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Abstract
Do natural proofs imply efficient learning algorithms? Carmosino et al. (2016) demonstrated that
natural proofs of circuit lower bounds for Λ imply efficient algorithms for learning Λ-circuits, but
only over the uniform distribution, with membership queries, and provided AC0[p] ⊆ Λ. We consider
whether this implication can be generalized to Λ ̸⊇ AC0[p], and to learning algorithms which use only
random examples and learn over arbitrary example distributions (Valiant’s PAC-learning model).

We first observe that, if, for any circuit class Λ, there is an implication from natural proofs for Λ
to PAC-learning for Λ, then standard assumptions from lattice-based cryptography do not hold. In
particular, we observe that depth-2 majority circuits are a (conditional) counter example to this
fully general implication, since Nisan (1993) gave a natural proof, but Klivans and Sherstov (2009)
showed hardness of PAC-Learning under lattice-based assumptions. We thus ask: what learning
algorithms can we reasonably expect to follow from Nisan’s natural proofs?

Our main result is that all natural proofs arising from a type of communication complexity
argument, including Nisan’s, imply PAC-learning algorithms in a new distributional variant (i.e., an
“average-case” relaxation) of Valiant’s PAC model. Our distributional PAC model is stronger than
the average-case prediction model of Blum et al. (1993) and the heuristic PAC model of Nanashima
(2021), and has several important properties which make it of independent interest, such as being
boosting-friendly. The main applications of our result are new distributional PAC-learning algorithms
for depth-2 majority circuits, polytopes and DNFs over natural target distributions, as well as the
nonexistence of encoded-input weak PRFs that can be evaluated by depth-2 majority circuits.
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1 Introduction

Razborov and Rudich [30] introduced the concept of natural proofs of circuit lower bounds.
Informally, a natural proof of a lower bound for a circuit class Λ encodes an efficient algorithm
that can be used to distinguish between the truth tables of simple Boolean functions (those
with “small” Λ-circuit complexity), and random Boolean functions. Razborov and Rudich
essentially showed that natural proofs for a circuit class Λ rule out the existence of a
cryptographic pseudorandom function (PRF) computable by Λ.
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Carmosino et al. [5] strengthened the result of [30] by demonstrating that, provided
AC0[p] ⊆ Λ, natural proofs of circuit lower bounds for Λ-circuits of size up to u(n) imply
algorithms for learning poly(n) size Λ-circuits with membership queries over the uniform
distribution, in time exponential in u−1(poly(n)).

As a corollary, [5] obtained a state-of-the-art quasipolynomial time learning algorithm for
AC0[p]-circuits (with membership queries, over the uniform distribution), using the natural
proofs for subexponential size AC0[p]-circuits, for any prime p, of Razborov and Smolensky
[29, 35].

Since the result of [5], whether or not there exists a fully general implication from natural
proofs to learning algorithms in Valiant’s original PAC model [36], even for Λ ̸⊇ AC0[p], has
remained open (see e.g. [12]). In Valiant’s original model, learning algorithms are forced to
utilize random examples, and learn over unknown example distributions.

Question 1. Let Λ be any circuit class. Do natural circuit lower bounds for size u(n)
Λ-circuits imply exp(u−1(poly(n))) time learning algorithms for poly(n) size Λ-circuits
in Valiant’s PAC model?

Aside theoretical interest in complexity and learning theory, Question 1 is motivated by
the prospect of implicitly extending the nonexistence of PRFs in low circuit classes (derived
from [29, 35, 30, 5]) to the nonexistence of weak PRFs. A weak PRF is a PRF that is only
required to be secure if the adversary can inspect uniformly random points, as opposed to to
chosen points (see Section 2 of the full version [19] for a formal definition). Weak PRFs suffice
for a variety of important cryptographic applications such as symmetric-key encryption (see
e.g. [4] for more commentary). Therefore, understanding the minimum complexity needed
to evaluate weak PRFs is of significant practical importance.

1.1 Our Contributions
We begin by observing that if the answer to Question 1 is essentially “yes, for every Λ,” then
this implies algorithmic breakthroughs for several important and well-studied computational
problems. These breakthroughs include a classical polynomial time solution to the unique
Shortest Vector Problem (uSVP), and quantum polynomial time algorithms for the Shortest
Vector Problem (SVP) and Shortest Independent Vector Problem (SIVP) on lattices.1 More
specifically, we observe that majority-of-threshold circuits (MAJ ◦ THR) cannot realize the
implication from natural proofs to polynomial time PAC-learning in Valiant’s model, assuming
polynomial time hardness of each of those problems.

▶ Theorem 1. Suppose that a natural proof against MAJ ◦ THR-circuits of size u(n) implies
that the class of MAJ ◦ THR-circuits of size poly(n) is PAC-learnable in Valiant’s model, in
time exp(u−1(poly(n))). Then, there is a polynomial time classical solution to Õ(n1.5)-uSVP,
and polynomial time quantum solutions to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

To argue Theorem 1, we combine two observations. First, natural circuit lower bounds
for exp(Ω(n)) size MAJ ◦ THR-circuits were proved by Nisan [27]. Second, Klivans and
Sherstov [22] showed hardness of polynomial time PAC-learning in Valiant’s model for
MAJ ◦ THR, assuming classical hardness of uSVP and quantum hardness SVP and SIVP.

1 We will not try to discuss the huge literature on lattice problems (and lattice based cryptography). See
Section 2 of the full version [19] for a short description of uSVP, SVP, and SIVP, and refer to [31, 32]
for more information on complexity of lattice problems.



A. Karchmer 68:3

Taken together, we have both natural proofs against exponential-size MAJ ◦ THR, and
hardness of Valiant’s PAC-learning for each. Therefore, we have a natural circuit class that
resist an implication between natural lower bounds and Valiant’s PAC-learning. A formal
argument is presented in Section 3; to the best of our knowledge, the natural property
underlying Nisan’s circuit lower bounds has never been explicitly formalized (until Section 3),
though it was acknowledged briefly by Raz [28] and considered implicitly by Viola [37].

Theorem 1 indicates a barrier to a general implication from a natural proof for any Λ to
a PAC-learning algorithm for Λ in Valiant’s model. Essentially, the natural proofs of [27]
confound the hardness result of [22]. In light of this, we shift our focus to the following more
specific question.

Question 2. What learning algorithms are implied by Nisan’s natural circuit lower
bounds?

Answering Question 2 is important if we want to gain understanding of a general implication
between natural proofs for any class Λ, and some kind of learning algorithms for Λ.

Towards an answer to Question 2, we will focus specifically on the possibility of learning
algorithms that utilize only random examples, learn over unknown example distributions,
and run in polynomial time. We briefly summarize our contributions towards an answer to
Question 2, before digging into the specifics.

In Section 1.1.1, we present a new learning model called distributional PAC-learning,
which relaxes Valiant’s model, in order to try to sidestep Theorem 1. The new learning
model is like Valiant’s except it essentially removes the requirement of guarantees for the
worst-case concept in the class. In Section 2, we illustrate that distributional PAC-learning
is independently motivated for both technically and practically oriented reasons.
In Section 3, we prove Theorem 1. To do so, we give the first (to the best of our knowledge)
explicit formalization of Nisan’s natural property for exponential size MAJ ◦THR-circuits.
In Section 4, we prove our main theorem, which discovers a relationship between the com-
putational complexity of distributional PAC-learning and the communication complexity
of a simple communication game that is associated with a given concept class. This
theorem serves as a “technical centerpiece” for extracting distributional PAC-learning
algorithms from Nisan’s natural proofs.
In Section 5, we use the main theorem and Nisan’s natural proof to obtain new distribu-
tional PAC-learning algorithms for MAJ ◦ THR-circuits (similar results for polytopes and
DNFs appear in the full version [19]). Additionally, we show how to derive attacks on
any weak PRF evaluated by MAJ ◦ THR-circuits, even when the weak PRF is allowed an
encoding procedure for the inputs.

