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Abstract
Let d ≥ 3 be an integer. We show that whenever an order-d tensor admits d + 1 decompositions
according to Tao’s slice rank, if the linear subspaces spanned by their one-variable functions constitute
a sunflower for each choice of special coordinate, then the tensor admits a decomposition where these
linear subspaces are contained in the centers of these respective sunflowers. As an application, we
deduce that for every nonnegative integer k and every finite field F there exists an integer C(d, k, |F|)
such that every order-d tensor with slice rank k over F admits at most C(d, k, |F|) decompositions
with length k, up to a class of transformations that can be easily described.
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1 Introduction

Throughout we will use the following notations. If k is a positive integer, then [k] will denote
the set {1, . . . , k} of positive integers up to k. The letter F will denote a field. All our
statements will be uniform with respect to the choice of the field F, unless we explicitly write
the assumption that the field F is finite. Even in that latter case, the dependence will only
be on the size of the field F and not involve its structure.

We will prove various statements involving order-d tensors, where d ≥ 2 is some integer.
We will refer to functions [n1] × · · · × [nd] → F for some positive integers n1, . . . , nd as
order-d tensors. All our statements will be uniform in the integers n1, . . . , nd once all other
parameters are fixed, and we will use the integers n1, . . . , nd without defining them again in
our statements.

Let k be a positive integer, and let F be a field. If M : [n1] × [n2] → F is a matrix
with rank k, then all decompositions of M as a sum of k rank-1 matrices can be obtained
from one another up to changes of bases. In particular, there exist some linear subspaces
A1 ⊂ Fn1 , A2 ⊂ Fn2 such that if

M(x, y) =
k∑

i=1
fi(x)gi(y)
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is a decomposition of M , then ⟨f1, . . . , fk⟩ = A1 and ⟨g1, . . . , gk⟩ = A2. If F is a finite field,
then it is well-known that the number of decompositions of M , where two decompositions
are viewed as the same if their 2k-tuples (f1, . . . , fk, g1, . . . , gk) are the same, is equal to the
number

(|F|k − 1)(|F|k − |F|) . . . (|F|k − |F|k−1) = |F|k
2

k∏
i=1

(1 − |F|−i) (1)

of bases of A1. This number is between ω|F|k2 and |F|k2 , where we take ω to be the absolute
constant

∞∏
i=1

(1 − 2−i) > 0.

We note that even from a purely qualitative perspective, the analogous boundedness
statement becomes false in general for decompositions of length even one greater than the
rank of M . For instance, if M(x, y) = f(x)g(y), then for any functions f1, f2 : [n1] → F
satisfying f2 − f1 = f we have

M(x, y) = f2(x)g(y) − f1(x)g(y),

so as long as the function f2 is not fixed, the function f1 can be completely arbitrary.
Our main aim in the present paper is to obtain a comparable statement for the notion of

slice rank on higher-order tensors. We have found the task of formulating such a statement to
already be challenging, which is why we shall state it precisely only in Section 3, after going
through several constructions guiding us towards its formulation and ruling out stronger ones
in Section 2. Informally speaking, we will prove that up to a natural class of transformations,
the number of minimal-length slice rank decompositions of a tensor over a finite field is
bounded above in a way that depends only on the order of the tensor, on its slice rank, and
on the size of the field. As we will also discuss, the bound that we obtain cannot be too far
from the optimal bound. Let us recall the definition of the slice rank and even before this,
the definition of the tensor rank.

▶ Definition 1. Let d ≥ 2 be an integer, and let T : [n1] × · · · × [nd] → F be an order-d
tensor. We say that the tensor rank of T , denoted by tr T , is the smallest nonnegative integer
k such that there exist functions aj,i : [nj ] → F for each j ∈ [d] and i ∈ [k] such that

T (x1, . . . , xd) =
k∑

i=1
a1,i(x1)a2,i(x2) . . . ad,i(xd) (2)

is satisfied for all (x1, . . . , xd) ∈ [n1] × · · · × [nd].
We say that an expression such as (2) is a tensor rank decomposition of T , say that the

integer k is the length of the decomposition, and say that the decomposition has minimal
length if its length is equal to the tensor rank of T .

For every x ∈ [n1] × · · · × [nd] and every j ∈ [d], we write xj for (xj′)j′∈[d]\{j}.

▶ Definition 2. Let d ≥ 2 be an integer, and let T : [n1] × · · · × [nd] → F be an order-d
tensor. We say that the slice rank of T , denoted by sr T , is the smallest nonnegative integer
k such that there exist nonnegative integers r1, . . . , rd with r1 + · · · + rd = k satisfying one
of the following two equivalent properties.
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1. There exist matrices Mj : [nj ] × (
∏

j′ ̸=j [nj′ ]) → F with rank at most rj for each j ∈ [d]
such that

T (x1, . . . , xd) =
d∑

j=1
Mj(xj , xj)

is satisfied for all (x1, . . . , xd) ∈ [n1] × · · · × [nd].
2. There exist functions aj,i : [nj ] → F and bj,i :

∏
j′ ̸=j [nj′ ] → F for each j ∈ [d] and each

i ∈ [rj ] such that

T (x1, . . . , xd) =
d∑

j=1

rj∑
i=1

aj,i(xj)bj,i(xj) (3)

is satisfied for all (x1, . . . , xd) ∈ [n1] × · · · × [nd].

We say that an expression such as (3) is a slice rank decomposition of T , say that the
integer r1 + · · · + rd is the length of the decomposition, and say that the decomposition has
minimal length if its length is equal to the slice rank of T .

Before going further, let us recall some of the history of the slice rank and of the ways in
which it has been studied.

The slice rank was originally introduced by Tao [19] in 2016 as a reformulation of a
central idea from the breakthrough of Croot, Lev and Pach [6], which led to the solution
to the cap-set problem by Ellenberg and Gijswijt [7]. Since then, the slice rank has been
used successfully several times as a tool to solve combinatorial problems. For instance, it
was also shown by Naslund and Sawin [16] that subsets of the cube {0, 1}n containing no
3-sunflower are exponentially sparse, and further properties on the slice rank proved by
Sawin and Tao [18] were later used by Sauermann [17] to obtain properties guaranteeing the
existence of solutions with pairwise distinct variables to systems of equations in subsets of
vector spaces over finite prime fields which are not exponentially sparse. In another direction,
a variant of the slice rank, the partition rank, was defined by Naslund in [14], originally to
obtain polynomial upper bounds on problems on k-right corners, and was more recently
used again by Naslund [15], this time to obtain exponential lower bounds on the chromatic
number of Rn with multiple forbidden distances.

Although all these works have primarily used the slice rank and the partition rank as
tools, interest in studying them and their basic properties for their own sake has recently been
building up. In the post of Sawin and Tao [18], a characterisation of the slice rank in terms
of coverings in the case of tensors supported inside an antichain had already been discussed,
and this characterisation later played an important role in the work of Sauermann [17] that
we previously mentioned. Later, it was proved by Gowers [8] that the slice rank of a direct
sum of two tensors is the sum of their slice ranks.

