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Abstract
In this work, we address the following question. Suppose we are given a set D of positive-weighted
disks and a set T of n points in the plane, such that each point of T is contained in at least two
disks of D. Then is there always a subset S of D such that the union of the disks in S contains
all the points of T and the total weight of the disks of D that are not in S is at least a constant
fraction of the total weight of the disks in D?

In our work, we prove the Extraction Theorem that answers this question in the affirmative. Our
constructive proof heavily exploits the geometry of disks, and in the process, we make interesting
connections between our work and the literature on local search for geometric optimization problems.

The Extraction Theorem helps to design the first polynomial-time O(1)-approximations for two
important geometric covering problems involving disks.
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1 Introduction

Geometric covering is a popular research topic in computer science which is widely used in
areas such as wireless and sensor networks, robotics, data mining, computational biology,
image processing, and VLSI design [7, 38, 14, 39, 28, 20, 27, 25]. Given a geometric object
O and a point p, O is said to cover p if p is contained in O. A set O of objects covers a set
P of points, if each point p ∈ P is covered by an object in O. One frequently studied and
fundamental covering problem is the following.

▶ Problem 1 (Minimum Weight Unit Disk Cover (WUDC)). Given a set D of unit
disks along with a weight function w : D → R+ and a set T of points in the plane, the
goal is to find a subset D′ ⊆ D, such that D′ covers T and the sum of the weights of
the disks in D′ is minimized.
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7:2 Geometric Covering via Extraction Theorem

When all the weights are 1, the problem is popularly known as Discrete Unit Disk Cover
(DUDC), which is already NP-complete [26]. In a seminal work, Mustafa and Ray [34]
obtained a PTAS for DUDC. However, their result is based on a local search scheme that is
not sufficient to handle weights. Li and Jin [30] obtained the first PTAS for WUDC based
on the approach of partitioning the plane into squares and solving a restricted problem in
those squares.

Another fundamental covering problem is Maximum Coverage with Unit Disks.

▶ Problem 2 (Maximum Coverage with Unit Disks (MCUD)). Given a set D of unit
disks and a set T of points in the plane, and an integer k > 0, the goal is to find a
subset D′ ⊆ D of size at most k, such that the number of points of T covered by D′ is
maximized.

This problem is also known to be NP-complete [26]. In a recent work, Chaplick et al. [13]
designed a local search based PTAS for this problem.

In this work, we study the Discrete Covering with Two Types of Radii problem, a
combination of DUDC and MCUD.

For any point x in the plane and any real number ρ > 0, let D(x, ρ) denote the closed
disk with center x and radius ρ.

▶ Problem 3 (Discrete Covering with Two Types of Radii (DC-2)). We are given
two point sets P (of n “users”) and A = {a1, a2, . . . , am} (of m “access points”)
in the plane, and two real numbers ρ1 and ρ2, such that 0 < ρ1 < ρ2 and P ⊆⋃m

i=1 D(ai, ρ2). The goal is to select for each i = 1, 2, . . . , m, a value ri ∈ {ρ1, ρ2}
such that P ⊆

⋃m
i=1 D(ai, ri) and the size of the set {p ∈ P : there is an index 1 ≤

i ≤ m such that ri = ρ1 and p ∈ D(ai, ri)} is maximized.

We refer to the disk D(ai, ρ1) as the small disk centered at ai. Similarly, we refer to
D(ai, ρ2) as the large disk centered at ai. Using this terminology, the goal is to select for
each 1 ≤ i ≤ m, either the small disk centered at ai or the large disk centered at ai, such
that the set P is covered by the chosen disks and the number of points in P each of which is
contained in at least one chosen small disk is maximized.

The DC-2 problem appears naturally in wireless networks [5]. In this setting, a user
receives data from an access point ai if it is within a certain distance from ai. The data
is received at high-speed if the user is close to ai. Each access point can work at a single
frequency assigned to it from a range, which we assume, for simplicity, has only two values:
high and low. High frequency corresponds to high-speed, but smaller coverage area. Similarly,
low frequency corresponds to low-speed, but larger coverage area. The goal is to assign
frequencies to the access points such that each user is within the coverage area of some access
point and the number of users within the coverage area of high-frequency access points is
maximized.

Despite the significance of the DC-2 problem in wireless networks, the problem was
introduced to the theory community only recently by Maheshwari et al. [31]. They presented
polynomial-time algorithms (based on dynamic programming) for the one-dimensional case.
On the other hand, they proved that the DC-2 problem is NP-complete. The natural question
that arises from their work is whether DC-2 admits a constant-approximation.

Informally speaking, the DC-2 problem encapsulates the two fundamental covering
problems DUDC and MCUD: we need to select disks satisfying the mixed goal of covering all
points and maximizing the number of points covered by the chosen small disks. As mentioned
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before, both DUDC and MCUD admit PTASes. However, due to the mixed flavor of DC-2,
none of these approximation schemes seem to be extendable to DC-2. Handling the two
different, but dependent tasks together turns out to be the biggest hurdle in approaching this
problem. Hence, the problem has posed new challenges in geometric covering and warrants
the development of novel tools and techniques.

Even though DC-2 already seems difficult, one might be more interested in a natural
extension of this problem where we have a set of an arbitrary t ≥ 2 number of frequencies
available to select from for each access point. Moreover, there is a quality function associated
with each frequency or radius, which defines the gain of an access point if that particular
frequency is selected.

▶ Problem 4 (Discrete Covering with t Types of Radii (DC)). We are given two
point sets P = {p1, p2, . . . , pn} (of n “users”) and A = {a1, a2, . . . , am} (of m “ac-
cess points”) in the plane, t real numbers ρ1, . . . , ρt, such that 0 < ρ1 < . . . < ρt

and P ⊆
⋃m

i=1 D(ai, ρt), and a function quality : {1, . . . , t} → R+ ∪ {0}. A feas-
ible solution constitutes a value ri ∈ {ρ1, . . . , ρt} for each i = 1, 2, . . . , m such
that P ⊆

⋃m
i=1 D(ai, ri). The gain of a feasible solution is defined by the expres-

sion
∑n

j=1 max{l:∃i s.t. pj∈D(ai,ri) and ri=ρl} quality(l), i.e., each point pj contributes
a value to the gain that is equal to the quality of the maximum quality radius ρl such
that there is a disk D(ai, ρl) in the solution containing pj. The goal is to compute a
feasible solution that maximizes the gain.

It is not hard to see that DC-2 is a restricted version of DC with t = 2 where quality(1) = 1
and quality(2) = 0. An interesting question about DC is whether it admits an approximation
in polynomial time for any arbitrary number t where the approximation factor is a true
constant that does not depend on t.

1.1 Our contributions
In our work, we design a polynomial-time true constant-approximation algorithm for DC with
the approximation factor of 6.328. For DC-2, we obtain an improved 4-approximation. Both
the approximations are based on a fundamental theorem regarding the weights of geometric
set covers, which we refer to as the Extraction Theorem. For any set of weighted objects S,
let W (S) denote the sum of the weights of the objects.