We note that, because the result of [5] only applies to circuit classes that contain AC0[p],
prior to this work there were no known learning algorithms following directly from Nisan’s
natural proofs, in any nontrivial learning model.

Subsequent work

In subsequent work, [18] demonstrated how to construct algorithms from Nisan’s natural
proofs in several other learning models. For example, [18] obtained “nontrivial time” agnostic
membership query learning algorithms over the uniform distribution and “nontrivial time”
distribution-independent membership query algorithms, for classes of sublinear size circuits
made up of polynomial threshold function (PTF) gates and SYM+ gates.

ITCS 2024
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1.1.1 Distributional PAC-Learning
With the goal of obtaining learning algorithms from Nisan’s natural proofs in mind, this paper
introduces the distributional PAC-learning model (distPAC-learning). However, the distPAC-
learning model is also independently motivated as a relaxation of Valiant’s PAC-learning,
which we discuss after defining the model next.

The starting point for the distPAC-learning model is the heuristic PAC-learning (heurPAC-
learning) model of Nanashima [26]. Following Nanashima, we define a Boolean concept class
by a corresponding evaluation rule ϕ = {ϕn : {0, 1}∗×{0, 1}n → {−1, 1}}n∈N. The first input
to the evaluation rule is a binary representation πf of a concept f , and the second is an input
to the concept x. The evaluation rule is defined so that for every n ∈ N, ϕn(πf , x) = f(x).
An evaluation rule ϕ induces a Boolean concept class C = {Cn}n∈N defined by

Cn = {f(x) := ϕn(πf , x) : πf ∈ {0, 1}∗} (1)

We refer to C as the ϕ-induced concept class.
For a function s : N→ N, we say that the ϕ-induced concept class C is s(n)-represented

if, for every n ∈ N, under the evaluation rule ϕn, every f ∈ Cn has a binary representation
of length at most s(n). Considering evaluation rules helps for formalizing learning using a
distribution over a concept class. We let µ denote a target distribution over concepts f ∈ Cn,
or, equivalently, over binary representations πf ∈ {0, 1}s(n).

What access to the concept algorithms in the distPAC-learning model are allowed? We
continue following the heurPAC-learning model (Valiant’s, too), and allow access to only
random examples sampled from an unknown example distribution ρ over {0, 1}n. We denote
by Ex(f, ρ) the example oracle that returns labelled examples ⟨x, f(x)⟩ for x ∼ ρ.

A distPAC-learning algorithm takes three confidence parameters as input. The accuracy
parameter ϵ, the failure parameter δ, and the heuristic parameter η. Essentially, the distPAC-
learning model requires that, for a fixed evaluation rule ϕ, there exists some large probability
mass of the ϕ-induced concept class C, as determined by µ and η, that is learnable in Valiant’s
model.

▶ Definition 2 (Distributional PAC-learning). Let ϕ be an evaluation rule, and let the ϕ-induced
concept class C be s(n)-represented. The pair (C, µ) is distributionally PAC-learnable if there
exists an algorithm A such that, for any n ∈ N, ϵ, δ, η > 0,

Pr
f∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, ϵ, δ, η)

]
≤ ϵ

]
≥ 1− δ

]
≥ 1− η (2)

When A runs in time poly(n, s(n), ϵ−1, δ−1, η−1), we say that (C, µ) is efficiently distPAC-
learnable.

Distributional PAC-learning is a clear relaxation of Valiant’s PAC-learning, since it no longer
requires good learning guarantees for “worst-case” concepts.

DistPAC-learning vs. heurPAC-learning

The essential difference between distPAC-learning and heurPAC-learning is the requirement
that there exists a single large probability mass of concepts that is learnable with respect to
any example distribution (see the location of the universal quantification over ρ in equation 2).
In heurPAC-learning, the order of quantifiers is different: it is only required that for each
example distribution ρ, a large but possibly different probability mass of the concept class is
learnable. This independently motivates our model for technical and practical reasons: for
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example, distPAC-learning allows “black-box” use of boosting algorithms. In other words,
the equivalence of weak2 and strong learning is preserved in our model [33, 9] (see Section 2
for a formal statement on this). This is not necessarily true in heurPAC-learning. In a
nutshell, distPAC-learning is stronger than both heurPAC-learning and the Blum et al.
average-case prediction model. Therefore distPAC-learning also inherits the well-founded
motivation behind the theory of heuristic PAC-learning (see [26]). See Section 1.3 for a
continued discussion. Towards further motivating the distPAC-learning model, in Section 2
we give formal statements on useful properties of the distPAC-learning model, including
the equivalence between weak and strong learning, an equivalence between hardness of
distribution-specific variant of distPAC-learning and the existence of one-way functions, and
finally on using the classic technique of Kearns and Valiant [20] for proving hardness of
distPAC-learning with respect to specific target distributions.

1.1.2 DistPAC-Learning Algorithms from Nisan’s Natural Proofs
We design new learning algorithms in the distributional PAC model. These learning algorithms
arise from Nisan’s natural proof technique, which we now describe in more detail.

Nisan’s technique

Nisan [27] used the following communication complexity argument for proving circuit lower
bounds against circuits with threshold functions as gates. First, identify a function f :
{0, 1}n × {0, 1}n → {0, 1}, which requires high 2-party communication complexity in some
model (e.g. randomized, determinstic, distributional, etc.). Then, identify a circuit class C
such that for every g ∈ C, g is computable by a low-cost 2-party communication protocol
in that model. Finally, conclude that f requires large C-circuits (see Section 2 of the full
version [19] for essential definitions of 2-party communication complexity in various models,
and [24] for further reference). To provide an example, let f(x, y) = IP2(x, y) =

∑n
i=1 xiyi

mod 2 be the inner product mod 2 function. It is known that IP2 requires Ω(n) bits to be
transmitted in any randomized communication complexity protocol; therefore, as shown
by [27], since MAJ ◦ THR circuits are computed by randomized communication complexity
protocols with cost O(logn), IP2 must require MAJ ◦ THR circuits of exponential size. This
lower bound remains one of the strongest known – as of now it is still not ruled out that
NEXP ⊆ THR ◦ THR. In fact, proving NEXP is not contained in THR ◦ THR is considered a
“major frontier” in complexity theory [6].

Main Theorem

We now introduce our main theorem, which is used as a “technical centerpiece” for obtaining
distPAC-learning algorithms from Nisan’s natural lower bounds for MAJ◦THR-circuits, which
are presented after. Roughly speaking, the main theorem presents a relationship between
the computational complexity of distPAC-learning, and the communication complexity of a
simple communication game associated with a given evaluation rule.

For any evaluation rule ϕ and ϕ-induced s(n)-represented concept class C, we define the
associated communication game G over the product distribution (µ, ρ), played as follows. A
binary representation πf of a function f ∈ Cn is sampled according to µ, and an input x is

2 A weak learning algorithm is only required to output a hypothesis that has a predictive advantage only
slightly better than a coin toss.

ITCS 2024
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sampled from ρ. Player one is given the binary representation πf of f , and player two is
given the input x. The two parties communicate until they are ready to output a value b, and
win the game if b = ϕn(πf , x) = f(x). We say that ϕ is evaluated by a 2-party distributional
communication protocol with cost c(n) and bias γ(n) over (µ, ρ), if for every n ∈ N, the
two parties can communicate at most c(n) bits before winning G with probability at least
1/2 + γ(n) over the random inputs drawn from (µ, ρ).

Now we are ready to state the main theorem.

▶ Theorem 3. Let ϕ be an evaluation rule. Suppose that, for any product distribution (µ, ρ),
ϕ is evaluated by a 2-party distributional communication protocol with cost c := c(n) and bias
γ := γ(n) over (µ, ρ). Then, for the ϕ-induced s(n)-represented concept class C, and a time
t(n)-samplable distribution µ, the pair (C, µ) is distributionally PAC-learnable. The learning
algorithm runs in time polynomial in n, s(n), t(n), ϵ−1, δ−1, η−1, γ−1 and 2c.

