
A VLSI Circuit Model Accounting for Wire Delay
Ce Jin #

MIT, Cambridge, MA, USA

R. Ryan Williams #

MIT, Cambridge, MA, USA

Nathaniel Young #

Unaffiliated, San Jose, CA, USA

Abstract
Given the need for ever higher performance, and the failure of CPUs to keep providing single-
threaded performance gains, engineers are increasingly turning to highly-parallel custom VLSI chips
to implement expensive computations. In VLSI design, the gates and wires of a logical circuit
are placed on a 2-dimensional chip with a small number of layers. Traditional VLSI models use
gate delay to measure the time complexity of the chip, ignoring the lengths of wires. However, as
technology has advanced, wire delay is no longer negligible; it has become an important measure in
the design of VLSI chips [Markov, Nature (2014)].

Motivated by this situation, we define and study a model for VLSI chips, called wire-delay VLSI,
which takes wire delay into account, going beyond an earlier model of Chazelle and Monier [JACM
1985].

We prove nearly tight upper bounds and lower bounds (up to logarithmic factors) on the time
delay of this chip model for several basic problems. For example, And, Or and Parity require
Θ(n1/3) delay, while Addition and Multiplication require Θ̃(n1/2) delay, and Triangle
Detection on (dense) n-node graphs requires Θ̃(n) delay. Interestingly, when we allow input
bits to be read twice, the delay for Addition can be improved to Θ(n1/3).
We also show that proving significantly higher lower bounds in our wire-delay VLSI model would
imply breakthrough results in circuit lower bounds. Motivated by this barrier, we also study
conditional lower bounds on the delay of chips based on the Orthogonal Vectors Hypothesis from
fine-grained complexity.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases circuit complexity, systolic arrays, VLSI, wire delay

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.66

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/186/ [13]

Funding Ce Jin: Partially supported by NSF grants CCF-2129139 and CCF-2127597. This work
was also partially supported by the Ethereum Foundation.
R. Ryan Williams: Supported by NSF CCF-2127597 and a Frank Quick Faculty Research Innovation
Fellowship. This work was also partially supported by the Ethereum Foundation.

Acknowledgements N.Y. thanks John Wawrzynek, his M.S. advisor, for excellent support on initial
work on this topic, as well as Grace Dinh, Jonathan Greene, and Adrian Fan for useful conversations.
C.J. and R.W. thank the Ethereum Foundation, in particular Justin Drake and Dankrad Feist, for
highlighting various real-world computing issues that this work attempts to address. We all thank
Avishay Tal for bringing us together to work on this topic.

1 Introduction

Very Large Scale Integration (VLSI) technology arose in the 1970s and has become the basis
of almost all computing hardware. Given the ubiquitousness of VLSI, it is of interest to
study the theoretical limits of VLSI circuits. One of the most important questions is to

© Ce Jin, R. Ryan Williams, and Nathaniel Young;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 66; pp. 66:1–66:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cejin@mit.edu
mailto:rrw@mit.edu
https://orcid.org/0000-0003-2326-2233
mailto:nate.t.w.young@gmail.com
https://orcid.org/0009-0000-8648-9609
https://doi.org/10.4230/LIPIcs.ITCS.2024.66
https://eccc.weizmann.ac.il/report/2023/186/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 A VLSI Circuit Model Accounting for Wire Delay

understand the best-possible execution time that a circuit needs to compute functions of
interest. To study this question mathematically, various theoretical models of VLSI were
proposed over the years to reflect the physical reality of VLSI circuits: the gates and wires
of a logical circuit are typically placed in a nearly-planar way on a chip, each gate takes up
some unit of area on the chip, and each gate takes some unit of time to compute its output
from its inputs [26, 27, 15]. When measuring the execution time of a circuit, traditional
theoretical models of VLSI focused on tradeoffs between the area required for a chip and
the execution time (see [5] for another notable example). However, their time measures only
took gate delays into account, and ignored the possible delay that might occur from placing
long wires in the chip. This allowed for VLSI designs with time bounds as low as logarithmic
in the input size (for example, [17] shows that O(log n) time is possible for n-bit integer
multiplication, given sufficiently large chip area). However, as technology has advanced over
the decades – shrinking chips to incredibly tiny sizes – the wire delay of circuits has become
a non-negligible factor in practice [25], and such time bounds are no longer realistic. As
Markov mentions in his 2014 survey [16],

“gate delays were dominant until 2000, but wires get slower relative to gates at each
new technology node. [...] Yet, most electrical engineers and computer scientists
continue to focus on gates.”

We develop our model for this new reality by introducing wire delay that is linear in the
length of the wire. In real chips, long communications are done through a linear number
of constant-length buffered wire segments to avoid introducing a quadratic diffusion delay,
and the speed of the very fastest communications along wires is affected by transmission-line
delay, which is linear in distance [20, sections 4.4.5 and 9.3].

1.1 Our Results
In this paper, we define a circuit model that is closer to reality, concretely accounting for
wire delays as well as clock synchronization issues. The full definition of our model (called
wire-delay VLSI model) is given in Section 2, but a quick high-level comparison between our
model and previous ones is:

The standard theoretical VLSI circuit model (e.g., [26, 27, 15]) does not account for wire
delays at all, and allows input ports to appear anywhere in the chip.
Chazelle and Monier [10] defined a model that does count wire delays (resulting in slower
time bounds), but requires all input ports to be placed on the outer border of the chip.
Our circuit model allows input ports anywhere in the chip, but also accounts for wire
delays. This leads to an interesting middle-ground that is more closely aligned with
modern VLSI design. (See Remark 15 for a discussion on how realistic our model is.)

We initiate a thorough analysis of the power of our wire-delay VLSI model, determining the
(asymptotic) minimum delay for computing several fundamental computational problems in
our circuit model. We focus on mildly-3D circuits, with a fixed number of layers in the third
dimension. (Three-dimensional circuits could theoretically yield smaller wire lengths, but
there are significant technological challenges involved in realizing “full 3d” circuits.)

We first state a general lower bound for our wire-delay VLSI model (proved in Section 3).
Informally, a function f : {0, 1}n → {0, 1} is called non-degenerate if it depends on all n

input bits. Formally, for every i ∈ [n], there is an x ∈ {0, 1}n such that f(x) ̸= f(x(i)) where
x(i) agrees with x except on the i-th bit.

▶ Theorem 1. For every non-degenerate f : {0, 1}n → {0, 1}, computing f on a wire-delay
VLSI chip requires Ω(n1/3) time.

C. Jin, R. R. Williams, and N. Young 66:3

Next, we consider a few simple functions, and show the n1/3 lower bound is tight for
these functions (proved in Section 4).

▶ Theorem 2. The AND, OR, and XOR functions can be implemented on a wire-delay
VLSI chip in O(n1/3) time.

Already in the VLSI model of [10], every non-degenerate function requires Ω(
√

n) time,
due to their restrictions on input placement. Our O(n1/3) bounds in Theorem 2 give simple
examples of functions which can be computed strictly faster when input ports may be placed
anywhere in the VLSI chip.

Next we consider the harder (binary) multiplication function, which was previously
studied in the VLSI literature using communication complexity. In our new VLSI model, we
can prove a lower bound using similar arguments.

▶ Theorem 3. Computing the product of two n-bit integers on a wire-delay VLSI chip
requires Ω(

√
n) time.

An implementation of the Fast Fourier Transform by Preparata [19] implies a nearly
matching Õ(

√
n) upper bound in our model.1

▶ Theorem 4. Computing the product of two n-bit integers can be implemented on a wire-delay
VLSI chip in Õ(

√
n) time.

Theorem 3 and Theorem 4 are proved in Section 6.
Our most interesting results involve the (binary) addition function. In general, addition

is much easier than multiplication, and thus is more difficult to prove lower bounds for. In
particular, the communication complexity argument in Theorem 3 for multiplication does
not apply to addition. Nevertheless, we are still able to show that addition has the same
lower bound as multiplication. This theorem is proved using a novel argument that trades
off memory and serialization.

▶ Theorem 5. Computing the sum of two n-bit integers on a wire-delay VLSI chip requires
time Ω(

√
n).

We also establish a nearly-matching upper bound.

▶ Theorem 6. Computing the sum of two n-bit integers can be implemented on a wire-delay
VLSI chip in Õ(

√
n) time.

Theorem 5 and Theorem 6 are proved in Section 5. The proof of the Addition lower
bound (Theorem 5) crucially requires the property that our VLSI chip is semellective; that
is, each bit of the input is supplied to exactly one input port to the chip.2 Interestingly, if
we relax this assumption, then Addition can be solved significantly faster.

