ratio but their
running time can be of the form f(k)poly(n), where f(k) can be an exponential function
of k (and hence, such algorithms are FPT with respect to the parameter k). Inamdar and
Vardarajan [14] had considered this problem in the special case of uniform capacities, i.e.,
each point in the input has the same capacity. They gave a 28-approximation algorithm
with running time 2O(k2)poly(n). This was subsequently improved by Bandyapadhyay et
al. [1] who gave an FPT (4 + ε)-approximation algorithm for the uniform capacity setting.
The running time of their algorithm crucially uses the fact that objective function is the
sum, i.e., the L1-norm, of the radii of the clusters. Our first result improves this to an
FPT (3 + ε)-approximation algorithm. Further, our result extends to a constant factor
approximation ratio for any Lp norm, where p ≥ 1.

Bandyapadhyay et al. [1] also considered the general (i.e., non-uniform capacities) Ca-
pacitated k-sumRadii problem and gave an FPT (15 + ε)-approximation algorithm for this
problem. Their argument also extends to general Lp norm. However, it turns out that one
of the arguments in their proof is incomplete and requires a deeper argument. Motivated by
our insights, we refine and extend their proof which not only corrects this step but also yields
a better FPT (9 + ε)-approximation algorithm. A careful parameter balancing improves this
to about 7.6-approximation. Our result also extends to any Lp norm of cluster radii, where
p ≥ 1.

Our final result shows that there exists a constant C > 1 such that, assuming ETH, any C-
approximation algorithm for Capacitated k-sumRadii (in the non-uniform capacity setting)
must have exponential running time. This also rules out polynomial time approximation
algorithms with approximation ratio better than C.

1.1 Our Results and Techniques
In this section, we give a more formal description of our results. Our first result is concerned
with the Capacitated k-sumRadii problem with uniform capacities. The first few steps in
our algorithm are analogous to those of [1]. Suppose we can guess the radii of the clusters in

R. Jaiswal, A. Kumar, and J. Yadav 65:3

an optimal solution, say r⋆
1 , . . . , r⋆

k. Let C⋆
i denote the set of points in an optimal cluster.

We call a cluster large if it has at least U/k3 points (where U denotes the uniform capacity
at each point). Again, we can guess the radii of the optimal large clusters in FPT time.
Assume that there are kL large clusters with radii r⋆

1 , . . . , r⋆
kL

. It is not hard to show that
we can sample one point pi from each large cluster with reasonably high probability. Thus,
for each large cluster of radius say r⋆

i , we can find a ball Bi of radius 2r⋆
i containing it – the

center of such a ball would be the sampled point pi as above. Now suppose the union of all
of the balls Bi, i ∈ [k⋆

L], covers the entire set of points (although this is a special scenario,
it captures the non-triviality of the algorithm). At this moment, we cannot assign all the
points to the chosen centers pi because of the capacity constraint. The approach of [1]
is the following: consider a graph where the vertex set corresponds to the small optimal
balls (i.e., C⋆

i , i > k⋆
L) and the balls Bi, i ∈ [k⋆

L] constructed by our algorithm. We have an
edge between two vertices here if the corresponding sets intersect. Since this is a graph on
k vertices, we can guess this graph. Now for each connected component in this graph, we
can have a single ball whose radius is the sum of the radii of the participating balls in this
graph. It is not hard to show that such large radii balls can cover all the small balls and
hence can account for the capacity deficit due to the balls Bi, i ∈ [k⋆

L]. Thus one incurs
an additional 2-factor loss in the approximation ratio here, resulting in a 4-approximation
algorithm. Further, the fact that the algorithm chooses a radius which is the sum of several
optimal radii shows that this approach does not extend to Lp norm of radii.

Our approach is the following: the union of the balls Bi selected by our algorithm covers
all the points. We can show that a small extension of these balls, say B′

i for each Bi, has
the property that they can cover all the points (because even the original balls Bi has this
property) and each such ball is assigned only slightly more than U points. Finally, we use
a subtle matching based argument to show that the slightly extra points in each of these
extended balls B′

i can be covered by a ball whose radius matches the radius of a unique small
optimal ball. This allows us to get a better 3-approximation algorithm, and our approach
extends to Lp norm of cluster radii as well. Thus, we get the following result:

▶ Theorem 1. There is a randomized (3 + ε)-approximation algorithm for Capacitated
k-sumRadii with uniform capacities, where ε > 0 is any positive constant. For p ≥ 1, there
is a randomized (1 + ε)(22p−1 + 1)1/p-approximation algorithm when the objective function
is the Lp norm of the cluster radii. The expected running time of both the algorithms is
2O(k log(k/ε)) · poly(n).

We now consider the general Capacitated k-sumRadii problem with non-uniform
capacities. Again, our initial steps are similar to those in [1] – we initially guess the optimal
cluster radii r⋆

1 , . . . , r⋆
k; and greedily find a set of balls B1, . . . , Bℓ, where ℓ ≤ k and these

balls cover the entire set of points. Further, each of the balls Bi is supposed to also contain
the corresponding optimal cluster C⋆

i . At this moment, we need to find some more balls
which can be used to satisfy the capacity constraints, i.e., balls which are approximations
to C⋆

ℓ+1, . . . , C⋆
k respectively. Bandyopadhyay et al. [1] approached this problem as follows:

for an index i ∈ [k] \ [ℓ], one can guess the the set of balls Bj , j ∈ [ℓ] that intersect C⋆
i . If

any of these balls Bj have smaller radius than r⋆
i , we can use a enlarged version B′

j of Bj to
cover C⋆

i and treat this as the ball Bi. The radius of B′
j can be charged to r⋆

i . Therefore, the
non-trivial case arises when r⋆

i is much less than the radii of each of the balls Bj intersecting
C⋆

i . In such a case, they realized that C⋆
i is contained in the intersection of the balls B′

j

defined above. Therefore, they maintain a set of replacement balls, which are mutually
disjoint, and are supposed to contain at least the same number of points as the corresponding
cluster C⋆

i .

ITCS 2024

65:4 FPT Approximation for Capacitated Sum of Radii

Ensuring that one can maintain such a collection of disjoint replacement balls that are
also disjoint with some desired subset of optimal balls turns out to be non-trivial. In fact, we
feel that the proof of Lemma 14 in [1], without a non-trivial fix, has a technical flaw: while
inserting a new replacement ball in the set B2, it may happen that the replacement intersects
with an optimal ball with index in I2. 2 Our algorithm uses a more fine grained approach:
we first identify a set Pj of points which could contain the desired replacement ball (this step
is also there in [1]). Now we guess the set Z of optimal clusters which could intersect this
candidate set Pj . The algorithm then runs over several iterations, where in each iteration it
shrinks the candidate set of points Pj containing the replacement ball, and hence the list Z

(see Algorithm 5). This process terminates when it either identifies a replacement ball or a
ball containing a cluster C⋆

r . To get a better approximation ratio, we also maintain several
set of balls with varying properties. We prove the following result:

▶ Theorem 2. There is a randomized (4+
√

13+ε)-approximation algorithm for Capacitated
k-sumRadii, where ε > 0 is any positive constant. For p ≥ 1, there is a randomized
(4 +

√
13 + ε)-approximation algorithm when the objective function is the Lp norm of the

cluster radii. The expected running time of both the algorithms is 2O(k3+k log(k/ε)) · poly(n).

Our final result shows that the exponential dependence on running time is necessary
if we want a c-approximation algorithm, where c is a constant larger than 1. This result
assumes that the Exponential Time Hypothesis holds and uses a reduction from Vertex
Cover on bounded degree graphs. A nearly exponential time lower bound for approximating
Vertex Cover on such graphs follows from [7]. More formally, we have the following result:

▶ Theorem 3. Assume that ETH holds. Then there exist positive constants c1, c2, where
c1 > 1, such that any algorithm for Capacitated k-sumRadii with running time at most
2c2k/polylogk · poly(n) must have approximation ratio at least c1.

Due to space limitations, we defer the formal proof to the full version of the paper.

1.2 Preliminaries
We define the Capacitated k-sumRadii problem. An instance I of this problem is specified
by a set of n points P in a metric space, a parameter k and capacities Up for each point
p ∈ P . A solution to such an instance needs to find a subset C ⊆ P , denoted “centers”, such
that |C| = k. Further, the solution assigns each point in P to a unique center in C such
that for any c ∈ C, the total number of points assigned to it is at most its capacity Uc. It
is worth noting that we are interested in the so-called “hard” capacity version, where one
cannot locate multiple centers at the same point.

Assuming C = {c1, . . . , ck}, let Cj denote the set of points assigned to the center cj by
this solution. We refer to Cj as the cluster corresponding to Cj and define its radius rj as
maxp∈Pj d(p, cj). The goal is to find a solution for which the sum of cluster radii is minimized,
i.e., we wish to minimize

∑k
j=1 rj . In the Lp-norm version of this problem, the specification

2 In the proof of Lemma 14 in [1] (Lemma 2.5 in the arXiv version), the last line of the first paragraph
reads “If Bx does not intersect any ball B⋆

i′ with i′ ∈ [k] \ (I1 ∪ I2), then by the above discussion we
have that setting Bi = Bx, (I1, I2 ∪ {i}, B1, B2 ∪ {Bi}) is a valid configuration.” However, by doing so,
one cannot rule out the intersection of Bi with a ball B⋆

i′ with i′ ∈ I2, contradicting the fourth invariant
property of a valid configuration: “For every i ∈ I2 and s /∈ I1, B⋆

s and Bi do not intersect.” It is tricky
to note why this is the case. They indeed rule out the intersection of B⋆

i with any ball in B2, but they
do not ensure that Bi does not intersect an optimal ball B⋆

s corresponding to the index s ∈ I2.