We give an overview of the proof of this theorem in Section 1.2. We remark that slight
improvement of the exponential dependency of c requires a significant breakthrough in
computational learning theory. For example, improving the efficiency to O(2c1/2) gives a
polynomial time distinguishing algorithm for the long-time weak PRF candidate of [2]. We
refer to Section 7 of the full version [19] for details.

DistPAC-learning from Nisan’s natural proofs

Nisan’s technique clearly encodes a randomized communication complexity upper bound,
which, by an averaging argument, can be converted to a distributional protocol over any
distribution (without increased cost or decreased bias). Hence, Theorem 4 directly follows
from a combination of Nisan’s lower bounds and Theorem 3 since, as indicated in Nisan’s
lower bounds, every function in MAJ ◦ THR has a randomized communication protocol of
cost O(logn) and large bias.

▶ Theorem 4. Let ϕ ∈ MAJ ◦ THR be any evaluation rule, and let µ be any polynomial time
samplable target distribution. For the ϕ-induced s(n)-represented concept class C, the pair
(C, µ) is efficiently distPAC-learnable.

Theorem 4 considers concept classes by the complexity of their evaluation rule. This
is weaker than the learning-theoretic standard of considering the complexity of concepts
directly. Any s(n)-represented concept class C ϕ-induced by the rule ϕ ∈ C must satisfy
C ⊆ C (assuming C-circuits can be poly(s(n))-size). For C containing a universal function
(e.g. P/poly, or NC1), C = C, but not necessarily for lower circuit classes.

By non-black-box inspection of the result of [22], which proves hardness of learning
MAJ ◦ THR in Valiant’s PAC model, we find that it actually provides a polynomial time
samplable distribution over MAJ ◦ THR-circuits that is hard to learn, even weakly (rather
than just worst-case hardness). In other words, it shows a target distribution µ∗ such
that hardness of Õ(n1.5)-SVP and its variants implies (MAJ ◦ THR, µ∗) is not efficiently
distPAC-learnable! In Section 2, we actually show that the entire family of proof techniques
for showing hardness of Valiant’s PAC-learning (used here by [22], and due originally to [20]),
can be used to prove hardness of distPAC-learning with respect to specific polynomial time
samplable target distributions.

Therefore, in Theorem 4, considering the complexity of the evaluation rule ϕ ∈ MAJ◦THR
and distPAC-learning of the ϕ-induced concept class C is likely a needed relaxation, since
the target distribution in the theorem can be any polynomial time samplable distribution.
Hence, in order to get a distPAC-learning algorithm for MAJ ◦ THR-circuits, we need to
restrict the target distribution somehow.
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Natural Target Distributions

In light of this, we show that MAJ ◦ THR-circuits are distPAC-learnable, with respect to
the following more natural families of target distributions. By more natural, we mean that
the target distribution is not designed by a cryptographer (as opposed to µ∗). Indeed, this
highlights another feature of the distPAC-learning model: efficient learnability of (C, µ) for
“organic” target distributions µ can coexist with hardness for “inorganic” target distributions
like µ∗.

Let L = (T1, · · ·Tm) be a list of m := poly(n) linear threshold functions, and let µ
be a poly(n) time samplable distribution over {0, 1}m. We define the distribution µL

over MAJ ◦ THR-circuits is sampled as follows. First, sample θ ∼ µ. Then, output the
MAJ ◦ THR-circuit that is the majority vote over each Ti ∈ L such that θi = 1.

▶ Theorem 5. Let L = (T1, · · ·Tm) be any list of m := poly(n) linear threshold functions,
and let µ be any poly(n) time samplable distribution over {0, 1}m. The pair (MAJ ◦THR, µL)
is efficiently distPAC-learnable.

Previously, no polynomial time distPAC-learning algorithms were known, for any reasonable
type of target distributions over MAJ ◦ THR-circuits. An interesting and important feature
of our distPAC-learning algorithm is that it does not need to know µ or L to work (see
Section 5 for details).

We additionally consider slightly modified target distributions, that correspond to inter-
esting and natural distributions over subclasses of MAJ ◦ THR-circuits: polytopes (that is,
and-of-thresholds circuits (AND◦THR)) and DNFs. Note that, in distributional PAC-learning,
subclasses are not necessarily distPAC-learnable if their superclass is, since it is possible
that the subclass is hard-core, and consisting of functions that are hard for the superclass
distPAC-learning algorithm.

For the polytope distribution, let L = (T1, · · ·Tm) be a list of m := poly(n) linear
threshold functions, and let µ be a poly(n) time samplable distribution over {0, 1}m. The
distribution µ∧

L over polytopes is sampled as follows. First, sample θ ∼ µ. Then, output the
polytope that is the conjunction of all Ti ∈ L such that θi = 1.

▶ Theorem 6. Let L = (T1, · · ·Tm) be any list of m := poly(n) linear threshold functions,
and let µ be any poly(n) time samplable distribution over {0, 1}m. The pair (AND ◦THR, µ∧

L)
is efficiently distPAC-learnable.

For the DNF distribution, let L = (T1, · · ·Tm) be a list of m := poly(n) disjunctions
on n-bit inputs, and let µ be a poly(n) time samplable distribution over {0, 1}m. The
distribution µ∧∨

L over DNFs is sampled as follows. First, sample θ ∼ µ. Then, output the
DNF that is a conjunction of all disjunctions Ti ∈ L such that θi = 1.

▶ Theorem 7. Let L = (T1, · · ·Tm) be any list of m := poly(n) disjunctions on n-bit inputs,
and let µ be any poly(n) time samplable distribution over {0, 1}m. The pair (DNF, µ∧∨

L ) is
efficiently distPAC-learnable.

Even though distPAC-learning is stronger that heurPAC-learning, Theorem 5, 6 and 7
are formally incomparable to the heurPAC-learning algorithm for O(logn)-juntas due to [26].
This is for the following reasons. On one hand, Theorem 5, 6 and 7 are stronger because
MAJ ◦ THR-circuits, polytopes, and DNFs are strictly more powerful than O(logn)-juntas,
and we handle learning over arbitrary example distributions, while [26] only handles the
uniform example distribution. However, the confounding variable is that the heurPAC

ITCS 2024
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algorithm works with respect to the uniform distribution over O(logn)-juntas, while for any
L, µ, the target distributions that we learn are not uniform over their support. We thus
cannot show that our algorithm is stronger than Nanashima’s in a formal sense.

1.1.3 Impossibility of Encoded-Input Weak PRFs
Although we do not obtain any PAC-learning algorithm in Valiant’s model from Nisan’s
natural proofs, we show that distributional PAC-learning is still enough to rule out weak
PRFs (which was one of the initial motivations of studying Question 1). In fact, we show
that this is true even when the weak PRF is allowed an arbitrary input encoding.

▶ Theorem 8. There exists no encoded-input weak PRF that is evaluated by a MAJ ◦ THR-
circuit.

Our notion of encoded-input weak PRF is the natural weak analogue of the encoded-input
PRF introduced by [3]. Loosely speaking, an encoded-input weak PRF is a PRF that is only
required to be secure when the adversary sees random points, where the inputs are taken
uniformly at random from a predefined multi-subset of the input space. We refer to Section
5 for details.

1.2 Proof Overview of Theorem 3
We now overview the ideas behind the proof of Theorem 3. The most important tool we use
is the 2-party norm of a function, R2(f), which is defined to be the expected product of a
function computed on a list of correlated inputs.

▶ Definition 9 (2-party norm). For f : ({0, 1}n)2 → {−1, 1}, the 2-party norm of f is defined
as

R2(f) := E
x0

1,x0
2,x1

1,x1
2∼Un

 ∏
ϵ1,ϵ2∈{0,1}

f(xϵ1
1 , x

ϵ2
2 )

 (3)

Throughout the paper, we use Un to denote the uniform distribution over {0, 1}n. The
2-party norm is a special case of the k-party norm (sometimes called the cube-measure or
box-norm), which was introduced by [1] for obtaining lower bounds in k-party Number-on-
Forehead communication complexity.