▶ Theorem 7. Computing the sum of two n-bit integers can be implemented on a wire-delay
VLSI chip (where each input bit can be read twice) in time O(n1/3), and the problem requires
time Ω(n1/3).

1 As is standard in theoretical CS, we use Õ(f(n)) to denote O(f(n) · poly log f(n)).
2 In contrast, our Ω(n1/3) lower bound in Theorem 1 holds even when circuits are not semellective: even

assuming that multiple copies of the same input bits may be inserted anywhere in the circuit, we still
obtain delay lower bounds.

ITCS 2024

66:4 A VLSI Circuit Model Accounting for Wire Delay

Theorem 7 is proved in the full version [13, Section 5.2].
So far, we have seen Ω(n1/3) lower bounds for single-output functions, and Ω(n1/2) lower

bounds for functions with n outputs. The following question is natural:

What is the strongest time lower bound one can hope to prove in our VLSI model, for
explicit functions?

Here we observe an Ω(n1/2) lower bound for a single-output function, proved using
standard techniques from worst-case-partition communication complexity by Papadimitriou
and Sipser [18].

Let Triangle : {0, 1}(
n
2) → {0, 1} be the triangle-detection problem on n-node graphs

given as adjacency matrices; that is, Triangle(G) = 1 if and only if the given graph G

contains a triangle.

▶ Theorem 8. Triangle on m =
(

n
2
)

bits requires Ω(
√

m) time on a wire-delay VLSI chip.

We also show a nearly-matching upper bound for Triangle.

▶ Theorem 9. Triangle on an n-node graph can be solved by a wire-delay VLSI chip of
area Õ(n2) and delay Õ(n).

Theorem 8 and Theorem 9 are proved in the full version [13, Section 7].
Therefore, triangle detection in dense graphs also requires

√
[input length] time. Can a

higher-than-n1/2 lower bound be proved for an explicit function on n-bit inputs? We prove
that any unconditional lower bound higher than n1/2(log n)c (where c > 0 is a fixed constant)
would actually lead to a breakthrough lower bound in circuit complexity. This is established
by the following simulation result (proved in Section 7), which allows us to simulate any
(normal complexity-theoretic) circuit in our wire-delay VLSI chip model.

▶ Theorem 10. There is a d > 0 such that the following holds: Let C be a size-s constant
fan-in circuit with depth h. Then C can be implemented on a wire-delay VLSI chip in time
O(h ·

√
s · logd(s)).

A longstanding open question in circuit complexity is to prove a superlinear-size lower
bound for an explicit function against O(log n)-depth circuits. By Theorem 10, any explicit
lower bound higher than n1/2(log n)d+1 would resolve this major open question.

Since unconditional lower bounds much higher than n1/2 appear to be currently out of
reach, we now consider conditional lower bounds based on a hypothesis from fine-grained
complexity (see the survey of [29]). The following Orthogonal Vectors problem is an
important problem in fine-grained complexity that is conjectured to be hard:

Orthogonal Vectors (OV)
Given: Sets A, B ⊆ {0, 1}d, |A| = |B| = n

Decide: Is there a u ∈ A and v ∈ B such that for all i, u[i] · v[i] = 0?

The obvious algorithm for OV tries all possible pairs in A×B and runs in O(n2d) time.
For small d, there are faster algorithms: there is a folklore O(n + 2d ·poly(d)) time algorithm,
and when d = c log n for a constant c ≥ 1, an n2−1/O(log c) time algorithm [2, 7]. The OV
conjecture states that for sufficiently high dimensions, the OV problem cannot be solved
significantly faster than n2 time. Here we need a non-uniform version of the OV conjecture.

▶ Conjecture 11 (Non-Uniform OV Conjecture). For every ε > 0 there is a c > 1 such that
OV with d = c log n cannot be solved in O(n2−ε) time with O(n2−ε) advice bits.

C. Jin, R. R. Williams, and N. Young 66:5

The OV conjecture is one of the primary hypotheses in fine-grained complexity; it is
implied by the Strong Exponential Time Hypothesis (which roughly says that CNF-SAT
requires 2n−o(n) time) [30]. The same reduction shows that if the Non-Uniform OV Conjecture
is false, then CNF-SAT on n-variable O(n)-clause formulas has (2− ε)n-size circuits for some
ε > 0, which is believed unlikely. Many other hardness results in fine-grained complexity are
reductions from OV (e.g. [4, 21]).

We first give an upper bound for OV in our wire-delay VLSI model which cube-roots
the running time of the brute-force algorithm. (This should not be too surprising, given our
n1/3-time chip design for the OR function in Theorem 2.)

▶ Theorem 12. The Orthogonal Vectors problem on n vectors in d dimensions can be solved
by a wire-delay VLSI chip of area Õ(n4/3d2) and delay Õ(n2/3d).

Then, in order to derive a matching conditional lower bound, we need the following result
that simulates our wire-delay VLSI model by a serial algorithm with a cubic slowdown.

▶ Theorem 13. Given a VLSI chip for a single-output function of n inputs in t delay, there is
a (typical, serial) algorithm for that function running in time O(t3) and using O(t2 + n log t)
advice bits.

Then, we have the following conditional lower bound for OV in our wire-delay model.

▶ Theorem 14. Assuming the Non-Uniform OV Conjecture, every wire-delay VLSI chip for
Orthogonal Vectors with n vectors in log2 n dimensions requires at least n2/3−o(1) time.

Theorems 12–14 are proved in the full version [13, Section 9].

1.2 Related work
Besides the fundamental work in VLSI theory already cited, there have been several theoretical
models of hardware proposed over the decades that are similar (but not identical) to the
model we propose. We begin our discussion with the most related model.

Chazelle and Monier’s Model

Another VLSI model that accounts for wire delay was proposed and studied by Chazelle and
Monier in the early 80s [8, 9, 10]. For brevity, we will call theirs the CM model. Besides
subtle differences in the modeling of wire placements, the main difference between their
model and ours is that the CM model assumes the given circuit is drawn on a convex region
of the plane, with all input/output nodes on the boundary of this region, while our model
allows input/output ports to be placed anywhere in the circuit. Note that if they also did
not allow ports to be reused by different inputs, then any function that depends on all n of
its inputs would trivially require Ω(n) time to be computed, simply because the perimeter
of the region has to be at least n, so that even propagating all bits from the boundary to
the output (wherever it is) would take Ω(n) time. They still obtain O(

√
n) delay bounds in

some cases, because they allow the “reuse” of input ports. We give a few more details on the
CM model and what they prove in the appendix of the full version [13].

Our wire-delay VLSI model can be seen to subsume the CM model: ours is only more
powerful. Indeed, our model is already provably faster than the CM model for simple
functions such as the AND, OR, and PARITY functions. In particular, the CM model
requires time delay Θ(

√
n) for such functions, whereas our model obtains delay Θ(n1/3)

(Theorem 2).
See the full version [13] for a more extended discussion of other related work.

ITCS 2024

66:6 A VLSI Circuit Model Accounting for Wire Delay

2 Formal definition of the wire-delay VLSI model

In this section, we formally define our VLSI model that captures the time delays due to wires
in real-world circuits.

Let us stress upfront that no mathematical model can fully capture every aspect of real-
world circuits. Modern semiconductor processes have thousands of special constraints and
rules which must be followed in chip layout; these are usually all closely-guarded trade secrets.
Rather, our model is only intended to formally capture a few major abstract components
(our lower bound proofs will solely use these assumptions):
1. Gates and wires are laid out in a mildly 3-dimensional space (with a few 2-dimensional

layers).
2. Gates and wires have a minimum size, and cannot overlap within a layer.
3. As a consequence, the number of wires across any boundary in the chip is at most linear

in the size of the boundary.
4. Two bits of information cannot occupy the same space at the same time.
5. Information traveling any distance across the chip requires time at least linear in the

distance traveled.

Assumptions 1-4 are similar to the assumptions of VLSI models from the 1980s; see e.g.,
the eight assumptions in the paper by Brent and Kung [5]. The most important difference is
in Assumption 5, which is missing from the old models but is crucial in our new model, and
this explains the name “wire-delay VLSI” of our model.

First, we define the various components of our wire-delay VLSI chip model.
The chip is on an N ×M × ℓ grid, where ℓ is a small fixed constant. We say the chip has
ℓ layers and area NM .
A grid point is specified by its integer coordinate (x, y, i) (1 ≤ x ≤ N, 1 ≤ y ≤M, 1 ≤ i ≤
ℓ). (sometimes we also say point (x, y) on the i-th layer). Two grid points (x, y, i), (x′, y′, i′)
are adjacent if |x− x′|+ |y − y′|+ |i− i′| = 1.
Some grid points are called gates. Gates have the following types: logic, flip-flop, input,
or output.
Wires (also called nets) in the chip form tree structures between the gates. A net W is
an arborescence (an out-tree directed towards the leaves), whose nodes are grid points,
and each edge (a wire segment) connects two adjacent grid points. The root of the
arborescence is a gate (and W is called the output wire of this gate), and the leaves of
the arborescence are gates (and W is called an input wire of these gates). None of the
other nodes in the arborescence (called internal nodes) are gates. Different nets in the
chip must utilize disjoint sets of internal nodes.

