
Intersection Classes in TFNP and Proof
Complexity
Yuhao Li #

Columbia University, New York, NY, USA

William Pires #

Columbia University, New York, NY, USA

Robert Robere #

McGill University, Montreal, Canada

Abstract
A recent breakthrough in the theory of total NP search problems (TFNP) by Fearnley, Goldberg,
Hollender, and Savani has shown that CLS = PLS ∩ PPAD, or, in other words, the class of problems
reducible to gradient descent are exactly those problems in the intersection of the complexity classes
PLS and PPAD. Since this result, two more intersection theorems have been discovered in this
theory: EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS. It is natural to wonder if this exhausts
the list of intersection classes in TFNP, or, if other intersections exist.

In this work, we completely classify all intersection classes involved among the classical TFNP
classes PLS, PPAD, and PPA, giving new complete problems for the newly-introduced intersections.
Following the close links between the theory of TFNP and propositional proof complexity, we develop
new proof systems – each of which is a generalization of the classical Resolution proof system – that
characterize all of the classes, in the sense that a query total search problem is in the intersection
class if and only if a tautology associated with the search problem has a short proof in the proof
system. We complement these new characterizations with black-box separations between all of the
newly introduced classes and prior classes, thus giving strong evidence that no further collapse
occurs. Finally, we characterize arbitrary intersections and joins of the PPAq classes for q ≥ 2 in
terms of the Nullstellensatz proof systems.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Proof complexity; Theory of computation → Complexity theory and logic

Keywords and phrases TFNP, Proof Complexity, Intersection Classes

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.74

Funding Yuhao Li: Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
William Pires: Supported by NSF grants AF-2212136, IIS-1838154, CCF-2106429 and CCF-2107187.
Robert Robere: Supported by NSERC.

Acknowledgements Part of this work was done while the authors were visiting the Simons Institute
for the Theory of Computing at UC Berkeley.

1 Introduction

The class TFNP contains all total NP-search problems, which are search problems whose
solutions are (a) verifiable in polynomial time, and (b) guaranteed to always exist. This class
plays an important role in computational complexity theory as it contains many important
search problems that we would like to solve in practice. Two standard examples of such
problems are Factoring (given a number, output a prime factor of that number) and Nash
(given a bimatrix game, output a Nash Equilibrium for that game). The class TFNP is a
semantically defined class which is not believed to have complete problems [33], and thus
researchers define syntactic subclasses of TFNP via polynomial-time reductions to certain

© Yuhao Li, William Pires, and Robert Robere;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 74; pp. 74:1–74:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuhaoli@cs.columbia.edu
mailto:wp2294@columbia.edu
mailto:robere@cs.mcgill.ca
https://doi.org/10.4230/LIPIcs.ITCS.2024.74
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Intersection Classes in TFNP and Proof Complexity

fixed TFNP problems. Perhaps the most famous example is the class PPAD, which has
as its complete problem Imbalance, where we are given a directed graph with a fixed
unbalanced node (i.e. the out-degree of the node is different from the in-degree of the
node) and must output any other unbalanced node. This class famously has Nash as a
complete problem [14, 10], along with many other problems in game theory and economics
[13, 9, 11, 28, 12]. Another prominent example of a TFNP subclass is PLS, which has
Sink-of-Dag as its complete problem, where we are given a directed acyclic graph (dag) as
input and are asked to find a sink node in that graph. The class PLS was originally defined
to capture the complexity of problems solvable by local-search heuristics in a very generic
model [26, 34, 30].

The overarching goal of the present work is a systematic study of intersections of standard
TFNP classes. This is not without precedent in the literature. A recent breakthrough result
by [16] proved that PLS ∩ PPAD = CLS, where CLS is, intuitively, the class of total search
problems reducible to computing a local minimum via gradient descent. This result is quite
remarkable among class collapses in complexity theory for a number of reasons; perhaps
chief among them is that taking the intersection of two complexity classes is an unnatural
operation, and usually does not yield classes that can be syntactically defined in an obvious
way. For example, while both NP and coNP have syntactic definitions, it is a long-standing
open problem in complexity theory whether or not the class NP ∩ coNP has any complete
problems.