As another example in this direction, the facts that a high-rank matrix must contain
a high-rank submatrix of not too large size and that a matrix with high rank after every
modification of the diagonal must have a high rank submatrix for which the sets of rows
and columns are disjoint were extended by the author in [11] to a class of notions of rank
containing the slice and partition ranks. Still on the topic of subtensors, it was shown by
Briët and Castro-Silva [5] that for another wide class of notions of rank, a random subtensor
of a high-rank tensor must have high rank for some natural way of choosing the restriction
at random, together with some analogous results on random restrictions of polynomials.

ITCS 2024



67:4 Small Sunflowers and the Structure of Slice Rank Decompositions

The three results from the previous paragraph found applications. The first, conditionally
on better bounds, was discussed in [5] as a way to provide an alternate proof of some of
the main results of that paper. The second was used by Gowers and the author [9] as a key
stepping stone to extend to distributions inside {0, 1}n the result of Green and Tao [10] on
the equidistribution of high-rank polynomials over finite prime fields. The third was applied
(primarily in the case of polynomials, although the case of tensors was involved as well) by
Briët, Buhrman, Castro-Silva, and Neumann [4] to prove limitations on the decoding of
corrupted classical and quantum error-correcting codes with NC0[⊕] circuits.

The slice and partition ranks have also been studied using more algebraic methods. For
instance, a “universal” role that the partition rank plays among notions of rank has been
explored by Bik, Draisma and Eggermont [3]. Another universality result was proved by
Kazhdan and Ziegler [12] on the strength of polynomials (an analogue of the partition rank
of tensors), and later led to an extension by Bik, Danelon, Draisma, and Eggermont [2] to
the more abstract setting of arbitrary polynomial functors.

Let us finally mention that in the case of the tensor rank, much effort has gone into
understanding the notion of identifiability of a tensor, which is much stronger than the mere
boundedness of its set of minimal-length decompositions that we focus on (primarily in the
case of the slice rank) in the present paper: if k is a nonnegative integer, then a tensor T

with tensor rank k is said to be identifiable if there is only one way of writing it as a sum

T1 + · · · + Tk

where T1, . . . , Tk have tensor rank 1, up to permutations of the k tensors T1, . . . , Tk. This
area of research, perhaps started by Kruskal [13] in 1977, is still very active. A recent
paper [1] of Ballico, Bernardi and Santarsiero contains, among other interesting things, a
wealth of references on identifiability.

We now define some more notations which we shall use throughout the paper. Let d ≥ 2
be an integer. If x is an element of [n1] × · · · × [nd] and J is a subset of [d], then we shall
write x(J) for the restriction of x to its coordinates in J , that is, for the element of

∏
j∈J [nj ]

defined by x(J)j = xj for every j ∈ J . If a, a′ : [nj ] → F are functions for some j ∈ [d], then
we write a.a′ for the element of F defined by∑

xj∈[nj ]

a(xj)a′(xj).

More generally, if J ′ ⊂ J are non-empty subsets of [d], and U :
∏

j∈J [nj ] → F, U ′ :∏
j∈J′ [nj ] → F are functions, then U ′.U :

∏
j∈J\J′ [nj ] → F will denote the function (or

rather element of F if J ′ = J) defined by

(U ′.U)(x(J \ J ′)) =
∑

x(J′)∈
∏

j∈J′ [nj ]

U ′(x(J ′))U(x(J))

for all x(J \ J ′). If s is a positive integer, and j1, . . . , js are pairwise distinct elements of [d],
then we write xj1 , . . . , xjs for x([d] \ {j1, . . . , js}).

We will repeatedly use the following observations. If a decomposition (3) has minimal
length, then for every j ∈ [d] its functions aj,i with i ∈ [rj ] are linearly independent. Even if
the decomposition does not have minimal length, each of the d parts of the decomposition
and hence the whole decomposition can always be written in a way which ensures that these
functions are linearly independent, and we will always assume this to be the case whenever
we write any slice rank decomposition of any tensor.
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It follows from Gaussian elimination that if for some j ∈ [d] and some integer r ≥ 1
some functions a1, . . . , ar : [nj ] → F are linearly independent, then there exist functions
a∗

1, . . . , a∗
r : [nj ] → F satisfying a∗

i .ai′ = 1i=i′ for any i, i′ ∈ [r]. We will refer to the family
(a∗

1, . . . , a∗
r) as a family of dual functions to the family of functions (a1, . . . , ar). More

generally, if for some non-empty subset J of [d] and some integers rj ≥ 1 for each j ∈ J the
functions aj,1, . . . , aj,rj are linearly independent for every j ∈ J , then the tensor products

⊗j∈Jaj,ij :
∏
j∈J

[nj ] → F

with (ij)j∈J ∈
∏

j∈J [rj ] are linearly independent, and furthermore

(⊗j∈Ja∗
j,ij

).(⊗j∈Jaj,i′
j
) =

∏
j∈J

1ij=i′
j

is equal to 1 if ij = i′
j for every j ∈ J , and to 0 otherwise.

The remainder of the paper is organised as follows. In Section 2 we describe several
rather systematic ways in which we may construct several slice rank decompositions of the
same tensor. Against these constructions we then formulate in Section 3 our result on the
structure of the set of slice rank decompositions of a tensor, Theorem 12, together with
two other results on slice rank decompositions, Proposition 9 and Theorem 10, from which
Theorem 12 can be deduced and which also appear to be of intrinsic interest. This deduction
is then performed in Section 4. In Section 5, which is independent from the other sections,
we give a simple proof of a statement showing that in the case of the tensor rank, the result
on decompositions of matrices extends in a rather optimistic way. The proofs of Proposition
9 and Theorem 10 are carried out in the full version of this manuscript. Finally, in Section 6
we conclude by mentioning some questions which remain open.

2 Constructions of different minimal-length slice rank decompositions

We next go over five ways in which several minimal-length slice rank decompositions can
arise for the same tensor.

▶ Construction 3. Since it is possible to obtain new decompositions of matrices using changes
of bases, it is possible to obtain new decompositions of T from an existing decomposition by
rewriting the decompositions of any of the individual matrices M1, . . . , Md while leaving the
d-tuple (M1, . . . , Md) unchanged.

However, this d-tuple is not unique in general, and there are other ways of obtaining new
decompositions, which brings us to the remaining four constructions.

▶ Construction 4. To see that the matrices M1, . . . , Md are not individually determined,
consider a tensor T for which the slice rank and tensor rank are equal to some common
positive integer k. Let

T (x1, . . . , xd) =
k∑

i=1
a1,i(x1) . . . ad,i(xd)

be a tensor rank decomposition of T with length k. Then for every partition {I1, . . . , Id} of
[k] into d sets I1, . . . , Id that are possibly empty, the decomposition

T (x1, . . . , xd) =
d∑

j=1

∑
i∈Ij

aj,i(xj)(
∏
j′ ̸=j

aj′,i(xj′))

is a slice-rank decomposition of T with length k.