R. Jaiswal, A. Kumar, and J. Yadav 65:5

of an instance remains as above, but the objective function is given by
(∑k

j=1 rp
j

)1/p

. Given
an instance I as above, let OPT(I) denote an optimal solution to I. Let r⋆

1 , . . . , r⋆
k be the

radii of the k clusters in this optimal solution. By a standard argument, we can show that
one can guess close approximations to these radii.

▶ Lemma 4 ([1]). Given a positive constant ε > 0, there is an O(2O(k log(k/ε)) · n3) time
algorithm that outputs a list L, where each element in the list is a sequence (r1, . . . , rk) of non-
negative reals, such that the following property is satisfied: there is a sequence (r1, . . . , rk) ∈ L
such that for all j ∈ [k], rj ≥ r⋆

j and
∑k

j=1 rj ≤ (1 + ε)
∑k

j=1 r⋆
j . Further, the size of the list

L is O(2O(k log(k/ε)) · n2).

Given a point x and non-negative value r, let B(x, r) denote the ball of radius r around
x, i.e., B(x, r) := {p ∈ P : d(p, x) ≤ r}, where d(a, b) denote the distance between points a

and b. For a positive integer r, we shall use [r] to denote the set {1, . . . , r}.

1.3 Related Work

In this section, we mention a few related research works on the sum-of-radii problem that
were not discussed earlier in the introduction. Note that most of the work has been for the
uncapacitated case. Behsaz and Salavatipour [3] give an exact algorithm for the sum of radii
problem in metrics induced by unweighted graphs for the case when singleton clusters are
disallowed. Friggstad and Jamshidian [9] give a 3.389-approximation algorithm for the sum
of radii problem in general metrics. This is an improvement over the 3.504 approximation
of Charikar and Panigrahy [5], the first constant factor approximation algorithm for this
problem. Bandyapadhyay and Varadarajan [2] discuss the variant of the problem where
the objective function is the sum of the αth power of the radii. The algorithm can output
(1 + ε)k centers in the variant they study. Henzinger et al. [13] give a constant approximation
algorithm for metric spaces with bounded doubling dimension in the dynamic setting where
points can appear and disappear. There also have been works for special metrics such as
two-dimensional geometric settings (e.g., [10]). The related problem of sum-of-diameters has
also been studied (e.g., [8, 3]).

We now give an outline of rest of the paper. In Section 2, we prove Theorem 1, i.e., we
present an FPT approximation algorithm for Capacitated k-sumRadii in the uniform
capacity case. The more general non-uniform capacity case is considered in Section 3, where
we prove Theorem 2.

2 Uniform Capacities

In this section, we consider the special case of Capacitated k-sumRadii when all the
capacities Up are the same, say U . We give some notation first. Fix an optimal solution O
to an instance I given by a set of n points P . Let c⋆

1, . . . , c⋆
k be the k centers chosen by the

optimal solution. For an index j ∈ [k], let C⋆
j denote the set of points assigned to c⋆

j by this
solution (i.e., the cluster corresponding to the center c⋆

j). Let r⋆
1 , . . . , r⋆

k be the radii of the
corresponding clusters C⋆

1 , . . . , C⋆
k . We also fix a parameter γ := 1

k2 .

▶ Definition 5. Call the optimal cluster C⋆
j large if |C⋆

j | ≥ γU
k ; otherwise call it small. Let

k⋆
L denote the number of large clusters in the optimal solution O.

ITCS 2024

65:6 FPT Approximation for Capacitated Sum of Radii

Algorithm 1 An iteration of the algorithm for Capacitated k-sumRadii when all
capacities are U .

1.1 Input: Set P of n points, parameter k, k⋆
L, radii r1, . . . , rk, capacity U .

1.2 Initialize a set B to empty.
1.3 Initialize an index set I to {1, . . . , k⋆

L}.
1.4 for j = 1, . . . , k⋆

L do
1.5 Choose a point cj ∈ P uniformly at random.
1.6 Add Bj := B(cj , 2rj) to B .
1.7 while there is a point x not covered by the balls in B do
1.8 (If I = [k], output fail).
1.9 Choose an index j ∈ [k] \ I uniformly at random.

1.10 Add Bj := B(x, 2rj) to B and add j to I and define cj := x.
1.11 Initialize sets Tj ⊂ [k], j ∈ I, to emptyset.
1.12 for each i ∈ [k] \ I do
1.13 Choose an index j ∈ I uniformly at random and add i to Tj .
1.14 Define I ′ := {j ∈ I : |Tj | > 0}.
1.15 for each j ∈ I do
1.16 if j ∈ I ′ then
1.17 Define B′

j := B(x, 2rj + 2Rj) and U ′
j := U(1 + γ), where Rj := maxi∈Tj ri.

1.18 else
1.19 Define B′

j := Bj , U ′
j = U.

1.20 Find disjoint subsets Gj ⊆ B′
j for each j ∈ I such that |Gj | ≤ U ′

j and P = ∪jGj .
1.21 (terminate with failure if such subsets Gj do not exist)
1.22 Let I ′′ ⊆ I ′ be the index set consisting of indices j such that |Gj | > U .
1.23 Call Redistribute({Gj : j ∈ I ′′}, {cj : j ∈ I}, {rj : j ∈ [kL]}).
1.24 (terminate with failure if Redistribute outputs fail)
1.25 Let {(wj , Aj) : j ∈ I ′′} be the clustering returned by Redistribute.
1.26 Output {(cj , Gj) : j ∈ I \ I ′′} ∪ {(cj , Gj \ Aj) : j ∈ I ′′} ∪ {(wj , Aj) : j ∈ I ′′}.

Assume without loss of generality that the clusters C⋆
1 , . . . , C⋆

k⋆
L

are large (and the rest are
small). Using Lemma 4, we can assume that we know radii r1, . . . , rk satisfying the condition
that rj ≥ r⋆

j for all j ∈ [k] and
∑

j rj ≤ (1 + ε)
∑

j r⋆
j . By cycling over the k possible choices

of k⋆
L, we can also assume that we know this value. The algorithm is given in Algorithm 1. It

begins by guessing the center cj of each large optimal cluster C⋆
j and defines Bj as the ball

of radius 2rj around cj (line 1.4). The intuition is that cj may not be equal to the center c⋆
j

but will lie inside the cluster C⋆
j with reasonable probability, and in this case, the ball Bj

will contain C⋆
j . Let us assume that this event happens. Now the algorithm adds some more

balls to the set B (that maintains the set of balls constructed so far). Whenever there is a
point x that is not covered by the balls in B, we guess the index j of the optimal cluster C⋆

j

containing x (line 1.9). We add a ball of radius 2rj around x to B: again the intuition is
that if x ∈ C⋆

j , then this ball contains C⋆
j .

The index set I maintains the set of indices j for which we have approximation to C⋆
j

in B. At this moment, the set of balls in B cover the point set P but we are not done yet
because we need to assign points to balls while maintaining the capacity constraints. Now,
for each index i /∈ I, we guess the index of a ball Bj ∈ B such that Bj intersects C⋆

i (such a

R. Jaiswal, A. Kumar, and J. Yadav 65:7

ball must exist since the balls in B cover P , and in case there are more than one candidates
for Bj , we pick one arbitrarily). We add the index i to a set Tj (line 1.13). Now we define I ′

as the subset of I consisting of those indices j for which Tj is non-empty (line 1.14). Now, for
each j ∈ I ′, let Rj denote the maximum radius of any of the balls corresponding to Tj . We
replace Bj by a larger ball B′

j by extending the radius of Bj by 2Rj – this ensures that B′
j

contains C⋆
i for any i⋆ ∈ Tj . Further we allow B′

j to have U ′
j := U(1 + γ) points assigned to

it (line 1.17). For indices j ∈ I \ I ′, we retain B′
j , U ′

j as Bj , Uj respectively (line 1.19). Now,
we find a subset Gj of each ball B′

j such that |Gj | ≤ U ′
j and ∪jGj covers all the points P

(line 1.20). We shall show such a subset exists if all our guesses above our correct. Otherwise
we may not be able to find such sets Gj ; and in this case the iteration terminates with failure.
The intuition is that one feasible choice of Gj is as follows: for each j ∈ I \ I ′, Gj := C⋆

j ,
whereas for an index j ∈ I ′, we set Gj to be the union of C⋆

j and all the clusters C⋆
i , where

i ∈ Tj . Since each small cluster has at most γU/k points, the total number of points in the
latter clusters is at most γU . But we had set U ′

j to (1 + γ)U . It is also easy to check that we
can find such sets Gj by a simple b-matching formulation. Now we consider those subsets
Gj for which |Gj | > U (this can only happen if j ∈ I ′) and let I ′′ denote the corresponding
index set (line 1.22). Finally, we call the procedure Redistribute in line 1.23 to redistribute
the points in Gj , j ∈ I ′′ such that each such set has at most U points. Note that so far we
have only constructed |I| balls in B and we can still add k − |I| extra balls. The procedure
Redistribute returns these extra balls – we finally return these balls and remove suitable
points from Gj , j ∈ I ′′ (line 1.20). We shall show later that |I ′′| is less than kL. Again, note
that if our random choices were bad, it is possible that Redistribute returns failure, in
which case the iteration ends with failure.