In the theory of TFNP, on the other hand, one can quite easily define some complete
problem for each intersection class. Formally, if A is a complete problem for the complexity
class A ⊆ TFNP and B is a complete problem for the class B ⊆ TFNP, then we can define
a new problem Either(A, B) which is complete for A ∩ B as follows: given instances of
both problem A and B as input, output a solution to either of the instances. It is an easy
exercise to see that Either(A, B) is complete for A∩B, but, the problem is rather artificially
defined. Indeed, while it is easy to reduce the complete problem of CLS to both End-of-Line
(another complete problem for PPAD) and Sink-of-Dag, the main contribution of [16] is an
intricate reverse reduction from Either(End-of-Line, Sink-of-Dag) back to the defining
problem of CLS.

Given the collapse CLS = PLS ∩ PPAD, it is natural to wonder if other intersections of
the commonly-considered TFNP classes also admit nicer complete problems than problems
constructed using the Either operation. In the original work that systematically studied
subclasses of TFNP [30], Papadimitriou introduced five subclasses of TFNP: the classes
PLS [26] and PPAD, which have been defined above, along with the classes:

PPA, defined by the complete problem Lonely: given a graph with an odd number of
vertices and where every vertex has degree ≤ 1, output any isolated node.
PPADS, defined by the complete problem Sink-of-Line: given a directed graph with a
fixed positively imbalanced node (out-degree > in-degree), output a negatively imbalanced
node (in-degree < out-degree).
PPP, defined by the complete problem Pigeon: given a circuit C mapping {0, 1}n →
{0, 1}n \ 0n, find any x ̸= y such that C(x) = C(y).

In a follow-up work to [16], Göös et al gave two more examples of intersection results among the
original “Big Five” TFNP classes: SOPL = PLS∩PPADS, and EOPL = PLS∩PPAD = CLS [19],
where EOPL and SOPL are subclasses of TFNP that had been introduced by [17] and [22],
respectively. Outside of this, Ishizuka gave a complete problem for PLS ∩ PPA that was
distinct from Either(Sink-of-Dag, Lonely) [25]. Other than these results, no other
complete problems are currently known for other intersections among the original TFNP

Y. Li, W. Pires, and R. Robere 74:3

classes. Furthermore, it is not even known if the other intersection classes simply collapse
further to existing TFNP subclasses. For example, while it is known that PPAD is contained
in both PPADS and PPA, it is consistent with current knowledge that PPAD = PPADS ∩ PPA
(see Figure 1a).

(a) Classical TFNP Classes. A directed arrow
from class A to B means that A ⊆ B.

(b) Classic TFNP classes with all possible non-trivial
intersections. Solid black lines represent strict inclusion
w.r.t. a generic oracle, and dotted lines represent new
oracle separations proved in this paper.

1.1 Propositional Proof Complexity and Black-Box TFNP
Beyond the fundamental task of understanding the relationships between the standard TFNP
classes, another motivation for investigating intersection classes comes from the theory of
propositional proof complexity, which has a very close relationship with TFNP in the black-box
setting [6, 1, 29, 4, 8, 21, 20]. In the classical theory of TFNP, the inputs to the problems are
typically encoded succinctly: for instance, an input to the problem Sink-of-Dag will be an
exponentially-large dag that is represented by a polynomial-size circuit C encoding the dag
in some topological ordering. Rather than encode these inputs by (white-box) circuits, it is
often natural to encode them instead by black-box oracles. Formally, a query total search
problem is a sequence of relations Rn ⊆ {0, 1}n ×On, one for each size n ∈ N, such that for all
x ∈ {0, 1}n there is an o ∈ On such that (x, o) ∈ Rn. Here On is a finite set of outputs, and
we say that o is a solution to instance x when (x, o) ∈ Rn. We imagine the input x as being
given by oracle access to its individual bits {xi}, and an efficient algorithm for Rn is given
by a query algorithm that makes logO(1) n many queries to x before outputting a solution to
Rn. We enforce efficient verifiability of query total search problems in the natural way: the
problem Rn is in TFNPdt if for each o ∈ On the relation (x, o) ∈ Rn can be computed by a
logO(1) n-depth decision tree To(x). The corresponding subclasses of TFNP in the black-box
model are then defined by efficient decision-tree reductions to the corresponding complete
problems for the subclasses, and this gives corresponding subclasses PLSdt, PPADdt, etc. of
query total search problems.