ITCS 2024
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Tensors with equal slice rank and tensor rank exist, since for instance the “identity” tensor
Id,k : [k]d → F defined by

Id,k(x1, . . . , xd) =
k∑

i=1
1x1=i . . . 1xd=i

was shown by Tao ([19], Lemma 1) to have slice rank k. Since the tensor rank of this tensor
is at most k by definition, and since the slice rank is always at most the tensor rank (as can
be seen from their definitions), it follows that both ranks are equal for this tensor.

For instance, in the case d = 3, we obtain a slice rank decomposition

I3,k(x, y, z) =
∑
i∈I1

1x=i1y=z=i +
∑
i∈I2

1y=i1x=z=i +
∑
i∈I3

1z=i1x=y=i

for every tripartition {I1, I2, I3} of [k] (again, with I1, I2, I3 allowed to be empty).

As we can see from Construction 4 not even the sizes of the d parts of the decomposition
are determined in general. One comment that can nonetheless be made about Construction
4 is that although the matrices M1, . . . , Md are not always the same, the set of all summands
is always the same set

{1x1=i . . . 1xd=i : i ∈ [k]}.

However, there is another class of examples where this usually does not hold, even up to
changes of bases in the matrices M1, . . . , Md, and which even encompasses typical tensors.

▶ Construction 5. Let k be a positive integer. A tensor T : [k]d → F can in particular
be written in d different ways as a sum of its (d − 1)-variable slices of each type, i.e. be
decomposed as

T (x1, . . . , xd) =
k∑

i=1
1xj=iT (x1, . . . , xj−1, i, xj+1, . . . , xd)

for every j ∈ [d]. If T has slice rank k, then these d decompositions are each minimal-length
decompositions. If the field F is finite, then the number of tensors [k]d → F with slice rank
at most k − 1 is at most

kd|F|(k−1)(kd−1+k) = kd|F|k
d−kd−1+k2−k.

Provided that d ≥ 3, we can crudely bound this number above by

(kd/|F|k)|F|k
d

.

The ratio is less than 1 for k large enough, and tends to 0 as k tends to infinity, which shows
that random tensors have slice rank k. Unlike in the Id,k example, the sets of k summands
involved in each of the d decompositions are in particular usually very different.

▶ Construction 6. Let k be a positive integer. Provided that a tensor T with slice rank
k does have a decomposition with length k that does not have all its terms of the same
of the three types, there is a systematic way of changing some of the components of the
decomposition and obtain another decomposition with length k. In the d = 3 case, for
instance, if

T (x, y, z) = a(x)b(y, z) + c(y)d(x, z),

then for any function e : [n3] → F, the functions b′ = b + c ⊗ e and d′ = d − a ⊗ e satisfy

T (x, y, z) = a(x)b′(y, z) + c(y)d′(x, z).
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Because the function e is arbitrary, and in particular there are unboundedly many such
functions as n tends to infinity, it is never true, for any integers d ≥ 3, k ≥ 2 and any field F,
that every order-d tensor with slice rank k has a number of minimal-length decompositions
which is bounded above by some function of d, k,F. A boundedness statement of this kind
may only hold up to this type of transformation.

If T is an order-3 tensor with a more general slice rank decomposition

T (x, y, z) =
r∑

i=1
ai(x)bi(y, z) +

s∑
j=1

cj(x)dj(y, z) +
t∑

k=1
ek(z)fk(x, y), (4)

then whenever (i, j) ∈ [r] × [s] and e : [n3] → F is a function, replacing bi and dj by
respectively

bi + cj ⊗ e and dj − ai ⊗ e

leads to a new decomposition of T .
More generally, if

T (x1, . . . , xd) =
d∑

j=1

rj∑
i=1

aj,i(xj)bj,i(xj)

is a slice rank decomposition of T , c : [n3] × · · · × [nd] is a function, and i1 ∈ [r1], i2 ∈ [r2]
are two indices, then replacing b1,i1 and b2,i2 by respectively

b1,i1 + a2,i2 ⊗ c and b2,i2 − a1,i1 ⊗ c

leads to a new decomposition of T . The roles of either of the first two coordinates may of
course be exchanged with those of any of the other coordinates.

▶ Construction 7. We can generalise Construction 6 further. Let us begin by describing a
variant of Construction 6, in the simplest setting. If we have the decomposition

T (x, y, z) = a(x)b(y, z) + c(y)d(x, z) + e(z)f(x, y),

λ1, λ2, λ3 are elements of F adding up to 0 then the functions

b′ = b + λ1c ⊗ e

d′ = d + λ2a ⊗ e

f ′ = f + λ3a ⊗ c

lead to the decomposition

T (x, y, z) = a(x)b′(y, z) + c(y)d′(x, z) + e(z)f ′(x, y).

We note that this transformation reduces to successively applying three of the transforma-
tions from Construction 6, since we can always find µ12,1, µ12,2, µ13,1, µ13,3, µ23,2, µ23,3 ∈ F
satisfying

µ12,1 + µ12,2 = 0 λ1 = µ12,1 + µ13,1

µ13,1 + µ13,3 = 0 λ2 = µ12,2 + µ23,2

µ23,2 + µ23,3 = 0 λ3 = µ13,3 + µ23,3.

ITCS 2024
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We may for instance choose µ13,1 and µ13,3 to be zero, and µ12,1, µ12,2, µ23,2, µ23,3 are then
uniquely determined.

If (4) is a more general decomposition of an order-3 tensor T , then whenever (i, j, k) ∈
[r] × [s] × [t] and λ1, λ2, λ3 ∈ F satisfy

λ1 + λ2 + λ3 = 0,

replacing bi, dj , fk by respectively

bi + λ1cj ⊗ ek

dj + λ2ai ⊗ ek

fk + λ3ai ⊗ cj

leads to a new decomposition of T .
In the case of general d ≥ 3, if (3) is a decomposition of T , then we can choose some

index ij for each j ∈ [d], and choose some λ1, . . . , λd ∈ F satisfying

λ1 + · · · + λd = 0.

Replacing the function bj,ij
for each j ∈ [d] by the function b′

j,ij
defined by

b′
j,ij

(xj) = bj,ij
(xj) + λja1,i1(x1) . . . aj−1,ij−1(xj−1)aj+1,ij+1(xj+1) . . . ad,id

(xd)

then provides a new decomposition of T .
However, we can extend this class of transformations yet further: we can choose suc-

cessively a subset J of [d] with size at least 2, some indices ij ∈ [rj ] for each j ∈ J , some
functions cj :

∏
j∈[d]\J [nj ] → F for each j ∈ J (instead taken to be a elements of F if J = [d])

satisfying∑
j∈J

cj = 0,

and replace for each j ∈ J the function bj,ij by the function b′
j,ij

defined by

b′
j,ij

(xj) = bj,ij
(xj) + (

∏
j′∈J\{j}

aj′,ij′ (xj′))cj(x([d] \ J)).

This yet again provides a new decomposition of T .
Just as in the case of order-3 tensors, for general d ≥ 3 and 2 ≤ |J | ≤ d doing this

transformation ultimately reduces to successively applying transformations from Construction
6 several times. For instance, writing J = {j1, . . . , js}, there is a unique way of choosing them
while only using the s − 1 pairs of indices {j1, j2}, . . . , {js−1, js}. Nonetheless, we discuss
Construction 7 separately, as in our proofs we will think of the corresponding transformation
as a single transformation rather than as a succession of several transformations from
Construction 6.