The crucial property aboutR2(f) is that, up to parameters, it upper bounds the correlation
of f with functions computable by deterministic 2-party communication protocols. We denote
by Π[2, c] the set of all f : ({0, 1}n)2 → {−1, 1} that have deterministic 2-party communication
protocols with cost at most c. For a definition of the deterministic 2-party communication
model, see Section 2 of the full version [19].

Implicit in all three of [7, 28, 38] (who showed a related theorem in the more general
k-party case), is the following bound:

▶ Theorem 10 (The correlation bound – [7, 28, 38]). For every function f : ({0, 1}n)2 →
{−1, 1},

Cor(f,Π[2, c]) = max
π∈Π[2,c]

∣∣∣E
x

[f(x) · π(x)]
∣∣∣ ≤ 2c ·R2(f)1/4 (4)

for x uniformly distributed over ({0, 1}n)2.

Equation equation 4 implies that (2−c · Cor(f,Π[2, c]))4 ≤ R2(f).
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The construction of the learning algorithm of Theorem 3 uses the lower bound on
R2(f) to distinguish structure from randomness. In other words, hypothetically consider
functions f : ({0, 1}n)2 → {−1, 1} such that the quantity (2−c · Cor(f,Π[2, c]))4 is relatively
large (greater than 1/poly(n), say). Such functions can be distinguished from uniformly
random functions, by taking a random sample from the distribution over the value inside the
expectation in equation 3. This follows from the fact that R2(ψ) for a uniformly random
function ψ : ({0, 1}n)2 → {−1, 1} is bounded from above by a negligible function of n.

Using this idea, we have the following proof outline. First, we can try to prove a
“distinguisher-to-predictor” lemma, in the style of [39], in order to obtain a weak randomized
predictor for f (a weak predictor requires accuracy of a prediction for an unseen example to
be only slightly more accurate than a coin toss). Second, we could apply standard averaging
arguments to construct a weak PAC-learning algorithm. Finally, we could apply celebrated
boosting results from learning theory [33, 9] to produce a full-blown PAC-learning algorithm.

However, this proof outline remains incomplete. First, the 2-party norm of the function
is the expectation of a product of correlated inputs, so we have not given any way of using
independent random examples. Second, we have said nothing of how to handle arbitrary
example distributions (the inputs to f on the right hand side of equation 4 should be
uniformly random). We handle both of these problems simultaneously, roughly by thinking
of f as the evaluation rule, and not the concept itself.

First, let us describe how f should be viewed in more detail. There are two inputs
to f , x1 and x2. Without loss of generality, identify x1 as a random string for sampling
the target distribution µ, and identify x2 as a random string for sampling the example
distribution ρ, with |x1| = |x2| = m. We abuse the notation and let z = ρ(x2) to denote a
point z sampled according to ρ with the random bits x2. Similarly, we let g be the function
represented by πg = µ(x1). Next, fix the evaluation rule ϕ, which is the map that takes
as input the concept representation πg, plus the input z, and outputs ϕ(πg, z) = g(z) = y.
As a function of x1, x2, we can thus write the process of generating a labelled example as
⟨ρ(x2), ϕ(µ(x1), ρ(x2))⟩ = ⟨z, g(z)⟩ = ⟨z, y⟩. We let f(x1, x2) = ϕ(µ(x1), ρ(x2)). This allows
us to write:

R2(f) = E
x0

1,x0
2,x1

1,x1
2

[
v(x0

1, x
0
2, x

1
1, x

1
2)

]
for v(x0

1, x
0
2, x

1
1, x

1
2) :=

∏
ϵ1,ϵ2∈{0,1}

ϕ(µ(xϵ1
1 ), ρ(xϵ2

2 ))

Now, we describe how we construct a weak randomized predictor which only uses random
examples from an arbitrary ρ. At the core, we will use the example oracle to sample a
single instance of v(x0

1, x
0
2, x

1
1, x

1
2), over uniformly random x0

1, x
0
2, x

1
1, x

1
2 ∈ {0, 1}m. To see

the significance of this, observe that by definition v(x0
1, x

0
2, x

1
1, x

1
2) has expected value R2(f).

Hence, the process of sampling this value distinguishes examples labelled by uniformly
random functions from examples labelled by concepts sampled according to µ – as long as µ
samples representations of concept that are evaluated by ϕ. This claim is justified because
whenever it is possible to win the communication game G associated with ϕ with high bias
and low communication, Theorem 10 implies that R2(f) is large. In other words, R2(f) is
guaranteed to be large whenever it is possible to efficiently (probabilistically) communicate
the evaluation rule ϕ (because this implies winning G with good bias). At this point, we
use a simple hybrid argument to construct a randomized prediction algorithm for examples
sampled according to ρ.

It remains to verify that the randomized prediction algorithm can actually sample
v(x0

1, x
0
2, x

1
1, x

1
2), using only access to Ex(g, ρ), where g is the concept sampled according to

the target distribution µ. To see this, observe that the distribution over v(x0
1, x

0
2, x

1
1, x

1
2) is
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identical to the distribution over g(z1)g(z2)h(z1)h(z2), for ⟨z1, g(z1)⟩, ⟨z2, g(z2)⟩ ∼ Ex(g, ρ),
and h ∼ µ. The value h(z1)h(z2) can be computed because h(z1) and h(z2) can be queried,
since h is sampled locally by the algorithm. Therefore, we only need Ex(g, ρ).

We also need to verify that ρ need not be efficiently samplable. To argue this this, we
observe that communicating parties participating in G have unbounded computational power.
This means that, even if ρ is an arbitrary distribution, there is no effect on the communication
cost of G. Indeed, the process of sampling ρ can be viewed as a local pre-processing step in
the protocol for party two. Therefore, R2(f) does not decrease when ρ is arbitrary.

1.3 Discussion
Distributional PAC-Learning vs. Related Models

As mentioned previously, distPAC-learning strengthens heurPAC-learning. This is due to
the stronger quantification over example distributions. The main benefit of this is that it
facilitates boosting of weak learning algorithms, which needs worst-case guarantees over the
example distribution (see Section 2 for a formal statement). We encourage the reader to
visit Section 1.2 of [26], as their points regarding the motivations of heurPAC-learning as a
relaxation of Valiant’s PAC model, largely apply to distPAC-learning as well. Additionally,
see Section 1.2 of [26] for commentary of the differences with previous “implicit” definitions
of average-case learning, such as in [16, 15, 34] also apply to distPAC-learning.

In comparison to the seminal work of [2], distPAC-learning also differs on the order of
quantifiers. In the definition of the average-case prediction considered by [2], both the target
distribution µ and the example distribution ρ are fixed. This means that there can be a
different prediction algorithm, for each pair of µ and ρ. This model is weaker than both the
heurPAC-learning and distPAC-learning models.

Other Related Work

Many other relationships between learning theory and communication complexity have been
studied. Some notable examples include [23, 25, 11, 17] (also see the references therein). All
of these works study relationships between communication complexity and notions of learning
complexity, such as sample complexity [23, 17], differentially private sample complexity [11],
margin complexity [25], VC dimension [23, 11] and Littlestone dimension [11]. These
works are all incomparable to ours, as they do not directly study relationships between
communication complexity and the computational complexity of learning.

Learning intersections of halfspaces (i.e., ands of linear threshold functions) was considered
by [21]. Using Fourier-analytic techniques, [21] showed a polynomial time learning algorithm
for any function of a constant number of halfspaces with respect to the uniform distribution
over examples. Additionally, [21] gave a quasi-polynomial time algorithm for learning any
Boolean function of a polylogarithmic number of bounded-weights linear threshold functions,
under any distribution over examples. Our learning results (Theorem 4, and Theorem 5) are
at the moment similar but incomparable; we get polynomial time distributional PAC-learning
of concepts evaluated by majorities of linear threshold functions over any example distribution.