Algorithm 2 Algorithm Redistribute.

2.1 Input: (G1, . . . , Gh), where Gi’s are pair-wise disjoint subsets of P , where |Gi| > U

for all i; a subset C of P , and a set R = {r1, . . . , rkL
} of radii.

2.2 for each ordered subset (rσ1 , . . . , rσh
) of R do

2.3 Construct a bipartite graph H = (VL, VR, E) as follows.
2.4 VL has one vertex vi for each Gi, i ∈ [h]. VR is defined as P \ C.
2.5 Add an edge (vi, w), vi ∈ VL, w ∈ VR, iff |B(w, rσi

) ∩ Gi| ≥ γU .
2.6 if H has a matching that matches all vertices in VL then
2.7 Suppose vi is matched with wi ∈ R for each i ∈ [h].
2.8 Let Ai be a subset of B(wi, rσi) ∩ Gi such that |Ai| = γU .
2.9 Return {(wi, Ai) : i ∈ [h]} (and end the procedure).

2.10 Return fail.

We now describe the algorithm Redistribute in Algorithm 2. The procedure receives
three parameters: the first parameter is a class of subsets {G1, . . . , Gh} which are mutually
disjoint. These correspond to the sets Gi, i ∈ I ′′ constructed in Algorithm 1 (and hence
h = |I ′′|). The second parameter is a set C, which corresponds to the set of centers chosen
by Algorithm 1 (till the call to this procedure) and the third parameter is a set of radii
{r1, . . . , rkL

} which correspond to the radii of the large clusters. We shall ensure that kL ≥ h.
Recall that the goal is to identify balls which can take away γU points from each of the sets
Gi. The radii of these balls shall come from the set R := {r1, . . . , rkL

}, and we shall show
that we can associate a unique radius with each of the desired balls. Thus, the procedure tries
out all ordered subsets of size h of R (line 2.2). For each such ordered subset (rσ1 , . . . , rσh

),

ITCS 2024

65:8 FPT Approximation for Capacitated Sum of Radii

we try to remove γU points from each subset Gi by using a suitable ball of radius rσi . Thus,
we construct a bipartite matching instance as follows: the left side has one vertex for each
subset Gi and the right side has one vertex for each potential center of a ball (line 2.4). Now,
we add an edge between a vertex vi corresponding to Gi on left and a vertex w on the right
side if Gi ∩ B(w, rσi

) has size at least γU (line 2.5). If this graph has a perfect matching,
then we identify the desired subsets Ai ⊆ Gi of size γU (line 2.8) and return these.

2.1 Analysis
In this section, we prove correctness of the algorithm. We shall show that with non-zero
probability the algorithm outputs a 3-approximate solution. We first define the set of
desirable events during the random choices made by Algorithm 1:

E1: For each j ∈ [k⋆
L], the point cj chosen in line 1.6 of Algorithm 1 belongs to the cluster

C⋆
j .

E2: For each point x chosen in line 1.7 of Algorithm 1, the index j chosen in line 1.9
satisfies the property that x ∈ B⋆

j . Further, the algorithm does not output fail in line 1.8.
E3: For each index i considered in line 1.12 in Algorithm 1, the index j ∈ I selected in
line 1.13 satisfies the property that Bj ∩ B⋆

i is non-empty.
E4: The set of centers {cj : j ∈ I} selected by Algorithm 1 is disjoint from the set of
optimal centers of the large balls, i.e., {c⋆

j : j ∈ [k⋆
L]}.

We first show that all of these desirable events happen with non-zero probability.

▶ Lemma 6. Assuming n ≥ 2k5, all the events E1, E2, E3, E4 together happen with probability
at least 1

kO(k) .

Proof. We first check event E4 ∩ E1. Consider an iteration j of the for loop in line 1.4.
Conditioned on the choices in the previous j −1 iterations, the probability that cj ∈ C⋆

j \{c⋆
j :

j ∈ [k⋆
L]} is at least |C⋆

j |−k

n . Since C⋆
j is large, we know that |C⋆

j | ≥ γU/k ≥ n/k4 (since
γ = 1/k2 and U ≥ n/k). Using the fact that n ≥ 2k5, we get

Pr[E1 ∩ E4] = Pr[cj ∈ C⋆
j \ {c⋆

j : j ∈ [k⋆
L]}, for all j = 1, . . . , k⋆

L] ≥
(

1
2k4

)k

= 1
2kk4k

Now we consider E2. We condition on the coin tosses before the while loop in line 1.7
such that E1 ∩ E4 occur. This implies that for every j ∈ [k⋆

L], C⋆
j ⊆ Bj .

The probability that we correctly guess the index j such that the cluster C⋆
j contains x

(in line 1.7) is 1/k. Since there can be at most k iterations of the while loop, the probability
that this guess is correct for each point x chosen in line 1.7 is at least 1/kk. Further, if this
guess is always correct, then Bj contains C⋆

j for all j ∈ I. This shows that if I becomes equal
to [k], then the balls Bj would cover P and hence, we won’t output fail. Thus, we see that

Pr[E2|E1 ∩ E4] ≥ 1/kk.

Finally we consider E3. Again condition on the events before the for loop in line 1.12
and assume that E1 ∩ E2 ∩ E4 occur. There are at most k iterations of the for loop. Since
∪j∈IBj = P , there must exist an index j ∈ I such that Bj intersects C⋆

i . Therefore, the
probability that we guess such an index j in line 1.13 is at least 1/k. Thus, we get

Pr[E3|E1 ∩ E2 ∩ E4] ≥ 1/kk.

Combining the above inequalities, we see that Pr[E1 ∩ E2 ∩ E3 ∩ E4] ≥ 1
2kk6k . This implies the

desired result. ◀

R. Jaiswal, A. Kumar, and J. Yadav 65:9

We now show that the sets Gj as required in line 1.20 exist and can be found efficiently.

▷ Claim 7. Assume that the events E1, . . . , E4 occur. Let B′
j , U ′

j be as defined in lines 1.15–
1.19 of Algorithm 1. Then there exist mutually disjoint subsets Gj ⊆ B′

j for each j ∈ I such
that P = ∪j∈IGj and |Gj | ≤ U ′

j for each j ∈ I. Further, the subsets Gj can be found in
poly(n) time.

Proof. Since events E1, E2, E3 occur, it is easy to check that for each j ∈ I, B′
j contains

C⋆
j ∪

⋃
h∈Tj

C⋆
h. Further, if Tj is non-empty, then

|C⋆
j | +

∑
h∈Tj

|C⋆
h| ≤ U(1 + γ),

because each of the clusters C⋆
h is small. Thus, one feasible choice for the subsets Gj

is as follows: for each j ∈ I such that Tj is empty, define Gj = C⋆
j , otherwise define

Gj = C⋆
j ∪

⋃
h∈Tj

C⋆
h. This proves the existence of the desired subsets Gj . It is easy to check

that such a collection of subsets can be found by standard flow-based techniques, and hence,
would take poly(n) time. ◁

We now show that the Redistribute outputs the desired subsets.

▶ Lemma 8. Assume that the events E1, . . . , E4 occur. Then Algorithm 2 does not fail.

Proof. We first consider the following bipartite graph H ′ = (V ′
L, V ′

R, E′) (this is for the
purpose of analysis only): the vertex set V ′

L has one vertex vi for each of subsets Gi, and
hence, is same as the set VL considered in line 2.4 of Algorithm 2. V ′

R has a vertex wj for
each optimal cluster C⋆

j , j ∈ k⋆
L. We add an edge (vi, wj) iff |Gi ∩ C⋆

j | ≥ γU . We claim that
there is a matching in this graph that matches all the vertices in V ′

L. Suppose not. Then
there is a subset X of V ′

L such that |N(X)| < |X|, where N(X) denotes the neighborhood of
X. Now,∑

i∈X

|Gi| =
∑
i∈X

∑
j∈[k]

|C⋆
j ∩ Gi| =

∑
j∈[k]

∑
i∈X

|C⋆
j ∩ Gi|

≤
∑

j∈N(X)

|C⋆
j | +

∑
j∈[k]\N(X)

∑
i∈X

γU

≤ |N(X)|U + k2γU

≤ U(|X| − 1) + U = U |X|,

where the second inequality uses the fact that if i ∈ [k] \ N(X), then |C⋆
j ∩ Gi| ≤ γU . Indeed,

if C⋆
j is small, this follows from the observation that |C⋆

j | ≤ γU . Otherwise, j ∈ [k⋆
L] and

hence we have a vertex wj corresponding to C⋆
j in H ′. Since (vi, wj) is not an edge in H ′, it

follows that C⋆
j ∩ Gi has size at most γU . Now we get a contradiction because for each i,

|Gi| > U and hence,
∑

i∈X |Gi| > U |X|
Thus we have shown that H ′ has a matching that matches all the vertices in V ′

L – let
wσi be the vertex in V ′

R which is matched to vi ∈ V ′
L by this matching. Now consider the

iteration of the for loop in line 2.2 in Algorithm 2 where the sequence of radii is given by
(rσ1 , . . . , rσh

). We claim that the graph H constructed in this iteration (in line 2.4) has a
matching that matches all the vertices in VL. Indeed, we can match the vertex vi ∈ L with
c⋆

σi
because γU ≤ |Gi ∩ C⋆

σi
| ≤ |Gi ∩ B(c⋆

σi
, rσi

)| – we use the fact that the event E4 occurred,
and hence, c⋆

σi
∈ C.