Any of the five constructions that we have just described may be combined together: as
shown by Gowers [8], the slice rank of a block diagonal tensor is equal to the sum of the slice
ranks of the diagonal blocks, so putting together minimal-length decompositions of the five
examples each respectively corresponding to a tensor T1, . . . , T5 leads to a minimal-length
decomposition of the diagonal sum

T1 ⊕ · · · ⊕ T5,

and this is still the case after modifying any of the decompositions of T1, . . . , T5 using
Constructions 3 to 7 respectively.
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3 Statements of main results

The previous section was devoted to constructions illustrating how a variety of different
slice rank decompositions may arise for the same tensor. In the present section we describe
our main results, which will be in the converse direction and show that to some extent, the
set of minimal-length slice rank decompositions of the same tensor cannot be too rich. We
will do so separately for the (d − 1)-variable functions and for the one-variable functions of
minimal-length decompositions, and will go through the following three steps, corresponding
respectively to the proofs of the three main results of this paper, Proposition 9, Theorem 10,
and Theorem 12.

1. We will begin by showing that if two decompositions have the same one-variable functions,
then any differences between the two decompositions arise from Construction 6 and
Construction 7.

2. After this, we will show a statement which in particular implies that no more than d

decompositions can have their sets of one-variable functions in the jth coordinate be
jointly linearly independent for every j ∈ [d] simultaneously.

3. This result will allow us to deduce that, in the finite field case, there are only a bounded
number of possibilities for the one-variable functions, with a bound depending only on
the order of the tensor, on its slice rank, and on the size of the finite field.

In summary, we can partition the decompositions according to their one-variable functions
in a bounded number of sets, and inside each of these sets we can completely describe the
possibilities for the (d − 1)-variable functions once we know what these are for one of the
decompositions from the set.

Let us now go through these steps more formally. Although the following definition is a
bit long, all that it describes is differences between the original and the new (d − 1)-variable
functions before and after successively applying Construction 6 and Construction 7 as much
as can be done. If J is a subset of [d], then for simplicity of notation we will denote a
sequence (ij)j∈J by iJ .

▶ Definition 8. Let d ≥ 3 be an integer, and let r1, . . . , rd be nonnegative integers. We say
that a decomposition

d∑
j=1

rj∑
i=1

aj,i(xj)bj,i(xj)

is in zero form if there exist functions

cJ,j,i,iJ\{j} :
∏

j′′∈[d]\J

[nj′′ ] → F

(instead taken to be elements of F if J = [d]) for every subset J ⊂ [d] with 2 ≤ |J | ≤ d, every
j ∈ [d], every i ∈ [rj ] and every iJ\{j} satisfying the following two properties.
1. For every j ∈ [d] and every i ∈ [rj ] we can write

bj,i(xj) =
∑

J⊂[d]:j∈J

∑
iJ\{j}

 ∏
j′∈J\{j}

aj′,ij′ (xj′)

 cJ,j,i,iJ\{j}(x([d] \ J)).

2. For every J ⊂ [d] with 2 ≤ |J | ≤ d and every (ij′)j′∈J , we obtain a sum of 0 whenever
we take the sum over all functions cJ,j,i,iJ\{j} where the sequence iJ\{j} completed to a
sequence indexed by J by introducing the additional term ij = i is equal to (ij′)j′∈J .
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Given this definition, the first component of our results can be easily formulated. It can
be checked that any decomposition that is in zero form adds up to the zero tensor, and our
first result is a converse of that. We assume as usual that the functions aj,i of decompositions
are linearly independent for each j ∈ [d].

▶ Proposition 9. Let d ≥ 3 be an integer, and let r1, . . . , rd be nonnegative integers. If a
decomposition

d∑
j=1

rj∑
i=1

aj,i(xj)bj,i(xj)

is equal to the zero tensor, then it is in zero form.

The next theorem corresponds to the second step of the argument that we described at
the beginning of this section. The key structure that we will use is that of sunflowers in a
linear algebra sense: if A0, A1, . . . , Ah are linear subspaces which are all jointly in direct sum
for some positive integer h, then we say that the linear subspaces

A0 ⊕ A1, . . . , A0 ⊕ Ah

constitute a sunflower with center A0 and petals A1, . . . , Ah.
What we will show is that if we can find d + 1 decompositions θ of the same tensor (not

necessarily with minimal length) where for each j ∈ [d] the linear subspaces spanned by the
one-variable functions aj,i coming from the respective decompositions constitute a sunflower
in the sense that we have just described, then the tensor has a slice rank decomposition
where for every j ∈ [d] the one-variable functions aj,i all belong to the center A0

j of the
sunflower, and hence in particular the tensor has slice rank at most

dim A0
1 + · · · + dim A0

d.

We state this result for any d ≥ 2: the d = 2 case is relevant since we use it in the proof of
the d = 3 case.

▶ Theorem 10. Let d ≥ 2 be an integer, let F be a field, and let T be an order-d tensor over
F. Let r0

1, . . . , r0
d be nonnegative integers, and let a0

j,i : [nj ] → F be one-variable functions for
every j ∈ [d] and every i ∈ [r0

j ]. Let h > d be an integer, and assume that the following two
conditions are satisfied.
1. For every θ ∈ [h] there exist nonnegative integers rθ

1, . . . , rθ
d and a decomposition of T of

the type

d∑
j=1

 r0
j∑

i=1
a0

j,i(xj)b0,θ
j,i (xj) +

rθ
j∑

i=1
aθ

j,i(xj)bθ
j,i(xj)


for some one-variable functions aθ

j,i : [nj ] → F and for some (d − 1)-variable functions
b0,θ

j,i , bθ
j,i :

∏
j′ ̸=j [nj′ ] → F.

2. For each j ∈ [d] the one-variable functions

a0
j,1, . . . , a0

j,r0
j
, a1

j,1, . . . , a1
j,r1

j
, . . . , ah

j,1, . . . , ah
j,rh

j
: [nj ] → F

are linearly independent.
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Then there exist (d − 1)-variable functions b0
j,i :

∏
j′ ̸=j [nj′ ] → F such that

d∑
j=1

r0
j∑

i=1
a0

j,i(xj)b0
j,i(xj)

is a decomposition of T and in particular

sr T ≤ r0
1 + · · · + r0

d.

We stress that in the assumptions of Theorem 10 the decompositions are not required to
have minimal length. The inequality h > d is optimal, as can be seen from either Construction
4 or Construction 5.

We note that there is a large class of examples where the subspaces Aθ
1, . . . , Aθ

d are
respectively the same for every minimal-length decomposition of T . Informally, this is the
class of order-d tensors which admit a minimal-length slice rank decomposition where the
(d − 1)-variable functions of each kind are sufficiently separated with respect to the slice rank
of order-(d − 1) tensors.