Second, we describe how these components behave.
Every net W transmits one bit of information along the wires of W , at a fixed speed of
one unit distance per unit time. In particular, let s be the root gate of a net W , and let t

be a leaf gate of W , which is at distance L from s on the tree. After the output of gate s

changes to b ∈ {0, 1}, it takes exactly L units of time for the input bit (corresponding to
W) of gate t to change to b.
A logic gate has k input wires (1 ≤ k ≤ 2) and one output wire, and computes a function
f : {0, 1}k → {0, 1}. Whenever the input bits to the gate changes, the output bit of the
gate immediately changes to the return value of f .
A flip-flop has one input wire, and one output wire. We assume there is a globally
synchronized clock: at each clock tick, every flip-flop has its output bit changed to the
current value of its input bit.

C. Jin, R. R. Williams, and N. Young 66:7

An input gate has one output wire which is used to feed input data to the circuit. An
output gate has one input wire which is used to get the answer computed by the circuit.
Optionally (if the chip designer wants), for any input gate g, we may have an additional
input gate gv on which a “valid bit” is provided, which will have value 1 if an input is
being provided in gv in the current cycle, and 0 otherwise; this allows the chip to easily
ignore the (useless) value from the input gate when no real input is being provided.

Finally, we describe how a wire-delay chip computes a Boolean function f : {0, 1}n →
{0, 1}m.

For each i ∈ [n], the chip designer assigns the i-th input bit to an input gate gi and a
cycle number ti.3 Similarly, for each j ∈ [m], the chip designer assigns the j-th output bit
to an output gate g′

j and some cycle number t′
j . These numbers are fixed as part of the

design of the chip; they are not allowed to depend on the input or any part of the chip
operation (in the literature, this is called where- and when-obliviousness). We require that
two inputs (respectively, outputs) cannot appear in an input gate (respectively, output
gate) at the same time; formally, for i, i′ ∈ [n] and i ≠ i′, (gi, ti) ̸= (gi′ , ti′), and for
i, i′ ∈ [m] and i ̸= i′, (g′

i, t′
i) ̸= (g′

i′ , t′
i′).

On an input x ∈ {0, 1}n, the chip computation proceeds by cycles, each taking TC units
of time. At the beginning of cycle k, we feed xi to input gate gi for all i ∈ [n] with ti = k,
then immediately generate a synchronized clock signal for all the flip-flops in the chip.
At the end of cycle k, we read f(x)j from the output gate g′

j for all j ∈ [m] with t′
j = k.

The total delay (i.e., time complexity) of the chip is the total amount of time units before
reading the last output bit.
The initial state of the chip (namely, the values stored in the flip-flops) can be arbitrary
state (independent from the input string) specified by the chip designer.

In most cases, we assume that the VLSI chips are semellective, i.e., each input bit xi is
supplied to only one input port in the chip, at one cycle (and not to multiple ports, which
may be arbitrarily far apart from each other, or at multiple cycles, which may be arbitrarily
far apart in time). This assumption is needed for our lower bounds on multiplication
(Theorems 3), addition (Theorem 5), and triangle detection (Theorem 8), but (interestingly)
the assumption is not required for our lower bounds on general non-degenerate functions such
as And, Or, and Parity (Theorem 1). One exception is in Theorem 7 (proved in Section 5),
where we consider multilective (i.e., non-semellective) VLSI chips for binary addition that
read each input bit twice.
▶ Remark 15 (On the Realism of Our Model). A few of the assumptions of our model will
benefit from some extra explanation as to why they are realistic.

For convenience, we explicitly model synchronous chips: that is, chips which are controlled
by a clock signal, and hold data at flip-flops between clock cycles. This is for convenience
in our upper bounds (and is never actually taken as an assumption for lower bounds).
Nearly all digital chips are synchronous, but building a synchronous design requires some
care to be devoted to how the clock signal is going to be distributed across the chip (called
“clock tree synthesis” in VLSI design flows). Since the clock tree does not affect the delay
of the chip directly, nor does it dominate the area, we feel comfortable ignoring this in
our model, and simply assume that all flip-flops are provided the clock signal correctly.
The semellectivity assumption is used to ensure that all communication and memory cost
is modeled. If the computation requires an input to be read at two different places or
times, it should pay the cost to communicate or remember that input. Real chips often

3 Throughout the paper we denote [n] = {1, 2, . . . , n}.

ITCS 2024

66:8 A VLSI Circuit Model Accounting for Wire Delay

request data from off-chip at runtime, but they are only able to do this because they are
communicating with a separate memory chip. Under semellectivity, our model counts all
the chip area and delay, including that needed for memory and interactions with memory.
Where- and when-obliviousness is justified similarly to semellectivity: marshalling input
and output in a data-dependent way would require computation, communication, and
memory resources, which we need the chip to pay for so we can model the cost accurately.
Savage described it well in his book: “To do otherwise is to assume that an external agent
not included in the model is performing computations on behalf of the user” [23].
The assumption that input can appear anywhere on the chip at any time is easily justified
for lower bounds: modern chips and chip packaging technology allow it. In contrast, the
CM model assumed that inputs could only appear on the perimeter of the chip (and
heavily relied on this assumption) because this was the only way to build and package
chips at the time. However, for upper bounds, a question arises: how does the input arrive
to the chip? It seems like providing input to all parts of the chip might require significant
off-chip routing resources, which are not included in the model. However, there are some
scenarios in which these resources are not necessary, which we might miss if we made
more restrictive assumptions about input:
1. Input generated near where it is consumed: If the input to the computation is
generated by the chip itself, or by another chip (a sensor, perhaps) stacked directly on
top, then no extra routing resources are needed as long as the input does not have to
travel far. One might envision this situation for 3d imaging applications: a sensor (and a
computation chip stacked directly beneath it) as large as a cross-section of the volume
being imaged can be exposed to the whole volume one slice at a time, and so a volume
of size n × n × n, thus n3 inputs, can be processed in time n on a chip of area n × n,
assuming the computation chip accepts each input where the sensor produces it.
2. Stacked memory chips: although, as we mention, it is not currently possible to
stack many computation chips on top of each other, it is possible to stack many memory
chips on top of each other. “High-Bandwidth Memory” (HBM) produced this way [14]
is in common use. It is thus physically possible to have many memory chips stacked
directly on top of our computation chip, with input from the memory being streamed
into the chip all across its surface, according to the way the input is distributed in the
memory stack. This requires memory (although not easily-addressable or quickly-writable
memory) and vertical routing in 3d, but crucially the computation is still in 2d.
Since there are so many ways of integrating chips into larger systems, it is very difficult
to model a full system of how input gets into the chip, capturing all tradeoffs. We do not
attempt to model the full system, and instead assume it is very powerful. This confines
some of our upper bounds to only be realistic in situations like the above, but it also
means our lower bounds are more general.

2.1 The circuit array model: an intermediate model

We now define a simple “circuit array” model, which we use as an intermediate model of
computation to conveniently describe our chip design upper bounds. We will show that
any computation described in the circuit array model can be efficiently implemented in our
wire-delay VLSI model.

C. Jin, R. R. Williams, and N. Young 66:9

▶ Definition 16 (Circuit arrays). A circuit array consists of an N ×N grid of cells.4 Each
cell (i, j) consists of a circuit with 3 types of inputs: inputs external to the chip, inputs from
other cells in the previous cycle, and local values from the previous cycle, and 3 types of
outputs: outputs external to the chip, outputs to other cells for the next cycle, and local values
for the next cycle.

All cells will run in parallel, being provided inputs at the beginning of the cycle and
producing outputs at the end. Communication on the chip happens between adjacent cells in
the grid, in cardinal directions only.

We now show how to efficiently implement any circuit array in our wire-delay VLSI model.
For convenience, we will work with them to prove upper bounds throughout the paper. We
begin with an implementation of a single cell in a circuit array.

▶ Theorem 17. Suppose a single cell of an array can be implemented by a circuit with size s,
at most s inputs and outputs, and fan-in bounded by 2. Then the circuit can be implemented
on a wire-delay VLSI chip with 5 layers, area O(s2), and delay O(s). Additionally, if a
unique perimeter position (cardinal direction and integer in [s]) is given for each input and
output, then circuit inputs and outputs can be placed on the perimeter of the chip according
to the given positions.