ITCS 2024

65:10 FPT Approximation for Capacitated Sum of Radii

Now, let M be the matching found in line 2.6 and suppose vi is matched with a vertex
wi ∈ R. By definition of H, B(wi, rσi

) ∩ Gi has size at least γU . Thus, we can find the
desired subset Ai in line 2.8. Note that the subsets Ai are mutually disjoint since the sets Gi

are mutually disjoint. Further the points wi, i ∈ H, are also distinct since M is a matching.
Thus, the procedure Redistribute returns h clusters, each containing γU points. ◀

It follows from the results above that the set of k clusters returned by Algorithm 1 in
line 1.26 cover all the points in P and satisfy the capacity constraints. We now consider the
objective function value of this solution.

▶ Lemma 9. Assume that the events E1, . . . , E4 occur. Then the total sum of the radii of
the clusters returned by Algorithm 1 is at most 3

∑
j∈[k] rj. Further, for any p ≥ 1, the

total Lp norm of the radii of the clusters returned by this algorithm is at most (22p−1 +

1)1/p
(∑

j∈[k] rp
j

)1/p

.

Proof. For each j ∈ I, the ball Bj constructed during lines 1.4–1.10 has radius at most 2rj .
Now, the ball B′

j constructed during the for loop in line 1.15 has radius at 2rj +
∑

h∈Tj
2rh.

Therefore, the total radii of the balls in B′
j is at most

∑
j∈I

2rj +
∑

h∈Tj

2rh

 ≤ 2
∑
j∈[k]

rj ,

where the inequality follows from the fact that sets {j} ∪ Tj , where j ∈ I, are mutually
disjoint. Finally, the total sum of the radii of the sets Ai returned by Redistribute is at
most

∑
j∈[k] rj . This proves the first statement in the Lemma.

Further, the Lp-norm of the radii of the clusters output by this algorithm is at most∑
j∈I

(2rj + 2Rj)p +
∑
j∈[k]

rp
j ≤

∑
j∈[k]

22p−1rp
j +

∑
j∈[k]

rp
j ,

where Rj is as defined in line 1.17 of Algorithm 1. This completes the proof of the desired
result. ◀

Thus, with probability at least 1/kO(k) (Lemma 6), Algorithm 1 outputs a feasible solution
with approximation guarantees as given by Lemma 9. Repeating Algorithm 1 kO(k) times
and using Lemma 4 yields Theorem 1.

3 Non uniform capacities

In this section, we consider the general case of Capacitated k-sumRadii when points can
have varying capacities. Recall that for a point p, Up denotes the capacity of p. We first give
an informal description of the algorithm. Let r⋆

1 , . . . , r⋆
k denote the radii of the k optimal

clusters C⋆
1 , . . . , C⋆

k . Let c⋆
1, . . . , c⋆

k be the centers of these clusters respectively. Let B⋆
j denote

the ball B(c⋆
j , r⋆

j) – note that C⋆
j ⊆ B⋆

j . As in the case of uniform capacities (Section 2), we
begin by assuming that we know radii r1, . . . , rk satisfying the conditions of Lemma 4, i.e.,
rj ≥ r⋆

j and
∑k

j=1 rj ≤ (1 + ε)
∑k

j=1 r⋆
j , where ε > 0 is an arbitrarily small constant.

Our algorithm maintains three subsets of balls, namely B1, B2, B3. Each ball in these
sets corresponds (in a sense that we shall make clear later) to a unique optimal ball B⋆

j .
Thus we denote balls in B1 ∪ B2 ∪ B3 as Bj , where the index j denotes the fact that Bj

R. Jaiswal, A. Kumar, and J. Yadav 65:11

corresponds to B⋆
j . Further, we use cj to denote the center of Bj . We maintain three sets

of (mutually disjoint) indices I1, I2, I3 ⊆ [k] respectively. We also maintain an index set
I4 := [k] \ (I1 ∪ I2 ∪ I3) denoting those indices for which we have not assigned a ball yet.

The set B1 is obtained by the following greedy procedure: while there are points not
covered by the balls in B1, we pick an uncovered point p, guess the index of the optimal
cluster covering it, say j, and add the ball B(cj , 3rj) to B1, where cj is a high capacity point
close to p (the actual process is slightly nuanced, but the details will be clarified in the actual
algorithm description). When this process ends, we have a set of balls covering P such that
each ball in B1 covers a corresponding (unique) optimal ball. The set B1 remains unchanged
during rest of the algorithm. We now need to add more balls to this solution in order to
satisfy the capacity constraints.

Such balls shall be added to the sets B2 and B3 respectively (and the index sets I2 and I3
shall maintain the correspondence with unique clusters in the optimal solution respectively).
Roughly, a ball Bj ∈ B2 of the form B(cj , r) shall satisfy the condition that r ≤ 5rj and
B⋆

j ⊆ Bj . Our algorithm shall never remove a ball that once gets added to B2. A typical
setting when we can add a ball to B2 is the following: Suppose there is an index j ∈ I4 such
that the optimal ball B⋆

j intersects a ball Bh ∈ B1 ∪ B2 and rj is at least the radius of Bh

(we do not know this fact a priori, but our algorithm can guess such cases). In this case, we
find a high capacity point x in the vicinity of ch, such that Bj = B(x, 5rj) covers B⋆

j .
A ball Bj added to the set B3 shall have the property that it does not intersect any of

the balls B⋆
h, h ∈ I3 ∪ I4 (again, we cannot be certain here since we do not know the optimal

balls, but we shall show that in one of the cases guessed by our algorithm, this invariant will
be satisfied). A ball Bj once added to B3 can get deleted, but in this case we will add a
corresponding ball to B2, i.e., we shall remove the index j from I3 and add it to I2. This
can happen because of the following reason: suppose we have identified a ball Bh, h ∈ I4
(centered around a point ch), that we want to add to B3. But it intersects the optimal ball
B⋆

j for an index j ∈ I3 (again, we guess this fact). Now if rj ≥ rh, it follows that, as before,
we can find a high capacity point x in the vicinity of ch such that Bj = B(x, 5rj) covers B⋆

j .
Identifying a ball which gets added to B3 is at the heart of our technical contribution.

Essentially we start with a suitable ball B (picked from a certain set of possibilities) which
we would like to add to B3. As long as there is an optimal ball B⋆

j , j ∈ I3 ∪ I4 intersecting
B, we able transfer an index from I3 to I2 or suitably shrink the possibilities for identifying
the ball B.

We mention one final technicality. For each ball Bj ∈ B3 maintained by the algorithm,
we shall maintain a subset Cj . The subset Cj is meant to capture the subset of points that
will be actually be part of the jth cluster output by the algorithm (although the final output
may be a subset of Cj). The reason for this is as follows. We would like to maintain the
following invariant during the algorithm:

Invariant 1: Let j, j′ ∈ I3 be two distinct indices. Then Cj ∩ Cj′ = ∅. Further, for any
j ∈ I3 and i ∈ I3 ∪ I4, B⋆

i ∩ Cj = ∅.

3.1 Algorithm Description
We now give a formal description of our algorithm for Capacitated k-sumRadii in Algo-
rithm 4. Here we describe one iteration of the algorithm and shall show that it outputs the
desired solution with probability at least 1

2O(k3) . As mentioned above, there are three sets of
balls B1, B2, B3 and corresponding (mutually disjoint) index sets I1, I2, I3. The set I4 which
is initialized to [k] stores the index sets for which we haven’t added a ball in B1 ∪ B2 ∪ B3.

ITCS 2024

65:12 FPT Approximation for Capacitated Sum of Radii

We first explain a subroutine that we shall be using repeatedly during the algorithm:
InsertBall(p, j, r, u)). Here u is an index in {1, 2, 3}. The procedure is supposed to insert the
ball B(p, r) centered at p to the set Bu (and add the index j to Iu – the index j before this
step lies in I4, the set of unused indices). However, there is a caveat – we want to avoid the
case when p happens to be same as the optimal center c⋆

h for some other h ̸= j. The reason
is that in a subsequent step, the algorithm may try to insert a ball that is an approximation
of B⋆

h. At this moment, it may happen that c⋆
h is the only feasible choice for a center because

all other points close to c⋆
h have very low capacity. Therefore, the procedure InsertBall

needs to check if this is the case. In particular, it guesses this fact, and if indeed p happens
to be same as c⋆

h, it places a ball of radius rh around c⋆
h in B1. The algorithm maintains a

global index set I⋆ consisting of those indices j for which it has executed this step, i.e., for
which the center of the corresponding ball Bj ∈ B1 is same as c⋆

j . Note that I⋆ is a subset of
I1. Whenever it adds such an index to I⋆, it sets I1 to I⋆, B1 to {B(ci, ri), i ∈ I⋆} and resets
I2, I3, B2, B3 to empty (see line 3.5 in Algorithm 3), and then restarts the Algorithm 4 from
line 4.4

For sake of clarity of the algorithm, we shall always assume that the choice among the two
options (i) and (ii) taken by this algorithm is correct, and also that whenever the algorithm
chooses option (ii), it chooses h, satisfying p = c⋆

h. The reason is that we will later see that
this procedure is called O(k2) times, and it chooses the option (ii) at most k times. Hence,
the probability that procedure makes the correct choices each time is 1/2O(k2), which suffices
for our purpose.

