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Abstract
We consider the question of approximating Max 2-CSP where each variable appears in at most d

constraints (but with possibly arbitrarily large alphabet). There is a simple ( d+1
2 )-approximation

algorithm for the problem. We prove the following results for any sufficiently large d:
Assuming the Unique Games Conjecture (UGC), it is NP-hard (under randomized reduction) to
approximate this problem to within a factor of

(
d
2 − o(d)

)
.

It is NP-hard (under randomized reduction) to approximate the problem to within a factor of(
d
3 − o(d)

)
.

Thanks to a known connection [15], we establish the following hardness results for approximating
Maximum Independent Set on k-claw-free graphs:

Assuming the Unique Games Conjecture (UGC), it is NP-hard (under randomized reduction) to
approximate this problem to within a factor of

(
k
4 − o(k)

)
.

It is NP-hard (under randomized reduction) to approximate the problem to within a factor of(
k

3+2
√

2 − o(k)
)

≥
(

k
5.829 − o(k)

)
.

In comparison, known approximation algorithms achieve
(

k
2 − o(k)

)
-approximation in polynomial

time [32, 37] and ( k
3 + o(k))-approximation in quasi-polynomial time [11].
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1 Introduction

An instance of Max 2-CSP consists of variables–each of which can take a value of an
alphabet–together with constraints, each involving a pair of variables. The goal is to find an
assignment to the variables that satisfies as many constraints as possible. The Max 2-CSP
problem is a cornerstone of the field of hardness of approximation as it1 is often used as a
starting point in hardness of approximation reductions. When the constraints are restricted
to certain predicates–such as 3SAT or Max-Cut, tight hardness of approximation results
are known through a series of influential work (e.g. [22, 25]). In fact, it is known that a

1 Or more precisely, its special case known as Label Cover or Projection Games
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certain semi-definite program relaxation provides essentially the best approximation ratio
achievable in polynomial time [34]. Meanwhile, besides the predicate, there are also other
parameters that can affect the approximation ratio. One of which is the (maximum) degree
of the instance d, defined as the maximum number of constraints that a variable appears in.
A number of previous studies have investigated how the degree affects the approximation
ratio (e.g. [21, 38, 27, 3]), partly because, as we will see in more detail below, it affects the
(in)approximation ratio of subsequent problems in hardness reductions. In this work, we
focus on determining the approximation ratio in terms of this parameter d alone (regardless
of the predicate or other parameters) and ask:

What is the best possible approximation ratio for Max 2-CSP in terms of d?

Regarding this question, there is a simple (d+1
2 )-approximation algorithm for the problem

(see Appendix B). On the hardness front, Laekhanukit [27] proved NP-hardness (under
randomized reduction) with a factor of Ω(d/ log d) for any sufficiently large d. Furthermore,
under a less standard “Strongish Planted Clique Hypothesis”2, a hardness of a factor Ω(d) is
known but without any explicit constant in the inapproximability factor3 [30].

Maximum Independent Set on k-Claw-Free Graphs

While the Maximum Independent Set problem is well known to be NP-hard to approximate
to within a factor of n1−ϵ where n is the number of vertices [20, 39], there are multiple
classes of graphs for which this can be significantly improved upon. One such class is that of
k-claw-free graphs. Recall that a k-claw (i.e. K1,k) is the star graph with a center vertex
connecting to k other vertices (where there are no edges between these k vertices). A graph
is k-claw-free if it does not contain a k-claw as an induced subgraph. The classic local search
algorithm of Berman [4] achieves (k2 + ϵ)-approximation in polynomial time for any constant
ϵ > 0. Recently, this has been improved by [32, 37] to achieve a slightly-better-than-(k/2)
approximation ratio; in particular, [37] achieves approximation ratio of (k2 − 1

3 + o(1)) where
o(1) is a term that converges to 0 as k → ∞. Meanwhile, in quasi-polynomial (i.e. nO(logn))
time, this ratio can be improved4 to

(
k
3 + ϵ

)
for any constant ϵ > 0 [11]. These algorithms are

based on local search approaches. Meanwhile, several works have also investigated the power
of LP/SDP relaxations of the problem: Chudnovsky and Seymour [8] showed that a standard
SDP relaxation yields 2-approximation when k = 3, but a recent work by Chalermsook et
al. [6] shows large integrality gaps for k > 3.

On the hardness of approximation front, Hazan et al. [23] proved that the problem is NP-
hard to approximate to within Ω(k/ log k) factor. In a recent work, Dvorak et al. [15] observed
that the classic FGLSS reduction [16] provides an approximation-preserving reduction from
Max 2-CSP with maximum degree d to maximum independent set in 2d-claw-free graphs.
This reduction, together with the aforementioned hardness from [27], gives an alternative
NP-hardness proof with a similar inapproximability factor. Meanwhile, plugging this to the

2 The Strongish Planted Clique Hypothesis states that no no(log n)-time algorithm can distinguish between
a G(n, 1/2) random graph and one in which a clique of size nc is planted for some absolute constant
c > 0.

3 In fact, this hardness only states that, for each c1 > 0, there exists c2 > 0 such that no O(nc1 )-time
algorithm achieves c2d-approximation ratio. In other words, it does not rule out e.g. nO(log∗ n) time
algorithm from achieving o(d)-approximation ratio.

4 We only discuss the unweighted case in our paper as our hardness results apply to this case; for the
weight case, it is not known how to achieve

(
k
3 + o(k)

)
-approximation in quasi-polynomial time. Please

refer to [33] for the best approximation algorithms known for the weighted case.
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other aforesaid result of [30] implies that no polynomial-time algorithm can achieves o(k)
approximation ratio (albeit without an explicit constant again) under the Strongish Planted
Clique Hypothesis. [15] also consider parameterization based on the independent set size and
prove several hardness results in that setting; we defer the discussion on this to Appendix C.

1.1 Our Results
Bounded-Degree Max 2-CSP

Our main contribution is a nearly tight hardness of approximation result for Max 2-CSP in
terms of d assuming the Unique Games Conjecture (UGC) [24]:

▶ Theorem 1. Assuming the UGC, for any ϵ ∈ (0, 1/2), there exists d0 ∈ N such that the
following holds for every positive integer d ≥ d0: Unless NP = BPP, there is no polynomial-
time d(1/2 − ϵ)-approximation algorithm for d-bounded-degree Max 2-CSP.