▶ Proposition 11. Let d ≥ 3, k ≥ 1 be integers, and let T be an order-d tensor with slice
rank k. Assume that there exist nonnegative integers r1, . . . , rd satisfying

r1 + · · · + rd = k,

and a decomposition

d∑
j=1

rj∑
i=1

aj,i(xj)bj,i(xj)

of T such that for every j ∈ [d] the order-(d − 1) tensors bj,1, . . . , bj,rj
:
∏

j′ ̸=j [nj ] → F satisfy

sr
(

rj∑
i=1

λibj,i

)
≥ 2k (5)

for every (λ1, . . . , λrj
) ∈ Frj \ {0} and for every j ∈ [d]. Then the linear subspaces

Aj = ⟨aj,i : i ∈ [rj ]⟩

with j ∈ [d] are such that whenever

d∑
j=1

r′
j∑

i=1
a′

j,i(xj)b′
j,i(xj)

is a slice rank decomposition of T satisfying r′
1 + · · · + r′

d = k, we have r′
j = rj and

Aj = ⟨a′
j,i : i ∈ [r′

j ]⟩

for every j ∈ [d].

Proof. For every j ∈ [d] we write Aj and A′
j for the linear subspaces

⟨aj,1, . . . , aj,rj
⟩ and ⟨a′

j,1, . . . , a′
j,rj

⟩
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respectively. If for some j0 ∈ [d] the subspace A′
j0

does not contain Aj0 , then there exists
a function u : [nj0 ] → F such that u.a = 0 for every a ∈ A′

j0
but u.a ̸= 0 for some a ∈ Aj0 .

Applying u to both sides of the equality

d∑
j=1

rj∑
i=1

aj,i(xj)bj,i(xj) =
d∑

j=1

r′
j∑

i=1
a′

j,i(xj)b′
j,i(xj)

we obtain

rj0∑
i=1

(u.aj0,i)bj0,i(xj0) +
∑
j ̸=j0

rj∑
i=1

aj,i(xj)(u.bj,i)(xj0 , xj) =
∑
j ̸=j0

r′
j∑

i=1
a′

j,i(xj)(u.b′
j,i)(xj0 , xj).

Our assumption (5) shows that

(u.aj0,1, . . . , u.aj0,rj0
) ̸= 0

and hence that the first sum of the left-hand side has slice rank at least 2k. All inner
summands of all other sums each have slice rank at most 1, and there are at most 2k − 1
such summands, which is a contradiction. Therefore, A′

j contains Aj for every j ∈ [d]. Since
we have

r1 + · · · + rd = k = r′
1 + · · · + r′

d,

we conclude A′
j = Aj for every j ∈ [d]. ◀

From Proposition 9 and Theorem 10 we then deduce our theorem on the structure of
minimal-length slice rank decompositions of tensors, which we now state.

▶ Theorem 12. Let d ≥ 3, k ≥ 1 be integers, let F be a field, and let T be an order-d tensor
over F and with slice rank equal to k. Then we have the following.
1. If the field F is finite, then there exists a set A of d-tuples (W1, . . . , Wd) of linear

subspaces of Fn1 , . . . ,Fnd respectively, with size |A| ≤ dk|F|dk2 , such that if r1, . . . , rd are
nonnegative integers satisfying

r1 + · · · + rd = k (6)

and aj,i : [nj ] → F with j ∈ [d] and i ∈ [rj ] are functions satisfying

T (x1, . . . , xd) =
d∑

j=1

rj∑
i=1

aj,i(xj)bj,i(xj) (7)

for some (d − 1)-variable functions bj,i :
∏

j′ ̸=j [nj′ ] → F, then

(⟨a1,1, . . . , a1,r1⟩, . . . , ⟨ad,1, . . . , ad,rd
⟩) ∈ A.

In particular there are at most dk|F|(d+1)k2 possibilities in total for

((r1, . . . , rd), (a1,1, . . . , a1,r1), . . . , (ad,1, . . . , ad,rd
))

satisfying (6) and (7).
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2. For any field F, if two decompositions

T (x1, . . . , xd) =
d∑

j=1

rj∑
i=1

aj,i(xj)b1
j,i(xj) =

d∑
j=1

rj∑
i=1

aj,i(xj)b2
j,i(xj) (8)

of T have the same one-variable functions aj,i, then the decomposition

d∑
j=1

rj∑
i=1

aj,i(xj)(b2
j,i − b1

j,i)(xj) (9)

is in zero form.

The decompositions need not be assumed to have minimal length in the second item of
Theorem 12, even if like the first item of Theorem 12 it was conceived primarily with this
case in mind. The following example shows that the exponents in the two bounds from the
first item of Theorem 12 can only be away from the optimal bounds by factors which are
linear in d, uniformly in k and F.

▶ Example 13. Let d ≥ 4 be an integer, let r be a positive integer, let M : [n1] × [n2] → F be
a rank-2r matrix, let c : [n3] × · · · × [nd] → F be an order-(d − 2) tensor with slice rank at
least 2r, and let T be the order-d tensor defined by

T (x1, . . . , xd) = M(x1, x2)c(x3, . . . , xd).

Then the tensor T has slice rank 2r, and there are at least ω|F|r2 possibilities for the linear
subspace ⟨a1

1,1, . . . , a1
1,r⟩ of any length-2r slice rank decomposition of T of the type

r∑
i=1

a1,i(x1)b1,i(x1) +
2r∑

i=r+1
a2,i(x2)b2,i(x2).

Proof. Let A be the linear subspace spanned by the functions f1, . . . , f2r in any rank
decomposition

M(x1, x2) =
2r∑

i=1
fi(x1)gi(x2)

of M . For any such decomposition of M , the decompositions

r∑
i=1

fi(x1)(gic)(x2, x3, . . . , xd) +
2r∑

i=r+1
gi(x2)(fic)(x1, x3, . . . , xd)

are decompositions of T with length 2r, and the linear subspace ⟨f1, . . . , fr⟩ can be any
dimension-r linear subspace of A. In turn, there are at least

ω|F|(2r)2
/|F|2r2

|F|r
2

possibilities for this linear subspace, which provides the desired bound. It hence suffices to
check that these decompositions indeed have minimal length, in other words that T has slice
rank no less than 2r. Assume for contradiction that

r1∑
i=1

a1,i(x1)b1,i(x1) +
r2∑

i=1
a2,i(x2)b2,i(x2) +

d∑
j=3

rj∑
i=1

aj,i(xj)bj,i(xj)
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is a slice rank decomposition of T satisfying

r1 + r2 + r3 + · · · + rd < 2r.

The linear subspace

U = {a∗
1 ∈ Fn1 : a∗

1.a1,1 = 0, . . . , a∗
1.a1,r1 = 0}

has dimension n − r1, so since M has rank 2r, the linear subspace

{a∗
1.M : a∗

1 ∈ U}

has dimension at least 2r − r1, so is not contained inside the linear subspace ⟨a2,1, . . . , a2,r2⟩.
Therefore, we can find a∗

1 ∈ U and an element a∗
2 of Fn2 such that

a∗
2.a2,1 = 0, . . . , a∗

2.a2,r2 = 0

but which also satisfies

(a∗
1 ⊗ a∗

2).M = a∗
2.(a∗

1.M) ̸= 0.