▶ Theorem 5 (Extraction Theorem). (Informal) Suppose we are given a set D of disks along
with a weight function w : D → R+ and a set T of points in the plane, such that each point
of T is contained in at least two disks of D. Then there exists a subset sol ⊂ D such that
sol covers T and W (D \ sol) ≥ W (D)/4. Moreover, such a subset sol can be computed in
polynomial time.

DC-2. Given the Extraction Theorem, our approximation for DC-2 is based on a straight-
forward combinatorial algorithm. We assign each point that is in at least one small disk to
an arbitrary small disk. The number of points assigned to each small disk is its gain. Assign
a weight to each large disk whose value is equal to the gain of the corresponding small disk.
If we select the large disk for an access point, we lose its weight. Otherwise, the gain of the
small disk is at least the weight. Moreover, the total weight of the large disks is at least the
optimal gain of the instance. Applying the Extraction Theorem gives us a set of large disks
that covers all the points and its complement set of disks has a gain of at least one-fourth of
the optimal gain.

ITCS 2024



7:4 Geometric Covering via Extraction Theorem

DC. The main challenge that we now face for DC is this: Suppose that we somehow decide
to use some access point ai to maximize the gain and not to guarantee coverage. It is still
not clear which disk at ai we need to open, in contrast to DC-2 where we can simply open
the small disk. Therefore, to obtain the approximation for DC, we use a more involved
combinatorial algorithm, which has two major steps. We define a point to be a private point
if it is covered by the disks of exactly one access point. Otherwise, it is a non-private point.
In the first step, we consider the problem of selecting one disk for each access point such
that each private point is covered and the overall gain is maximized. In particular, we model
this problem as a submodular maximization problem subject to a matroid. Subsequently,
we use an algorithm for the latter problem due to Calinescu et al. [10], which yields an
O(1)-approximation for our problem in the first step. Naturally, this step does not ensure
that every non-private point is covered by the chosen disks. In the second step, we apply
the Extraction Theorem in a careful manner such that all points are covered. This step is
similar to the algorithm for DC-2. In particular, the algorithm for DC-2 can be seen as a
simpler version of the algorithm for DC without the first step.

We note that our result for DC also holds for a somewhat more general setting, where the
set of allowed radii and corresponding qualities need not be the same for each access point.

Proof of the Extraction Theorem. The proof is indeed simple if all the disks have the same
radius. Compute a Delaunay triangulation of the unit disks, which is known to be a planar
graph. Hence, its vertices (or the disks) can be colored by 4 colors in polynomial time. It
follows that there is an independent set in this graph of weight at least one-fourth of the total
weight of the disks. The complement set is a vertex cover of the graph. One can prove that
the disks corresponding to any vertex cover in this graph cover all the points. This follows
due to the properties of Delaunay triangulations. Notably the factor 4 is tight (see Figure
1). The proof for arbitrary disks goes along the same lines. Here also we construct a planar
graph, extract a vertex cover, and argue that the disks that correspond to this vertex cover
also cover all the points. However, the construction of the planar graph in this case is much
more involved. During the process of the planar graph construction, we make interesting
connections between the Extraction Theorem and analyses of local search algorithms for
geometric optimization problems [34, 33, 12, 3, 9]. In particular, the analysis of such a local
search algorithm warrants the existence of a bipartite support graph such that the vertices
are the objects from a local search solution and an optimal solution, and the graph has a
small-sized vertex separator. Interestingly, most of the analyses show the existence of such a
support graph that is planar. The connection helps us borrow ideas from these analyses for
the construction of our planar graph.

Extraction theorem for more general objects. Note that the Extraction Theorem is not-
necessarily true if we have a combinatorial set system instead of geometric objects and points.
Consider the complete graph Km on m vertices and set the weight of each vertex to be one.
Then every vertex cover must contain at least m − 1 vertices, and thus the total weight of
any such cover is at least m − 1 or (1 − 1/m)-fraction of the total weight. Consequently, one
might wonder about the most general class of objects for which such an Extraction Theorem
would be true. Motivated by this, we proved an Extraction Theorem for any class of regions
(equivalently objects) that have linear union complexity, albeit with a constant larger than 4.
This leads to extraction theorems for regions such as fat triangles of similar size and unit
axis-parallel cubes in R3. The proof of the general theorem is different from the proof for
disks and is based on a result due to Ene et al. [21]. In the process of proving this theorem,
we establish an interesting connection to their work.
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Figure 1 Set a weight of 1 to each disk. Then the weight of every subset of disks that covers all
the points is at least 3 or 3/4 of the total weight.

Other applications of Extraction theorems. Our Extraction theorems naturally lead to a
max-gain version of geometric set cover. Given a set D of unit disks along with a weight
function w : D → R+ and a set T of n points in the plane, the goal is to find a subset D′ ⊆ D,
such that D′ covers T and the sum of the weights of the disks in D \ D′ is maximized. It is
not hard to see that Minimum Weight Unit Disk Cover (WUDC) is the dual of this max-gain
version in the sense that for an instance I of WUDC, if the minimum solution has the value Γ,
then the maximum solution for the max-gain version on I has the value W (D) − Γ. Similarly,
for an instance I ′ of the max-gain version, if the maximum solution has the value Γ′, then
the minimum solution for WUDC on I ′ has the value W (D) − Γ′. Indeed, one can define
this max-gain covering problem for any class of geometric objects. As far as we know, such a
geometric version has not been studied before. However, for the more general combinatorial
version with sets and elements, a ∆-approximation is known [4, 17], where ∆ is the maximum
cardinality of the sets. Our general Extraction Theorem directly yields O(1)-approximations
for such a natural problem with a wide range of geometric objects mentioned above. Further
consequences for the max-gain covering problem are discussed in Section 6.

1.2 Related work
Designing O(1)-approximation for geometric set cover is a popular research direction in
computational geometry. Earlier works focused on the unweighted case. In a classic work,
Brönnimann and Goodrich [8] (see also [24]) linked the integrality gap of the canonical LP
relaxation of set cover to the existence of small-sized ϵ-nets, and obtained O(1)-approximations
for disks in R2 and halfspaces in R3. Clarkson and Varadarajan [15] showed a novel connection
between the size of ϵ-nets and the union complexity of objects, leading to O(1)-approximations
for more general objects, such as similar-sized fat triangles and pseudodisks. Basu Roy et
al. [37] obtained a local search based PTAS for non-piercing regions (e.g., pseudodisks);
their work builds on the approach pioneered by Mustafa and Ray [34] in their PTAS for
disks in the plane. Handling the weighted case turned out to be much more challenging.
O(1)-approximations were known only for unit disks [2, 16, 18, 19, 23, 29, 41] and unit
squares [22]. In a breakthrough, Varadarajan [40] proposed a quasi-uniform sampling based
approach that achieved improved approximations in the weighted case for several classes of
objects. His approach is again based on a randomized ϵ-net construction. Chan et al. [11]
further refined and generalized this approach to obtain an O(1)-approximation for weighted
disks. Mustafa et al. [33] obtained a quasi-PTAS for pseudodisks based on the separator
theorem of Adamaszek and Wiese [1].