As stated earlier, there is a simple (d+1
2 )-approximation algorithm and thus our result is

within a factor of 1 + o(1) of this upper bound (as d → ∞). To the best of our knowledge,
this is also the first Ω(d) hardness of approximation result with an explicit constant for the
problem (under any assumption). For NP-hardness, we prove a slightly weaker result where
the factor is instead ≈ d/3:

▶ Theorem 2. For any ϵ ∈ (0, 1/3), there exists d0 ∈ N such that the following holds for
every positive integer d ≥ d0: Unless NP = BPP, there is no polynomial-time d(1/3 − ϵ)-
approximation algorithm for d-bounded-degree Max 2-CSP.

Independent Set in Claw-Free Graphs

Leveraging the connection between bounded-degree Max 2-CSP and Maximum Independent
Set in claw-free graphs [15] discussed above, we arrive at a ≈ k/4 hardness for the latter,
assuming the Unique Games Conjecture.

▶ Theorem 3. Assuming the UGC, for any ϵ ∈ (0, 1/4), there exists k0 ∈ N such that the
following holds for every positive integer k ≥ k0: Unless NP = BPP, there is no polynomial-
time k(1/4− ϵ)-approximation algorithm for Maximum Independent Set on k-claw-free graphs.

Again, this is the first Ω(k) hardness for the problem with an explicit constant. Fur-
thermore, this is within a factor of 2 (as k → ∞) of the aforementioned polynomial-time
approximation algorithms [32, 37] and within a factor of 4/3 + o(1) of the quasi-polynomial
time approximation algorithm [11].

For NP-hardness result, we get a slightly weaker factor that is ≈ k/5.829 instead:

▶ Theorem 4. For any ϵ ∈
(

0, 1
3+2

√
2

)
, there exists k0 ∈ N such that the following holds for

every positive integer k ≥ k0: Unless NP = BPP, there is no polynomial-time k
(

1
3+2

√
2 − ϵ

)
-

approximation algorithm for Maximum Independent Set on k-claw-free graphs.

1.2 Technical Overview
We now briefly (and informally) discuss our techniques. Perhaps surprisingly, we use the
same strategy as in previous work: sparsify a dense(er) 2-CSP instance by randomly sampling
its constraints. This strategy–originated in [38]–has been used in many subsequent papers

ITCS 2024
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on the topic (e.g. [18, 27, 12, 28]). As we will elaborate more below, the main “twist” in our
work is that, instead of starting with Max 2-CSP hardness with a gap roughly similar to the
desired gap after sampling, we start with Max 2-CSP hardness with a much larger gap.

To discuss this in more detail, let us first recall the standard subsampling procedure. We
start with a 2-CSP instance Π and produces Π′ as follows: (i) keep each edge in Π with
probability p and (ii) remove edges until the every vertex has degree at most d. For simplicity
of presentation, let us assume that the constraint graph in Π is d̃-regular. In this case, we
can let p = d/d̃. The completeness of the reduction is obvious: if Π is fully satisfiable5, then
Π′ is also fully satisfiable.

The main challenge is in analyzing the soundness. Again, suppose for simplicity that we
did not have to apply step (ii). Suppose that any assignment satisfies less than γ fraction of
constraints in Π. What can we say about Π′?

A standard soundness argument here is to use a concentration bound to show that, for
some γ′ > γ and any fixed assignment ψ, the probability that ψ satisfies more than γ′

fraction of constraints in Π′ is at most q. Then, using a union bound over all assignments,
one arrive at a conclusion that no assignment satisfies more than γ′ fraction of constraints
in Π′. This gives a gap of γ′. Recall that we want γ′ = Ω(1)/d. Note also that there are
Rn assignments, where R denote the alphabet size and n denote the number of variables.
Therefore, we need q ≪ R−n for this argument to work. Meanwhile, when γ = (γ′)ω(1) the
multiplicative Chernoff bound gives

q ≤ O

(
γ′

γ

)γ′dn/2
= (1/γ)−γ′dn/2·(1−o(1)).

Comparing this with the required q ≪ R−n, it suffices for us to take γ′ = 2
d ·log1/γ R·(1+o(1)).

Putting it differently, if we start with a hardness for Max 2-CSP with a gap of 1/γ = Rν ,
then we end up with a gap of d2 · ν · (1 − o(1)). Under the UGC, we show that such a hardness
can be proved for ν = 1 − o(1). (See Appendix A.) This immediately yields Theorem 1.

It is crucial to point out that we require γ ≪ γ′ as otherwise, if γ′ = Θ(γ), the bound
would only be exp (−Ω (γ′dn)) which would require us to take γ′ = Ω

(
logR
d

)
. This logR

factor is essentially what differentiates us from previous work on similar topics, such as [27].

Optimizing Parameters for NP-hardness

For NP-hardness, we start with the NP-hardness result of [7] where γ = R1/2−o(1) or
ν = 1/2 − o(1). If we were to plug this into the above argument directly, we would get a
gap of only d

4 · (1 − o(1)). We are able to get a better gap of d
3 · (1 − o(1)) by observing

that the instance of [7] is bipartite and has RHS alphabet of size only
√
R. This allows

us to use a union bound on only R3n/4 assignments (instead of Rn), which improves the
inapproximability ratio as claimed.

Independent Set on k-Claw-Free Graphs

For UGC-hardness of of Maximum Independent Set on k-claw-free graphs, we can combine
the UGC-hardness for Max 2-CSP with bounded degree (Theorem 1) together with the
aforementioned connection from [15], which immediately yields Theorem 3. As for NP-
hardness, the same strategy only gives us k

6 · (1 − o(1)) inapproximability factor. To improve

5 Again, this is for simplicity; in the actual reduction, we only have almost satisfiability.
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this, we observe that the observation in [15] can be further refined when the graph is bipartite
and the maximum degree on each sides are different (Lemma 12). By balancing these degree
parameters (namely letting the LHS degree being ≈

√
2 times that of the RHS), we arrive at

the claimed k
3+2

√
2 · (1 − o(1)) hardness factor.