Proof. We will describe a “template” for a chip, in which we “reserve” nodes and edges in
the grid for use by nets carrying certain values, even if they are never actually used by any
net. Then we will show how to construct the necessary nets using these reserved nodes.

We will use a square grid of size 6s + 2, and we will index the grid coordinates starting at
−1 and ending at 6s. This will be convenient for reasons which will become apparent later.

The main idea is to topologically sort the circuit, and lay out the nodes on the diagonal
in topological order. Gate i will use the square from (6i, 6i) to (6i + 5, 6i + 5). The output
variable and both input variables of the gate will reserve “full-chip crosses” using layers 0, 1
and 2, centered in this area. The first input will reserve the single node (6i, 6i) on layer 0,
the entire horizontal line (·, 6i) on layer 1, and the entire vertical line (6i, ·) on layer 2, plus
the between-layer edges connecting them at (6i, 6i). Similarly, the second input will reserve
a full cross centered on (6i + 2, 6i + 2), and the output will reserve a full cross centered on
(6i + 4, 6i + 4). We will implement the gate itself on layer 0 (see figure 1a).

The inputs and outputs to the circuit are placed on the perimeter of the chip, at locations
of the form (−1, 4k) or (6s, 4k) on layer 3 for west and east inputs and outputs, or locations
of the form (4k,−1) or (4k, 6s) on layer 4 for south and north inputs and outputs (here, k is
the integer in [s] used to specify the position).

For each west I/O, at (−1, 4k), we will reserve the full horizontal line (·, 4k + 1) from
−1 to 6s− 1, and will connect it to (−1, 4k) using the single edge between them. For each
east I/O, we will reserve the full horizontal line (·, 4k + 3) from 0 to 6s, and will connect
it to (6s, 4k) using the length-3 line between them. We will handle north and south I/Os
similarly: north I/Os will reserve and connect to the entire vertical line (4k + 3, ·); south
I/Os, the entire vertical line (4k + 1, ·). See figure 1b for a full template illustration.

This system of reserved crosses and lines has one very important property: for any two
variables in the circuit, there is some position where they overlap; that is, for any variables a

and b, there is some x, y, ℓ1 ≥ 1, ℓ2 ≥ 1 where node (x, y) on layer ℓ1 is reserved to a, and

4 Throughout this paper, we use the convention that on a two-dimensional plane the vector (0, 1) points
to the north (drawn upwards in the figures) and the vector (1, 0) points to the east.

ITCS 2024

66:10 A VLSI Circuit Model Accounting for Wire Delay

(a) Three 2-input, 1-output gates implemented on
the diagonal on layer 0 as in theorem 17. Black
nodes indicate where the gate itself is placed.

(b) Reserved wires on layers 1 through 4, includ-
ing all possible I/Os, for template in theorem 17.
Locations of I/Os and gate variables are indicated.

(c) Layout for example circuit as produced by the
construction in theorem 17. Inputs at north 0
(the 0-th point on the north boundary) and east 0;
output at west 0. Gates and nodes with between-
layer connections are indicated.

(d) A corner between 4 of the chip templates from
Theorem 17, showing how inputs and outputs are
“matched” in Theorem 18.

(e) Two example circuits placed next to each other and connected output-to-input as
in Theorem 18. The large dark blue node indicates where a flip-flop is placed.

Figure 1 Illustrations for Theorem 17 and Theorem 18.

C. Jin, R. R. Williams, and N. Young 66:11

node (x, y) on layer ℓ2 is reserved to b. Furthermore, it will always be legal to connect ℓ1 and
ℓ2 using intermediate layers and between-layer edges at (x, y), since they will be the only
two out of the upper four layers which are occupied at (x, y): layer 1 will be occupied only if
y is even, layer 2 will be occupied only if x is even, layer 3 will be occupied only if y is odd,
and layer 4 will be occupied only if x is odd.

To implement the circuit using this template, we will use these overlap points to connect
two variables whenever they are the same values in the circuit. For instance, if the output
of gate i is fed into gate j as its second input, we will reserve a connection between layers
1 and 2 at (6j + 2, 6i + 4), allowing a net carrying this value to be drawn from the source
at (6i + 4, 6i + 4, 0) through layers to (6i + 4, 6i + 4, 1), horizontally to (6j + 2, 6i + 4, 1),
through layers to (6j + 2, 6i + 4, 2), then vertically to (6j + 2, 6j + 2, 2), then through layers
to (6j + 2, 6i + 4, 0), where the value will be consumed by gate j. Similar nets can be drawn
for inputs and outputs; for example, if north input k needs to be fed into gate i as its first
input, a net can be drawn from (4k, 6s, 4) to (4k + 3, 6s, 4) to (4k + 3, 6i, 4) to (4k + 3, 6i, 1)
to (6i, 6i, 1) to (6i, 6i, 0). An example circuit laid out in this manner is shown in figure 1c.

Clearly this chip takes O(s2) area, as it is laid out within a bounding box of dimensions
(6s + 2)× (6s + 2). In order to see that it uses O(s) delay, note first that getting an input
from its perimeter location to a gate where it is consumed (or getting an output from the
gate where it is produced to its perimeter location) involves a single net of length at most
12s + O(1): at most 6s steps to get from the perimeter location, along the reserved wire on
layer 3 or 4, to the intersection with the cross belonging to the gate, then at most 6s steps
to reach the gate, with at most constant extra steps at the beginning and end and to move
between layers. Note also that for any path in the circuit beginning and ending at a gate,
the sum of lengths of nets implementing it is also at most 12s + O(1), because gates are
laid out on the diagonal in topological order, and so all values always move west and north,
meaning the whole path has only 6s steps it can take in each of those two directions. This
means the total distance traveled along any path in the computation is at most 36s + O(1),
which in turn implies at most 36s + O(1) delay to complete the computation, from the time
the inputs arrive to the time the last output reaches its location on the perimeter. ◀

Now that we have a way to lay out a circuit describing a single cycle of computation in
a square area (a single cell), we can implement a simple grid model of cells. The fact that
the I/Os could be assigned locations on the perimeter will be important, as we will be able
to abut two chip areas and pass information between them by ensuring their corresponding
inputs and outputs line up.

▶ Theorem 18. An N ×N circuit array which takes C cycles can be implemented in area
A = O(N2s2) and total delay T = O(Cs), where s is the size of the largest circuit in the grid.

Proof. We will use Ci,j to refer to the circuit in cell (i, j). We can create an N ×N grid
of cells of size (6s + 2) × (6s + 2), and use cell (i, j) (placed at ((6s + 2)i, (6s + 2)j)) to
implement Ci,j according to Theorem 17. We will place the inputs and outputs along the
edges of the cell, ensuring that they “match up” with the corresponding inputs and outputs
in the neighboring cell. We will have all cell inputs use flip-flops, and the input to the flip-flop
will be the corresponding output in the neighboring cell (see Figure 1e). The area and delay
in the theorem statement can be seen easily: each of the N2 cells takes area O(s2), and the
delay for a single cycle is TC = O(s), by Theorem 17. ◀

ITCS 2024

66:12 A VLSI Circuit Model Accounting for Wire Delay

3 Basic Lower Bounds in the Wire-Delay Model

In this section we observe a few basic lower bounds for our VLSI model. These, as well as a
few other ideas in this paper, are taken and modified from earlier unpublished work by one
of the authors as part of his MS thesis at UC Berkeley [31].

We say a single-output function f : {0, 1}n → {0, 1} depends on the i-th input bit if
there exists an x ∈ {0, 1}n such that f(x) ̸= f(x ⊕ ei), where x ⊕ ei ∈ {0, 1}n means
toggling/flipping the i-th bit of x.

In the following, we assume the number of layers ℓ on the chip is a fixed constant.

▶ Theorem 19 (A ≤ O(T 2)). If a function f : {0, 1}n → {0, 1} can be computed by a
wire-delay VLSI chip in time T , then f can be computed by a wire-delay VLSI chip in time
T and area at most 2T × 2T .

Proof. For notational convenience we prove this in the case where the number of layers is
ℓ = 1; the argument easily generalizes to any ℓ ≤ O(1).

Let o = (xo, yo) denote the location of the output on the chip. For any point p = (xp, yp)
on the chip, by our assumption (Item 5) that information traveling any distance across
the chip requires time at least linear in the distance traveled, p is useful (i.e., p can affect
the output value within the chip’s run time T) only if its ℓ1-distance from o in the grid
(∥o− p∥1 = |xo − xp|+ |yo − yp|) is at most T . Hence, if we simply ignore all points of the
chip outside the 2T × 2T area around the output o, we still get a chip that computes the
same function as the original function. ◀

▶ Theorem 20 (AT ≥ Ω(N)). A wire-delay VLSI chip that reads N input bits, with area A

and time T , requires AT ≥ Ω(N).