Applying a∗
1 ⊗ a∗

2 to the original decomposition of T then provides a slice rank decomposition

λc(x3, . . . , xd) =
d∑

j=3

rj∑
i=1

aj,i(xj)((a∗
1 ⊗ a∗

2).bj,i)(x1, x2, xj)

of λc for some λ ̸= 0, which contradicts that sr c ≥ 2r. ◀

4 Deduction of the structure theorem on slice rank decompositions

In this section we deduce Theorem 12 from Proposition 9 and Theorem 10.

Proof of Theorem 12. Let us begin by proving the second item. Because the two decom-
positions (8) are decompositions of the same tensor, their difference (9) is equal to the zero
tensor, so it follows from Proposition 9 that the decomposition (9) is in zero form.

There remains to prove the first item. Let k be the slice rank of T . If k = 0 then we are
done, so let us assume k ≥ 1. We consider an arbitrary set of minimal-length decompositions

d∑
j=1

rθ
j∑

i=1
aθ

j,i(xj)bθ
j,i(xj)

of T indexed by θ ∈ [h] for some positive integer h. For every θ ∈ [h] we write Aθ
1, . . . , Aθ

d

for the linear subspaces spanned by the functions aθ
1,i, . . . , aθ

d,i respectively. We assume that
whenever θ, θ′ are distinct elements of [h], the equality Aθ

j = Aθ′

j fails for at least one j ∈ [d].
Let M1 be a maximal subset of [h] such that for each j ∈ [d] the linear subspaces Aθ

j

with θ ∈ M1 are all in direct sum. By Theorem 10 the set M1 must have size at most d, as
otherwise we would have T = 0. We can hence write

[h] =
⋃

1≤j1≤d

⋃
w1

Θ(j1,w1)

where the union over w1 is taken over all non-zero vectors of ⊕θ∈M1Aθ
j1

, and where for every
(j1, w1) and every θ ∈ Θ(j1,w1) the line containing w1 is contained in Aθ

j1
.
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We now fix (j1, w1), and let M2 be a maximal subset of Θ(j1,w1) such that the linear
subspaces Aθ

j1
with θ ∈ M2 have pairwise intersection ⟨w1⟩, and such that for every j ≠ j1

the linear subspaces Aθ
j with θ ∈ M2 are in direct sum. Again, by applying Theorem 10 the

set M2 has size at most d, as otherwise we would have sr T ≤ 1, and we can further write

Θ(j1,w1) =
⋃

1≤j2≤d

⋃
w2

Θ(j1,w1),(j2,w2)

where the union over w2 is taken over all non-zero vectors of ⊕θ∈M1Aθ
j2

if j2 ̸= j1 (resp. taken
over all vectors linearly independent from w if j2 = j1), and where for every θ ∈ Θ(j2,w2) the
line containing w2 is contained in Aθ

j2
(resp. the plane containing w1, w2 is contained in Aθ

j2
).

Iterating further we obtain a tree structure with depth k, and with root [h]. Let us
describe the inductive step of the process. Once the tree is constructed up to some depth
κ ≤ k, a (depth-κ) leaf of the tree constructed at this point is a subset

Θ(j1,w1),(j2,w2),...,(jκ,wκ)

of [h] such that there exist linear subspaces W1 ⊂ Fn1 , . . . , Wd ⊂ Fnd with

dim W1 + · · · + dim Wd = κ

and which satisfy Wj ⊂ Aθ
j for every j ∈ [d] and every θ ∈ Θ(j1,w1),(j2,w2),...,(jκ,wκ). If κ < k,

then let Mκ+1 be a maximal subset of Θ(j1,w1),(j2,w2),...,(jκ,wκ) such that the linear subspaces
Aθ

j with θ ∈ Mκ+1 have pairwise intersection Wj for every j ∈ [d]. Theorem 10 then shows
that Mκ+1 has size at most d (as otherwise we would have sr T ≤ κ), and we can hence write

Θ(j1,w1),(j2,w2),...,(jκ,wκ) =
⋃

1≤jκ+1≤d

⋃
wκ+1

Θ(j1,w1),(j2,w2),...,(jκ,wκ),(jκ+1,wκ+1), (10)

where the union over wκ+1 is over all vectors of

(+θ∈Mκ+1Aθ
jκ+1

) \ Wjκ+1 .

We then take the sets Θ(j1,w1),(j2,w2),...,(jκ,wκ),(jκ+1,wκ+1) to be the immediate descendants of
the set Θ(j1,w1),(j2,w2),...,(jκ,wκ) in the tree.

If instead κ = k then dim W1 + · · · + dim Wd and dim Aθ
1 + · · · + dim Aθ

d are both equal to
k, so are equal to one another. Hence, once we reach depth k the linear subspaces Aθ

1, . . . , Aθ
d

are all completely determined by W1, . . . , Wd. By our initial assumption that for any distinct
θ, θ′ ∈ [h] we have Aθ

j ̸= Aθ′

j for some j ∈ [d], the sets Θ(j1,w1),(j2,w2),...,(jk,wk) each have size
at most 1.

We have obtained a tree with depth k, and each node of the tree has at most d|F|dk

immediate descendants, so the number of leaves, and hence of d-tuples of linear subspaces
(Aθ

1, . . . , Aθ
d) is at most (d|F|dk)k = dk|F|dk2 . Furthermore, for each choice of a d-tuple of

subspaces (Aθ
1, . . . , Aθ

d) with respective dimensions r1, . . . , rd, by the number (1) of decom-
positions of matrices there are at most

|F|r
2
1 . . . |F|r

2
d ≤ |F|k

2

possibilities for

((a1,1, . . . , a1,r1), . . . , (ad,1, . . . , ad,rd
)).

This finishes the proof of the first item of Theorem 12. ◀
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5 Simpler analogue for tensor rank decompositions

In this section we prove a simpler analogue of Theorem 12 in the case of the tensor rank, which
is much more similar to the statement for matrices that we discussed in the introduction.

▶ Proposition 14. Let d ≥ 2 be an integer, let k be a nonnegative integer, and let F be a
field. If T : [n1] × · · · × [nd] → F is an order-d tensor with tensor rank k, then there exist
linear subspaces A1 ⊂ Fn1 , . . . , Ad ⊂ Fnd such that if

T (x1, . . . , xd) =
k∑

i=1
a1,i(x1) . . . ad,i(xd) (11)

is a tensor rank decomposition of T with length k, then we have

A1 = ⟨a1,1, . . . , a1,k⟩, . . . , Ad = ⟨ad,1, . . . , ad,k⟩.

In particular, if the field F is finite, then the number of possible tensor rank decompositions
of T with length k is at most |F|(d−1)k2 .