Additional Remarks and Future Work

In this work, we began by observing that if Question 1 resolves to “yes, for every Λ,” then
cryptographic assumptions such as quantum polynomial time hardness of Õ(n1.5)-SVP (and
its variants) do not hold. To continue our study, we shifted the focus to understanding what
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kind of learning algorithms are implied, specifically by Nisan’s natural proofs. To this end,
we introduced the distPAC-learning model as a relaxation of Valiant’s PAC model. Using
Nisan’s natural proofs, we at least obtained novel learning algorithms in the distributional
PAC model for MAJ◦THR, over natural target distributions, and more generally, any concept
class induced by evaluation rules contained in MAJ ◦ THR.

Towards this result, we exploited the specific aspects of Nisan’s lower bound method.
Therefore, it remains open whether or not other natural proofs imply efficient distPAC-
learning algorithms for other concept classes, such as AC0[p]. In particular, the natural
proofs for AC0[p] of [29, 35] are not affected by Theorem 1, so presumably they could even
imply algorithms in Valiant’s model. At present, the difficulty in proving a similar barrier
to Theorem 1 for AC0[p] is that, while we are able to prove super-polynomial hardness of
PAC-learning in Valiant’s model, we do not have any exponentially strong natural proofs.
We regard this question as the primary direction for future research. We note that works
such as [4] have conjectured weak PRF candidates that can be evaluated by AC0[2], with
considerable evidence to support subexponential security of the candidates. A weak PRF
evaluated by AC0[2] with subexponential security would preclude any (even quasipolynomial
time) distPAC-learning algorithm for concept classes induced by a AC0[2] evaluation rule.
That being said, we hope that our results shed light on what aspects of natural proofs are
useful for learning algorithms that cannot query the concept.

Finally, an interesting direction is to obtain distPAC-learning algorithms for other natural
distributions over MAJ ◦ THR-circuits, polytopes, and DNFs.

2 The Distributional PAC-Learning Model

In this section, we give some useful properties of distPAC-learning, which motivate the
definition independently. All proofs are omitted due to space constraints. We refer to the
full version [19] for all proofs.

Equivalence Between Weak and Strong DistPAC-Learning

Celebrated results of computational learning theory, indicate that efficient weak and strong
PAC-learning are equivalent [33] (in the “filtering” setting, this is shown by e.g. [9]).

Recall that C = {Cn}n∈N is a Boolean concept class that is s(n)-represented and induced
by the evaluation rule ϕ = {ϕn}n∈N. We define a weak version of distPAC-learning. The
only difference with Definition 2 is that the accuracy of the hypothesis only needs to achieve
error below 1/2− ϵ with high probability.

▶ Definition 11 (Weak distPAC-learning). Let ϕ be an evaluation rule, and let the ϕ-induced
concept class C be s(n)-represented. The pair (C, µ) is weakly distributionally PAC-learnable
if there exists an algorithm A such that, for any n ∈ N, δ, η > 0,

Pr
f∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, δ, η)

]
≤ 1/2− 1/poly(n)

]
≥ 1− δ

]
≥ 1−η

(5)

When A runs in time poly(n, s(n), δ−1, η−1), we say that (C, µ) is efficiently distPAC-
learnable.

We now demonstrate that the boosting results from Valiant’s PAC model carry over to
the distPAC-learning model.
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▶ Theorem 12 (distPAC Boosting). Let ϕ be an evaluation rule, and let C be the ϕ-induced
s(n)-represented concept class. For any target distribution µ, (C, µ) is efficiently weakly
distributionally PAC-learnable if and only if (C, µ) is efficiently distributionally PAC-learnable.

DistPAC-Learning vs HeurPAC-Learning

▶ Theorem 13. Let ϕ be an evaluation rule, and let C be the ϕ-induced s(n)-represented
concept class. Let U be the uniform distribution over {0, 1}s(n). If (C, U) is distPAC-learnable
in time t, then C is heurPAC-learnable in time t.

Distribution-Specific Learning

To obtain cryptographic primitives from the hardness of learning, the literature often considers
hardness of distribution-specific learning (as in [2, 26]). In distribution-specific distPAC-
learning, we intentionally fix the example distribution ρ. This limits the robustness of
distPAC-learning, and entirely collapses it into Nanashima’s notion of distribution-specific
heurPAC-learning.

▶ Definition 14 (Distribution-specific distPAC-learning). Let ϕ be an evaluation rule, and
let the ϕ-induced concept class C be s(n)-represented. The pair (C, µ) is distributionally
PAC-learnable over the example distribution ρ if there exists an algorithm A such that, for
any n ∈ N, ϵ, δ, η > 0,

Pr
f∼µ

[
Pr
A

[
Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, ϵ, δ, η)

]
≤ ϵ

]
≥ 1− δ

]
≥ 1− η (6)

When A runs in time poly(n, s(n), ϵ−1, δ−1, η−1), we say that (C, µ) is efficiently distPAC-
learnable over ρ.

Cryptography from Hardness of Distribution-Specific DistPAC-Learning

The collapse of distPAC-learning and heurPAC-learning in the distribution-specific setting is
a feature of distPAC-learning: using results of [26] on one-way functions from hardness of
distribution-specific heurPAC-learning, we obtain the same in distribution-specific distPAC-
learning.

▶ Theorem 15 (OWFs from hardness of ρ-specific distPAC-learning). Suppose that P/poly
is not efficiently distPAC-learnable with respect to the uniform distribution over concept
representations, on a polynomial time samplable example distribution ρ. Then, there exists
an (infinitely-often) one-way function.

Hardness of DistPAC-Learning from Cryptography

In the other direction, we can use the classic results [13, 14] to easily see that the existence
of a one-way function implies that there exists a polynomial time samplable µ such that
(P/poly, µ) is not efficiently distPAC-learnable on any polynomial time samplable ρ.

Additionally, we now demonstrate that the technique for proving hardness of PAC-
learning in Valiant’s model (by Kearns and Valiant [20]), also works for distPAC-learning.
The technique gives concrete “hard target distributions” for distPAC-learners. Note, it does
not imply that distPAC-learning is hard for every target distribution.

We sketch the proof technique of Kearns and Valiant, but direct the reader to [20] for the
technicalities and also [22] for a more in-depth overview. The proof technique is built around
the idea that learning the decryption function of a public key cryptosystem should be hard.
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Indeed, this is true by the following reasoning. For any given public key cryptosystem, an
attacker can simulate an example oracle for the decryption function, by sampling a public and
private key pair, and then generating encryptions of ones and zeros (with equal probability),
using the randomized encryption function. Then, if there is a PAC-learning algorithm (in
Valiant’s model) for the decryption function, the attacker can apply it to the dataset collected
as described, and then predict the messages of new ciphertexts, which breaks security.

We show that it suffices to have a distPAC-learning algorithm, rather than a PAC-learning
algorithm in Valiant’s model, to break security of a public key cryptosystem in this way.

▶ Theorem 16. Suppose there exists a secure public key encryption scheme (gen, enc, dec)
that generates n-bit encryptions of single bit messages, where decryption error is ϵ := ϵ(n) ≤
1/nω(1). Let µ be the distribution over decryption functions dec(sk, ·) with sk, pk ∼ gen and
hard-wired. If for every sk, dec(sk, ·) ∈ Λ, then (Λ, µ) is not efficiently distPAC-learnable.

3 No General Implication from Natural Proofs to PAC-Learning

In this section, we show that for circuit classes that can compute MAJ◦THR-circuits, there can
be no general implication from natural proofs to PAC-learning algorithms in Valiant’s model,
unless Õ(n1.5)-uSVP has a polynomial time solution, and Õ(n1.5)-SVP and Õ(n1.5)-SIVP
have polynomial time quantum solutions. We sketch an analogous fact for natural proofs for
DNFs, and a natural assumption on the polynomial time hardness of refuting random k-SAT
instances. Additionally, we will explain that there exists a special target distribution such
that there cannot even be an implication from natural proofs to distPAC-learning algorithms
for that distribution, under the same lattice assumptions.