Proof. This follows immediately from our assumption Item 2 that the gates do not overlap
in the same layer; since all N input values require their own constant amount of area
and time, and no two overlap, we can sum their area-time requirements together, for
AT ≥ N · Ω(1) = Ω(N). ◀

A more general version of this fact (where N instead refers to the serial time of the com-
putation) also appears in section 12.4 of Savage’s book [23]; a similar statement to that
appears in our simulation result Theorem 13. It is useful to visualize the two-dimensional
chip extended through a third dimension representing time to produce a three-dimensional
“area-time volume.” With this intuition, Theorem 20 states that the area-time volume must
be Ω(N), because each input value requires a constant area-time volume of its own.

▶ Theorem 1. For every non-degenerate f : {0, 1}n → {0, 1}, computing f on a wire-delay
VLSI chip requires Ω(n1/3) time.

Proof. Suppose f is computed by a wire-delay VLSI chip in time T . By Theorem 19 we
assume the chip has area A ≤ O(T 2). Since f is non-degenerate, all the n input bits must
be read by the chip, and hence by Theorem 20 we have AT ≥ Ω(n). Combining the two
inequalities immediately gives T ≥ Ω(n1/3). ◀

4 Cube-Root Speed-ups for AND, OR, and XOR

In this section, we prove O(n1/3) time upper bounds for simple functions such as AND, OR,
and XOR in our wire-delay VLSI model claimed in Theorem 2, matching the lower bound
from Theorem 1.

C. Jin, R. R. Williams, and N. Young 66:13

▶ Theorem 2. The AND, OR, and XOR functions can be implemented on a wire-delay
VLSI chip in O(n1/3) time.

Proof. In the following we focus on computing XOR. The chip for computing AND and OR
follows from essentially the same construction.

The rough idea for proving Theorem 2 is as follows: we will place Θ(n2/3) many XOR
gates and input gates on a chip of area Θ(n1/3)×Θ(n1/3). Each XOR gate computes the
XOR function of the input value injected into its cell and the values computed by other
gates coming from the left and below. Then this gate sends the computed XOR value to
the right and up, towards the upper right corner of the grid which contains the output gate.
By repeating Θ(n1/3) cycles, we can inject all Θ(n1/3)× (Θ(n1/3))2 = n input bits into the
chip, and the total XOR value of the input bits are aggregated sent to the output gate at
the upper right corner, in time delay proportional to the chip width and length Θ(n1/3).

Now we formally design our chip for computing XOR in the circuit array model (Theo-
rem 18), where each cell in the array is implemented by a circuit of O(1) size. In a k × k

circuit array (for some parameter k to be determined later), we designate (k, k) as the output
cell. Every cell (i, j) (except (k, k)) is assigned an out-neighbor cell, defined as follows:

If i ̸= k, then the out-neighbor of (i, j) is (i + 1, j).
If i = k and j ̸= k, then the out-neighbor of (i, j) is (i, j + 1).

If cell y is an out-neighbor of a cell x, we say x is an in-neighbor of y. Note that this
out-neighbor relation forms an in-tree rooted at (k, k).

Each of the k × k cells also receives one input bit (external to the chip) in each cycle.
Now we specify the behavior of each cell (i, j) in each cycle.
1. At the beginning of a cycle, cell (i, j) computes the XOR value of all bits sent from the

in-neighbors of (i, j) and the external input bit sent to this cell; denote this XOR value
by x. Let v denote the value stored by cell (i, j) (computed in the previous cycle).

2. At the end of this cycle, the behavior depends on whether (i, j) = (k, k):
If (i, j) ̸= (k, k): cell (i, j) sends v to its out-neighbor cell. Then the value stored by
cell (i, j) is modified to x.
If (i, j) = (k, k): the value stored by this cell is modified to v ⊕ x (where ⊕ means
XOR).

Since in each cycle we can inject k × k = k2 input bits to the chip, we can use ⌈n/k2⌉
cycles to inject all n input bits to the chip. (After that, the cells simply receive zeros instead
of actual external input bits.) Then, we run the chip for another 2k cycles, and let cell (k, k)
output its stored value. We now show that this value is the correct XOR value of all the n

input bits.
Let v

(t)
i,j denote the value stored by cell (i, j) at the end of the t-th cycle. Let x

(t)
i,j denote

the x-value computed by cell (i, j) during the t-th cycle (defined above), and let y
(t)
i,j denote

the external input bit injected to cell (i, j) during the t-th cycle. Let V (t) =
⊕

i,j v
(t)
i,j denote

the total XOR value of the stored values of all k×k cells at the end of the t-th cycle. Initially,
v

(0)
i,j = 0. Now observe that V (t) ⊕ V (t−1) equals the total XOR value of the external input

bits injected to the chip during cycle t. This is because

V (t) =
(⊕

(i,j)̸=(k,k)

v
(t)
i,j

)
⊕ v

(t)
k,k

=
(⊕

(i,j)̸=(k,k)

x
(t)
i,j

)
⊕ (v(t−1)

k,k ⊕ x
(t)
k,k) (by step 2)

ITCS 2024

66:14 A VLSI Circuit Model Accounting for Wire Delay

=
(⊕

(i,j)

x
(t)
i,j

)
⊕ v

(t−1)
k,k

=
(⊕

(i,j)

(
y

(t)
i,j ⊕

⊕
(i′,j′):in-neighbor of (i,j)

v
(t−1)
i′,j′

))
⊕ v

(t−1)
k,k (by step 1)

=
(⊕

(i,j)

y
(t)
i,j

)
⊕

(⊕
(i,j)

v
(t−1)
i,j

)
,

and hence V (t)⊕V (t−1) =
⊕

(i,j) y
(t)
i,j . Consequently, for all t ≥ ⌈n/k2⌉, V (t) equals the XOR

of all the n input bits.
Now we show that after another 2k cycles, all cells except (k, k) will have stored values

equal to 0; this would imply (k, k) stores the value V (t) which is the correct answer. This
can be done by a simple induction: after one cycle, the stored values in all cells (1, j) become
zero (because they have no in-neighbors, and all external input bits are zero). After another
cycle, the stored values in all cells (2, j) also become zero, since the only in-neighbors they
have are (1, j), which only send zeros from the previous cycle. Since the longest chain in the
tree ((1, 1)→ (2, 1)→ · · · → (k, 1)→ (k, 2)→ · · · → (k, k)) has length 2k− 1, we know after
2k cycles all cells except (k, k) store zero values.

Hence, we have shown that the chip produces the correct answer at (k, k) after ⌈n/k2⌉+2k

cycles in total. Setting k = Θ(n1/3), the total delay is only O(n1/3). ◀

For ℓ ≫ 1 layers, one can obtain an improved delay bound by directly extending the
construction to multiple layers. One can show that the delay is O((n/ℓ)1/3). However, we
note that the circuit model becomes less realistic with multiple layers: how might one “inject”
new inputs into ports in the middle of the circuit, when there are several layers of such ports?

5 Results on Addition

In the addition problem, we are given two n-bit input binary numbers A, B, and want to
output their sum C in binary. We use A[i] to denote the i-th bit of A, where A[0] is the least
significant bit of A.

In the following, we prove the lower bound for semellective chips computing addition,
restated below.

▶ Theorem 5. Computing the sum of two n-bit integers on a wire-delay VLSI chip requires
time Ω(

√
n).

First we have the following simple observation similar to Theorem 19.

▶ Lemma 21. If a chip which computes addition has delay T , then all its input bits and
output bits are confined to an area of 4T × 4T on the chip.

Proof. Since the most significant output bit C[n] depends on all the inputs A[0], . . . A[n− 1]
and B[0], . . . , B[n− 1], these inputs are confined to an area at most 2T × 2T (i.e., radius T)
around the point on the chip at which C[n] is produced. Then, since every output bit C[i]
depends on at least one input bit (for example, A[i]), we know no output can be more than
T distance beyond that 2T × 2T area. Hence all inputs and outputs fit in a total area of
4T × 4T . See Figure 2 for an illustration of this argument. ◀

Lemma 21 means all our inputs and outputs of our delay-T addition chip should fit in a
total area-time volume of 4T × 4T × T . We will use this fact to show the contrapositive of
Theorem 5 (i.e., that delay T is only sufficient to solve addition problems of size O(T 2)) in
the following lemma.

C. Jin, R. R. Williams, and N. Young 66:15

T

T

Area

Time

T T T

Figure 2 Side view of 4T × 4T × T volume for Theorem 5. Vertical lines indicate volume where
inputs may be found, horizontal lines indicate where outputs may be found, shaded region is rectangle
for convenience.