ITCS 2024
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Almost all results on geometric covering are based on either LP rounding, local search, or
separator theorems. In particular, the O(1)-approximation for weighted disk cover should be
contrasted with our O(1)-approximation for the max-gain version (dual) which is obtained
via a straightforward algorithm (based on the Extraction Theorem for disks) and with a
reasonably small constant factor of 4.

Organization. In Section 2 and 3, we describe the algorithms for DC-2 and DC, respectively.
In Section 4, we prove the Extraction Theorem for unit disks and arbitrary disks. The proof
of the general Extraction Theorem appears in Section 5. In Section 6, we conclude with
some open questions.

2 A 4-approximation for DC-2

In this section, we describe a combinatorial algorithm achieving the 4-approximation for
DC-2. For any access point ai ∈ A, we denote the disk having the larger radius by lrg(i) and
the disk having the smaller radius by sml(i). The gain of a solution S, denoted by gain(S),
is the number of points covered by the small disks in S. We say that a point p in P is
vulnerable, if p is not contained in any of the small disks, i.e., p ̸∈

⋃m
i=1 sml(i). Let Pv ⊆ P

be the set of vulnerable points in P , and let Pn = P \ Pv be the complement set consisting
of the non-vulnerable points in P .

▶ Observation 6. No vulnerable point contributes to the gain of any feasible solution. Each
non-vulnerable point is covered in every solution irrespective of which disks are chosen. Also,
each non-vulnerable point p contributes 1 to the gain of any feasible solution if p is covered
by a chosen small disk.

By the above observation, we need to consider covering only vulnerable points. We can
assume that each point of Pv is in at least two large disks. Indeed, assume that pj ∈ Pv is
contained in lrg(i), but not lrg(i′) for any i′ ≠ i. Any feasible solution must select large disk
lrg(i) in order to cover pj . We can pick lrg(i) corresponding to access point ai, and remove
ai and every point in P that (a) is covered by lrg(i) but (b) is not covered by sml(i′) for
any i′ ≠ i. This removal gives us a smaller instance of the problem to solve. Note that each
removed point contributes 0 to the gain of any feasible solution to the original instance.

Henceforth, we assume that each point of Pv is in at least two large disks.

2.1 Solving DC-2 using Extraction Theorem
We assign each non-vulnerable point pj to some access point ai ∈ A such that pj is covered
by sml(i); if multiple small disks contain pj we break the tie arbitrarily. Let w(i) denote
the number of points assigned to ai; we think of w(i) as a weight associated with lrg(i). Let
OPT denote the optimal gain of the DC-2 instance, and let S be the set of all large disks.
We have the following observation.

▶ Observation 7. W (S) =
∑

ai∈A w(i) = |Pn| ≥ OPT.

We apply our Extraction Theorem 19 on the set of disks S, the set of points Pv, and
the weight function w(.). The Extraction Theorem returns a subset S ′ ⊂ S such that (a)
S ′ covers Pv, and (b) W (S ′) ≤ (3/4) · W (S). By Observation 7, we have the following
observation.

▶ Observation 8. W (S \ S ′) ≥ W (S)/4 ≥ OPT/4.
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We construct a solution to DC-2 as follows. For each ai ∈ A, if lrg(i) is in S ′, we set
ri = ρ2. Otherwise, we set ri = ρ1. That is, the large disks in our constructed solution
{D(ai, ri) | ai ∈ A} are precisely those that are in S′. The Extraction Theorem guarantees
that the set S′ covers Pv, the set of vulnerable points. All non-vulnerable points are also
covered by our solution.

We now analyze the gain of our solution to DC-2. This is the number of points in Pn

that are covered by the small disks in our solution, which, by the way we define weights, is
at least

∑
ai∈A:lrg(i) ̸∈S′

w(i) = W (S \ S ′) ≥ OPT/4.

▶ Theorem 9. There is a polynomial-time 4-approximation algorithm for DC-2.

3 A 6.328-approximation for DC

We have t classes of disks 1, 2, . . . , t, ranging from the smallest to the largest. The goal is
to determine, for each access point ai ∈ A, the class that we need to “open”, such that all
points in P are covered and the coverage quality is maximized. Recall that quality(k) denotes
the quality provided by a disk of class k ∈ {1, 2, . . . , t}. Let disk(i, k) denote the disk of class
k centered at access point ai.

We say that a point p ∈ P is private to access point ai if p can only be covered by a
disk at access point ai. That is, such a point p is not in the class t disk centered at access
point b ∈ A for each b ̸= ai. The points in P that are private to ai impose a restriction on
the class of disk that can be opened at ai. Let allowed(i) denote the classes of disks thus
restricted. Formally, allowed(i) = {k, k + 1, . . . , t}, where 1 ≤ k ≤ t is the smallest integer
such that every point p ∈ P private to ai is in disk(i, k). If there is no point private to
ai, then allowed(i) = {1, . . . , t}. To cover private points of ai, we must pick a disk from
allowed(i). Henceforth, we assume that we can only open a disk from allowed(i) at ai. Note
that this guarantees coverage of private points. We denote the set of private points by P ′. A
point in P is called non-private if it is not private to any access point.

Our approximation algorithm has two steps. In the first step, we consider the problem
of selecting one disk from allowed(i) for each access point ai such that the overall gain is
maximized. Naturally, this step does not ensure that every non-private point is covered by
the chosen disks. In the second step, we apply Extraction Theorem in a careful manner such
that all points are covered. In the following, we describe these two steps in detail.

3.1 Step 1: Maximizing Gain while Covering Private Points

Let us consider the following slightly modified problem.

ITCS 2024



7:8 Geometric Covering via Extraction Theorem

▶ Problem 10 (DC-private-coverage). We are given two point sets P = {p1, p2, . . . , pn}
(of n “users”) and A = {a1, a2, . . . , am} (of m “access points”) in the plane, t real
numbers ρ1, . . . , ρt, such that 0 < ρ1 < . . . < ρt and P ⊆

⋃m
i=1 D(ai, ρt), and

a function quality : {1, . . . , t} → R+ ∪ {0}. A feasible solution constitutes of an
index k(i) ∈ allowed(i) for each i = 1, 2, . . . , m. The gain of a feasible solution is∑n

j=1 max{1≤i≤m|pj∈disk(i,k(i))} quality(k(i)), i.e., each point pj contributes a value to
the gain that is equal to the quality of the maximum quality radius ρk(i) correspond
to an index i such that disk(i, k(i)) contains pj. The goal is to compute a feasible
solution that maximizes the gain.

Notably the only difference between DC-private-coverage and DC is that DC-private-
coverage guarantees the coverage of all private points, but not of all non-private points. We
construct an instance of DC-private-coverage given the instance of DC in the natural way.
Let OPT and OPT′ be the optimal gain of the instance of DC and DC-private-coverage,
respectively.

▶ Observation 11. OPT′ ≥ OPT.

The above observation follows from the fact that any feasible solution to DC is also a
feasible solution to DC-private-coverage. To obtain a solution for DC with sufficient gain,
we first consider the DC-private-coverage problem. In particular, we represent the latter
problem as an instance of submodular maximization subject to a matroid.