Proof. Assume that

T (x1, . . . , xd) =
k∑

i=1
a1,i(x1) . . . ad,i(xd) =

k∑
i=1

a′
1,i(x1) . . . a′

d,i(xd)

are two decompositions of T with length k. To prove the first conclusion, it suffices to
show that for each j ∈ [d] the linear subspaces ⟨aj,1, . . . , aj,k⟩ and ⟨a′

j,1, . . . , a′
j,k⟩ are the

same. Assume for contradiction that they are not. Then without loss of generality the linear
subspace ⟨a1,1, . . . , a1,k⟩ is not contained in the linear subspace ⟨a′

1,1, . . . , a′
1,k⟩, so there exists

u : [n1] → F such that (u.a′
1,1, . . . , u.a′

1,k) = 0 but (u.a1,1, . . . , u.a1,k) ̸= 0. Applying u to
both decompositions of T we obtain

k∑
i=1

(u.a1,i)a2,i(x2) . . . ad,i(xd) = 0,

so the products a2,i ⊗ · · · ⊗ ad,i with i ∈ [k] are linearly dependent. Assuming without
loss of generality that the product a2,k ⊗ · · · ⊗ ad,k is a linear combination of the products
a2,i ⊗ · · · ⊗ ad,i with i ∈ [k − 1], we can hence write

T (x1, . . . , xd) =
k−1∑
i=1

α1,i(x1)a2,i(x2) . . . ad,i(xd)

for some new functions α1,1, . . . , α1,k−1 : [n1] → F. This is a tensor rank decomposition of T

with length k − 1, which contradicts that T has tensor rank k.
If the field F is finite, then for each of the k(d − 1) functions aj,i with j ∈ {2, . . . , d} and

i ∈ [k] involved in a given decomposition of T , there are at most |Aj | ≤ |F|k possibilities.
Once these functions are fixed, the linear independence of the products a2,i ⊗ · · · ⊗ ad,i with
i ∈ [k], shows that the functions a1,1, . . . , a1,k are determined. The bound follows. ◀

Although the upper bound that we obtain specialises in the case d = 2 to the upper
bound obtained at the start of the introduction, the number of tensor rank decompositions
can be much less than |F|(d−1)k2 for general d. Indeed if an order-d tensor T with tensor rank
k is identifiable in the sense that we mentioned in the introduction, then it can be written
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in at most k! ways as a sum of k tensors with tensor rank 1 (those being the same, up to
permutation); as in turn there are (|F| − 1)d−1 ways of rewriting a tensor with tensor rank 1
as a product of d functions, such a tensor has at most k!(|F| − 1)d−1 choices for the number
of possible tensor rank decompositions in our sense. Nonetheless, the following example
shows that the behaviour from the d = 2 case for k large can carry over to tensors of higher
order, and that the exponent in the bound from Proposition 14 cannot be improved by a
factor greater than d in general. We recall the absolute constant ω =

∏∞
i=1(1 − 2−i) > 0

defined at the start of the introduction.

▶ Example 15. Let d ≥ 2 be an integer, and let k be a nonnegative integer. Let T be the
order-d tensor defined by

T (x1, . . . , xd) = M(x1, x2)a3(x3) . . . ad(xd) (12)

for some matrix M : [n1] × [n2] → F with rank k and some non-zero functions a3 : [n3] →
F, . . . , ad : [nd] → F. Then T has tensor rank equal to k, and the number of tensor rank
decompositions of length k of T is exactly

(|F| − 1)(d−2)k|F|k
2

k∏
i=1

(1 − |F|−i),

which is between ω|F|k2 and |F|k2+(d−2)k.

Proof. In one direction, writing a rank decomposition of the matrix M with length k and
plugging it in (12) shows tr T ≤ k. In the other direction, if

T (x1, . . . , xd) =
k′∑

i=1
a1,i(x1)a2,i(x2)a3,i(x3) . . . ad,i(xd) (13)

is a tensor rank decomposition of T for some nonnegative integer k′, then letting a∗
3 : [n3] →

F, . . . , a∗
d : [nd] → F be functions such that a∗

j .aj = 1 for each j ∈ {3, . . . , d} and applying
a∗

3, . . . , a∗
d to both decompositions (12) and (13) leads to

M(x1, x2) =
k′∑

i=1
Cia1,i(x1)a2,i(x2)

for some coefficients Ci ∈ F, so k′ ≥ rk M and hence tr T ≥ k.
The decomposition (12) shows that the linear subspaces A3, . . . , Ad of Proposition 14

each have dimension 1, and there are hence at most (|F| − 1)(d−2)k choices for

((a3,1, . . . , a3,k), . . . , (ad,1, . . . , ad,k)) (14)

since if one of these functions were zero, then this would contradict tr T = k. Once this
choice is made, Proposition 14 shows that there are at most

|F|k
2

k∏
i=1

(1 − |F|−i)

choices for (a2,1, . . . , a2,k), and the linear independence of the products a2,i ⊗ · · · ⊗ ad,i with
i ∈ [k] involved in a minimal-length tensor rank decomposition then shows that (a1,1, . . . , a1,k)
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is completely determined. Conversely, for any given choice of (14) such that aj,i ∈ Aj \ {0}
for every j ∈ {3, . . . , d} and i ∈ [k], the decomposition (11) becomes

k∑
i=1

Dia1,i(x1)a2,i(x2)a3(x3) . . . ad(xd)

for some D1, . . . , Dk ∈ F \ {0}, so whenever f1, . . . , fk : [n1] → F, g1, . . . , gk : [n2] → F
provide a decomposition

M(x1, x2) =
k∑

i=1
fi(x1)gi(x2)

of M with length k, taking a1,i = fi and a2,i = gi/Di for every i ∈ [k] provides a decomposi-
tion of T with length k. ◀

6 Open questions

Let us finish by discussing a few questions that are left open by our current results and
proofs. As we had explained in Section 5, in the tensor rank case the exponent in the upper
bound that we show on the number of minimal-length tensor rank decompositions cannot be
improved by more than a factor of d, but this nonetheless does not give a complete answer
to our first question.

▶ Question 16. What are the optimal bounds in Proposition 14, and for which tensors are
they attained ?

Returning to the slice rank, Example 13 shows that Theorem 12 is false for infinite fields,
that in the finite field case the bounds cannot be uniform with respect to F, and furthermore
that even for a fixed finite field they grow square-exponentially in the slice rank of the tensor.
This leads us instead to the following formulation, which we believe provides a statement of
a similar kind and which is uniform over all fields.

▶ Conjecture 17. Let d ≥ 3, k ≥ 1 be integers. Then there exists a positive integer C(d, k)
such that the following holds. If T is an order-d tensor over some arbitrary field F and with
slice rank equal to k, then there exist linear subspaces

A1 ⊂ Fn1 , . . . , Ad ⊂ Fnd

each with dimension at most C(d, k) such that if r1, . . . , rd are nonnegative integers satisfying

r1 + · · · + rd = k

and aj,i : [nj ] → F with j ∈ [d] and i ∈ [rj ] are functions satisfying

T (x1, . . . , xd) =
d∑

j=1

rj∑
i=1

aj,i(xj)bj,i(xj)

for some (d − 1)-variable functions bj,i :
∏

j′ ̸=j [nj′ ] → F, then

⟨a1,1, . . . , a1,r1⟩ ⊂ A1, . . . , ⟨ad,1, . . . , ad,rd
⟩ ⊂ Ad.

We would furthermore not be surprised if for any fixed d ≥ 3 we could take C(d, k) to be
linear in k, as we have not managed to build a counterexample disproving this.
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▶ Question 18. Is Conjecture 17 true with furthermore C(d, k) = O(k) for every d ≥ 3 ?