Algorithm 3 The procedure InsertBall(p, j, r, u)).

3.1 Input: Candidate center p, radius r, index j ∈ I4, index u ∈ {1, 2, 3}.

3.2 Perform one of the following two steps with equal probability:
3.3 (i) Add the ball B(p, r) to Bu and the index j to Iu (and remove j from I4). Set

cj = p.
3.4 (ii) Guess an index h ∈ [k] \ I∗ uniformly at random. Set ch = p.
3.5 set I2, I3, B2, B3 to empty.
3.6 Add h to I⋆

3.7 Set I1 = I⋆ and B1 = {B(ci, ri), i ∈ I⋆}
3.8 Go to line 4.4 of Algorithm 3

We now describe Algorithm 3.
In lines 4.4–4.9, we add balls to B1 whose union covers P . Each such ball Bj , corresponding

to an index j (which is maintained in the index set I1), is supposed to contain the optimal
ball B⋆

j . Further, the center cj of Bj should have capacity at least that of c⋆
j . In each

iteration of this while loop, we first pick an uncovered point p and guess the index j such
that p ∈ C⋆

j (line 4.7). We now find the highest capacity point x ∈ B(p, rj) (while avoiding
the centers already chosen). We now call InsertBall(x, j, 3rj , 1), i.e., we would like to insert
the ball B(x, 3rj) to B1.

In an iteration during lines 4.10–4.19, we add one ball to our solution for a remaining
index j ∈ I4. In particular, we pick the index j ∈ I4 with the highest radius rj (line 4.11)
and guess a random subset Tj of I1 ∪ I2 (line 4.12). The set Tj is supposed to denote the
indices h ∈ I1 ∪ I2 such that the ball Bh intersects the optimal ball B⋆

j . Assume that the
algorithm guesses the set Tj correctly (which again happens with probability at least 1

2k).
Now two cases arise: (i) The radius rj is at least the radius of some ball Bh, h ∈ Tj , (ii) The
radius rj is less than the latter quantity for all h ∈ Tj . Note that radius(Bh) is either 3rh

(when h ∈ I1) or 5rh (when h ∈ I2).

R. Jaiswal, A. Kumar, and J. Yadav 65:13

In the first case (line 4.13), we identify a ball Bj containing B⋆
j . Let h be the index in Tj

such that rj is at least radius(Bh). We find the highest capacity point x ∈ B(ch, radius(Bh) +
rj) (line 4.14) except the already chosen centers – since Bh intersects B⋆

j , we note that
c⋆

j is a possible candidates for the point x, and hence Ux ≥ Uc⋆
j

Finally, we add the ball
Bj = B(x, 5rj) to B2 (line 4.15). It is not difficult to show that Bj contains B⋆

j . The second
case, when rj < radius(Bh) for all h ∈ Tj , is more challenging. We first identify a candidate
set of points Pj which contain the optimal ball B⋆

j (line 4.18) and then prune enough points
from it to identify a ball Bj . For each h ∈ Tj (line 4.17), we define an extended ball Eh of
radius 9rh around ch (clearly, Eh contains the ball Bh, which is of radius either 3rh or 5rh

around ch). We shall show later Eh contains B⋆
j . Thus, B⋆

j ⊆
⋂

h∈Tj
Eh. By our assumption

on the correct guess of the set Tj , it follows that Bi ∩ B⋆
j is empty for i ∈ (I1 ∪ I2) \ Tj

Further, Invariant 1 implies that for any subset Ci in B3, i ∈ I3, B⋆
j ∩ Ci is empty. Thus,

the set Pj as defined in line 4.18 contains B⋆
j . We now call the subroutine UpdateBalls to

add a suitable ball corresponding to B⋆
j to B3 (or move a ball from B3 to B2).

Algorithm 4 An iteration of the algorithm for Capacitated k-sumRadii for general
capacities.

4.1 Input: Set P of n points, parameter k, radii r1, . . . , rk, capacities Up for each point
p ∈ P .

4.2 Initialize I1, I2, I3 to emptyset and I4 to [k].
4.3 Initialize the sets B1, B3, B3 to emptyset.
4.4 while the balls in B1 do not cover P do
4.5 Pick a point p ∈ P \

(⋃
j∈I1

Bj

)
.

4.6 (Output fail if I4 is empty).
4.7 Choose j ∈ I4 uniformly at random.
4.8 Let x be the highest capacity point in (P \ {ci : i ∈ I1}) ∩ B(p, rj).
4.9 Call InsertBall(x, j, 3rj , 1)

4.10 while I4 is non-empty do
4.11 Let j ∈ I4 with the highest rj value.
4.12 Choose a random subset Tj ⊆ I1 ∪ I2.
4.13 if there is an index h ∈ Tj with rj ≥ radius(Bh) then
4.14 Let x be the highest capacity point (other than {ci : i /∈ I4}) in

B(ch, radius(Bh) + rj).
4.15 Call InsertBall(x, j, 5rj , 2).
4.16 else
4.17 For an index h ∈ Tj , define Eh := B(ch, 9rh).
4.18 Define Pj :=

(⋂
h∈Tj

Eh

)
\

(⋃
i∈(I1∪I2)\Tj

Bi ∪
⋃

i∈I3
Ci

)
.

4.19 Call UpdateBalls(j, Pj).

4.20 Output the balls {B(cj , 9rj) : j ∈ [k]}

We now give details of the UpdateBalls procedure. We also emphasize that this is step
where the technical novelty of our contribution lies. We assume that the sets I1, . . . , I4, radii
r1, . . . , rk and B1, . . . , B3 can be accessed or modified by this procedure. The parameters
given to this procedure are an index j ∈ I4 and a set Pj of points which should contain the
optimal ball B⋆

j . The procedure can terminate in the following manner: (i) find an index
i ∈ I3 and a ball containing B⋆

i – in this case, we move i from I3 to I2 (and change B2, B3

ITCS 2024

65:14 FPT Approximation for Capacitated Sum of Radii

accordingly), or (ii) corresponding to the index j, add a ball Bj and a subset Cj ⊆ Bj to
B3. Note that Invariant 1 requires that Cj should be disjoint from B⋆

i for all i ∈ I3 ∪ I4.
Therefore the algorithm maintains a set Z (initialized to I3 ∪ I4) of indices that could
potentially intersect the intended ball Bj (line 5.3). The set Z gets pruned as we run through
the iterations of the while loop (lines 5.4–5.20). We now describe each iteration of this
while loop. In line 5.5, we identify a point x of a high capacity such that B(x, rj) has a
large intersection with Pj ; and we let Cj denote this intersection. Now, we guess the subset
L of Z consisting of the indices i ∈ Z such that B⋆

i ∩ Cj is not empty (line 5.6). Assume
that this guess is correct. If L is empty (line 5.7), we can add Bj to B3. The procedure
terminates in this case.

Hence assume that the set L is not empty. There are two sub-cases now. In the first
sub-case (line 5.12), there is an index t ∈ L such that rt > rj . We shall show that t ∈ I3
(recall that L is a subset of I3 ∪ I4). Since Bj and B⋆

t intersect, the ball B(x, rt + rj) contains
c⋆

t . Thus, we pick a high capacity point y in this ball (line 5.13) and add the ball B(y, 5rt)
to B2 (line 5.14) – the fact that rt > rj ensures that this ball contains B⋆

t . Thus, the index t

moves from I3 to I2. The procedure terminates in this sub-case.
Finally, consider the sub-case when the set L is non-empty and every index t ∈ L satisfies

rt ≤ rj . In line 5.17, we guess whether the ball B′
j := B(x, 3rj) intersects B⋆

j . Assume
that this guess is correct. If B′

j ∩ B⋆
j is non-empty (line 5.19), then it is easy to see that

the ball B(x, 5rj) contains B⋆
j . Thus, we add this ball to B2 and terminate. Otherwise, we

can remove Bj from Pj (recall that Pj contains a subset of points which are guaranteed to
contain B⋆

j). Now that Pj has shrunk (and hence, the possible set of points in the desired
ball Bj also reduces), we can update the set Z. Recall that Z stores indices i ∈ I3 ∪ I4 such
that B⋆

i potentially intersects B⋆
j . Since rt ≤ rj and B⋆

t intersects B(x, rj) for all t ∈ L, it
follows that B⋆

t ⊆ B′
j . Thus, B⋆

t does not intersect the updated set Pj . Thus, we can remove
the L from Z (line 5.20). This is the only sub-case where we perform another iteration of the
while loop. Since we reduce the size of Z by at least 1, there can be at most k iterations of
the while loop. This completes the description of our algorithm.

3.2 Analysis
We now analyse the algorithm. We begin with the following key observation about the
procedure InsertBall:

▷ Claim 10. Suppose the algorithm calls InsertBall with parameters (p, j, r, u), then the
point p ̸= ci for any i ∈ I1 ∪ I2 ∪ I3.