1.3 Other Related Work
Maximum Independent Set on k-claw-free graphs is closely related to many other important
problems in literature. For example, it contains Maximum Independent Set on bounded-
degree graphs (where the maximum degree is at most k) as a special case. It turns out that
the latter is easier: a Õ(k/ log2 k)-approximation algorithm [2] is known and this is essentially
tight [1]. Another closely related problem is the k-Set Packing problem, in which we are given
sets of size at most k and would like to pick as many disjoint sets as possible. It is simple to
see that the problem is equivalent to finding an independent set in the “conflict graph”–where
each set becomes a vertex and two vertices are linked if and only if the sets intersect–and that
this conflict graph is (k+1)-claw-free. Thus, all aforementioned approximation algorithms for
Maximum Independent Set on claw-free graphs immediately apply to k-Set Packing. However,
the latter can also be less challenging: the aforementioned quasi-polynomial time algorithm
of Cygan et al. [11] for the former can be sped up to run in polynomial time while acheiving
a similar approximation ratio [9, 36]. Meanwhile, the best known hardness of approximation
for the problem remains an NP-hardness with approximation factor Ω(k/ log k) due to Hazan
et al. [23].

2 Preliminaries

We use indep(G) to denote the size of the maximum independent set in the graph G.

2.1 Concentration Inequalities
We recall the standard multiplicative Chernoff bound:

▶ Theorem 5 (Multiplicative Chernoff Bound). Let X1, . . . , Xm be i.i.d. Bernoulli random
variable with mean at most µ, and let S = X1 + · · · +Xm. Then, for any θ > µm, we have

Pr [S > θ] < exp(θ − µm)
(µm
θ

)θ
For τ > 0 and x ∈ R, let clipτ (x) := min{x, τ}. We will need the following lemma for the

purpose of analyzing edge removal to bound the maximum degree of a random subgraph.

▶ Lemma 6. Let X1, . . . , Xm be i.i.d. Bernoulli random variable with mean at most µ, and
let S = X1 + · · · +Xm. Then, for any integer τ > µm, we have

E [S − clipτ (S)] ≤
(

µm

τ − µm

)2
.

Proof. For any i ∈ [m], we have Var[X1 + · · · +Xi−1] = Var[X1] + · · · Var[Xi−1] ≤ µ(i− 1).
We can rewrite the LHS as

E[S − clipτ (S)] = E

∑
i∈[m]

Xi · 1[X1 + · · ·Xi−1 ≥ τ ]



ITCS 2024
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=
∑
i∈[m]

E[Xi] · Pr[X1 + · · ·Xi−1 ≥ τ ]

≤
∑
i∈[m]

µ · µ(i− 1)
(τ − µ(i− 1))2

≤
(

µm

τ − µm

)2
,

where in the first inequality we use Chebyshev’s inequality. ◀

2.2 Constraint Satisfaction Problems
Formal definitions of a 2-CSP instance and its assignment are given below.

▶ Definition 7. A 2-CSP instance Π consists of:
Constraint graph G = (V,E).
Alphabet Σv for all v ∈ V .
For each e = (u, v) ∈ E, a constraint Re ⊆ Σu × Σv.

An assignment is a tuple (ψv)v∈V such that ψv ∈ Σv. Its value valΠ(ψ) is defined as
the fraction of edges e = (u, v) ∈ E such that (ψu, ψv) ∈ E; such an edge (or constraint) is
said to be satisfied. The value of the instance is defined as val(Π) = maxψ valΠ(ψ) where the
maximum is over all assignments ψ.

Additionally, we use the following terminologies for CSPs:
A 2-CSP instance is d-bounded-degree if the every vertex in the constraint graph G has
degree at most d.
The alphabet size of a 2-CSP instance is maxv∈V |Σv|.
A 2-CSP instance is bipartite if the constraint graph G = (A,B,E) is a bipartite graph.
A bipartite 2-CSP instance is (d1, d2)-biregular if every left-hand side vertex (in A) has
degree d1 and every right-hand side vertex (in B) has degree d2.
A bipartite 2-CSP instance is (d1, d2)-bounded-degree if every left-hand side vertex (in A)
has degree at most d1 and every right-hand side vertex (in B) has degree at most d2.
The left (resp. right) alphabet size of a bipartite 2-CSP instance is maxa∈A |Σa| (resp.
maxb∈B |Σb|).

2.3 Hardness of 2-CSP in terms of Alphabet Size
As discussed in the introduction, we need hardness of almost-perfect completeness 2-CSP
with a gap that is polynomial in the alphabet size. For NP-hardness, the best known result
is due to [7], which has a gap of R1/2−o(1):

▶ Theorem 8 ([7]). For any ζ > 0 and sufficiently large R ∈ N such that
√
R is a prime

number, there exists d1, d2 ∈ N such that it is NP-hard, given a bipartite (d1, d2)-biregular6

2-CSP Π with left alphabet size R and right alphabet size
√
R, to distinguish between the

following two cases:
(Yes Case) val(Π) ≥ 1 − ζ,
(No Case) val(Π) ≤ O

(
logR√
R

)
.

6 Note that biregularity follows immediately if we intiate the reduction of [7] with a biregular Label Cover.
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For UGC-hardness, a standard proof technique by Khot, Kindler, Mossel, and
O’Donnell [25] yields a hardness of factor R1−o(1), as stated below. Since we are not
aware7 of such a result fully written down in literature, we provide its proof in Appendix A
for completeness.

▶ Theorem 9. Assuming the Unique Games Conjecture, for any ζ > 0 and sufficiently large
R ∈ N, there exists d1, d2 ∈ N such that it is NP-hard, given a bipartite (d1, d2)-biregular
2-CSP Π with alphabet size R, to distinguish between the following two cases:

(Yes Case) val(Π) ≥ 1 − ζ,
(No Case) val(Π) ≤ O

(
log2 R
R

)
.

3 Hardness of Bounded-Degree 2-CSP

In this section, we present our main reduction and prove Theorem 1 and Theorem 2.

3.1 Adjusting the Degrees
As alluded to in the introduction, it will be useful to have a flexible control of the degrees of
the two sides of the constraint graph. This can be easily done by copying the vertices on
each side, as formalized below.

▶ Lemma 10. For any d1, d2, c1, c2 ∈ N, there is a polynomial-time reduction from a
bipartite (d1, d2)-biregular 2-CSP Π to a bipartite (c2d1d2, c1d1d2)-biregular 2-CSP Π′ such
that val(Π′) = val(Π). Moreover, the reduction preserves the left and right alphabet sizes.