▶ Lemma 22. Consider any delay-T0 addition chip C with ℓ layers (with inputs A[0..n −
1], B[0..n− 1] and outputs C[0..n]), which fit in a total area-time volume of 4T0 × 4T0 × T0
by Lemma 21.

There is a universal constant c such that the following holds for all 1 ≤ T ≤ T0: for any
chip subvolume of area 4T × 4T with ℓ layers and time interval T in chip C, there are at
most cℓT 2 indices i ∈ {0, 1, . . . , n− 1} for which A[i] is read, and C[i] is produced, on that
4T × 4T section of the chip within that T time interval.

In particular, by taking T := T0 and considering the entire n-bit addition chip C of delay T0
in Lemma 22, we conclude n ≤ cℓT 2

0 , which proves Theorem 5.
We emphasize that Lemma 22 is stated more generally for any chip subvolume and a

subset of the problem input and output; the area and delay in question need not be the
entire area and delay of the chip. This will be important for the proof, as it uses induction
on the size of the subvolume.

Proof. Let I denote the set of indices i under consideration, namely the indices 0 ≤ i < n

for which A[i] is read and C[i] is produced on that 4T × 4T section of the chip within that
T time interval. Let m := |I| be the quantity we want to bound.

We use induction on T . As a base case, we use the following trivial bound: the number
of inputs that can be read by the 4T × 4T section of the chip within the T time interval is at
most 4T × 4T × T × ℓ = 16ℓT 3 ≤ cℓT 2 as desired for all T ≤ c/16. Hence, in the following
we assume T > c/16.

At a high level, the basic idea of our proof is to show a “memory or serialization” trade-off:

Either the chip must “remember” inputs (or a similar amount of data) for a long time,
thus increasing the area and therefore wire delay, or the chip must wait a long time
for some outputs to be finished before reading more inputs, thus reducing parallelism
and increasing delay.

Formally, let 1 ≤ τ < T/3 be some time increment parameter to be determined later,
and define S ⊆ I to be the set of indices i such that at most τ time passes between the time
A[i] is read and the time C[i] is produced. We consider two cases depending on whether
|S| ≤ m/2:

“Memory” case: |S| ≤ m/2.
For each timestep t in [0, T − 1], the set of “straddling indices” for timestep t, denoted
by It ⊆ I, is defined as the set of indices i ∈ I such that A[i] is read at or before time
t, but C[i] is produced after time t. We claim that |It| ≤ 6T × 6T × ℓ must hold for all

ITCS 2024

66:16 A VLSI Circuit Model Accounting for Wire Delay

Area

Time

τ

τ

τ

τ τ τ τ τ τ

Figure 3 Side view of 6τ × 6τ × 3τ volume for the serialization case of Lemma 22. The red point
is where C[j] is produced; vertical lines indicate the volume where inputs A[i] may be read, and
horizontal lines indicate the volume where outputs C[i] may be produced, for i ∈ S′.

t. The proof of this claim follows from a communication complexity argument: in the
addition instance, we set B[i] = 0 for all i and A[i] = 0 for all i /∈ I, leaving A[i] for all
i ∈ I unfixed. Then, note that a snapshot of the state of the chip at timestep t (within
a radius of 4T + 2t ≤ 6T)contains all the information needed to reproduce the output
C[i] (which equals the input A[i]) for all straddling indices i ∈ It. So the number of bits
stored in the snapshot, 6T × 6T × ℓ, must be at least |It|.
By assumption of |S| ≤ m/2, we have at least |I|−|S| > m/2 indices which are straddling
for at least τ distinct timesteps, and thus

∑
0≤t≤T −1 |It| > τm/2. By averaging, there

is a timestep t with |It| ≥ mτ
2T . Then, the claim from the previous paragraph implies

mτ
2T ≤ 36ℓT 2, or m ≤ 72ℓT 3/τ .

“Serialization” case: |S| ≥ m/2.
In this case we will use the inductive hypothesis. Let j be the largest (highest-order)
index in S, and define S′ ⊆ S to be the set of indices i ∈ S such that A[i] is read at most
2τ timesteps before C[j] is produced.
Note that for such i ∈ S′, C[j] depends on A[i] (due to i ≤ j), so A[i] must be read
within radius 2τ of where C[j] is produced. Furthermore, the respective output C[i] is
produced at most τ time after A[i] is read by definition of S, and is therefore produced
at most τ distance away from where A[i] is read. Hence, the inputs A[i] and outputs C[i]
for all i ∈ S′ must fit in a 6τ × 6τ × 3τ area-time volume (see Figure 3).
By the inductive hypothesis with parameter 3τ (this is why we needed τ < T/3), this
means only 9cℓτ2 such input-output pairs exist, i.e., |S′| ≤ 9cℓτ2, and |S\S′| ≥ |S|−9cℓτ2.
Note that for all k ∈ S \ S′, A[k] is read at least 2τ timesteps before C[j] is produced (by
definition of S′), and C[k] is produced at most τ after A[k] is read (by definition of S),
so C[k] is produced at least τ before C[j] is produced.
Repeating the argument with S ← S \S′, we can find a C[k′] for some k′ ∈ S \S′ which is
produced at least τ time before C[k] is produced (and thus at least 2τ time before C[j] is
produced), and so on. We iterate this argument for at least ⌊ |S|

9cℓτ2 ⌋ ≥ ⌊ m
18cℓτ2 ⌋ iterations

until S becomes empty, and in this way we conclude that C[j] must be produced at time
at least T ≥ τ⌊ m

18cℓτ2 ⌋ ≥ τ
(

m
18cℓτ2 − 1

)
= m

18cℓτ − τ since the very beginning, that is,
m ≤ 18cℓτ(T + τ) < 36cℓτT .

Summarizing the two cases, we must have the upper bound

m ≤ 72ℓT 3/τ + 36cℓτT = cℓT 2 · 36
(

2T

cτ
+ τ

T

)
.

C. Jin, R. R. Williams, and N. Young 66:17

Recall that T > c/16. We set parameter τ := ⌈T/
√

c⌉ ≥ 1, so the upper bound becomes

m ≤ cℓT 2 · 36
(

2√
c

+ T/
√

c + 1
T

)
≤ cℓT 2 · 36

(
3√
c

+ 16
c

)
< cℓT 2

as desired, by setting the constant c to be large enough. Note that τ satisfies the requirement
of τ < T/3 for large enough c. ◀

Note that our lower bound matches the following upper bound (up to logarithmic factors).

▶ Theorem 6. Computing the sum of two n-bit integers can be implemented on a wire-delay
VLSI chip in Õ(

√
n) time.

Proof. The carry-lookahead adder [22] is a Boolean circuit of depth O(log n) and size O(n)
that computes the addition of two n-bit integers. By our simulation result in Theorem 10
(to be proved in Section 7), this implies a wire-delay VLSI chip for adding two n-bit integers
in Õ(

√
n) time. ◀

6 Lower Bound for Multiplication

We now turn to proving an Ω(
√

n) delay lower bound for multiplying two n-bit binary
integers. The lower bound follows from communication complexity arguments, which were
also used in old VLSI literature.

Denote the input bits of the circuit by a0, a1, . . . , an−1 and b0, b1, . . . , bn−1, and the output
bits by c0, c1, . . . , c2n−1 (where a0, b0, c0 are the least significant bits). First we make the
following observation.

Recall that we say an output bit o depends on an input bit i if there exists an input
x = (a, b) where flipping the input bit i would change the output bit o.

▶ Proposition 23. For 0 ≤ i ≤ n− 1, ci depends on the input bits a0, a1, . . . , ai, b0, b1, . . . , bi.
For n ≤ i ≤ 2n− 2, ci depends on all the input bits.

Proof. The first statement immediately follows from considering the input instance where
aj = bi−j = 1, while all other input bits are zeros.

It remains to verify the second statement for any output bit ci (where n ≤ i ≤ 2n− 2)
and input bit aj (the case for bj is similar). If j ≥ i − (n − 1), then we can use the same
argument as in the first proof. Hence we assume 0 ≤ j ≤ i− n.

Consider the input instance a = 2n−1, b = 2n−1 +1, i.e., let a0 = a1 = a2 = · · · = an−1 =
1, and let b0 = bn−1 = 1, b1 = b2 = · · · = bn−2 = 0. We have a · b = 22n−1 + 2n−1 − 1, so in
the binary expansion of this product we have cn−1 = cn = · · · = c2n−2 = 0. In particular,
ci = 0.

Now we flip the input bit aj , and have a′ = 2n − 2j − 1. Then,

a′ · b = 22n−1 − 2n−1+j − 2n−1 + 2n − 2j − 1
= (2n−j − 1) · 2n−1+j + (2n−1 − 2j − 1)
∈

[
(2n−j − 1) · 2n−1+j , 2n−j · 2n−1+j

)
.