Let X be the union of the disks disk(i, k) such that ai ∈ A and k ∈ allowed(i). We define
a function f : 2X → R+ in the following. For each S ∈ 2X ,

f(S) =
n∑

j=1
max

{l:∃i s.t. disk(i,l)∈S and pj∈disk(i,l)}
quality(l).

We refer to the term for pj in the above summation (i.e., quality(l)) as the quality gain of
pj . Now, define the partition matroid M = (X, I) such that each set in I contains exactly
one disk(i, k) correspond to each ai ∈ A, where k ∈ allowed(i). Then, the DC-private-coverage
problem is equivalent to maximizing the function f subject to the matroid M . To solve this
latter maximization problem, we need good characterization of the function f . Calinescu
et al. [10] showed that one can obtain a (1 − 1/e)-approximation if f is monotone and
submodular. In particular, they prove the following theorem.

▶ Proposition 12 ([10]). There is a polynomial-time, randomized algorithm giving a (1−1/e)-
approximation (in expectation) to the problem max{f(S) : S ∈ I}, where f : 2X → R+ is a
monotone submodular function given by a value oracle, and M = (X, I) is a matroid given
by a membership oracle.

In our case, given S ⊆ X, f(S) can be easily computed. So, we can assume that f is
given by a value oracle. Also, whether S ∈ I or not can be determined easily, and thus
M can be assumed to be given by a membership oracle. In our case, f is monotonically
non-decreasing, as adding more disks to a set of disks cannot decrease the quality gain of
any point in P . Next, we prove that f is also submodular.

▶ Lemma 13. f is submodular.

Proof. To prove that f is submodular, we show that for any A ⊆ B ⊆ X and disk(i, k) ∈ X\B,
f(A ∪ {disk(i, k)}) − f(A) ≥ f(B ∪ {disk(i, k)}) − f(B).
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Let Q ⊆ P be the subset of points that are in both disk(i, k) and {pj | pj ∈ disk(i′, l′) ∈ B}.
Also let R ⊆ P be the subset of points that are in disk(i, k), but not in {pj | pj ∈ disk(i′, l′) ∈
B}. Notably, {Q, R} is a partition of the points in disk(i, k). First, note that the quality gain
of a point in f(B ∪ {disk(i, k)}) (resp. f(A ∪ {disk(i, k)})) cannot be smaller than its quality
gain in f(B) (resp. f(A)). Moreover, the quality gain of a point pj can increase going from
f(B) to f(B ∪ {disk(i, k)}) only if it is in disk(i, k). We consider two disjoint cases: pj ∈ Q

and pj ∈ R.
First, suppose pj ∈ Q. If the quality gain of pj increases going from f(B) to f(B ∪

{disk(i, k)}), then it becomes exactly quality(k), which is larger than the quality-value of any
disk in B that contains pj . As A ⊆ B, the quality gain of pj also increases going from f(A) to
f(A ∪ {disk(i, k)}) and becomes quality(k). Moreover, the maximum quality-value of any disk
in A that contains pj is at most the maximum quality-value of any disk in B that contains
pj . Hence, the increase in the quality gain of pj going from f(A) to f(A ∪ {disk(i, k)}) is at
least that going from f(B) to f(B ∪ {disk(i, k)}).

Now, consider any pj ∈ R. The quality gain of pj in f(B) is 0, as pj is not in any of the
disks in B. As A ⊆ B, pj is also not in any of the disks in A and its quality gain in f(A) is
also 0. Moreover, the quality gain of pj in both f(A ∪ {disk(i, k)}) and f(B ∪ {disk(i, k)}) is
quality(k). Hence, the increase in the quality gain of pj going from f(A) to f(A ∪ {disk(i, k)})
is equal to that going from f(B) to f(B ∪ {disk(i, k)}).

Summing over all points pj ∈ P , we obtain that f(A ∪ {disk(i, k)}) − f(A) ≥ f(B ∪
{disk(i, k)}) − f(B). This completes the proof of the lemma. ◀

By the above lemma, Proposition 12, and Observation 11, we directly obtain the following
lemma.

▶ Lemma 14. There is a randomized algorithm that given an instance of DC-private-coverage
returns a feasible solution S of expected gain at least (1 − 1/e)·OPT, where OPT is the
optimal gain of the corresponding DC instance.

3.2 Step 2: Covering all points
Henceforth, we denote by Ŝ the set of disks computed by Step 1, that is, the algorithm
of Lemma 14. For each 1 ≤ i ≤ m, let k(i) be the index of the disk in Ŝ chosen for ai.
The disks in Ŝ cover all the private points. The expected value of the gain f(Ŝ) is at least
(1 − 1/e)·OPT.

In Step 2, we apply Extraction Theorem to additionally cover the non-private points.
The application is similar to the 2-radii case. Let S = {disk(i, t) | 1 ≤ i ≤ m}. We assign
each point pj that is covered by Ŝ to a disk in S as follows: Suppose that disk(i, k(i)) ∈ Ŝ is
the highest quality disk in Ŝ that covers pj (we break ties arbitrarily). We assign pj to the
corresponding largest disk disk(i, t) centered at access point ai.

For disk(i, t) ∈ S, we define its weight w(i) to be the product of the number of points
assigned to disk(i, t) and quality(k(i)). The following observation is straightforward.

▶ Observation 15. W (S) = f(Ŝ).

We apply our Extraction Theorem 19 on the set of disks S, the set of non-private points in
P , and the weight function w(.). The Extraction Theorem returns a subset S ′ ⊂ S such that
(a) S ′ covers the non-private points in P , and (b) W (S ′) ≤ (3/4) · W (S). By Observation 15,
we have the following observation.

▶ Observation 16. W (S \ S ′) ≥ W (S)/4 ≥ f(Ŝ)/4.
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We construct a solution to DC as follows. For each ai ∈ A, if disk(i, t) is in S ′, we set
ri = ρt, that is, we pick disk(i, t) among the disks centered at access point ai. Otherwise,
we set ri = k(i), that is, we pick disk(i, k(i)) among the disks centered at ai. Extraction
Theorem guarantees that the set S ′ covers the set of non-private points, as by definition
each such point is contained in at least two disks of S. Our solution to DC also covers these
points, as it contains S ′. All private points are also covered by our solution, as we pick a
disk(i, k) for each ai ∈ A such that k ∈ allowed(i).

We can lower bound the gain of our solution by considering the contribution of the set

D = {disk(i, k(i)) | disk(i, t) ∈ S \ S ′}.

The gain of our solution is at least

f(D) ≥ W (S \ S ′) ≥ f(Ŝ)/4.

Here, the first inequality follows from the way we define weights, and the second from
Observation 16 . Thus, the expected gain of our solution is at least

f(Ŝ)/4 ≥ (1 − 1/e) · OPT/4 ≥ OPT/6.328.

Hence, we obtain the desired theorem.

▶ Theorem 17. There is a polynomial-time, randomized algorithm giving a 6.328-
approximation (in expectation) to the DC problem.

▶ Remark 18. One might note that our algorithm works for a much more general model
where the radii of the disks at any pair of access points are not-necessarily the same as in
DC. In that case, Step 1 works unchangeably. In Step 2, the largest disks for which we apply
Extraction Theorem, can now have arbitrary radii. But, then we can use the more general
Theorem 23.