One further direction in which we believe that our results can be taken further is that of
formulating and proving suitable generalisations of Theorem 10 and Theorem 12 for other
notions of rank. As discussed in the introduction, one such notion that is of interest is the
partition rank.

▶ Question 19. Can we prove an analogue of Theorem 12 for the partition rank ?

As was the case for the slice rank, formulating an adequate statement already appears
to be challenging, and it is useful to keep in mind that the five ways in which various slice
rank decompositions can arise all extend to the partition rank. Let us finish by describing
these extensions. For d ≥ 2 an integer, we write B2([d]) for the set of bipartitions {J, Jc} of
[d] with J, Jc ̸= ∅. We recall that if d ≥ 2 is an integer, J is a subset of [d], then for every
x ∈ [n1] × · · · × [nd] we write x(J) for the restriction of x to its coordinates in J . Let us also
recall the definition of the partition rank.

▶ Definition 20. Let d ≥ 2 be an integer, and let T : [n1]×· · ·×[nd] → F be an order-d tensor.
We say that the partition rank of T , denoted by pr T , is the smallest nonnegative integer
k such that there exist nonnegative integers r{J,Jc} for each bipartition {J, Jc} ∈ B2([d]),
satisfying∑

{J,Jc}∈B2([d])

r{J,Jc} = k

and one of the following two equivalent properties.
1. There exist matrices M{J,Jc} : (

∏
j∈J [nj ]) × (

∏
j∈Jc [nj ]) → F with rank at most r{J,Jc}

for each {J, Jc} ∈ B2([d]) such that

T (x1, . . . , xd) =
∑

{J,Jc}∈B2([d])

M{J,Jc}(x(J), x(Jc)) (15)

is satisfied for all (x1, . . . , xd) ∈ [n1] × · · · × [nd].
2. For each {J, Jc} ∈ B2([d]) and each i ∈ [r{J,Jc}] there exist some functions aJ,i :∏

j∈J [nj ] → F and aJc,i :
∏

j∈Jc [nj ] → F such that

T (x1, . . . , xd) =
∑

{J,Jc}∈B2([d])

r{J,Jc}∑
i=1

aJ,i(x(J))aJc,i(x(Jc)) (16)

is satisfied for all (x1, . . . , xd) ∈ [n1] × · · · × [nd].

We say that an expression such as (16) is a partition rank decomposition of T , say that
the integer∑

{J,Jc}∈B2([d])

r{J,Jc}

is the length of the decomposition, and say that the decomposition has minimal length if its
length is equal to the partition rank of T .

Constructions 3 to 7 from Section 2 respectively adapt to the following. Let d ≥ 3, k ≥ 1
be integers, and let T be an order-d tensor with partition rank k.
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▶ Construction 21. If M{J,Jc} : (
∏

j∈J [nj ]) × (
∏

j∈Jc [nj ]) → F with {J, Jc} ∈ B2([d]) are
matrices satisfying (15) and∑

{J,Jc}∈B2([d])

rk M{J,Jc} = pr T,

then rewriting any minimal-length matrix decomposition of any of the matrices M{J,Jc}
leads to a new minimal-length partition rank decomposition of T .

▶ Construction 22. If the tensor rank of T is equal to the partition rank k of T , and

T (x1, . . . , xd) =
k∑

i=1
a1,i(x1) . . . ad,i(xd)

is a length-k tensor rank decomposition of T then for any map ι : [k] → B2([d]) the
decomposition

T (x1, . . . , xd) =
∑

{J,Jc}∈B2([d])

∑
i∈ι−1({J,Jc})

(
∏
j∈J

aj,i)(x(J))(
∏

j∈Jc

aj,i)(x(Jc))

is a minimal-length partition rank decomposition of T . This is merely the most extreme
form that this construction can take, and tensors T satisfying much weaker assumptions
than pr T = tr T will lend themselves to it. For instance if T has partition rank k and can
merely be written as

T (x1, . . . , xd) =
k∑

i=1
ai,Ji,1(x(Ji,1))ai,Ji,2(x(Ji,2))ai,Ji,3(x(Ji,3))

where for every i ∈ [k] the set {Ji,1, Ji,2, Ji,3} is a tripartition of [d] with Ji,1, Ji,2, Ji,3 each
non-empty and ai,Ji,s :

∏
j∈Ji,s

[nj ] → F is a function for each s = 1, 2, 3 then we already
obtain different minimal-length partition rank decompositions of T depending on how we
view each summand as a product of two terms.

▶ Construction 23. If d ≥ 3, then for k large a tensor [k]d → F usually has partition rank
equal to k. Indeed, if the field F is finite then there are at most

k2d

|F|(k−1)(kd−1+k) ≤ (k2d

/|F|k)|F|k
d

tensors with partition rank at most k − 1. If T has partition rank equal to k, then writing T

as the sum of its (d − 1)-variable slices as in Construction 5 again provides d minimal-length
partition rank decomposition of T . We can also write T as a sum of its d′-variable slices for
d′ < d − 1, but the resulting partition rank decomposition then has length kd−d′

> k, which
is not minimal, and we hence have less of a generalisation in this direction.

▶ Construction 24. If the decomposition

T (x1, . . . , xd) =
∑

{J,Jc}∈B2([d])

r{J,Jc}∑
i=1

aJ,i(x(J))aJc,i(x(Jc))

is a minimal-length decomposition of T , {J1, J2, J} is a tripartition of [d] with J1, J2 each
with size at least 1, i1 ∈ [r{J1,Jc

1 }] and i2 ∈ [r{J2,Jc
2 }] are indices, and c :

∏
j∈J [nj ] → F is a

function if J is non-empty and an element of F otherwise, then replacing aJc
1 ,i1 and aJc

2 ,i2 by
respectively

aJc
1 ,i1 + aJ2,i2 ⊗ c and aJc

2 ,i2 − aJ1,i1 ⊗ c

leads to a new minimal-length partition rank decomposition of T .
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▶ Construction 25. More generally, if s ∈ [2, d] is an integer, {J1, . . . , Js, J} is a partition
of [d] with J1, . . . , Js each with size at least 1, i1 ∈ [r{J1,Jc

1 }], . . . , is ∈ [r{Js,Jc
s }] are indices,

and c1, . . . , cs are functions
∏

j∈J [nj ] → F if J is non-empty and elements of F otherwise,
which satisfy

c1 + · · · + cs = 0,

then replacing aJc
t ,it

by

aJc
t ,it + (⊗t′∈[s]\{t}aJt′ ,it′ ) ⊗ ct

for each t ∈ [s] leads to a new minimal-length partition rank decomposition of T .

Construction 24 shows that whenever |J | ≥ 2, it is never true (for any integers d ≥ 3,
k ≥ 2, and any field F) that for every order-d tensor T with partition rank k over F there
exists a linear subspace AJ of ⊗j∈JFnj with dimension bounded above depending on d, k,F
only such that any functions aJ,i from any minimal-length partition rank decomposition of
T are contained in AJ .

Moreover, in the case of the partition rank there may be new constructions in addition to
the analogues of Constructions 3 to 7 discussed above.
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