Proof. Let the original 2-CSP instance be Π = (G = (A,B,E), (Σv)v∈A∪B , (Re)e∈E) where
G is (d1, d2)-biregular. We define Π = (G′ = (A′, B′, E′), (Σv′)v′∈A′∪B′ , (Re′)e′∈E′) where

A′ = A× [d1] × [c1],
B′ = B × [d2] × [c2],
E′ = {((a, i1, j1), (b, i2, j2)) | (a, b) ∈ E, i1 ∈ [d1], i2 ∈ [d2], j1 ∈ [c1], j2 ∈ [c2]},
Σ′

(v,i,j) = Σv for all (v, i, j) ∈ A′ ∪B′.
R((a,i1,j1),(b,i2,j2)) = R(a,b) for all ((a, i1, j1), (b, i2, j2)) ∈ E′.

To see that val(Π′) ≥ val(Π), let ψ denote the assignment of Π with valΠ(ψ) = val(Π).
Define an assignment ψ′ of Π′ such that ψ′

(v,i,j) := ψv. it is simple to check that valΠ′(ψ′) =
valΠ(ψ) = val(Π).

On the other hand, to see that val(Π′) ≤ val(Π), notice that E′ is can be partitioned into
E(i1,j1,i2,j2) := {((a, i1, j1), (b, i2, j2)) | (a, b) ∈ E} where i1 ∈ [d1], i2 ∈ [d2], j1 ∈ [c1], j2 ∈ [c2].
Thus, since any assignment satisfies at most val(Π) fraction of E(i1,j1,i2,j2), we can conclude
that any assignment also satisfies at most val(Π) fraction of E. ◀

3.2 Main Reduction: Degree Reduction via Subsampling
We are now ready to state our main reduction and its properties. For readers interested in
only the UGC-hardness results, it suffices to think of just the case where the degree bounds
dA, dB are equal, the alphabet sizes are equal (i.e. t = 1) and ν = 1 − o(1) in the theorem
statement below.

7 While Kindler et al. [26] proved a UGC-hardness result with a similar factor, their result does not satisfy
almost-perfect completeness, making it unsuitable for our purpose.

ITCS 2024
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▶ Theorem 11. For any t, δ, ν ∈ (0, 1] such that δ < ν, any positive integer C, and any
sufficiently large positive integers dA, dB ≥ d0(δ, ν) and R ≥ R0(δ, ν, t, dA, dB), the following
holds: there is a randomized polynomial-time reduction from a bipartite (dAC, dBC)-biregular
2-CSP Π′ with left alphabet size at most R and right alphabet size at most Rt to a (dA, dB)-
bounded-degree 2-CSP Π′′ such that, with probability 2/3, we have

(Completeness) val(Π′′) ≥ val(Π′) − δ, and,
(Soundness) If val(Π′) ≤ 1

Rν , then val(Π′′) ≤ 1
ν−δ

(
1
dA

+ t
dB

)
.

Proof. Let Π′ = (G′ = (A′, B′, E′), (Σv′)v′∈A′∪B′ , (Re)e∈E′) denote the original instance.
We select the parameters as follows:

λ := 0.001 min{δ, ν},
p := 1−λ

C ,
d0 = 10000

λ3 ,
χ := 1

ν−2λ

(
1
dA

+ t
dB

)
,

R0 = max
{(

e
χ

)1/λ
, 1001/

(
1

dA
+ t

dB
−(ν−λ)·χ

)}
.

nE := dA|A′|.

We construct the instance Π′′ as follows:
1. First, let E1 ⊆ E′ be a subset of edges where each edge in E′ is kept with probability p.
2. Let E′′ = E1 and G′′ = (A′, B′, E′′).
3. For all a ∈ A′: If degG′′(a) > dA, remove (arbitrary) dA − degG′′(a) edges adjacent to a

from E′′.
4. For all b ∈ B′: If degG′′(b) > dB, remove (arbitrary) dB − degG′′(b) edges adjacent to b

from E′′.
5. Let Π′′ be (G′′ = (A′, B′, E′′), (Σv′)v′∈A′∪B′ , (Re)e∈E′′).

It is obvious by the construction that the instance is (dA, dB)-bounded degree. Before
we prove the completeness and soundness of the reduction, let us briefly give probabilistic
bounds on the sizes of |E1| and |E1 \ E′′| that will be useful in both cases.

Let G1 denote (A′, B′, E1); furthermore, let Xe denote the indicator variable whether
the edge e is included in E1. Let E1 denote the event that |E1| ∈ [(1 − 2λ)nE , nE ]. First, we
have E[|E1|] = p|E′| = (1 − λ)nE . Meanwhile, Var[|E1|] = p(1 − p)|E′| ≤ p|E′| ≤ nE . As a
result, by Chebyshev’s inequality, we have

Pr[¬E1] ≤ nE
λ2n2

E

≤ 1
λ2nE

≤ 0.01,

where the last inequality is due to our choice of on d0.
Let the event E2 denote the event that |E1 \ E′′| < λ|E1|. We have

E[|E1 \ E′′|]

≤
∑
a∈A′

E
[
degG1(a) − clipdA

(degG1(a))
]

+
∑
b∈B′

E
[
degG1(b) − clipdB

(degG1(b))
]
.

Observe that degG1(a) (resp. degG1(b)) is a sum of dAC (resp. dBC) i.i.d. random variables
with mean p. As such, we may apply Lemma 6 to arrive at

E[|E1 \ E′′|] ≤ |A′| · (dACp)2

(dA − dACp)2 + |B′| · (dBCp)2

(dB − dBCp)2 ≤ (|A′| + |B′|) · 1
λ2

≤ 2nE
d0λ2

≤ 0.01λ|E′|,
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where the last inequality follows from our choice of d0. By Markov’s inequality, we thus have

Pr[¬E2] ≤ 0.01.

Completeness. Henceforth, for any assignment ψ, we use the notation E′(ψ) (resp. E1(ψ),
E′′(ψ)) to denote the set of edges in E′ (resp. E1, E

′′) satisfied by ψ.
Let ψ∗ be such that valΠ′(ψ∗) = val(Π′). Let E3 denote the event E1(ψ∗) ≥ (val(Π′)−2λ)·

nE . Notice that E1(ψ∗) is exactly a subset of E′(ψ∗) where each satisfied edge is included
with probability p. As a result, we have E[|E1(ψ∗)|] = p · |E′(ψ∗)| = p · |E| · val(Π′) ≥
nE · (val(Π′)−λ). Meanwhile, we have Var[|E1(ψ∗)|] = p(1−p)|E′(ψ∗)| ≤ nE ·val(Π′). Thus,
by Chebyshev’s inequality, we have

Pr[¬E3] ≤ nE · val(Π′)
(λnE)2 ≤ 1

λ2nE
≤ 0.01.