Proof. The claim follows from the fact that whenever we call InsertBall(p, j, r, u), we make
sure p has not been selected as the center of any ball in B1 ∪ B2 ∪ B3. This can be easily
seen by considering each call to this procedure:

Line 4.9 of Algorithm 4: At this point I2, I3 are empty and we make sure that the point
x ̸= ci for any i ∈ I1 (line 4.8).
Line 4.15 of Algorithm 4: we ensure that x ̸= ci, i ∈ [k] \ I4 in line 4.14.
Line 5.8 or line 5.20 of Algorithm 5: in line 5.5, we make sure that x ̸= ci, i ∈ [k] \ I4.
Line 5.14 of Algorithm 5: we ensure in line 5.13 that y ̸= ci, i ∈ [k] \ I4. ◁

We now bound the number of iterations in the procedure UpdateBalls.

▷ Claim 11. The while loop in a particular invocation of UpdateBalls has at most k

iterations. The procedure InsertBall is called at most O(k2) times, and the number of times
it chooses the option (ii) is at max k.

R. Jaiswal, A. Kumar, and J. Yadav 65:15

Algorithm 5 Procedure UpdateBalls(j, Pj) adds a ball to either B2 or B3.

5.1 Input: An index j ∈ I4, a subset Pj of points.
5.2 Initialize a variable update to false
5.3 Initialize an index set Z := I3 ∪ I4.
5.4 while update is false do
5.5 Let x be the point in P \ {ci : i /∈ I4} which maximizes min(Ux, |B(x, rj) ∩ Pj |).

Define Cj := B(x, rj) ∩ Pj .
5.6 Pick a subset L ⊆ Z uniformly at random.
5.7 if L is empty then
5.8 Call InsertBall(x, j, rj , 3).
5.9 If B(x, rj) was added to B3, set Cj as defined above in line 5.5.

5.10 Set update to true.
5.11 else
5.12 if there is an index t ∈ L with rt > rj then
5.13 Let y be the point in B(x, rj + rt) \ {ci : i /∈ I4} with the maximum

capacity Uy.
5.14 Call InsertBall(y, t, 5rt, 2);
5.15 If the index t was added to I2, remove it from I3 and remove the

corresponding ball from B3.
5.16 Set update to true.
5.17 else
5.18 Perform exactly one of the following steps with equal probability:
5.19 (i) Call InsertBall(x, j, 5rj , 2). Set update to true.
5.20 (ii) Update Z = Z \ L and Pj = Pj \ B(x, 3rj).

Proof. First consider the while loop in the UpdateBalls procedure. If a particular iteration
of this loop does not end the procedure, then it must execute line 5.20. Since the set L ⊆ Z

is non-empty, the set Z reduces in size during this iteration. Since the initial size of Z was
at most k, there can be at most k iterations of this while loop.

The number of times InsertBall chooses the option (ii) is at max k, because every time
the second option is chosen, the size of I⋆ increases by 1, and we never remove anything
from I⋆. During any consecutive stretch of option (i) choices, each call to InsertBall, either
removes an element from I4 or moves an element from I3 to I2 (line 5.15). Hence, the number
of consecutive calls to InsertBall that make the first choice can be at max 2k. ◁

We first state the desirable events during an iteration of Algorithm 4:
E1: For each point p considered in line 4.5, the index j chosen in line 4.7 satisfies the
condition that p ∈ C⋆

j .
E2: For each index j considered in line 4.11, the subset Tj chosen in line 4.12 satisfies the
property that Tj = {h ∈ I1 ∪ I2 : Bh ∩ B⋆

j ̸= ∅}.

E3 : For each iteration of the while loop in Algorithm 5, the subset L picked in line 5.6
in Algorithm 5 is equal to the set {i ∈ Z : B⋆

i ∩ Cj ̸= ∅}.
E4: In each iteration of the while loop in Algorithm 5, if we reach line 5.17, then the
choice (i) is taken iff the ball B(x, 3rj) ∩ B⋆

j is non-empty.
E5: Whenever InsertBall(p, j, r, u) is called, it chooses option (ii) in line 3.4 iff p is same
as c⋆

u for some u ∈ I2 ∪ I3 ∪ I4. Further, the index h selected in this step is equal to u.

ITCS 2024

65:16 FPT Approximation for Capacitated Sum of Radii

▷ Claim 12. If the event E1 ∩ E5 happens, then for each j ∈ I1, the ball Bj ∈ B1 contains
the optimal ball B⋆

j . Hence, if E1 happens, the algorithm does not output fail in line 4.6.
Further, the probability that all the events E1, E2, E3, E4, E5 happen is at least 1/2O(k4).

Proof. The proof is similar to that of Lemma 6. Suppose E1 ∩ E5 happens. For each index
i ∈ I⋆, B(ci, ri) contains B⋆

i = B(c⋆
i , r⋆

i) because ci = c⋆
i for such indices and ri ≥ r⋆

i . Now if
InsertBall executes option (ii) in line 3.4, we simply replace I1 by I⋆ and start from scratch.
The only other case when when we add a ball to B1 is during the while loop in line 4.4
in Algorithm 4. Consider such an iteration and assume that InsertBall executes option (i).
Let x be the point chosen in line 4.8. Then, d(x, c⋆

j) ≤ d(x, p) + d(p, c⋆
j) = 2rj . Therefore,

Bj := B(x, 3rj) contains B⋆
j . Therefore, there will be at most k iterations of the while loop

in line 4.4. Thus, the algorithm won’t output fail in line 4.6.
The probability that InsertBall always chooses the option (i) or (ii) correctly is at least

1
2O(k2) , as the number of calls is O(k2) (Claim 11) and the probability of making the correct
choice in a single call is 1

2 . Given this happens, the probability that it correctly guesses the
index h is at least 1/k for any call where it chooses option (ii). Hence, Pr[E5] ≥ 1

kk
1

2O(k2) =
1

2O(k2) . Now, the probability that the chosen index j in line 4.7 is correct (i.e., p ∈ C⋆
j) in

each iteration of this while loop is at least 1/k. Hence, Pr[E1|E5] ≥ 1/kO(k2), as each such
iteration leads to a call to InsertBall. Conditioned on E1, the probability that the choice
of Tj in line 4.12 is correct is at least 1/2k (since there are at most 2k possibilities for Tj).
Since every iteration of the while loop in line 4.10 leads to a call to InsertBall, we see that
Pr[E2|E1, E5] ≥ 1

2O(k3) .

Given events E1, E2, whenever we reach line 5.6, we guess L correctly with probability
at least 1

2k . There are at most O(k2) calls to UpdateBalls, and there are at most k

iterations of the while loop in Algorithm 5. Hence, Pr[E3|E1, E2, E5] ≥ 1
2O(k4) . Also, whenever

reach line 5.17, we guess the choice (i) or (ii) correctly with probability 1/2. Hence,
Pr[E4|E1, E2, E3, E5] ≥ 1

2O(k3) ◁

Now we write down the invariant conditions satisfied during our algorithm. The condition
Invariant 1 was mentioned earlier, but we restate it here:

Invariant 1: Let j, j′ ∈ I3 be two distinct indices. Then Cj ∩ Cj′ = ∅. Further, for any
j ∈ I3 and i ∈ I3 ∪ I4, B⋆

i ∩ Cj = ∅.

Invariant 2: For any index j ∈ I1, B⋆
j ⊆ Bj , where Bj is the ball corresponding to index

j in B1. Further, the radius of Bj is at most 3rj .
Invariant 3: For any index j ∈ I2, B⋆

j ⊆ Bj , where Bj is the ball corresponding to index
j in B2. Further, the radius of Bj is at most 5rj .
Invariant 4: For any index j ∈ I4, and any index i ∈ I2, rj ≤ ri .

We now show that these invariant conditions are maintained by the algorithm. The
following result follows from the proof of Claim 12.

▷ Claim 13. Suppose event E1 happens. Then Invariant 2 is maintained by the algorithm.

▶ Lemma 14. Suppose events E1, . . . , E5 occur. Then the algorithm maintains all the four
invariant conditions mentioned above.

Proof. Assume that the events E1, . . . , E5 occur. Claim 13 already shows that Invariant 2
is maintained by our algorithm. We now show that the other three invariant conditions hold
by induction on the number of iterations of the while loop in line 4.10 in Algorithm 4. Just
before executing this while loop for the first time, the index sets I2, I3 are empty, and so
the three invariant conditions hold vacuously.

R. Jaiswal, A. Kumar, and J. Yadav 65:17

Now consider a particular iteration of this while loop and assume that the invariant
conditions hold at the beginning of this iteration. During this while loop, we shall call
InsertBall procedure exactly once. In this procedure, if the second option is chosen (i.e.,
line 3.4), then we shall insert a ball Bh in B1 and an index h in I1 such that Bh contains B⋆

h

(since E5 occurs). Now it is easy to check that all the invariants continue to hold. Therefore,
we shall assume that this procedure executes the first option in line 3.3.

Now, two cases arise depending on whether the condition in line 4.13 is true. First assume
it is true, i.e., there is an index h ∈ Tj such that rj ≥ radius(Bh). Let x be the point selected
in line 4.14. Then

d(x, cj⋆) ≤ d(x, ch) + d(ch, c⋆
j) ≤ radius(Bh) + rj + radius(Bh) + rj ≤ 2 · radius(Bh) + 2rj ,

where we have used the fact that d(ch, c⋆
j) ≤ radius(Bh) + r⋆

j because Bh and B⋆
j intersect.