4 Proof of Extraction Theorems

In this section, we first prove the Extraction Theorem for unit disks. We subsequently
establish the Extraction Theorem for disks of arbitrary radii.

4.1 The Extraction Theorem for Weighted Unit-Disks
▶ Theorem 19. Let T be a set of n points in the plane, and let D = {D1, D2, . . . , Dm}
be a set of m weighted unit-disks (i.e., disks of radius one) in the plane. For each i with
1 ≤ i ≤ m, let wi ∈ R+ denote the weight of the disk Di, and let W =

∑m
i=1 wi denote the

total weight of all disks in D. Assume that each point of T is contained in at least two disks
of D. Then there exists a subset D′ of D such that
1. the disks in D′ cover all points of T and
2. the total weight of all disks in D′ is at most (3/4) · W .
Moreover, such a subset D′ can be computed in polynomial time.

We introduce the following notation:
For each i with 1 ≤ i ≤ m, we denote the center of the disk Di by ci.
Let C = {c1, c2, . . . , cm} be the set of all center points.
Let DT(C) be the Delaunay triangulation of the set C.
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▶ Lemma 20. Let V be a vertex cover of DT(C). Then the disks in D whose centers are in
V cover all points of T .

Proof. Let p be a point in T . By assumption, there are two distinct indices i and j, such
that p is in both the disks Di and Dj . Let D be the unit-disk centered at the point p. Then
both ci and cj are contained in D.

It is well-known that DT(C) contains a path Π from ci to cj that is completely inside D.
A proof can be found in [6].

Let ck be the second point on the path Π. Then (ci, ck) is an edge in DT(C) and both
ci and ck are contained in D. Thus, p is contained in both Di and Dk. Since V is a vertex
cover, at least one of ci and ck is in V. ◀

▶ Remark 21. We can choose ci to be the point in C that is closest to p. Since p is in at
least two disks of D, there is an index j with j ̸= i, such that p is in the disk Dj . Since
|pci| ≤ |pcj | ≤ 1, p is in the disk Di.

Proof of Theorem 19.
Since DT(C) is a planar graph, it is 4-colorable in polynomial time [36].
Let I be the set of vertices in DT(C) in the color class of largest weight. Observe that I
is an independent set in DT(C) and V = C \ I is a vertex cover of DT(C).
Consider the subset of all disks in D whose centers are in I. The total weight of all disks
in this subset is at least W/4.
Since V is a vertex cover of DT(C), it follows from Lemma 20 that the disks in

D′ = {Di | ci ∈ V}

cover all points of T .
The total weight of all disks in D′ is at most (3/4) · W .

As all the steps in our proof is constructive in polynomial time, the moreover part also
follows. ◀

▶ Remark 22. Theorem 19 also holds for axes-parallel unit-squares. To prove this, we use
the L∞-Delaunay triangulation of the centers of the squares.

4.2 The Extraction Theorem for Arbitrary Disks
In this section, we will prove the following result.

▶ Theorem 23. Let T = {t1, t2, . . . , tn} be a set of n points in the plane, and let D =
{D1, D2, . . . , Dm} be a set of m weighted disks in the plane. For each i with 1 ≤ i ≤ m, let
wi ∈ R+ denote the weight of the disk Di, and let W =

∑m
i=1 wi denote the total weight of

all disks in D. Assume that each point of T is contained in at least two disks of D. Then
there exists a subset D′ of D such that
1. the disks in D′ cover all points of T and
2. the total weight of all disks in D′ is at most (3/4) · W .
Moreover, such a subset D′ can be computed in polynomial time.

Consider the following transformation f which maps points in R2 to half-spaces in R3,
and maps disks in R2 to points in R3:

Any point t = (a, b) in R2 is mapped to the half-space f(t) in R3 defined by

2ax + 2by + z ≥ a2 + b2.
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Any disk D in R2 with center (c, d) and radius R is mapped to the point

f(D) =
(
c, d, R2 − c2 − d2)

in R3.

▶ Lemma 24. Let t be a point in R2 and let D be a disk in R2. Then t is contained in D if
and only if the point f(D) is contained in the half-space f(t).

Proof. Let t = (a, b) and let D have center (c, d) and radius R. The point t is in the disk D

if and only if

(a − c)2 + (b − d)2 ≤ R2. (1)

The point f(D) is contained in the half-space f(t) if and only if

2ac + 2bd +
(
R2 − c2 − d2)

≥ a2 + b2. (2)

It is obvious that (1) and (2) are equivalent. ◀

Consider the point set T = {t1, t2, . . . , tn} and the disk set D = {D1, D2, . . . , Dm} in
Theorem 23. We map each point ti to the half-space Hi = f(ti) and we map each disk Di

to the point pi = f(Di). We give each point pi the weight wi, i.e., the same weight as the
corresponding disk Di. Let H = {H1, H2, . . . , Hn} and P = {p1, p2, . . . , pm}.

Recall that each point of T is contained in at least two disks of D. Lemma 24 implies
that each half-space in H contains at least two points of P. Since each half-space in H is
unbounded in the positive z-direction, we have

n⋃
i=1

Hi ̸= R3.

Therefore, Theorem 23 will follow from the following theorem.

▶ Theorem 25. Let H = {H1, H2, . . . , Hn} be a set of n half-spaces in R3, and let P =
{p1, p2, . . . , pm} be a set of m weighted points in R3. For each i with 1 ≤ i ≤ m, let wi ∈ R+

denote the weight of the point pi, and let W =
∑m

i=1 wi denote the total weight of all points
in P. Assume that each half-space in H contains at least two points of P and

n⋃
i=1

Hi ̸= R3.

Then there exists a subset P ′ of P such that
1. every half-space in H contains at least one point of P ′ and
2. the total weight of all points in P ′ is at most (3/4) · W .
Moreover, such a subset P ′ can be computed in polynomial time.

4.3 Proof of Theorem 25
For proving Theorem 25, we take inspiration from analyses of local search algorithms
[34, 33, 12, 3, 9]. In particular, to analyze such a local search algorithm, one needs to
show the existence of a bipartite support graph whose vertices are the objects from a local
search solution and an optimal solution, and the graph has a small-sized vertex separator.
Mustafa and Ray [34] gave such a planar bi-partite graph construction for the problem of
hitting halfplanes in R3 by points. Our construction of the planar graph is inspired by their
construction. However, we will present a more detailed proof.
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▶ Lemma 26. Assume we can define a planar graph G with vertex set P such that each
half-space in H contains at least two points of P such that there is an edge in G between
their corresponding vertices. Then the claim in Theorem 25 holds.

Proof. Since G is a planar graph, it is 4-colorable. Let I be the set of vertices in G in the
color class of largest weight. Observe that I is an independent set in G and P ′ = P \ I is a
vertex cover of G. Also, since the total weight of all points in I is at least W/4, the total
weight of all points in P ′ is at most (3/4) · W .