So in the binary expansion of c′ = a′ · b we have c′
n−1+j = c′

n−1+j+1 = · · · = c′
2n−2 = 1. In

particular, c′
i = 1. This shows that the output bit ci depends on the input bit aj . ◀

It is clear that for such a pair of i, o, the output bit must be printed after reading the input
bit, and the output port of o must be within T distance from the input port of i.

ITCS 2024

66:18 A VLSI Circuit Model Accounting for Wire Delay

▶ Theorem 3. Computing the product of two n-bit integers on a wire-delay VLSI chip
requires Ω(

√
n) time.

Proof. Recall that we assume the chip is semellective: each input bit only appears in one of
the input ports at one moment in time during the computation.

In the following, we will focus on the set O = {cn−1, cn, . . . , c2n−2} of output bits (from
the “higher-order half” of output bits). We have |O| = n, and from Proposition 23 we know
that every output bit in O is a non-degenerate function: it depends on all input bits. Let
the delay of the chip be T . By a similar argument to Theorem 19 and Lemma 21, we may
assume the area of the chip is O(T)×O(T).

Now we consider at which time steps the chip reads the input bits and prints the output
bits. There must be a particular time step t∗ such that, all the input bits are loaded by the
end of time step t∗, and all the output bits in O are printed after time step t∗. Observe that,
by setting a = 2n−1, we have (cn−1, cn, . . . , c2n−2) = (b0, b1, . . . , bn−1).

Hence, we can obtain a one-way communication protocol for transmitting an n-bit string,
using only O(T 2) bits of communication: Alice sets a = 2n−1, lets b encode the n-bit string,
and simulates the chip computation up to time step t∗, and sends the current configuration of
the chip to Bob. Then Bob continues simulating and obtains the output bits cn−1, . . . , c2n−2
which are identical to the string Alice wants to send. By a basic information theoretic
argument, we must have n ≤ O(T 2), which finishes the proof. ◀

Note that this lower bound matches the following upper bound (up to logarithmic factors).

▶ Theorem 4. Computing the product of two n-bit integers can be implemented on a wire-delay
VLSI chip in Õ(

√
n) time.

Proof. The well-known Schönhage-Strassen algorithm [24] for integer multiplication implies
that there is a Boolean circuit for multiplying two n-bit integers of size Õ(n) and depth
(log n)O(1). By Theorem 10 (to be proved in Section 7), this implies a wire-delay VLSI chip
for multiplying two n-bit integers in Õ(

√
n) time. Note that a more direct construction also

follows from Preparata’s VLSI design for binary multiplication [19]. ◀

7 Simulating Typical Circuits in Our Model

In this section, we will give the proof of Theorem 10, showing how to implement any circuit
of size n and depth d with fan-in and fan-out bounded by two, using a VLSI chip of area
n · poly(log n) and delay d

√
n · poly(log n). We recall that the fan-out two restriction can be

removed without loss of generality, as Hoover, Klawe, and Pippenger [12] showed that every
size-s depth-d circuit with constant fan-in and unbounded fan-out can be simulated by a
circuit with fan-in two, fan-out two, size O(s), and depth O(d).

We will implement our VLSI chip that simulates the circuit in the array model and apply
Theorem 18: assume WLOG that n is a perfect square, and we will implement our circuit
in a

√
n×
√

n grid of cells, where each cell is mapped (arbitrarily) to a unique gate in the
circuit. To simulate the circuit, for every directed edge (u, v) in the circuit, we need to let
the cell representing gate u send its output value to the cell representing gate v. To perform
these communications, we will implement a packet-routing interconnect, following the grid
pattern. When a cell receives the two binary inputs to its gate, it will produce up to two
O(log n)-bit packets carrying the output, along with hard-coded destinations. Inputs to the
chip can be placed directly in the registers which would otherwise carry the gate inputs, and
outputs from the chip can be emitted as soon as they are produced instead of (or in addition
to) generating packets. We will design our interconnect and routing algorithm such that:

C. Jin, R. R. Williams, and N. Young 66:19

every cell can be implemented by a circuit of size poly(log n), and
every packet reaches its destination within O(

√
n) clock cycles.

For a circuit of depth d, the total number of cycles to complete the circuit will be O(d
√

n),
since all paths in the circuit run in parallel and each edge takes at most O(

√
n) cycles. Our

result will be provided by using Theorem 17 to implement each cell, thus achieving area
√

n · poly(log n)×
√

n · poly(log n) ≤ n · poly(log n)

and a clock period of poly(log n), resulting in a circuit of total delay at most d
√

npoly(log n).

7.1 Routing the packets
We will communicate packets among the cells using a well-known scheme due to Valiant and
Brebner [28, section 8]. We first send the packet to a random column in the source row, then
send it along that column the destination row, and then send it along the destination row
to the destination node. Since we know all packet sources and destinations ahead of time
from the topology of our circuit and its placement in the grid, we do not have to bother with
randomness, and can simply hardcode an optimal choice of “random” columns.

We only need the following facts from our network and routing:
1. When a packet enters a node and does not need to change directions (i.e. it entered from

the north and is destined for the south, or entered from the east and is destined for the
west, or vice versa), it is given priority and exits the opposing side in the next cycle with
no stall and without being placed in a queue.

2. Packets in a queue are sent out (in any order) whenever the necessary output port is
open; they do not wait longer than necessary.

3. At most O(
√

n) packets ever pass through any given node.
4. At most O(log n) packets ever change direction at any given node.

We will construct cells to ensure (1) and (2); (3) and (4) were shown to be true by Valiant
and Brebner with high probability over the choice of random columns, and so will certainly
be true in our case, where we hardcode an optimal choice. Valiant and Brebner worked in
a slightly different setting, where all packets were produced at the same time and at most
one packet was produced and received per cell. These facts still hold in our setting where
packets are produced at arbitrary times because they are combinatorial statements about
the set of paths, not statements about timing directly, and they still hold for our 2 packets
produced and received per cell because they are asymptotic.

To find the delay of a packet reaching its destination, note that every packet only waits
in 3 queues at most (at its source, at the random column in the source row, and at the
random column in the destination row). Each time it waits, it waits at most O(

√
n) cycles

for other packets to pass by (due to facts (2) and (3)), and when it is traveling, it takes at
most O(

√
n) cycles to reach the next node where it waits (due to fact (1)). This means every

packet reaches its destination at most O(
√

n) cycles after it is produced at its source.

7.2 Packet headers
Every node that a packet passes through needs to know where to send it next. In order
to accomplish this, every packet will include a header of O(log n) bits describing its route:
log n bits for the index of the “random” column, log n bits for the destination row, log n

bits for the destination column, 1 bit for whether it represents the left or right input of the
destination gate, and 2 bits for which phase the packet is in (send to random column, send

ITCS 2024

66:20 A VLSI Circuit Model Accounting for Wire Delay

to destination row, or send to destination column). Packets have a 1-bit payload, and will
be accompanied by a 1-bit value indicating validity, so that each cell knows whether a new
packet is present at any given input in any given cycle.

7.3 The grid block
Now we describe how to implement each cell in the array.

Structure. A cell consists of several components:
An input and output in each cardinal direction, each capable of transmitting one packet
per cycle (so O(log n) bit width)
A queue capable of storing O(log n) packets, enough to not overflow during operation (so
O(log2 n) bits of storage total)
Two slots for packets holding gate input for this cell, and two slots for packets holding
gate output (pre-filled with the correct packet headers for routing the outputs)
Logic for controlling the behavior of the cell as described below

One-cycle behavior. At each cycle, every input is checked to determine whether there is a
packet coming in. If there is, the 3 coordinate values and the phase bits are used to determine
where the packet should be sent next. For instance, if the phase is “random column”, the
packet is coming from the east, and the first coordinate is smaller than the coordinate of the
current cell, the packet needs to be sent directly to the west output.

If a packet is going “straight,” it should be sent to the correct output immediately. If
the current cell is its final destination, it should be placed in the correct gate input register.
If the packet is headed in any other direction, it is “turning,” and should be placed in an
empty spot in the queue.

If any of the 4 outputs are unused after considering the packets which are going “straight,”
the queue should be checked to see if it contains any packets headed for an unused output.
For every unused output for which at least one packet was found in the queue, the first such
packet should be removed from the queue and sent to the output.

If both gate input registers contain valid packets, they should be invalidated, and both
gate output spots in the queue should be filled with the output of the gate on the two input
payloads and marked valid for the next cycle.

This behavior involves only O(log n) operations of O(log n) bits each, and so it is easy to
see it can be implemented with a circuit of size O(log2 n).