Since rj ≥ radius(Bh), the above is at most 4rj . It follows that B(x, 5rj) contains B⋆
j . This

shows that Invariant 3 is satisfied. Since j was chosen to have the highest rj value among
all indices in I4, Invariant 4 is also satisfied. Finally, we do not change I3 and only remove
an index from I4. Therefore, Invariant 1 continues to hold.

We now consider the more involved case when the outcome of the if condition in line 4.13
is false. In this case, rj < radius(Bh) for all h ∈ Tj . We first argue that B⋆

j ⊆ Eh

for any h ∈ Tj (where Eh = B(ch, 9rh) as defined in line 4.17). To see this, note that,
B⋆

j ⊆ B(ch, radius(Bh) + 2rj), as B⋆
j and Bh intersect. If h ∈ I1, from Invariant 2,

radius(Bh) ≤ 3rh, so radius(Bh) + 2rj ≤ 3radius(Bh) ≤ 9rh. Otherwise, radius(Bh) ≤ 5rh

from Invariant 3, and rj ≤ rh from Invariant 4. Hence, radius(Bh)+2rj) ≤ 5rh+2rh ≤ 9rh

Thus, B⋆
j ⊆ ∩h∈Tj

Eh. Since the event E2 has occurred, we know that B⋆
j ∩ Bh = ∅ for all

h ∈ I1 ∪ I2 \ Tj , and the induction hypothesis about Invariant 1 implies that B⋆
j ∩ Ci = ∅

for all i ∈ I3. Thus, the set Pj defined in line 4.18 of Algorithm 4 contains B⋆
j .

▷ Claim 15. B⋆
j ⊆ Pj during the execution of the procedure UpdateBalls(j, Pj). Further,

for every index i ∈ (I3 ∪ I4) \ Z, B⋆
i ∩ Pj = ∅.

Proof. We show this by induction on the number of iterations of the while loop in the
procedure UpdateBalls(j, Pj). Since Z is initialized to I3 ∪ I4, and B⋆

j ⊆ Pj when this
procedure is called, the claim is true at the beginning.

Now suppose the claim is true at the beginning of an iteration of this while loop. Assume
that we go through one iteration of the while loop and come back to line 5.4. Then we
must have executed the case in line 5.20. Since event E3 ∩ E4 happens, we know that
L = {i ∈ Z : B⋆

i ∩ Cj ̸= ∅}, rt ≤ rj for all t ∈ L and B(x, 3rj) ∩ B⋆
j is empty. Therefore,

B⋆
j ⊆ P ′

j := Pj \ B(x, 3rj). We claim that for any t ∈ L, B⋆
t ∩ P ′

j is empty. Indeed, we
know that B⋆

t intersects Cj (by event E4) and rt ≤ rj . Since Cj ⊆ B(x, rj), it follows that
B⋆

t ⊆ B(x, 3rj). Therefore, B⋆
t does not intersect P ′

j . Thus, we see that the desired claim
holds at the end of line 5.20 as well. ◁

Now we consider the various cases on how this procedure terminates:
The ball B(x, rj) was added in line 5.8: Since event E3 occurred, we know that B⋆

i ∩ Cj

is empty for all i ∈ Z. Combining this with Claim 15 and the fact that Cj ⊆ Pj , we see
that B⋆

i ∩ Cj is empty for all i ∈ I3 ∪ I4. Since Pj , as defined in line 4.18, is disjoint
from ∪i∈I3Cj , we see that adding the index j to I3, and B(x, rj) along with Cj to B3
maintains Invariant 1. Since we do not change I1, I2 and I4 only reduces, the other
three invariants continue to be satisfied.

ITCS 2024

65:18 FPT Approximation for Capacitated Sum of Radii

the ball Bt := B(y, rj + rt) was added to B2 in line 5.14 (and the index t and the
corresponding ball was removed from B3): Since we are removing a ball from B3,

Invariant 1 continues to be satisfied. No new ball is added to B1 and hence, Invariant
2 is also satisfied. We check Invariant 3 now: we know that rt > rj and B⋆

t intersects
Bj (since E3 has occurred). Therefore,

d(y, c⋆
t) ≤ d(y, x) + d(x, c⋆

t) ≤ (rj + rt) + (rj + rt).

Since rj ≤ rt, the above is at most 4rt. Therefore, B(y, 5rt) contains B⋆
t . Thus, Invariant

3 is satisfied. It remains to check Invariant 4: note that the index j ∈ I4 was chosen
because it has the highest rj value among all the indices in I4 (line 4.11). Since rt ≥ rj ,
we see that Invariant 4 is also satisfied.
The ball B(x, 5rj) is added to B2 in line 5.19: Since I1, I3 do not change and the set I4
shrinks, invariants Invariant 1, Invariant 2 continue to be satisfied. Since E4 occurs, we
know that B(x, 3rj) ∩ B⋆

j is non-empty. Hence, B(x, 5rj) contains B⋆
j and so, Invariant

3 is satisfied. Finally, Invariant 4 is satisfied because of the manner index j ∈ I4 was
chosen (line 4.11).

This completes the proof of the desired lemma. ◀

We now show that the centers of the balls added by our algorithm have sufficient capacities:

▶ Lemma 16. Assume that the events E1, . . . , E5 occur. For each ball Bj ∈ B1 ∪ B2 ∪ B3
centered at cj, the capacity of cj is at least |C⋆

j |.

Proof. We first observe that the following property is maintained during the execution of
the algorithm:

▷ Claim 17. For any index i ∈ I4, the optimal center c⋆
i is not the center of any ball in

B1 ∪ B2 ∪ B3.

Proof. We add a ball to B2 ∪ B3 only during case (i) of InsertBall. But if p happens to be c⋆
i

for some i ∈ I2 ∪ I3 ∪ I4, then E5 implies that we invoke case (ii), a contradiction. Therefore,
the claim holds. ◁

When we invoke case (ii) of InsertBall and a ball Bj to B1, Invariant 5 implies that
the center of this ball is c⋆

j and hence, the Lemma holds trivially. Therefore, for rest of the
proof, consider only the cases when we execute option (i) (i.e., line 3.3) when the InsertBall
procedure is called. We now go through all such possibilities:

We add the ball B(x, 3rj) to B1 in line 4.9: we know by the property shown above that
c⋆

j has not been used as the center of any selected ball yet. Since p ∈ B⋆
j (by event E1),

c⋆
j is a candidate for the point x selected in line 4.8. Therefore, Ux ≥ Uc⋆

j
≥ |C⋆

j |.
We insert the ball B(x, 5rj) in line 4.15: again, we know that c⋆

j has not been used as a
center yet. Since Bh ∩B⋆

j is non-empty (since event E2 occurs), d(ch, c⋆
j) ≤ radius(Bh)+rj .

Therefore, c⋆
j is one of the candidates for the point x. Thus, Ux ≥ Uc⋆

j
≥ |C⋆

j |.
We add a ball centered at x in line 5.8 or line 5.20 in UpdateBalls procedure: We know
by Claim 15 that B⋆

j ⊆ Pj . Therefore, for x = c⋆
j , the quantity min(Ux, |B(x, rj) ∩ Pj |) is

at least |C⋆
j |. Since c⋆

j has not been chosen as a center yet, it follows from line 5.5 that
Ux ≥ |C⋆

j |.
We add the index t to I2 and a ball centered at y to B2 in line 5.13: Since Bj ∩ B⋆

t ̸= ∅
(by event E3), d(x, c⋆

t) ≤ rj + rt. We claim that c⋆
t has not been used a center of any ball

in B1 ∪ B2 ∪ B3. Indeed, we know that t ∈ I3 ∪ I4. If t ∈ I4, Claim 17 implies that c⋆
t has

R. Jaiswal, A. Kumar, and J. Yadav 65:19

not been used as a center. If t ∈ I3, then Invariant 1 implies that c⋆
t is not contained in

the ball Bt ∈ B3, and hence, has not been used a center yet. Since d(x, c⋆
t) ≤ rj + rt, c⋆

t

is a candidate for the point y chosen in line 5.13. Therefore, Cy ≥ Cc⋆
t

≥ |C⋆
t |. ◀

▶ Lemma 18. Suppose events E1, . . . , E5 occur. Let {B(cj , 9rj) : j ∈ [k]} be the set of balls
output by Algorithm 4. Then there is a feasible solution to this instance where each center cj

is assigned at most Uj points, and if a point p is assigned to a center cj, then p ∈ Bj.