Let Hi be a half-space in H. By assumption, Hi contains an edge, say pjpk, of the graph
G. Since P ′ is a vertex cover of G, at least one of pj and pk is in P ′. ◀

▶ Remark 27. A graph as in Lemma 26 is known as a planar support for the half-spaces in
H. See Raman and Ray [35]. Indeed, one approach to prove our extraction theorem is to
use their planar support theorem for non-piercing regions, instead of the planar support for
half-spaces that we pursue here.

It remains to define the planar graph G that satisfies the property in Lemma 26. Let
CH(P) denote the convex hull of the point set P. Suppose each point of P that is a vertex
of CH(P) is colored red, whereas each other point of P is colored blue. The graph G contains
the skeleton of CH(P). Note that this is a planar graph on the red points of P. Below, we
will show how to add edges from each blue point to some red points, such that the resulting
graph is still planar.

Since, by assumption,
⋃n

i=1 Hi ≠ R3, we can choose a point o in R3 that is not in any
half-space of H. For each blue point b in P , consider the ray with direction

−→
ob that emanates

from b. Let π(b) be the point on this ray that is on the boundary of CH(P).
For each face ∆ = (r1, r2, r3) of CH(P), we do the following. Let

Q = {b ∈ P : b is a blue point and π(b) ∈ ∆}.

Assume that Q ≠ ∅. We will add edges to G between the points in Q and the corners of ∆
such that the following two properties hold:
P.1: At most one point in Q has edges to all three corners of ∆.
P.2: Each other point of Q has edges to exactly two corners of ∆.

▶ Lemma 28. Assume that properties P.1 and P.2 hold for each face ∆ of CH(P). Then the
graph G is planar.

Proof. As mentioned above, the graph G contains the skeleton of CH(P), which is planar.
Consider a face ∆ and the corresponding subset Q of blue points in P . Each point b in Q is
embedded as a point b′ in the face ∆, as indicated in Figure 2. Each edge br in G between a
point b in Q and a point r in {r1, r2, r3} is drawn as the line segment b′r in ∆. In this way,
we obtain a crossing-free embedding of G on the surface of CH(P). ◀

Consider again the face ∆ = (r1, r2, r3) of CH(P) and the corresponding subset Q of
blue points in P. To establish properties P.1 and P.2, we categorize each point of Q in the
following way.

A point b in Q is called bad, if for every corner c of ∆, there exists a half-space H in R3,
such that

H ∩ (Q ∪ {r1, r2, r3, o}) = {b, c}.

Note that H is not necessarily a half-space in H.
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r1

r2

r3

b′

Figure 2 The blue points in the set Q are embedded in the face ∆ = (r1, r2, r3). The blue point
b′ is the embedding of the blue point b in Q that satisfies property P.1. Each other blue point is the
embedding of a blue point in Q that satisfies property P.2.

A point b in Q is called good, if there exists a corner c of ∆, such that for every half-space
H in R3,

H ∩ (Q ∪ {r1, r2, r3, o}) ̸= {b, c}.

For each point b in Q, we add the following edges to the graph G.

If b is a bad point, then we add edges between b and all three corners of ∆.
Assume that b is a good point. Let c be a corner of ∆ in the definition of b being good.
Then we add edges between b and the other two corners of ∆.

The following lemma states that there cannot be more than one bad point in Q. This
will imply that properties P.1 and P.2 are satisfied. The proof of this lemma will be given in
Section 4.4.

▶ Lemma 29. For any face ∆ of CH(P), the set Q contains at most one bad point.

We have defined the planar graph G with vertex set P. It remains to prove that this
graph satisfies the property in Lemma 26.

Let Hi be an arbitrary half-space in H. We will show that Hi contains at least one edge
of the graph G.

Recall that, by assumption, Hi contains at least two points of P. Thus, Hi contains at
least one vertex of CH(P). First assume that Hi contains at least two vertices of CH(P).
Then Hi contains at least one edge of CH(P), which is an edge in G.

From now on, we assume that Hi contains exactly one vertex, say r, of CH(P). Thus,
Hi contains at least one blue point of P, i.e., a point in the interior of CH(P). Let H be a
translate of Hi such that (i) r is the only red point in H and (ii) H contains exactly one
blue point, say b.

Recall that the point o is not in Hi and, therefore, not in H. Let ∆ be the face that
contains the point π(b). Then r is a corner of ∆.

If b is a bad point, then, by construction, br is an edge in G. This edge is in H and, thus,
in Hi.

Now assume that b is a good point. Let r1, r2, and r3 be the three corners of ∆. We
already saw that r ∈ {r1, r2, r3}. Recall that

Q = {b ∈ P : b is a blue point and π(b) ∈ ∆}.

The point b is in this set Q. For the translated half-space H of Hi introduced above, we have

H ∩ (Q ∪ {r1, r2, r3, o}) = {b, r}.
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Thus, the corner c in the definition of b being good is not equal to r. By construction, br is
an edge in G. This edge is in H and, thus, in Hi.

This concludes the proof that the planar graph G satisfies the property in Lemma 26. As
a result, we have proved Theorem 25. As the construction of G can be done in polynomial
time, the moreover part also follows.

4.4 Proof of Lemma 29
Proof (Lemma 29). Consider a face ∆ = (r1, r2, r3) of CH(P) and the corresponding subset

Q = {b ∈ P : b is a blue point and π(b) ∈ ∆}

of blue points in P. We will show that Q contains at most one bad point. The proof is
by contradiction. Thus, we assume that Q contains two bad points, say b1 and b2. Let
F = {b1, b2, r1, r2, r3}. We distinguish two cases.

Case 1. The point set F is in convex position.
By Radon’s Theorem (see, e.g., Matoušek [32, Section 1.3]), F can be partitioned into

two subsets F1 and F2, such that CH(F1) ∩ CH(F2) ̸= ∅. We may assume without loss of
generality that |F1| < |F2|.

Since F is in convex position, and b1 and b2 are on the same side of the plane through
r1, r2, and r3, each of the following three cases implies that CH(F1) ∩ CH(F2) = ∅: (i)
|F1| = 1 and |F2| = 4, (ii) F1 = {b1, b2} and F2 = {r1, r2, r3}, (iii) F1 contains two elements
of {r1, r2, r3}, say r1 and r2, and F2 = {b1, b2, r3}.

Thus, we may assume without loss of generality that F1 = {b1, r1} and F2 = {b2, r2, r3}.
Since b1 is a bad point, by taking the corner c = r1, there exists a half-space H in R3, such
that

H ∩ (Q ∪ {r1, r2, r3, o}) = {b1, r1}.

The bounding plane of H separates the points b1 and r1 from the points b2, r2, and r3.
Therefore, CH(F1) ∩ CH(F2) = ∅, which is a contradiction.

Case 2. The point set F is not in convex position.
Since b1 and b2 are on the same side of the plane through r1, r2, and r3, we may assume

without loss of generality that

b1 ∈ CH(o, r1, r2, r3)

and

b2 ∈ CH(b1, r1, r2, r3);

see the left part of Figure 3.
Consider the ray with direction

−→
ob1 that emanates from o. Let p be the first point on this

ray that is on the boundary of CH(b2, r1, r2, r3). Note that p is contained in one of the three
triangles (b2, r1, r2), (b2, r1, r3), and (b2, r2, r3). We may assume without loss of generality
that p is in (b2, r1, r2); see the left part of Figure 3.