Thus, by union bound, we have Pr[E1 ∧ E2 ∧ E3] ≥ 0.97. When E1, E2, E3 all occur, we
have

val(Π′′) ≥ valΠ′′(ψ∗) = |E′′(ψ∗)|
|E′′|

≥ |E1(ψ∗)| − |E1 \ E′′|
|E1|

≥ (val(Π′) − 2λ) · nE − λ · nE
nE

≥ val(Π′) − δ.

Soundness. Assume that val(Π′) ≤ 1
Rν and recall that χ = 1

ν−2λ

(
1
dA

+ t
dB

)
is slightly

smaller than the target soundness. Consider any assignment ψ. Let Eψ denote the event that
|E1(ψ)| ≤ χ · nE . Again, notice that E1(ψ) is exactly a subset of E′(ψ) where each satisfied
edge is included with probability p. Note also that |E′(ψ)| ≤ val(Π′) · |E′|, implying that
E[|E1(ψ)|] = p · |E′(ψ)| ≤ val(Π′) · nE . Thus, we may apply Theorem 5 (with θ = χ · nE), to
arrive at

Pr[¬Eψ] ≤ exp(χ · nE − val(Π′) · nE) ·
(

val(Π′) · nE
χ · nE

)χ·nE

≤
(

e

χ ·Rν

)χ·nE

≤ R−(ν−λ)·χ·nE

where the third inequality is from our assumption that R ≥ R0.
Therefore, by taking the union bound over all (at most R|A′| ·Rt|B′|) assignments ψ, we

have

Pr

∨
ψ

¬Eψ

 ≤ R|A′| ·Rt|B
′| ·R−(ν−λ)·χ·nE = R

nE
dA

+t· nE
dB

−(ν−λ)·χ·nE

= (RnE )
1

dA
+ t

dB
−(ν−λ)·χ ≤ 0.01.

Thus, by the union bound, E1, E2 and Eψ for all assignments ψ occur simultanously with
probability at least 0.97. When this is the case, we have

val(Π′′) = max
ψ

|E′′(ψ)|
|E′′|

≤ |E1(ψ)|
|E1| − |E1 \ E′′|

≤ χ · nE
(1 − λ)nE

≤ 1
ν − δ

(
1
dA

+ t

dB

)
,

which concludes our proof. ◀
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3.3 Putting Things Together: Proof of Theorem 1 and Theorem 2
Our main theorems (Theorems 1 and 2) now follow easily from plugging in the reduction above
to the existing large-gap hardness results for 2-CSPs (Theorems 8 and 9) with appropriate
parameters.

Proof of Theorem 1. We will reduce from Theorem 9 with ζ = 0.01ϵ. Let Π be any
bipartite (d1, d2)-biregular 2-CSP instance with alphabet size R. We first apply Lemma 10
with c1 = c2 = d to arrive at a (dd1d2, dd1d2)-biregular 2-CSP instance Π′ with the same
alphabet size such that val(Π′) = val(Π). We then apply the reduction from Theorem 11
with dA = dB = d, t = 1, δ = 0.01ϵ, ν = 1 − δ to arrive at a d-degree-bounded 2-CSP instance
Π′′. When d is sufficiently large (depending on ϵ only) and R is sufficiently large (depending
on d, ϵ), with probability 2/3, we have

If val(Π) ≥ 1 − ζ, then val(Π′′) ≥ 1 − ζ − δ = 1 − 0.02ϵ.
If val(Π′′) ≤ 1

R1−δ , then val(Π′′) ≤ 1
1−2δ

( 1
d + 1

d

)
= 1

1−0.02ϵ
( 2
d

)
.

Note that the ratio between the two cases are larger than d(1/2 − ϵ). Thus, if there is a
polynomial-time d(1/2 − ϵ)-approximation algorithm for 2-CSP on d-bounded-degree graphs,
we can distinguish the two cases in randomized polynomial time (with two-sided error).
Assuming UGC, from Theorem 9, this implies that NP = BPP. ◀

Proof of Theorem 2. We will reduce from Theorem 8 with ζ = 0.01ϵ. Let Π be any bipartite
(d1, d2)-biregular 2-CSP instance with left alphabet size R and right alphabet size R1/2. We
first apply Lemma 10 with c1 = c2 = d to arrive at a (dd1d2, dd1d2)-biregular 2-CSP instance
Π′ with the same left and right alphabet sizes such that val(Π′) = val(Π). We then apply
the reduction from Theorem 11 with dA = dB = d, t = 1/2, δ = 0.01ϵ, ν = 1/2 − δ to arrive
at a d-degree-bounded 2-CSP instance Π′′. When d is sufficiently large (depending on ϵ only)
and R is sufficiently large (depending on d, ϵ), with probability 2/3, we have

If val(Π) ≥ 1 − ζ, then val(Π′′) ≥ 1 − ζ − δ = 1 − 0.02ϵ.
If val(Π′′) ≤ 1

R1/2−δ , then val(Π′′) ≤ 1
1/2−2δ

(
1
d + 1/2

d

)
= 1

1−0.04ϵ
( 3
d

)
.

Note that the ratio between the two cases are larger than d(1/3 − ϵ). Thus, if there is a
polynomial-time d(1/3 − ϵ)-approximation algorithm for 2-CSP on d-bounded-degree graphs,
we can distinguish the two cases in randomized polynomial time (with two-sided error). From
Theorem 8, this implies that NP = BPP. ◀

4 Hardness of Maximum Independent Set in k-Claw-Free Graphs

We next move on to prove hardness of Maximum Independent Set in k-claw-free graphs. To
do so, let us first recall the reduction from Max 2-CSP with bounded degree from [15]. As
touched on briefly in the introduction, the version we state below is actually more flexible
than that in [15] as it allows the degree bounds of the two sides to be different.

▶ Lemma 12 ([15]). There is a polynomial-time reduction that takes in a (dA, dB)-bounded
degree bipartite 2-CSP instance Π = (G = (A,B,E), (Σv)v∈A∪B , (Re)e∈E) and produces a
(dA + dB)-claw-free graph G∗ = (V ∗, E∗) such that indep(G∗) = val(Π) · |E|.