There are two principle reasons for studying black-box models of TFNP. The first is
the ability to prove unconditional separations. Unlike the white-box model, in the
black-box model we are able to prove unconditional separations between the complexity

ITCS 2024

74:4 Intersection Classes in TFNP and Proof Complexity

classes. Formally, any separation in the black-box model implies a separation in the white-box
model relative to a generic oracle [1]. Moreover, all known class collapses in TFNP relativize,
and so black-box separations rule out any collapse using existing techniques.

The second, and more significant in the eyes of the authors, are characterizations by
propositional proof systems. There is a close link between the black-box TFNP classes
and proof systems in propositional proof complexity. Associated with every unsatisfiable
CNF formula F = C1 ∧ C2 ∧ · · · ∧ Cm is the following query total search problem S(F): given
an assignment x to the variables of F , output the index of any clause Ci falisfied by x. If
we have a sequence of unsatisfiable CNFs Fn on n variables, then this gives a query total
search problem S(Fn), which will be in TFNPdt iff the underlying CNF formula has logO(1) n

width. Conversely, if we have any total search problem Rn ∈ TFNPdt, we can write down the
corresponding unsatisfiable CNF formula Fn =

∧
o∈On

¬To(x) – obtained by re-encoding the
decision-trees into CNF formulas – intuitively stating that Rn has no solution. It turns out
that this close relationship is not merely a coincidence: every TFNPdt subclass Adt defined
by reductions to a complete problem is characterized by a corresponding propositional proof
system PA, in the following sense:

A total search problem Rn is in the class Adt

if and only if
The corresponding sequence of CNFs Fn has efficient refutations in the proof system PA.

One can always show the existence of such a proof system [5], but, this abstract construc-
tion produces proof systems which are somewhat artificial. It turns out that many of the
standard TFNP classes correspond to natural proof systems that had already been studied
in the literature, prior to this connection being observed. For example, the class PLSdt

corresponds exactly to the well-studied Resolution proof system, in the sense that a sequence
of CNF formulas Fn has logO(1) n-width Resolution refutations iff S(Fn) ∈ PLSdt [27, 8].
There have recently been a number of these characterizations shown [21, 27, 20, 15], in-
cluding characterizations for all of the classical TFNP classes PPA, PLS, PPADS, and PPAD
[21, 27, 20].

These equivalences provide a two-way street between the theory of TFNP and the theory
of propositional proof complexity, allowing us to transform results from one setting into
counterpart results in the other. For instance, by recruiting lower bounds in proof complexity,
one can construct oracle separations between subclasses of TFNP, and indeed this is the
primary mechanism by which these separations are obtained [1, 29, 4, 20]. On the other hand,
we only know how to prove the intersection theorems for SOPL and EOPL using the language
of TFNP, and this has led to surprising intersection theorems for proof systems. For instance,
the intersection theorem SOPL = PLS ∩ PPADS implies that an unsatisfiable CNF formula
F has an efficient Reversible Resolution refutation (corresponding to SOPL) if and only if
it has both an efficient Resolution refutation (PLS) and an efficient unary Sherali-Adams
refutation (PPADS) [20]. It is not clear at all how to carry out this intersection result for
proof systems directly in the language of proof complexity!

A final benefit of the characterization result for proof systems by TFNP subclasses is that
it provides a dictionary, of sorts, for the existing proof systems. One can easily ask: why do
the same proof systems continually appear in many different situations? The classification
by TFNP classes due to Fleming, Buss, and Impagliazzo [5] implies that every proof system1

1 Satisfying some mild regularity requirements, e.g. being closed under decision tree reductions.

Y. Li, W. Pires, and R. Robere 74:5

has a corresponding TFNP subclass as above. Thus, one can hope to gain insight into various
“boundary” lower-bound questions in propositional proof complexity by learning what their
corresponding TFNP subclasses are and studying them. Overall, there is much benefit to
using both the study of proof complexity and the study of TFNP classes to enhance our
knowledge of both fields simultaneously.

1.2 Main Results
The main result of this paper is the systematic classification of all intersections between the
classical TFNP classes PPA, PPAD, PPADS, and PLS2. In Figure 1b we present the classical
TFNP classes with all of their non-trivial intersections. (In fact, our results are stronger
than stated in the theorem below. We actually can classify all possible intersections with the
generalized classes PPAq for any integer q ≥ 2.)