3.1 Nisan’s Natural Proof
We will formally define the natural property that arises from Nisan’s natural proofs. We begin
by defining what is a natural property. Let Fn be the set of all Boolean functions on n inputs.
Typically, the Boolean functions in the context of circuit complexity are f : {0, 1}n → {0, 1}.
We will continue to use f : {0, 1}n → {−1, 1} to maintain continuity with the previous
sections.

▶ Definition 17 (Natural Property [30]). A Natural Property is a sequence of subsets Q =
{Qn}n∈N of F = {Fn}n∈N, if it satisfies the following conditions.
1. Constructivity. The predicate “is f contained in Qn” can be computed in polynomial

time.
2. Largeness. |Qn| ≥ δn · |Fn|.
3. Usefulness. For any sequence of functions fn ∈ Fn (for n ∈ N), if fn ∈ Λ then fn /∈ Qn

almost everywhere.
When Qn satisfies these conditions we say that it is a natural property for Λ with density δn.
In general, we fix δn = 1/2.3

Now we will define the property that arises from Nisan’s lower bounds for MAJ ◦ THR-
circuits [27], and then demonstrate that it is natural. To the best of our knowledge, the
natural property has never been explicitly formalized prior to this paper, but the fact that it

3 See Lemma 2.7 of [5] for an explanation for why this is reasonable.
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is natural is essentially credited to the sequence of works [27, 7, 28, 38]; [27] provided the
lower bound, and [7, 28, 38] all implicitly proved it was natural. The property is defined by
the following algorithm that classifies whether or not a truth table is in the property.

▶ Definition 18 (Nisan’s Natural Property). .
1. Input. Tfn ∈ {0, 1}2n a truth table of a function fn ∈ Fn.
2. Choose any partition of the n inputs of fn into two sets A,B with |A| = ⌈n/2⌉ and
|B| = ⌊n/2⌋. Let x1||x2 denote the partitioned input according to A,B.

3. Given Tfn
, compute

α = 2n ·R2(fn) =
∑

x0
1,x1

1∈{0,1}⌈n/2⌉

x0
2,x1

2∈{0,1}⌊n/2⌋

∏
b1,b2∈{0,1}

fn(xb1
1 ||x

b2
2 )

4. Output. If |α| ≤ 22n/3, print 1, otherwise print 0.

Let MAJs ◦THR denote the class of majority-of-thresholds circuits where the top majority
gate has fan-in s.

▶ Theorem 19 ([27, 7, 28, 38]). There is a constant c such that there is a natural property
for MAJ2n/c ◦ THR with density 1/2.

To prove this theorem, one uses the result of Nisan [27]. The notation rΠ[2, c, γ] denotes
the set of functions f : {0, 1}n → {−1, 1} that have 2-party randomized communication
complexity, with cost at most c and bias at least γ, for every partition of the inputs to
the function. See Section 2 of the full version [19] for formal definitions of communication
complexity classes and protocols in this work.

▶ Theorem 20 ([27]). MAJs ◦ THR ⊆ rΠ[2, O(log(s)), O(1/s)]

Now we prove Theorem 19.

Proof of Theorem 19. We prove each of the three necessary properties individually. First,
observe that Definition 18 defines a polynomial time algorithm, in the size of the truth table
(this proves the Constructivity property).

For the Largeness property, we will analyze the probability that the algorithm outputs 1
given a random truth table as input.

Consider α/2−n = R2(fn). We have that

α/2−n = E
x0

1,x1
1,x0

2,x1
2

 ∏
b1,b2∈{0,1}

fn(xb1
1 , x

b2
2 )


This expected value over the uniformly random choice of x0

1, x
1
1, x

0
2, x

1
2 is 0 except for when

either x0
1 = x0

2 or x1
1 = x1

2. By a union bound, we have then that α/2−n ≤ 21−(n+1)/2.
Therefore, α ≤ 2n/2+1, and the probability over a random truth table Tfn that α ≤ 22n/3 is
at least 1/2. This proves density is at least 1/2.

Finally, we prove Usefulness. By Theorem 10 and Theorem 20, we know that when Tfn

is the truth table of fn ∈ MAJs ◦THR, then for s ≤ 2n/c and some sufficiently large constant
c, we have that α ≥ 2n/poly(2n/c) ≥ 22n/3 + 1. Thus, whenever fn ∈ MAJ2n/c ◦ THR, the
algorithm defining the natural property outputs 0, as desired. ◀
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3.2 Proof of Theorem 1
In the last section, we demonstrated that MAJs ◦ THR has a dense natural property for s up
to 2n/c for some constant c. Now we will use this fact, together with hardness of learning
MAJ ◦ THR in Valiant’s PAC model [22] to prove Theorem 1.

▶ Theorem 21 (Theorem 1.3 in [22]). Assume that MAJ ◦ THR is PAC-learnable in time
poly(n). Then there is a polynomial time solution to Õ(n1.5)-uSVP, and polynomial time
quantum solutions to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

▶ Theorem 22 (Theorem 1 restated). Let u : N→ N. Suppose that a natural proof against
MAJu(n) ◦ THR-circuits (and density 1/2) implies that poly(n) size MAJ ◦ THR-circuits
are PAC-learnable in Valiant’s model, in time exp(u−1(poly(n))). Then, then there is
a polynomial time solution to Õ(n1.5)-uSVP, and polynomial time quantum solutions to
Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. By Theorem 19, there is a constant c such that there is a natural property for
MAJ2n/c ◦THR with density 1/2. Thus, by the condition of the current theorem, we conclude
that the class of MAJ ◦ THR-circuits is PAC-learnable in Valiant’s model. By Theorem 21,
we then obtain a polynomial time solution to Õ(n1.5)-uSVP, and polynomial time quantum
solutions to Õ(n1.5)-SVP and Õ(n1.5)-SIVP. ◀

Hardness of DistPAC-Learning for Majority of Threshold Circuits for all Target
Distributions

▶ Corollary 23. There exists a polynomial time samplable distribution µ over polynomial
size MAJ ◦ THR-circuits, such that if (MAJ ◦ THR, µ) is efficiently distPAC-learnable, then
there is a polynomial time solution to Õ(n1.5)-uSVP, and polynomial time quantum solutions
to Õ(n1.5)-SVP and Õ(n1.5)-SIVP.

Proof. Implicitly from Theorem 21, we know that the decryption function of Regev’s public
key cryptosystem can be implemented by a MAJ ◦ THR-circuit, with negligible decryption
error. Therefore, by Theorem 16, the statement follows. ◀

A Similar Barrier via Hardness of Learning DNFs

A similar statement to Theorem 22 can be observed for DNFs using a different hardness of
PAC-learning result of [8]. Specifically, [8] prove that PAC-learning DNFs in Valiant’s model
implies the ability to refute random k-SAT instances. Feige [10] first introduce hardness
assumptions regarding refuting k-SAT instances.

An algorithm refutes random k-SAT instances with c(n) ≥ Ω(n) clauses if on 1−o(1) frac-
tion of the k-SAT formulas with c(n) constraints, it outputs “unsatisfiable”, while whenever
it encounters a satisfiable k-SAT formula with c(n) constraints, it outputs “satisfiable”. A
random K-SAT instance I = {C1, · · · , Cc(n)} is sampled in the way that each clause/con-
straint Ci is chosen uniformly at random from the set of k-SAT clauses/constraints with n

variables.
Thus, it follows directly from the assumption regarding hardness of refuting random

k-SAT formulas from [8] that there is no implication from a Natural Proof for exponential
size DNFs, to PAC-learning for DNFs. This is because Nisan’s natural proof clearly works
for exponential size DNFs, since the set is clearly contained by the set of exponential size
majority-of-threshold circuits.