Proof. The reduction is exactly as the so-called “FGLSS graph” [16]:
For every edge e = (a, b) ∈ E and every (σa, σb) ∈ Re, create a vertex (a, b, σa, σb) in V ∗.
Create an edge between (a, b, σa, σb) and (a′, b′, σ′

a′ , σ′
b′) iff they are inconsistent, i.e. there

exists v′ ∈ {a, b} ∩ {a′, b′} such that σv ̸= σ′
v′ .
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A standard argument shows that indep(G∗) = val(Π)·|E|. To see that it is (dA+dB)-claw-
free, consider any vertex (a, b, σa, σb) ∈ V ∗ and dA + dB of its neighbors in G∗. Let E0 ⊆ E

denote the set of edges (in the constraint graph G) adjacent to a or b (or both). By the degree
constraint, |E0| ≤ dA + dB − 1. Thus, by the pigeonhole principle, at least two neighbors of
the dA + dB neighbors correspond to the same edge in E0; this means that there must be an
edge between these two vertices in G∗. Thus, the graph G∗ is (dA + dB)-claw-free. ◀

Theorem 3 is now an immediate consequence of Theorem 1 and Lemma 12.

Proof of Theorem 3. Note that the instance produced in Theorem 1 is a (d, d)-bounded-
degree instance. Thus, by setting d = ⌊k/2⌋ and plugging it into the reduction in Lemma 12,
we arrive at the claimed hardness result. ◀

For Theorem 4, we need to work harder to optimize the hardness of approximation factor.
Specifically, we set dA ≈

√
2 · dB , as formalized below.

Proof of Theorem 4. Let q1, q2 ∈ N be integers such that
∣∣∣ q1
q2

−
√

2
∣∣∣ and

∣∣∣ q2
q1

− 1√
2

∣∣∣ ≤ 0.01ϵ.
Let dA = ⌊ kq1

q1+q2
⌋ and dB = ⌊ kq2

q1+q2
⌋. Note that dA + dB ≤ k.

We will reduce from Theorem 8 with ζ = 0.01ϵ. Let Π be any bipartite (d1, d2)-biregular
2-CSP instance with left alphabet size R and right alphabet size R1/2. We first apply
Lemma 10 with c1 = dA, c2 = dB to arrive at a (dAd1d2, dBd1d2)-biregular 2-CSP instance
Π′ with the same left and right alphabet sizes such that val(Π′) = val(Π). We then apply the
reduction from Theorem 11 with dA, dB as specified above, t = 1/2, δ = 0.01ϵ, ν = 1/2 − δ to
arrive at a d-degree-bounded 2-CSP instance Π′′. Finally, we apply reduction in Lemma 12
on Π′′ to arrive at the graph G∗. By Lemma 12, G∗ is k-claw-free. Furthermore, when k is
sufficiently large (depending on ϵ only) and R is sufficiently large (depending on k, ϵ), with
probability 2/3, we have

If val(Π) ≥ 1 − ζ, then indep(G∗) = |E′′| · val(Π′′) ≥ |E′′| · (1 − ζ − δ) = |E′′| · (1 − 0.02ϵ).
If val(Π′′) ≤ 1

R1/2−δ , then

indep(G∗) = |E′′| · val(Π′′) ≤ |E′′| · 1
1/2 − 2δ

(
1
dA

+ 1/2
dB

)
= 1

1/2 − 2δ

(
1

kq1
q1+q2

− 1
+ 1/2

kq2
q1+q2

− 1

)
· |E′′|

≤ 1
1/2 − 2δ · 1

1 − δ

(
q1 + q2

kq1
+ (q1 + q2)/2

kq2

)
· |E′′|

≤ 1
1/2 − 2δ · 1

1 − δ
· 1
k

(
3
2 + q2

q1
+ q1

2q2

)
· |E′′|

≤ 1
1/2 − 2δ · 1

1 − δ
· 1
k

(
3
2 +

√
2 + 2δ

)
· |E′′|

≤ 1
1 − 4δ · 1

k
· (3 + 2

√
2 + 4δ) · |E′′|,

where the second inequality holds when we assume that k is sufficiently large and the
second-to-last inequality is from our choice of q1, q2.

Note that the ratio between the two cases are larger than k
(

1
3+2

√
2 − ϵ

)
. Thus, if there is a

polynomial-time k
(

1
3+2

√
2 − ϵ

)
-approximation algorithm for maximum independent set on

k-claw-free graphs, we can distinguish the two cases in randomized polynomial time (with
two-sided error). Assuming UGC, from Theorem 9, this implies that NP = BPP. ◀
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5 Conclusion and Open Questions

In this paper, we prove hardness of approximation results for Max 2-CSP with bounded degree.
Our UG-hardness is nearly tight as the maximum degree goes to ∞. Using this, we also give
hardness for Maximum Independent Set on k-claw-free graphs whose inapproximation ratio
is within a factor of 2 of optimal for any sufficiently large k. It remains an intriguing open
question to close this latter gap. Furthermore, since our reductions are randomized, it would
be interesting to derandomized them. Finally, one of our motivations to study Maximum
Independent Set on k-claw-free graphs is to understand k-Set Packing. However, we are
unable to obtain Ω(k) factor hardness of approximation of the latter using the reductions in
this paper. As stated earlier, the best (NP-)hardness of approximation for k-Set Packing
remains Ω(k/ log k) [23] and it would be interesting to close (or at least decrease) this O(log k)
gap between the upper and lower bounds.
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A UGC-Hardness of 2-CSP with Almost Perfect Completeness

In this section, we prove Theorem 9. It follows from a standard technique proving hardness
of CSPs assuming the Unique Games Conjecture [25].

Proof of Theorem 9. For given R ∈ N, we will construct a predicate P ⊆ [R] × [R], and
consider CSP(P ) whose instance Π = (G = (V,E), (Σv)v∈V , (Re)e∈E) must satisfy Σv = [R]
for every v ∈ V and Re = {(x, y) ∈ [R]2 : (x ⊕ te,u, y ⊕ te,v) ∈ P} for some te,u, te,v ∈ [R]
for every e = (u, v) ∈ E. (For x, y ∈ [R], we define x⊕ y to be x+ y if it is at most R and
x+ y −R otherwise.)

The standard technique of proving the hardness of CSP(P ) due to Khot et al. [25] shows
that it suffices to consider the dictatorship test. It is determined by a distribution µ supported
on [R] × [R]. For every L ∈ N, it yields the following test that decides whether a given
function F : [R]L → [R] is a dictator or not.