Since b1 is on the line segment op, we have

b1 ∈ CH(o, b2, r1, r2);
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Figure 3 Illustrating Case 2 in the proof of Lemma 29.

see the right part of Figure 3. It follows that every half-space in R3 that contains b1 also
contains at least one of the points o, b2, r1, and r2.

Since b1 is a bad point, by taking the corner c = r3, there exists a half-space H in R3,
such that

H ∩ (Q ∪ {r1, r2, r3, o}) = {b1, r3}.

This is a contradiction, because H contain at least one of the points o, b2, r1, and r2. ◀

5 Extraction Theorem for Objects with Linear Union Complexity

In this section, we prove the following theorem.

▶ Theorem 30. Let T be a set of n points, and let D = {D1, D2, . . . , Dm} be a set of m

weighted regions such that any subset D1 ⊆ D of regions has O(|D1|) union complexity. For
each i with 1 ≤ i ≤ m, let wi ∈ R+ denote the weight of the region Di, and let W =

∑m
i=1 wi

denote the total weight of all regions in D. Assume that each point of T is contained in at
least two regions of D. Then there exists a subset D′ of D such that
1. the regions in D′ cover all points of T and
2. the total weight of all regions in D′ is (1 − Ω(1)) · W .
Moreover, a subset D′ of D can be computed in polynomial time that satisfies Property 1,
and the expected total weight of all regions in D′ is (1 − Ω(1)) · W .

We prove this theorem using a result due to Ene et al. [21]. In this process, we establish
a connection between their work and Extraction Theorem for geometric regions. Ene et al.
studied the following packing problem.

▶ Problem 31 (PackRegions). Given a set R of regions and a set P of points such that each
region r has a weight w(r) and each point p has a capacity #(p), find a maximum weight
subset X ⊆ R of the regions such that, for each point p, the number of regions in X that
contain p is at most its capacity #(p).

Considering this problem they design LP rounding based approximation algorithms for
a wide range of regions. In particular, they obtain O(1)-approximations for regions having
linear union complexity. We will make use of this result to prove the Extraction Theorem for
regions having linear union complexity, albeit with a constant larger than 4.
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To prove Theorem 30, first we construct an instance I of the PackRegions problem. The
set of regions R := D and the set of points P := T . The weight of each region r ∈ R is wi

where r = Di ∈ D. For each point p, its capacity #(p) is set to be the number of regions it
is contained in minus 1. Then we have the following observation.

▶ Observation 32. Consider the instance I and suppose X ⊆ R be such that, for each point
p ∈ P , the number of regions in X that contain p is at most its capacity #(p). Then R \ X

covers the points of P .

Proof. The observation precisely follows from the way we set the capacity for each point. In
particular, for each point p, there is at least one region not in X that contains p. Hence, the
complement set of regions R \ X covers p. ◀

In the following, we show a polynomial-time construction of a set X as in the above
observation that has an expected total weight of Ω(W ). This will complete the proof of
Theorem 30 by setting D′ = R \ X. In the rest of this section, we describe this construction.

The O(1)-approximation result in [21] is based on the following natural LP relaxation for
PackRegions.

maximize
∑
r∈R

w(r) · xr (PackRegions-LP)

subject to
∑
p∈r

xr ≤ #(p) ∀p ∈ P,

0 ≤ xr ≤ 1 ∀r ∈ R.

The following result is due to Ene et al. [21].

▶ Proposition 33. Let R be a set of regions having linear union complexity. Then there is a
polynomial-time randomized scheme that rounds any optimal solution to PackRegions-LP
having value opt to an integral solution with expected value Ω(opt).

To obtain the desired subset X ⊆ R, we first show that the value of any optimal fractional
solution to PackRegions-LP for our instance I is at least W/2. Then by Proposition 33 it
follows that there is a subset X ⊆ R as in Observation 32 whose total weight is Ω(W ). By
the same proposition, a subset X ⊆ R as in Observation 32 can be computed in polynomial
time whose expected value is Ω(W ). Hence, the moreover part of Theorem 30 also follows.

▶ Lemma 34. The value of any optimal fractional solution to PackRegions-LP for the
instance I is at least W/2.

Proof. To prove the lemma, we show the existence of a fractional solution having value
exactly W/2. In fact, we construct such a solution in the following simple way. Set the
value of each xr to 1/2. The value of this solution is W/2. To prove that it is a feasible
solution, let us consider any point p. Let Rp be the set of regions that contain p. Note that
#(p) = |Rp| − 1. Now,∑

p∈r

xr = |Rp|/2 ≤ |Rp| − 1 = #(p).

The above inequality follows, as the size of Rp is at least 2. This completes the proof of the
lemma. ◀
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6 Conclusions

In this work, we designed polynomial-time constant-approximations for two important
geometric covering problems, namely DC-2 and DC. In the process of designing our algorithms,
we proved a fundamental theorem called Extraction Theorem. Such a theorem helps us
obtain O(1)-approximations for several natural geometric covering problems involving fairly
general regions. Many questions have been left open by our work. In the following, we list
some of those.

A natural question is to find out whether DC-2 admits a PTAS. If we have t arbitrary
radii as in DC, does the problem become APX-hard?

We also proved an Extraction theorem for more general geometric objects, albeit with a
large constant. Proving an Extraction theorem for general objects with a reasonably better
constant remains an interesting open question.

Lastly, our Extraction theorems lead to a max-gain version of geometric covering and
directly yield an O(1)-approximation for this version with a wide range of objects. The
extraction theorems have other implications for the approximability of max-gain geometric
covering, which we explain using the example of disks in the plane. Given a set D of disks
along with a weight function w : D → R+ and a set T of n points in the plane, the goal
in max-gain covering is to find a subset D′ ⊆ D, such that D′ covers T and the sum of the
weights of the disks in D \ D′ is maximized. The dual problem of minimum weight disk cover
seeks to minimize the sum of the weights of the disks in D′. Let us say that a disk Di is
necessary if there is some point p ∈ T such that Di is the only disk in D that covers p. Any
cover of T must include all the necessary disks. Therefore, we remove the necessary disks and
all points covered by them to obtain a reduced instance (D′, T ′). In this reduced instance,
every point in T ′ is covered by at least two disks in D′. Thus, our extraction theorems tell
us that there is a cover for the reduced instance such that the total weight of the disks not
in the cover is at least W (D′)/4.

While this gives a 4-approximation for the max-gain problem, it also follows that to
obtain a (1 + ϵ) approximation it suffices to have an approximation algorithm for the
reduced problem with additive error ϵ · W (D′). For the case of unit disks, such an additive
approximation readily follows because the dual problem of minimum weight disk cover has a
PTAS [30]. For arbitrary disks also, such an additive approximation seems within reach using
known techniques. It would therefore be interesting to investigate the approximability of the
max-gain covering problem for other families of objects, beyond disks and pseudo-disks.