▶ Theorem 1. Among the classical TFNP classes PPA, PPAD, PPADS, and PLS, all possible
non-trivial intersection classes between them are displayed in Figure 1b. Moreover, no further
collapses occur in the black-box model: for every pair of classes A, B in Figure 1b where the
containment A ⊆ B is not depicted, there is a generic oracle O such that AO ̸⊆ BO.

Our second main contribution is the construction of a Resolution-style proof system
(cf. Definition 11) corresponding to every class depicted in Figure 1b. Informally, a Resolution-
style proof system is defined by a set of inference rules R on clauses of boolean literals. Each
rule R ∈ R can have any number of input clauses and any number of output clauses, and
crucially we apply the rules via substitution: when a rule R is selected to apply to clauses
in a proof, we replace those clauses with the output of the rule. For example, under this
general definition, the standard Resolution system corresponds to R-Resolution with the
three rules R = {Rev-Weaken, Rev-Res, Copy} defined below:

Rev-Weaken. C ⊢ C ∨ x, C ∨ x,
Rev-Res. C ∨ x, C ∨ x ⊢ C,
Copy. C ⊢ C, C.

(Note that we require the “Copy” rule since the inference rules are applied with substitution.)
For any R, given an R-Resolution proof Π we define the width w(Π) of the refutation to
be the size of the largest clause in Π, and the size size(Π) of the refutation to be the total
number of clauses occurring in Π. For any unsatisfiable CNF formula F , we define the
complexity measure

ResR(F) := min
R-Res proofs Π of F

w(Π) + log size(Π).

▶ Theorem 2. For every class A depicted in Figure 1b, there is a fixed set of deduction rules
R on clauses such that for any query total search problem Rn, Rn ∈ Adt if and only if the
corresponding unsatisfiable CNF formula Fn satisfies ResR(Fn) = logO(1) n.

This result provides natural, deductive proof systems for all of the classical TFNP
classes and their intersections3. For several of these classes, Resolution-style proof systems
were previously known, including PLS [27], PPAD, PPADS [3], SOPL, and EOPL [20]. In

2 We chose to study these classes in particular, and not PPP, as they have the highest relevance for
propositional proof complexity. It is currently unknown whether or not there is a natural propositional
proof system corresponding to PPPdt.

3 With the exception of PPP, for which we still do not have any natural proof system beyond the abstract
construction of [5].

ITCS 2024

74:6 Intersection Classes in TFNP and Proof Complexity

particular, we provide the first proof systems capturing the classes PPA ∩ PLS, PPA ∩ PPADS,
and SOPL ∩ PPA. For example, for the class PPA ∩ PLS, the corresponding set of deduction
rules is R = {Rev-Weaken, Rev-Res, F2-Copy}, where F2-Copy is the rule

C ⊢ C, C, C,

which allows us to simultaneously copy C and preserve the parity of the number of copies
of C.

Our final family of results are a classification of the proof systems related to the PPAdt
q

classes, introduced by Papadimitriou [30] and further studied in [23]. For any q ≥ 2, the PPAq

class corresponds to the following total search problem [23]: given a bipartite graph with a
fixed node of degree ̸= q, output any other such node. It is easy to see that PPA2 = PPA,
and [23] give a general characterization of PPAq for any q ≥ 2 in terms of {PPAp}p|q where
p ranges over all prime numbers that divide q. To properly position our results we must
first describe this characterization. If A0, A1 are two total search problems then let A0 & A1
denote the following search problem: given x and a bit b ∈ {0, 1}, solve the problem Ab on
input x. Note that this operation gives us the power to solve both problems simultaneously,
and thus both A0 and A1 reduce to A0 & A1. One of the main results of [23] is the following:

▶ Theorem 3 (Theorem 1 [23]). For any positive integer q ≥ 2,

PPAq = PPAp1 & PPAp2 & · · · & PPApm
,

where p1, . . . , pm are the prime factors of q.

We first give proof systems classifying PPAdt
q for any positive q ≥ 2. Our proof systems

are slight generalizations of the well-studied Nullstellensatz proof system [2, 7].
Consider an unsatisfiable CNF F = C1 ∧ . . . ∧ Cm. For each clause Ck =

∨
i∈S xi

∨
j∈T x̄j ,

we let C̄k be the natural encoding of Ck as a polynomial. That is C̄k :=
∏

i∈S(1−xi)
∏

j∈T xj .
For a truth assignment x ∈ {0, 1}n, we have C̄k(x) = 0 iff x satisfies Ck.