For each i ∈ [L], sample (xi, yi) ∈ [R]2 from µ, independently from other i’s.
Accept if (F (x), F (y)) ∈ P .

Note that if F is a dictator function (i.e., F (x) = xi for some i ∈ [L]), then the above
test accepts with probability exactly Pr(x,y)∼µ[(x, y) ∈ P ] =: c, known as the completeness
of the test. Let s be (an upper bound of) the soundness of this test; there exist τ > 0 and
d ∈ N such that any function F : [R]L → [R], which (1) is balanced (i.e., |F−1(i)| = RL−1

for all i ∈ [R]) and (2) has the maximum degree-d influence (defined in Appendix A.2) at
most τ , passes the test with probability at most s. Khot et al. [25] shows that a dictatorship
test with some c and s immediately yields the hardness of CSP(P ) with almost the same
completeness and soundness.

▶ Theorem 13 ([25]). Given P ⊆ [R]2, let µ be a distribution over [R]2 that yields a
dictatorship test with completeness c and soundness s. Then, for any ζ > 0, assuming the
Unique Games Conjecture, it is NP-hard, given a regular CSP(P ) instance Π, to distinguish
between the following two cases:

(Yes Case) val(Π) ≥ c− ζ.
(No Case) val(Π) ≤ s+ ζ.

Though the above theorem does not guarantee that a given instance Π with the underlying
graph G = (V,E) is bipartite, one can easily convert it to a bipartite instance Π′ by creating
two vertex sets V1 and V2 which are disjoint copies of V and replace each constraint e = (u, v)
with Re ⊆ [R]2 with two constraints (u1, v2) and (u2, v1) with the same Re, where ui, vi denote
the copy of u, v in Vi. The completeness of the new instance is at least the completeness of
the original instance, and the soundness of the new instance is at most twice of the soundness
of the original instance.

Therefore, the rest of the section is devoted to constructing P and µ such that µ is
supported by P (so that c = 1) while s = O(log2 R/R).

https://doi.org/10.1007/978-3-642-39206-1_67
https://doi.org/10.1137/1.9781611977554.ch42
https://doi.org/10.1145/380752.380839
https://doi.org/10.4086/toc.2007.v003a006
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A.1 Predicate and Completeness
Given R ∈ N, let t ∈ N be a parameter to be determined later, and let H = (VH , EH) be
a t-regular graph with VH = [R] such that the second largest eigenvalue of the normalized
adjacency matrix is O(1/

√
t) [17]. The predicate P ⊆ [R]2 is defined such that (i, j) ∈ P

if and only if (i, j) ∈ EH . This ensures that |P | = tR = 2|EH |. Then, our distribution
µ is simply the uniform distribution over P . By definition, the completeness value is
Pr(x,y)∼µ[(x, y) ∈ P ] = 1.

A.2 Soundness via Fourier analysis
To (formally define and) analyze the soundness of the test, we use the following standard tools
from Gaussian bounds for correlated functions from Mossel [31]. We define the correlation
between two correlated spaces below.

▶ Definition 14. Given a distribution µ on Ω1 × Ω2, the correlation ρ(Ω1,Ω2;µ) is defined
as

ρ(Ω1,Ω2;µ) = sup {Cov[f, g] : f : Ω1 → R, g : Ω2 → R,Var[f ] = Var[g] = 1} .

In our case, ρ := ρ([R], [R];µ) is exactly the second largest eigenvalue of the normalized
adjacency matrix of H, which is O(1/

√
t).

▶ Definition 15 ([31]). For any function f : [R]L → R, the Efron-Stein decomposition is
given by

f(y) =
∑
S⊆[L]

fS(y)

where the functions fS satisfy
fS only depends on yS, the restriction of y to the coordinates of S.
For all S ̸⊆ S′ and all zS′ , Ey[fS(y)|yS′ = zS′ ] = 0.

Based on the Efron-Stein decomposition, we can define (low-degree) influences of a function.
For a function f : [R]L → R and p ≥ 1, let ∥f∥p := E[|f(y)|p]1/p.

▶ Definition 16 ([31]). For any function f : [R]L → R, its ith influence is defined as

Infi(f) :=
∑
S:i∈S

∥fS∥2
2.

Its ith degree-d influence is defined as

Inf≤d
i (f) :=

∑
S:i∈S,|S|≤d

∥fS∥2
2,

Given a discrete-valued function F : [R]L → [R], for every i ∈ [R], we let Fi : [R]L → {0, 1}
such that Fi(x) = 1 if F (x) = i and 0 otherwise. We say that F has the maximum degree-d
influence at most τ if Inf≤d

j (Fi) ≤ τ for every i ∈ [R] and j ∈ [L].
For a, b ∈ [0, 1] and σ ∈ [0, 1], let Γσ(a, b) := Pr[g1 ≤ Φ−1(a), g2 ≤ Φ−1(b)] where g1, g2

are σ-correlated standard Gaussian variables and Φ denotes the cumulative density function
of a standard Gaussian. (E.g., Γσ(a, 1) = a for any σ and Γ0(a, b) = ab.) We crucially use
the following invariance principle applied to our dictatorship test.
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▶ Theorem 17 ([31]). For any ϵ > 0 there exist d ∈ N and τ > 0 such that the following is
true. Let f, g : [R]L → [0, 1]. If min(Inf≤d

i [f ], Inf≤d
i [g]) ≤ τ for every i ∈ [L],

E(x,y)∼µ⊗L [f(x)g(y)] ≤ Γρ(E[f(x)],E[g(y)]) + ϵ.

We will use the following upper bound on Γρ(α, α).

▶ Lemma 18 (Corollary 3 of [25]). For any R ≥ 1 and ρ ∈ (0, 1/20),

Γρ(1/R, 1/R) ≤ (1/R)1+ 1−ρ
1+ρ ≤ (1/R)2−2ρ.

Fix ϵ = 1/R3 to get d and τ from Theorem 17. Then, for any F : [R]L → [R] that is balanced
(i.e., |F−1(i)| = RL−1 for every i ∈ [R]) and has the maximum degree-d influence at most τ ,
the probability that the dictatorship test accepts is∑

(i,j)∈P

(E(x,y)∼µ⊗L [Fi(x)Fj(y)] + ϵ) ≤ tR · (Γρ(1/R, 1/R) + ϵ) ≤ t · (1/R)1−2ρ + 1/R.