Proof. For the balls in B1 and B2, Invariant 2 and Invariant 3 shows that they cover the
corresponding optimal balls. However this is not true for the balls in B3 (in fact Invariant
1 shows quite the opposite). Thus handling these balls require more nuanced argument. For
each j ∈ I3, we claim that |Cj | ≥ |C⋆

j |. Indeed, as the proof of Lemma 16 shows, when we
define Cj as in line 5.5, c⋆

j is also a candidate for the point x chosen in this step. Therefore,
min(Ucj

, |Cj |) ≥ min(Uc⋆
j
, |C⋆

j |), which implies that |Cj | ≥ |C⋆
j |. Therefore, for each j ∈ I3,

let Dj be an arbitrary subset of Cj with |Dj | = |C⋆
j |. It follows from Invariant 1 that

Di ∩ Dj = ϕ for any i, j ∈ I3, i ̸= j. For any j ∈ I3, i ∈ Tj , define Sji := Dj ∩ C⋆
i . Note that

∪i∈Tj
Sji = Dj because Tj is the set of indices i for which Cj ∩ C⋆

i is non-empty. Also, the
sets Sji are disjoint as C⋆

i are disjoint, and therefore
∑

i∈Tj
|Sji| = |Dj | = |C⋆

j |. Hence, we
can partition the set C⋆

j as C⋆
j = ∪i∈Tj

Vji, where Vji’s are mutually disjoint over different i

and |Vji| = |Sji|.
Now, let us define the clusters X1, X2, . . . Xk as follows:
For each i ∈ I3, Xi = Di

For each i ∈ I1 ∪ I2, Xi = (C⋆
i \ ∪j:i∈Tj

Sji) ∪ (∪j:i∈Tj
Vji). Note the following properties:

Sji = C⋆
i ∩ Dj ⊆ C⋆

i

Vji ⊆ C⋆
j meaning Vji ∩ C⋆

i = ϕ

For for two indices x, y ∈ I3 such that i ∈ Tx ∩ Ty, Sxi ∩ Syi = ϕ, as Dx ∩ Dy = ϕ and
Vxi ∩ Vyi = ϕ, as C⋆

x ∩ C⋆
y = ϕ

Hence, |Xi| = |C⋆
i | −

∑
j:i∈Tj

|Sji| +
∑

j:i∈Tj
Vji = C⋆

i as |Sji| = |Vji| for j such that
i ∈ Tj .

We complete the proof by claiming that X is a valid assignment, that is:
1. For each i ∈ [k], |Xi| ≤ Uci

.
2. For each i ∈ [k], Xi ⊆ B(ci, 9ri)
3. Xi ∩ Xj = ϕ for any i ̸= j ∈ [k] and ∪i∈[k]Xi = P .

The first part can be proved by noting that for all i ∈ [k], |Xi| = |C⋆
i | and then using

Lemma 16.
For the second part, if i ∈ I3, Xi = Di ⊆ Ci ⊆ Bi = B(ci, ri) ⊆ B(ci, 9ri). Otherwise,

note that C⋆
i ⊆ B⋆

i ⊆ B(ci, 5ri) ⊆ B(ci, 9ri) holds from Invariant 3. Also, for any j with
i ∈ Tj , note that Vji ⊆ C⋆

j ⊆ Pj ⊆ B(ci, 9ri).
For the third part, consider i ̸= j ∈ [k]. There are three cases:
i, j ∈ I3: In this case, Xi ∩ Xj = Di ∩ Dj = ϕ

i, j ∈ I1 ∪ I2: In this case, C⋆
i ∩ C⋆

j = ϕ, and for any two indices x, y, with i ∈ Tx and
j ∈ Ty, Vxi ∩ Vyj = ϕ because if x ̸= y, then Vxi ⊆ C⋆

x and Vyj ⊆ C⋆
y , and otherwise if

x = y, Vxi and Vyj are disjoint sets in a partition of C⋆
x

i ∈ I1 ∪ I2, j ∈ I3 ∪ I2 or vice versa. Assume wlog that i ∈ I1 ∪ I2, j ∈ I3. Here,
Dj ∩ (C⋆

i \ ∪l:i∈Tl
Sli) = ϕ because we remove Sji = Dj ∩ C⋆

i from C⋆
i when forming Xi.

Also, Di ∩ Vli = ϕ for any l with i ∈ Tl, because Vli ⊆ C⋆
l , Dj ⊆ Cj and Cj ∩ C⋆

l = ϕ,
from Invariant 1.

ITCS 2024

65:20 FPT Approximation for Capacitated Sum of Radii

Now, since the clusters are disjoint and |Xi| = |C⋆
i | for all i ∈ [k], | ∪i∈[k] Xi| =∑

i∈[k] |Xi| =
∑

i∈[k] |C⋆
i | = |P |. This means that ∪i∈[k]Xi = P , as Xi ⊆ P for all

i ∈ [k]. ◀

▶ Lemma 19. The total cost of the solution produced by Algorithm 4 is at most 9
∑

j∈[k] rj.
Further, the total Lp norm of the radii of the clusters produced by this algorithm is at most

9
(∑

j∈[k] rp
j

)1/p

.

Proof. Clearly, the sum of pth powers of the radii of the balls in the algorithm’s output is:∑
j∈[k](9rj)p = 9p

∑
j∈[k] rp

j . ◀

It follows from Claim 12, Lemma 18 and Lemma 19 that the algorithm outputs a (9 + ε)
approximate solution with probability at least 1/2O(k4). This probability bound can be
improved to 1/2O(k3) through a more fine-grained analysis. For this, note that the invariants
1, 3 and 4 only need to be satisfied after the last call to InsertBall that chooses option (ii).
This allows us to relax the definitions of E2, E3, E5, such that Pr[E1∩E2∩E3∩E4∩E5] ≥ 1/2O(k3)

3.3 Improvement in approximation ratio from 9 to 4 +
√

13
In this section, we briefly show that with a more careful choice of parameters, we can improve
the approximation ratio from 9 to about 7.606. We use a parameter α that shall be fixed
later. We make the following changes in Algorithm 4:

The condition in line 4.13 becomes “rj ≥ α · radius(Bh)”.
Line 4.14 remains unchanged, i.e., x is the maximum capacity point in B(ch, radius(Bh) +
rj) (other than {ci : i /∈ I4}). But line 4.15 changes to “Call UpdateBalls(x, j, 2 ·
radius(Bh) + 3rj , 2).”
The definition of the ball Eh in line 4.17 changes. Recall that h belongs to the set
Tj here. Now we differentiate between two cases. When h ∈ I1, then we define Eh

as B(ch, 3(1 + 2α)rh). The other case is when h ∈ I2. In this case, we define Eh as
B(ch, (5 + 2

α)rh).
In line 4.20, we now output {B(cj , 3(1+2α)rj) : j ∈ I1}∪{B(cj , (5+ 2

α)rj) : j ∈ I2}∪B3

A routine modification of the analysis in the previous section shows that the approximation
ratio now becomes max(3(1 + 2α), 5 + 2

α) , whose minimum possible value is 4 +
√

13 ≈ 7.606
at α = 1+

√
13

6 .

References
1 Sayan Bandyapadhyay, William Lochet, and Saket Saurabh. FPT constant-approximations for

capacitated clustering to minimize the sum of cluster radii. In Erin W. Chambers and Joachim
Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG
2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 12:1–12:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.SoCG.2023.12.

2 Sayan Bandyapadhyay and Kasturi Varadarajan. Approximate Clustering via Metric Partition-
ing. In Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation
(ISAAC 2016), volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages
15:1–15:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ISAAC.2016.15.

3 B. Behsaz and M.R. Salavatipour. On minimum sum of radii and diameters clustering.
Algorithmica, 73:143–165, 2015. doi:10.1007/s00453-014-9907-3.

https://doi.org/10.4230/LIPIcs.SoCG.2023.12
https://doi.org/10.4230/LIPIcs.ISAAC.2016.15
https://doi.org/10.1007/s00453-014-9907-3

R. Jaiswal, A. Kumar, and J. Yadav 65:21

4 Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC
’02, pages 250–257, New York, NY, USA, 2002. Association for Computing Machinery. doi:
10.1145/509907.509947.

5 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. J.
Comput. Syst. Sci., 68(2):417–441, 2004. doi:10.1016/j.jcss.2003.07.014.

6 C.L.Monma and S.Suri. Partitioning points and graphs to minimize the maximum or the sum
of diameters. Graph Theory, Combinatorics and Applications, pages 880-912, 1991.

7 Irit Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12–es, June 2007. doi:
10.1145/1236457.1236459.

8 Srinivas Doddi, Madhav V. Marathe, S. S. Ravi, David Scot Taylor, and Peter Widmayer.
Approximation algorithms for clustering to minimize the sum of diameters. Nord. J. Comput.,
7(3):185–203, 2000.

9 Zachary Friggstad and Mahya Jamshidian. Improved Polynomial-Time Approximations for
Clustering with Minimum Sum of Radii or Diameters. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms
(ESA 2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages
56:1–56:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ESA.2022.56.

10 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi Varadarajan.
On metric clustering to minimize the sum of radii. Algorithmica, 57:484–498, 2010. doi:
10.1007/s00453-009-9282-7.

11 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi Varadarajan. On
clustering to minimize the sum of radii. SIAM Journal on Computing, 41(1):47–60, 2012.
doi:10.1137/100798144.

12 Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathematical programming. Math.
Program., 79:191–215, 1997. doi:10.1007/BF02614317.

13 M. Henzinger, D. Leniowski, and C. Mathieu. Dynamic clustering to minimize the sum of
radii. Algorithmica, 82:3183–3194, 2020. doi:10.1007/s00453-020-00721-7.

14 Tanmay Inamdar and Kasturi R. Varadarajan. Capacitated sum-of-radii clustering: An FPT
approximation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th
Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), volume 173 of LIPIcs, pages 62:1–62:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.62.

ITCS 2024

https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/509907.509947
https://doi.org/10.1016/j.jcss.2003.07.014
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1137/100798144
https://doi.org/10.1007/BF02614317
https://doi.org/10.1007/s00453-020-00721-7
https://doi.org/10.4230/LIPIcs.ESA.2020.62

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Preliminaries
	1.3 Related Work

	2 Uniform Capacities
	2.1 Analysis

	3 Non uniform capacities
	3.1 Algorithm Description
	3.2 Analysis
	3.3 Improvement in approximation ratio from 9 to 4 + sqrt{13}