ITCS 2024



68:16 Distributional PAC-Learning from Nisan’s Natural Proofs

4 Main Result

In this section, we will prove Theorem 3, which obtains distPAC-learning algorithms for
concept classes that have low-cost associated communication games. To do so, we will first
define the communication game, and then obtain a weak distPAC-learning algorithm (see
Definition 11). Finally, we will conclude Theorem 3 using the equivalence between weak and
strong distPAC-learning (see Theorem 12).

In the following sections, we will use Theorem 3 to derive distPAC-learning algorithms
for natural distributions over MAJ ◦ THR-circuits, polytopes, and DNFs, and impossibility
results for weak PRFs that can be evaluated with MAJ◦THR-circuits with an arbitrary input
encoding.

4.1 Communication Games
Recall that C = {Cn}n∈N is the s(n)-represented Boolean concept class that is induced by
the evaluation function ϕ = {ϕn}n∈N. We define the communication game associated with C:

▶ Definition 24 (2-party distributional communication game). With respect to a evaluation
rule ϕ and product distribution (µ, ρ), the 2-party communication game G[ϕ, n, (µ, ρ)] is the
following:

Setup: πf ∼ µ, x ∼ ρ.
Player 1 gets as input πf ∈ {0, 1}s(n) for concept f ∈ Cn.
Player 2 gets as input a string x ∈ {0, 1}n.
The object of the game is for the parties to output the value ϕn(πf , x) = f(x), using as
few bits of communication as possible.

We say that G[ϕ, n, (µ, ρ)] is (c, γ)-evaluated if the parties can communicate at most c
bits, and win the game with probability 1/2 + γ (over the random sample of inputs according
to (µ, ρ)).

Other definitions

We direct the reader to Section 2 of the full version [19] for the necessary definitions of
communication complexity.

4.2 Weak Learning
Towards Theorem 3, we will start by first obtaining a weak learning algorithm, which only
requires prediction accuracy marginally better than a coin toss.

Notation

In the following, we discuss boolean functions f : {0, 1}n → {−1, 1}, and denote by Un the
uniform distribution over {0, 1}n. For shorthand, we will write c := c(n), γ := γ(n), to denote
number of bits of communication and protocol bias, which are dependent on n, the input
length of a concept. Also, in the rest of the paper we will streamline notation by eliding the
subscripts on distributions coming from ensembles indexed by n ∈ N.

▶ Theorem 25. Let ϕ be an evaluation rule. Suppose that, for every n ∈ N, and product
distribution (µ, ρ), G[ϕ, n, (µ, ρ)] is (c, γ)-evaluated. Then there exists an algorithm A such
that, for any n ∈ N, δ, η > 0,

Pr
f∼µ

[
Pr
A

[
∀ρ : Pr

x∼ρ

[
h(x) ̸= f(x) : h← AEx(f,ρ)(n, δ, η)

]
≤ 1

2 − poly(γ · 2−c)
]
≥ 1− δ

]
≥ 1− η

For µ samplable in time t(n), A runs in time poly(n, t(n), s(n), γ−1, δ−1, 2c).
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Proof. To construct A, we will follow three steps:
1. Construct a weak randomized predictor L.
2. Argue that many good non-uniform but deterministic predictors exist, by fixing coins

and samples for L.
3. Construct a deterministic predictor by sampling and then testing enough non-uniform

predictors.
Steps 2 and 3 follow from standard techniques (i.e., “constructive averaging”), and are
omitted from this version due to space constraints. The full version [19] contains steps 2
and 3. ◀

Algorithm 1 Randomized predictor LEx(f,ρ).

1: Input: z ∈ {0, 1}n, n ∈ N, δ, η > 0
2: Pick uniformly random values b1, b2 ∈ {0, 1}.
3: Pick uniformly random values r00, r01, r10, r11 ∈ {−1, 1}
4: Sample πg ∼ µ.
5: Sample (w, y) ∼ Ex(f, ρ).
6: if b1 = b2 = 0 then
7: v ←

∏
i,j∈{0,1} rij

8: if b1 = 0, b2 = 1 then
9: v ← y · r00 ·

∏
i,j∈{0,1} rij

10: if b1 = 1, b2 = 0 then
11: v ← ϕ(πg, w) · ϕ(πg, z) ·

∏
j∈{0,1} r1j

12: if b1 = 1, b2 = 1 then
13: v ← y · ϕ(πg, w) · ϕ(πg, z) · r11

14: b← rb1b2

15: Output b · v

▷ Claim 26 (Weak randomized predictor). Let ϕ be an evaluation rule. Under the conditions
of Theorem 25, there exists a randomized algorithm L, running in time

poly(n, t(n), s(n), γ−1, δ−1, η−1, 2c)

such that for any n ∈ N, δ, η > 0, the following equation is satisfied:

Pr
f∼µ

[
Pr
L

[
∀ρ : Pr

z∼ρ

[
LEx(f,ρ)(z, n, δ, η) ̸= f(z)

]
≤ 1

2 − poly(γ · 2−c)
]
≥ 1− δ

]
≥ 1− η (7)

Proof of Claim 26. We will abuse notation and write πg ∼ µ to denote the binary representa-
tion of a concept g, distributed appropriately according to the target distribution µ over the
ϕ-induced s(n)-represented concept class C. See the randomized predictor L as Algorithm 1.

Consider the distribution M over 2× 2 matrices

C =
[

ϕ(πf , z) ϕ(πf , w)
ϕ(πg, z) ϕ(πg, w)

]
where πf , πg ∼ µ and z, w ∼ ρ. We now claim that, under the conditions of Theorem 25, this
distribution is efficiently distinguishable from the distribution R over random 2× 2 matrices,

R =
[

r00 r01

r10 r11

]
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H1 = R

H2 =
{
Ckℓ when k = 0, ℓ = 0
Rkℓ otherwise

H3 =
{
Ckℓ when k = 0, ℓ ≤ 1
Rkℓ otherwise

H4 =
{
Ckℓ when k = 0 or ℓ ≤ 0
Rkℓ otherwise

H5 =M

Figure 1 Hybrid sequence.

To see this, observe that the distribution over C is identical to the following distribution
over 2× 2 matrices (abusing notation, z = ρ(y) denotes a point z sampled according to ρ
with the random bits y)

D =
[

ϕ(µ(x), ρ(y)) ϕ(µ(x), ρ(y′))
ϕ(µ(x′), ρ(y)) ϕ(µ(x′), ρ(y′))

]
Here, x, x′, y, y′ are uniformly random strings. We can assume that without loss of generality
that x, x′, y, y′ are all the same length, by defaulting to the maximum necessary length
for sampling µ, ρ (and padding the shorter strings with useless random bits). Therefore,
identifying ξ(x, y) := ϕ(µ(x), ρ(y)), we can now see that

R2(ξ) = E
πf ,πg

z,w

 ∏
i,j∈{0,1}

Cij


It now readily follows that when G[ϕ, n, (µ, ρ)] is (c, γ)-evaluated (which is true by assump-
tion), then

R2(ξ) = E
πf ,πg

z,w

 ∏
i,j∈{0,1}

Cij

 ≥ (γ · 2−c)4

On the other hand,

E
R

 ∏
i,j∈{0,1}

Rij

 = 0

Now that we have established this, we may proceed by a hybrid argument. Define the
neighboring hybrid distributions H1, H2, H3, H4, H5 over 2× 2 matrices, as in Figure 1.

It then follows that for random hybrid neighbors Hi, Hi+1 (i ∈ [4]),

E
i∼[4]

 E
H′∼Hi+1

 ∏
k,j∈{0,1}

H ′
kj = 1

− E
H∼Hi

 ∏
k,j∈{0,1}

Hkj = 1

 ≥ (γ · 2−c)4/4 (8)
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To ease notation, let D(H) =
∏

k,j∈{0,1} Hkj , and let Vi denote the event that D(Hi) = 1.
Intuitively, the function D stands for “distinguisher,” and can be thought of as such.