Recalling ρ = O(1/
√
t) and setting t = Θ(log2 R) ensure that t(1/R)1−2ρ ≤ O(log2 R/R), so

the soundness is at most O(log2 R/R). ◀

B Approximation Algorithm

In this section, we give a (d+1
2 )-approximation full algorithm for any d-bounded-degree 2-CSP.

Before we proceed to the algorithm, let us note that in the case where the instance is fully
satisfiable, there is a simple algorithm: Just take any spanning forest of the constraint graph
and then use a dynamic programming algorithm to find an assignment that satisfies all the
edges in the spanning forest! This algorithm does not work in the general case since it is
possible that this spanning forest has a small value. To overcome this, below we sample
the spanning forest from an appropriate distribution, allowing us to maintain the same
approximation ratio.

▶ Theorem 19. There is a polynomial-time (d+1
2 )-approximation algorithm for every d-

bounded-degree 2-CSP.

Proof. Let Π = (G = (V,E), (Σv)v∈V , (Re)e∈E) be an instance of 2-CSP where the maximum
degree of G is at most d.

Let x ∈ RE be such that xe = 2/(d + 1) for every e ∈ E. We claim that x is inside
the graphic matroid polytope induced by G; for any S ⊆ V , if |S| ∈ [2, d + 1], x(E(S)) ≤
|S|(|S|−1)

2 ( 2
d+1 ) ≤ |S| − 1, and if |S| > d+ 1, x(E(S)) ≤ d|S|

2 · ( 2
d+1 ) ≤ |S| − 1.

Therefore, x can be written as a convex combination of (the indicator vectors of) forests
in G [35], which implies that there exists a distribution T of forests such that for a random
forest T ∼ T , for every e ∈ E, Pr[e ∈ T ] ≥ 2

d+1 . Then, using dynamic programming, one
can optimally solve the subinstance of Π induced by T ; for each connected component T ′ of
T (which is a tree), root it at an arbitrary vertex, and for each node v ∈ T ′ and σ ∈ Σv, let
A(v, σ) be the the optimal value of the CSP induced by the subtree of T ′ rooted at v when
the variable v is assigned label σ. One can compute A(v, σ) in a bottom-up fashion using
dynamic programming.

Since Pr[e ∈ T ] ≥ 2
d+1 for every e ∈ E, the expected optimal number of satisfied

constraints of the CSP instance induced by T is at least 2
d+1 · |E| ·val(Π). Therefore, returning

an optimal assignment for a random T yields a
(
d+1

2
)
-approximation in expectation. It

can be easily derandomized since the integrality of the graphic matroid polytope implies
that one can efficiently compute a decomposition of x into a convex combination of |E| + 1
forests [19]. ◀
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C Parameterized Hardness of Approximation

In this section, we briefly discussed the parameterized hardness of approximation for the
Maximum Independent Set in k-claw-free graphs. Recall that an algorithm is said to be
fixed parameter tractable (FPT) w.r.t. to parameter q if it runs in time f(q) · nO(1) where
f can be any function and n is the input size. We refer interested readers to [10] for more
background on the topic.

Similar to [15], we let the parameter be q = k + indep(G). For this parameter, [15]
showed (by reducing from parameterized hardness of Max 2-CSP in [30]) that, assuming
the (less standard) Strongish Planted Clique Hypothesis, no FPT algorithm achieves o(k)-
approximation. Note that this is incomparable to hardness presented in the main body of
our paper (Theorems 3 and 4), as such a parameterized hardness result does not rule out e.g.
nO(k)-time algorithm. (Our main results rule out such algorithms since k there are simply
absolute constants.)

Meanwhile, under the (arguably more standard) Gap-ETH assumption8, [15] only show
(via a reduction from parameterized hardness of Max 2-CSP in [14]) that no FPT algorithm
achieves o

(
k

2(log k)1/2+o(1)

)
-approximation. Our result here is an improvement of this factor

to o(k):

▶ Theorem 20. Assuming Gap-ETH, there is no f(k) · nO(1)-time o(k)-approximation
algorithm for Maximum Independent Set on k-claw-free graphs even when the maximum
independent set has size at most k.

To prove this theorem, we need the following additional notations for 2-CSPs:
For a 2-CSP instance Π = (G = (V,E), (Σv)v∈V , (Re)e∈E), a partial assignment is a tuple
(ψv)v∈V such that ψv ∈ Σv ∪ {⊥}. Its size is defined as |{v : ψv ̸=⊥}|.
We say that a partial assignment ψ is consistent if, for all e = (u, v) ∈ V such that
ψu, ψv ̸=⊥, we have (ψu, ψv) ∈ Re.
Finally, we define cval(Π) to be the maximum size of any consistent partial assignment.

We will use the following hardness result9:

▶ Theorem 21 ([5]). Assuming Gap-ETH, there is no f(k) · nO(1)-time o(k)-approximation
algorithm for cval(Π) with k variables.

Our main ingredient is the following reduction, which is different than that of [15] and
allows us to use cval instead of val for (in)approximation purposes.

▶ Lemma 22. There is a polynomial-time reduction that takes in a 2-CSP instance Π = (G =
(V,E), (Σv)v∈V , {Re}e∈E) and produces a graph G′ = (V ′, E′) such that indep(G′) = cval(Π).
Moreover, if G has degree at most d, then G′ is (d+ 2)-claw-free.

Proof. Let G′ be the label-extended graph of G. Namely, V ′ = {(v, σv) | v ∈ V, σv ∈ Σv}
and there is an edge between (u, σu) and (v, σv) in E′ iff (u, v) ∈ E and (σu, σv) /∈ Re. The
claim cval(Π) = indep(V ′) is obvious. To see that the graph G′ is (d+ 2)-claw-free, observe
that any vertex (u, σu) is only neighbors to (v, σv) where v ∈ NG[u] (the closed-neighbor of
G). However, for each fixed v, {(v, σv) | σv ∈ Σv} forms a clique. Thus, the largest size of
claw that is a subgraph of G′ is at most |NG[u]| ≤ d+ 1. ◀

Plugging in the above lemma to Theorem 21, we immediately arrive at Theorem 20.

8 Gap Exponential Time Hypothesis (Gap-ETH) [13, 29] states that no 2o(n)-time algorithm can distinguish
between a fully satisfiable 3-SAT instance and one which is not even (1 − ϵ)-satisfiable for some constant
ϵ > 0.

9 In [5], this is stated as the hardness of Clique, but this is exactly the same as 2-CSP with k variables.
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