▶ Definition 4 (Generalized Nullstellensatz). Let q ≥ 2 be a positive integer and consider
the ring Zq. Given a CNF F = C1 ∧ . . . ∧ Cm over variables x1, . . . , xn, a generalized
Nullstellensatz refutation of F over Zq is given by a list of polynomials P1, . . . , Pm ∈
Zq[x1, . . . , xn] such that:

m∑
j=1

PjC̄j ≡ c mod q

where c is any constant ̸≡ 0 mod q, and the algebra is performed multilinearly (i.e. modulo
the ideal ⟨x2

i − xi⟩n
i=1). The degree of the proof is defined to be the maximum degree of any

of the PjCj polynomials, and the size of the proof is defined to be the monomial size – that
is, the number of monomials produced when expanding all PjC̄j polynomials out into their
constituent monomials, before cancellation. Let NS∗

q(F) to denote the minimum degree of any
generalized Nullstellensatz refutation of F over q. A Nullstellensatz refutation is a special
case of a generalized Nullstellensatz refutation where c = 1 in the above definition, and let
NSq(F) denote the minimum degree of a Nullstellensatz refutation mod q.

It is easy to see that if q is prime, then NS∗
q(F) = NSq(F) for every F , since then

the ring Zq is a field and we can simply divide by c to obtain a Nullstellensatz refutation
from a generalized Nullstellensatz refutation. However, when q is a composite number –

Y. Li, W. Pires, and R. Robere 74:7

thus Zq is only a ring and not a field – we show that these proof systems are radically
different in power. Namely, the generalized Nullstellensatz system NS∗

q characterizes the
TFNP class PPAdt

q = &p|qPPAdt
p , while the standard Nullstellensatz system NSq characterizes

the intersection class⋂
p|q

PPAdt
p ,

where both operations range over all primes p that divide q.

▶ Theorem 5. Let q ≥ 2 be any positive integer, let p1, . . . , pm denote the prime factors of
q, and let Fn be any sequence of logO(1) n-width unsatisfiable CNF formulas. Then

NSq(Fn) = logO(1) n if and only if S(Fn) ∈ PPAdt
p1

∩ · · · ∩ PPAdt
pm

, and
NS∗

q(Fn) = logO(1) n if and only if S(Fn) ∈ PPAdt
q = PPAdt

p1
& · · · & PPAdt

pm
.

Theorem 5 follows from Theorem 22 and Theorem 23, and we refer to Section 3 for more
details. We believe that it is quite interesting that a seemingly modest modification to the
Nullstellensatz system – changing the RHS from 1 to any c ̸≡ 0 – allows us to capture the
intersections or the joins of the classes, respectively. A second immediate corollary from
Theorem 5 and (the black-box version of) Theorem 1 from [23] is the following:

▶ Corollary 6. For any unsatisfiable CNF F , NS∗
pk (F) = Θ(NSp(F)) for each prime p and

k ≥ 1.

This corollary is quite remarkable for several reasons. Firstly, it is not hard to see that
it fails for arbitrary systems of polynomials, and so this is a statement that can truly only
apply to CNF formulas. Furthermore, in the proof, we can no longer just take an NS∗

pk

proof whose RHS is c and “divide by c” to obtain an NSp proof – this strategy will fail if
c ≡ 0 mod p. Instead, we must take the NS∗

pk proof, convert it to a PPAdt
pk instance, run the

transformation underlying [23] to obtain a PPAdt
p -instance, and finally transform back to a

NSp proof. We see no apparent way to prove this corollary directly in the language of proof
complexity, giving yet another instance where the theory of TFNP provides powerful tools
for understanding proof systems.

1.2.1 Separation Results and Feasible Disjunction
Finally, we remark on our separation results. En-route to proving Theorem 1, we prove
several new oracle separation results for black-box TFNPdt subclasses (cf. Theorem 39). All
of the separation results follow either from known separations, or, from recruiting existing
proof complexity lower-bounds in a new way. The new separation results that we must prove
are:

PLSdt ∩ PPAdt ̸⊆ PPADSdt,
SOPLdt ∩ PPAdt ̸⊆ PPADdt.