8 Open Problems

There are many new open problems to consider regarding our wire-delay VLSI model. Here
are a few that we especially like; see the full version [13] for even more.

Given that OV can be solved with a cube-root speedup in our wire-delay VLSI model
(Theorem 12), and given the reduction from CNF-SAT to OV [30], is it possible that
CNF-SAT on n variables and O(n) clauses can be solved in 2n/3 · poly(n) time in our
model? This is not immediate, because reductions in the serial world do not necessarily
compose well on a VLSI chip. In particular, the reduction from SAT to OV introduces
Θ(2n/2) binary vectors of length O(n), the bits of which would need to be “transported”
at various places in the chip in order to carry out our OV algorithm in our model.

C. Jin, R. R. Williams, and N. Young 66:21

We have shown (Theorem 8) that triangle detection on dense graphs (with Θ(n2) edges)
requires Ω(n) delay in our model, and it can be solved with Õ(n) delay. What about
sparse graphs? It is well-known [3] that triangle detection can be done in O(m3/2) time
on m-edge graphs on typical serial models of computation. Thus the natural conjecture
would be that O(

√
m) delay is necessary and sufficient for triangle detection in our model.

If this conjecture is true, it would nicely generalize our results for the dense case.
What other conditional lower bounds can be found and matched in the wire-delay
VLSI model? For instance, assuming the OV hypothesis, both Edit Distance and
Longest Common Subsequence require n2−o(1) time [4, 1, 6]. By the simulation
from Theorem 13, this means these two problems do not have wire-delay VLSI chips
in O(n2/3−ε) time under the non-uniform OV hypothesis. Are there wire-delay chips
solving these problems in Õ(n2/3) time? The well-known O(n2)-time serial algorithm for
these problems based on dynamic programming has large depth and does not seem to
immediately imply an Õ(n2/3) wire delay.
Under realistic assumptions like those of wire-delay VLSI, which algorithms (parallel and
serial) are more or less likely to be high-performance, compared to more common models?
How should algorithm structure be studied to account for wire delay?
Our Ω(n1/2) lower bounds for various problems rely on the assumption that the chips are
semellective. Is there an Ω(n1/2) delay lower bound for a natural problem without this
assumption, where each input bit may be read arbitrarily many times by the chip?
In our wire-delay model, every nondegenerate function needs at least Ω(n1/3) delay.
Moreover, we can simulate any time t wire-delay chip on a serial model that uses time
about t3 (Theorem 13). Thus our model could “only” ever speed up a serial computation
by a cube root. Is there a conceivable parallel model (consistent with known physics) in
which the speed-up over serial computation could be asymptotically reduced even further,
even less a cube root? Fisher [11] shows that under natural physical assumptions, the
fastest parallel simulation of a t-time algorithm that we could plausibly hope for in a
two-dimensional model is Ω(t1/3). (In a three-dimensional computational device, Ω(t1/4)
delay is required, under his assumptions.) But we are unconvinced that the final word has
been written on this topic. For instance, we have not considered quantum computational
phenomena at all in this work; nor did Fisher.

References
1 Amir Abboud, Arturs Backurs, and Virginia Williams. Tight hardness results for LCS and

other sequence similarity measures. In Proceedings of IEEE FOCS, pages 59–78, October 2015.
doi:10.1109/FOCS.2015.14.

2 Amir Abboud, R. Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of ACM-SIAM SODA, pages 218–230. SIAM,
2015. doi:10.1137/1.9781611973730.17.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

5 Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J.
ACM, 28(3):521–534, 1981. doi:10.1145/322261.322269.

6 Karl Bringmann and Marvin Kunnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of IEEE FOCS, pages 79–97, October
2015. doi:10.1109/FOCS.2015.15.

7 Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.
doi:10.1145/3402926.

ITCS 2024

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1007/BF02523189
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1145/322261.322269
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1145/3402926

66:22 A VLSI Circuit Model Accounting for Wire Delay

8 Bernard Chazelle and Louis Monier. A model of computation for VLSI with related complexity
results. In Proceedings of ACM STOC, pages 318–325. ACM, 1981. doi:10.1145/800076.
802485.

9 Bernard Chazelle and Louis Monier. Unbounded hardware is equivalent to deterministic turing
machines. Theor. Comput. Sci., 24:123–130, 1983. doi:10.1016/0304-3975(83)90044-0.

10 Bernard Chazelle and Louis Monier. A model of computation for VLSI with related complexity
results. J. ACM, 32(3):573–588, 1985. doi:10.1145/3828.3834.

11 David C. Fisher. Your favorite parallel algorithms might not be as fast as you think. IEEE
Transactions on Computers, 37(02):211–213, 1988.

12 H. James Hoover, Maria M. Klawe, and Nicholas Pippenger. Bounding fan-out in logical
networks. J. ACM, 31(1):13–18, 1984. doi:10.1145/2422.322412.

13 Ce Jin, Ryan Williams, and Nathaniel Young. A VLSI circuit model accounting for wire delay.
Electron. Colloquium Comput. Complex., TR23-186, 2023. URL: https://eccc.weizmann.ac.
il/report/2023/186/.

14 Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and
Keith Kim. Hbm (high bandwidth memory) dram technology and architecture. In 2017 IEEE
International Memory Workshop (IMW), pages 1–4, 2017. doi:10.1109/IMW.2017.7939084.

15 Thomas Lengauer. VLSI theory. In Algorithms and Complexity, pages 835–868. Elsevier, 1990.
16 Igor L. Markov. Limits on fundamental limits to computation. Nature, 512(7513):147–154,

2014.
17 Kurt Mehlhorn and Franco P. Preparata. Area-time optimal VLSI integer multiplier with min-

imum computation time. Inf. Control., 58(1-3):137–156, 1983. doi:10.1016/S0019-9958(83)
80061-8.

18 Christos H. Papadimitriou and Michael Sipser. Communication complexity. J. Comput. Syst.
Sci., 28(2):260–269, 1984. doi:10.1016/0022-0000(84)90069-2.

19 Franco P. Preparata. A mesh-connected area-time optimal VLSI multiplier of large integers.
IEEE Trans. Computers, 32(2):194–198, 1983. doi:10.1109/TC.1983.1676203.

20 Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital integrated circuits- A
design perspective. Prentice Hall, 2ed edition, 2004.

21 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of ACM STOC, pages 515–524. ACM,
2013. doi:10.1145/2488608.2488673.

22 Gerald B. Rosenberger. Simultaneous carry adder, December 27 1960. US Patent 2,966,305.
23 John E Savage. Models of computation, volume 136. Addison-Wesley Reading, MA, 1998.
24 Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen [Fast multipli-

cation of large numbers]. Computing, 7(3-4):281–292, 1971. doi:10.1007/BF02242355.
25 Rupesh S Shelar and Marek Patyra. Impact of local interconnects on timing and power in

a high performance microprocessor. In Proceedings of the 19th international symposium on
Physical design, pages 145–152, 2010.

26 Clark David Thompson. A complexity theory for VLSI. Carnegie Mellon University, 1980.
27 Jeffrey D Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.
28 Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In

Proceedings of ACM STOC, pages 263–277. ACM, 1981. doi:10.1145/800076.802479.
29 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the International Congress of Mathematicians, pages 3447–3487. World
Scientific, 2018.

30 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

31 Nathaniel Young. An updated model of computation for VLSI and applications to FPGA
implementation. Master’s thesis, EECS Department, University of California, Berkeley, May
2022. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-108.html.

https://doi.org/10.1145/800076.802485
https://doi.org/10.1145/800076.802485
https://doi.org/10.1016/0304-3975(83)90044-0
https://doi.org/10.1145/3828.3834
https://doi.org/10.1145/2422.322412
https://eccc.weizmann.ac.il/report/2023/186/
https://eccc.weizmann.ac.il/report/2023/186/
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1016/S0019-9958(83)80061-8
https://doi.org/10.1016/S0019-9958(83)80061-8
https://doi.org/10.1016/0022-0000(84)90069-2
https://doi.org/10.1109/TC.1983.1676203
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1007/BF02242355
https://doi.org/10.1145/800076.802479
https://doi.org/10.1016/j.tcs.2005.09.023
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-108.html

	1 Introduction
	1.1 Our Results
	1.2 Related work

	2 Formal definition of the wire-delay VLSI model
	2.1 The circuit array model: an intermediate model

	3 Basic Lower Bounds in the Wire-Delay Model
	4 Cube-Root Speed-ups for AND, OR, and XOR
	5 Results on Addition
	6 Lower Bound for Multiplication
	7 Simulating Typical Circuits in Our Model
	7.1 Routing the packets
	7.2 Packet headers
	7.3 The grid block

	8 Open Problems