We continue by observing that, by definition, the value stored as v in L (Algorithm 1)
is D(Hi) for a random i ∈ [4]. Hence, the output of L, which is written as D(Hi) · b, is
interpreted as a prediction, where b = rb1b2 is the “guess bit.” Note that, the string b1b2 is
the binary representation of i.

Now, conditioning on correctness of this guess bit, we have that for all ρ, and probabilities
taken over z ∼ ρ, f ∼ µ and the randomness of L:

Pr
[
LEx(f,ρ)(z, n, δ, η) = f(z)

]
= Pr

[
LEx(f,ρ)(z, n, δ, η) = f(z) | b = f(z)

]
· Pr[b = f(z)]

+ Pr
[
LEx(f,ρ)(z, n, δ, η) = f(z) | b ̸= f(z)

]
· Pr[b ̸= f(z)]

= 1
2

(
Pr[b ·D(Hi) = f(z) | b = f(z)]

+ Pr[b ·D(Hi) = f(z) | b ̸= f(z)]
)

Indeed, when Vi is unsatisfied, this means that the output of L is b. The case analysis
follows:

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] = 1
2

(
Pr[Vi | b = f(z)] + Pr[¬Vi | b ̸= f(z)]

)
= 1

2 + 1
2

(
Pr[Vi | b = f(z)]− Pr[Vi | b ̸= f(z)]

)
By conditioning, we know that:

Pr[Vi] = 1
2 Pr[Vi | b = f(z)] + 1

2 Pr[Vi | b ̸= f(z)]

rearranging the terms, we get:

1
2 Pr[Vi | b ̸= f(z)] = Pr[Vi]−

1
2 Pr[Vi | b = f(z)]

We thus conclude:

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] = 1
2 + Pr[Vi | b = f(z)]︸ ︷︷ ︸

(α)

−Pr[Vi]︸ ︷︷ ︸
(β)

The term (α) corresponds to the case that L computes the 2-party norm on a sample from
Hi+i (i.e., the product of the entries of a matrix sampled from Hi+i), while term (β) is the
case that L computes the 2-party norm on a sample from Hi (the product of the entries of a
matrix sampled from Hi). Thus, by equation (8),

Pr[LEx(f,ρ)(z, n, δ, η) = f(z)] = 1
2 + (1− Pr[D(Hi+1) = 1]− (1− Pr[D(Hi) = 1])

≥ 1
2 + (γ · 2−c)4/8 ◁

Establishing Claim 26 suffices for step 1. We refer the reader to the full version [19] for
steps 2 and 3.
▶ Remark. Using the 2-party norm as we do is a universal distinguisher. That is, it
distinguishes any evaluation rule that is (c, γ)-evaluated from a random function (using the
lower bound of (γ · 2−c)4). Therefore it holds that for arbitrary choice of distribution ρ, we
obtain the desired guarantee. Indeed, the choice of ρ can be adversarial with respect to
f ∼ µ, and it never needs to be known by A.
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4.3 Main Theorem

Theorem 25 is enough to prove Theorem 3. Recall that C = {Cn}n∈N is a boolean concept
class that is s(n)-representable by the evaluation function ϕ = {ϕn}n∈N.

▶ Theorem 27 (Theorem 3, restated). Let ϕ be an evaluation rule, and suppose that for
every n ∈ N, and product distribution (µ, ρ), G[ϕ, n, (µ, ρ)] is (c, γ)-evaluated. Then, (C, µ)
is distPAC-learnable. For a time t(n)-samplable µ and s(n)-represented C, the learning
algorithm runs in time polynomial in n, t(n), s(n), γ−1, ϵ−1, δ−1, η−1, and 2c.

Proof. Immediate from Theorem 12 and Theorem 25. ◀

▶ Remark. The exponential dependency of c is possibly necessary (i.e., necessary assuming
exponentially secure one-way functions exist), since the theorem does not restrict C (e.g.,
it can be P/poly), and no matter what c ≤ n. Also, see the full version [19] for further
discussion.

▶ Theorem 28 (distPAC-learning – Theorem 4 restated). Let ϕ ∈ MAJ◦THR be any evaluation
rule, and let µ be any polynomial time samplable target distribution. Then, for the ϕ-induced
s(n)-represented concept class C, the pair (C, µ) is efficiently distPAC-learnable.

Proof of Theorem 28. By Theorem 20, MAJ ◦ THR has a randomized communication pro-
tocol with cost O(logn) and bias at least 1/poly(n). This implies that for any product
distribution (µ, ρ) it is the case that G[ϕ, n, (µ, ρ)] is (O(logn), 1/poly(n))-evaluated, since
ϕ ∈ MAJ ◦ THR. This is enough to conclude the theorem by Theorem 27. ◀

5 DistPAC-Learning on Natural Target Distributions and the
Impossibility of Encoded-Input Weak PRFs

Using Theorem 28 we can derive distributional PAC-learning algorithms for interesting and
natural distributions over majority-of-threshold circuits, as well as intersections of thresholds,
and DNFs. We state the result for distributional PAC-learning of majority-of-threshold
circuits below, but refer to the full version [19] for the proof, and the results on intersections
of thresholds, and DNFs.

A target distribution over MAJ ◦ THR

Let L = (T1, · · ·Tm) be a list of m := poly(n) linear threshold functions. Also, let µ be
any poly(n) time samplable distribution over {0, 1}m. We define the distribution µL over
MAJ ◦ THR-circuits as follows.

Sample θ ∼ µ.
Output the MAJ◦THR-circuit that is the majority vote over each Ti ∈ L such that θi = 0.

We will show that, for any µ, L as described above, (MAJ ◦ THR, µL) is efficiently distPAC-
learnable.

▶ Theorem 29. Let L = (T1, · · ·Tm) be any list of m := poly(n) linear threshold functions
over n-bit inputs, and let µ be any poly(n) time samplable distribution over {0, 1}m. The
pair (MAJ ◦ THR, µL) is efficiently distPAC-learnable.
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Non-black-box access to µL

The distPAC-learning algorithm does not need descriptions of µ or L as input. Instead, it
suffices to have black-box access to a sampling machine that outputs appropriately distributed
polynomial size circuits that are functionally equivalent to the appropriate MAJ◦THR-circuit,
under some fixed encoding scheme. To see this, observe that the randomized predictor L
(Algorithm 1) uses the evaluation rule ϕ and a concept representation πg to basically obtain
some labels of g. But it is not important what the representation is, or how ϕ is implemented.
For the accuracy of the learning algorithm, it only matters that, it is possible to implement
ϕ by a MAJ ◦ THR circuit (under some concept representation). Hence, the learner can
work with some far messier representation of concepts, such as by arbitrary polynomial size
circuits.

The fact that the learner does not need to know µ or L is a good property that enhances
the convenience of the learning algorithm. Arguably, knowledge of µ and L would be a
prohibitive assumption in practice; rather, black-box sample access to a more complex and
messy form of µL (provided that the learner can still interpret the encoding well enough
to evaluate it) is a significantly weaker assumption, corresponding to a scenario where the
learner has some non-explicit knowledge about the possible concepts it may encounter.

Impossibility of Encoded-Input Weak PRFs

We can additionally apply Theorem 27 to prove that weak PRFs augmented with a keyless
encoding procedure cannot exist, when evaluating the encoded input on any key is forced to
be done by a MAJ ◦ THR-circuit. More specifically, we show that encoded-input weak PRFs
cannot be evaluated by MAJ◦THR. Our definition of encoded-input weak PRFs, omitted here
and written in the full version [19], is the natural relaxation of the definition of encoded-input
strong PRFs of Boneh et al. [3].

The proof of our result is a straightforward application of Theorem 27, and appears in
the full version [19].

▶ Theorem 30 (Theorem 8 restated). There exists no encoded-input weak PRF that is
evaluated by a MAJ ◦ THR-circuit.
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