To prove these results we use the known characterizations of PPADSdt and PPAdt
3 by proof

systems: namely, unary Sherali-Adams and Z3-Nullstellensatz, respectively, and use existing
lower-bound techniques for these proof systems. For the sake of argument, let us consider
the separation PLSdt ∩ PPAdt. To prove these lower bounds, we do not use the new complete
problems we construct for the intersection class, and rather prove lower bounds directly
against the unsatisfiable CNFs that correspond to, e.g. Either(Sink-of-Dag, Lonely).
Such CNFs are of the form SOD(x) ∧ Lonely(y), where x and y are disjoint sets of variables.

ITCS 2024

74:8 Intersection Classes in TFNP and Proof Complexity

Prior results in the proof complexity literature have shown strong lower bounds for unary
Sherali-Adams against both SOD(x) and Lonely(y), and thus we show how to combine the
lower bounds for both separate formulas into a lower bound for the combined formula.

This is closely related to the notion of feasible disjunction in proof complexity [32].
Roughly speaking, a proof system P has feasible disjunction if whenever there is an efficient
P -proof of a formula F (x) ∧ G(y) for unsatisfiable CNF formulas F (x), G(y) on disjoint
variables, then there is an efficient P -proof of either F (x) or G(y). Feasible disjunction is an
important property in proof complexity, as it is often a precursor to showing that a proof
system has feasible interpolation [31], which is one of the primary lower-bound techniques in
proof complexity. In our separation result we are therefore showing that, for this particular
pair of formulas F and G, unary Sherali-Adams has feasible disjunction (in that lower bounds
for F and G can be lifted to lower bounds for the conjunction F ∧ G), and we use a similar
argument to separate SOPLdt ∩ PPAdt ̸⊆ PPADdt by arguing about Nullstellensatz instead.

Finally, we observe that the proof systems corresponding to any of the intersection
classes inside of TFNPdt cannot have feasible disjunction. For a guiding example, consider
the complexity class SOPLdt = PLSdt ∩ PPADSdt. From prior work [20], it is known that
SOPLdt ≠ PLSdt and SOPLdt ̸= PPADSdt. This implies that the proof system corresponding
to SOPLdt (the Reversible Resolution system [20]) has efficient refutations of the principles
SOD(x) ∧ SOL(y), but it does not have efficient refutations of either SOD(x) or SOL(y),
respectively. Thus, intersection results inside of TFNPdt track closely with the feasible
disjunction property of the corresponding proof systems. We believe that this is a natural
direction for future research.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2 we introduce preliminary notions
that are used throughout the paper, and also discuss the proof systems that we will need.
In Section 3 we prove our classification results for the PPAq classes, as they will be useful
for the rest of the paper. In Section 4 we classify PPAq ∩ PPADS, in Section 5 we classify
PPAq ∩ SOPL, and in Section 6 we classify PPA ∩ PLS. Finally, in Section 7 we prove the
remaining separation results between intersection classes.

2 Proof Systems and Preliminaries

We begin with some general notation that is used throughout the paper. We assume
familiarity with the basics of query algorithms, such as the definition of a decision tree, etc.
Throughout the paper, we use p to represent a prime and q to represent an integer larger
than 1. For a positive integer n, we use [n] to represent {1, · · · , n} and use [n]0 to represent
{0, · · · , n}.

Occasionally, we use an element x to represent the set {x}. If x = 0, it means x is an
empty set ∅.

2.1 TFNP Preliminaries
We now review some preliminary definitions regarding black-box TFNP classes. Our definitions
are borrowed from [20].

▶ Definition 7. A query total search problem R is a sequence of relations {Rn ⊆ {0, 1}n × On},
where On are finite sets, such that for all x ∈ {0, 1}n there is an o ∈ On such that (x, o) ∈ Rn.
A total search problem R is in TFNPdt if for each o ∈ On there is a decision tree To with
depth poly(log n) such that for every x ∈ {0, 1}n, To(x) = 1 iff (x, o) ∈ R.

Y. Li, W. Pires, and R. Robere 74:9

While total search problems are formally defined as sequences R = (Rn), we (following
complexity-theoretic convention) will often refer to the sequence R and an individual problem
Rn interchangeably. An important family of query total search problems come from low-width
unsatisfiable CNF formulas.