References

1 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight independ-
ent set of rectangles. In FOCS, pages 400–409, 2013. doi:10.1109/FOCS.2013.50.

2 Christoph Ambühl, Thomas Erlebach, Matúš Mihalák, and Marc Nunkesser. Constant-factor
approximation for minimum-weight (connected) dominating sets in unit disk graphs. In
Approximation, randomization, and combinatorial optimization. Algorithms and techniques,
pages 3–14. Springer, 2006.

3 Rom Aschner, Matthew J Katz, Gila Morgenstern, and Yelena Yuditsky. Approximation
schemes for covering and packing. In International Workshop on Algorithms and Computation,
pages 89–100. Springer, 2013.

4 Cristina Bazgan, Jérôme Monnot, Vangelis Th Paschos, and Fabrice Serrière. On the differential
approximation of min set cover. Theoretical Computer Science, 332(1-3):497–513, 2005.

5 Dhrubajyoti Bhaumick and Sasthi C. Ghosh. Efficient multicast association to improve the
throughput in IEEE 802.11 WLAN. Mobile Networks and Applications, 21:436–452, 2016.

https://doi.org/10.1109/FOCS.2013.50


S. Bandyapadhyay, A. Maheshwari, S. Roy, M. Smid, and K. Varadarajan 7:19

6 Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better. Computational
Geometry: Theory and Applications, 89, 2020.

7 Lorna Booth, Jehoshua Bruck, Massimo Franceschetti, and Ronald Meester. Covering al-
gorithms, continuum percolation and the geometry of wireless networks. The Annals of Applied
Probability, 13(2):722–741, 2003.

8 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

9 Norbert Bus, Shashwat Garg, Nabil Mustafa, and Saurabh Ray. Improved local search for
geometric hitting set. In Proc. of the 32st International Symposium on Theoretical Aspects of
Computer Science (STACS), 2015.

10 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

11 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capa-
citated, priority, and geometric set cover via improved quasi-uniform sampling. In Yuval
Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1576–1585. SIAM, 2012.

12 Timothy M Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

13 Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoerhase. Approximation
schemes for geometric coverage problems. In 26th Annual European Symposium on Algorithms
(ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14 Howie Choset. Coverage for robotics–a survey of recent results. Annals of mathematics and
artificial intelligence, 31:113–126, 2001.

15 Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

16 Decheng Dai and Changyuan Yu. A 5 + ε-approximation algorithm for minimum weighted
dominating set in unit disk graph. Theoretical Computer Science, 410(8-10):756–765, 2009.

17 Marc Demange, Pascal Grisoni, and Vangelis Th Paschos. Differential approximation algorithms
for some combinatorial optimization problems. Theoretical Computer Science, 209(1-2):107–122,
1998.

18 Ling Ding, Weili Wu, James Willson, Lidong Wu, Zaixin Lu, and Wonjun Lee. Constant-
approximation for target coverage problem in wireless sensor networks. In 2012 Proceedings
IEEE INFOCOM, pages 1584–1592. IEEE, 2012.

19 Ding-Zhu Du and Peng-Jun Wan. Connected dominating set: theory and applications, volume 77.
Springer Science & Business Media, 2012.

20 Alon Efrat, Frank Hoffman, Klaus Kriegel, Christof Schultz, and Carola Wenk. Geometric
algorithms for the analysis of 2d-electrophoresis gels. In Proceedings of the fifth annual
international conference on Computational biology, pages 114–123, 2001.

21 Alina Ene, Sariel Har-Peled, and Benjamin Raichel. Geometric packing under nonuniform
constraints. SIAM Journal on Computing, 46(6):1745–1784, 2017.

22 Thomas Erlebach and Erik Jan van Leeuwen. PTAS for weighted set cover on unit squares. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 166–177. Springer, 2010.

23 Thomas Erlebach and Matúš Mihalák. A (4+ ε)-approximation for the minimum-weight
dominating set problem in unit disk graphs. In International Workshop on Approximation
and Online Algorithms, pages 135–146. Springer, 2009.

24 Guy Even, Dror Rawitz, and Shimon Moni Shahar. Hitting sets when the vc-dimension is
small. Information Processing Letters, 95(2):358–362, 2005.

25 Pooyan Fazli, Alireza Davoodi, and Alan K Mackworth. Multi-robot repeated area coverage.
Autonomous robots, 34:251–276, 2013.

ITCS 2024



7:20 Geometric Covering via Extraction Theorem

26 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

27 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

28 Michael Jeffrey Daniel Hoefer. Automated design for manufacturing and supply chain using
geometric data mining and machine learning. PhD thesis, Iowa State University, 2017.

29 Yaochun Huang, Xiaofeng Gao, Zhao Zhang, and Weili Wu. A better constant-factor approxim-
ation for weighted dominating set in unit disk graph. Journal of Combinatorial Optimization,
18(2):179–194, 2009.

30 Jian Li and Yifei Jin. A PTAS for the weighted unit disk cover problem. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP, volume 9134 of
Lecture Notes in Computer Science, pages 898–909. Springer, 2015.

31 Anil Maheshwari, Saeed Mehrabi, Sasanka Roy, and Michiel Smid. Covering points with
concentric objects. In Proceedings of the 32nd Canadian Conference on Computational
Geometry, pages 436–452, 2016.

32 J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, 2002.
33 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation

scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,
44(6):1650–1669, 2015.

34 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

35 Rajiv Raman and Saurabh Ray. Constructing planar support for non-piercing regions. Discrete
& Computational Geometry, 64:1098–1122, 2020.

36 Neil Robertson, Daniel P Sanders, Paul Seymour, and Robin Thomas. Efficiently four-coloring
planar graphs. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 571–575, 1996.

37 Aniket Basu Roy, Sathish Govindarajan, Rajiv Raman, and Saurabh Ray. Packing and
covering with non-piercing regions. Discret. Comput. Geom., 60(2):471–492, 2018.

38 Anju Sangwan and Rishi Pal Singh. Survey on coverage problems in wireless sensor networks.
Wireless Personal Communications, 80:1475–1500, 2015.

39 Jonas Svennebring and Sven Koenig. Building terrain-covering ant robots: A feasibility study.
Autonomous Robots, 16(3):313–332, 2004.

40 Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In STOC,
pages 641–648, 2010.

41 Feng Zou, Yuexuan Wang, Xiao-Hua Xu, Xianyue Li, Hongwei Du, Pengjun Wan, and Weili
Wu. New approximations for minimum-weighted dominating sets and minimum-weighted
connected dominating sets on unit disk graphs. Theoretical computer science, 412(3):198–208,
2011.


	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 A 4-approximation for DC-2
	2.1 Solving DC-2 using Extraction Theorem

	3 A 6.328-approximation for DC
	3.1 Step 1: Maximizing Gain while Covering Private Points
	3.2 Step 2: Covering all points

	4 Proof of Extraction Theorems
	4.1 The Extraction Theorem for Weighted Unit-Disks
	4.2 The Extraction Theorem for Arbitrary Disks
	4.3 Proof of Theorem 25
	4.4 Proof of Lemma 29

	5 Extraction Theorem for Objects with Linear Union Complexity
	6 Conclusions