▶ Definition 8. For any unsatisfiable CNF formula F := C1 ∧ · · · ∧ Cm over n variables,
define S(F) ⊆ {0, 1}n × [m] by (x, i) ∈ S(F) if and only if Ci(x) = 0.

Such examples are, in fact, canonical: every query total search problem can be re-written
as a total search problem for some unsatisfiable CNF formula:

▶ Definition 9. For any total search problem R ⊆ {0, 1}n × O with solution verifiers To,
o ∈ O, its encoding as an unsatisfiable CNF formula is given by F :=

∧
o∈O ¬To(x) where we

think of ¬To(x) written as a CNF formula (of width determined by the decision tree depth of
To).

We also need notions of reductions between total search problems. The appropriate
definition for black-box TFNP are mapping reductions computable by low (i.e. logO(1) n))
depth decision trees.

▶ Definition 10. Let R ⊆ {0, 1}n × O and S ⊆ {0, 1}m × O′ be total search problems. An
S-formulation of R is a decision-tree reduction (fi, go)i∈[m],o∈O′ from R to S. Formally, for
each i ∈ [m] and o ∈ O′ there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → O such
that

(x, go(x)) ∈ R ⇐= (f(x), o) ∈ S

where f(x) ∈ {0, 1}m is the string whose i-th bit is fi(x). The depth of the reduction is

d := max
(

{D(fi) : i ∈ [m]} ∪ {D(go) : o ∈ O′}
)
,

where D(h) denotes the decision-tree depth of h. The size of the reduction is m, the number
of input bits to S. The complexity of the reduction is log m + d. We write Sdt(R) to denote
the minimum complexity of an S-formulation of R.

We extend these notations to sequences in the natural way. If R is a single search problem
and S = (Sm) is a sequence of search problems, then we denote by Sdt(R) the minimum of
Sdt

m(R) over all m. If R = (Rn) is also a sequence, then we denote by Sdt(R) the function
n 7→ Sdt(Rn).

Using the previous definition we can now define complexity classes of total search problems
via reductions. For total search problems R = (Rn), S = (Sn), we write

Sdt :=
{

R : Sdt(R) = poly(log n)
}

.

2.2 Proof Systems
We consider a general definition of a Resolution-style proof system.

▶ Definition 11. A Resolution-style proof system is a proof system described by a set of
rule inference rules R. Let F be an unsatisfiable CNF formula over variables x1, . . . , xn. A
refutation of F is composed of a sequence of multisets of clauses C1, C2, . . . , Cl such that the
following holds:

ITCS 2024

74:10 Intersection Classes in TFNP and Proof Complexity

C1 contains only weakenings of clauses of F .
The final multiset contains some non-zero number of copies of ⊥.
If the proof system is said to be “with Terminals”, then all clauses other than ⊥ in the
final multiset Cl must be weakenings of clauses from F .
For each i = 1, 2, . . . , l − 1, the multiset Ci+1 is obtained from Ci by applying one of the
rules from the set R. In particular, all the rules we consider consume their premises, that
is the premises are removed from Ci, and the conclusions of the rules are added to Ci+1

The size of the proof is given by
∑l

i=1 |Ci|, and the width of the proof is the maximum width
of any clause appearing in some multiset.

In all the Resolution-style proof systems we consider, the set R will contain the following
rules:

Where D is an arbitrary clause. Import C ∈ F
D ∨ C

C Rev-Weaken
C ∨ xi C ∨ x̄i

C ∨ xi C ∨ x̄i Rev-Res
C

A key point about the bottom two rules is that under a truth assignment x to the variables,
the number of falsified clauses in the premise is always equal to the number of falsified clauses
in the conclusion.

▶ Definition 12 (Resolution). Resolution is a proof system, without terminals, where the
final multiset must contain at least one copy of ⊥. The set of allowed rules is Rev-Weaken,
Rev-Res, Import, and Copy; here, Copy is the rule

C Copy
C C

While this isn’t the usual definition of Resolution our definition can clearly be simulated by
the usual one without changing the width or size by a significant factor.

▶ Definition 13 (Reversible Resolution [20]). Reversible Resolution is a proof system, without
terminals, where the final multiset must contain at least one copy of ⊥. The set allowed rules
are Rev-Weaken, Rev-Res, Import.

The original definition of [20], doesn’t have an import rule and also requires that all clauses
in C1 are clauses from the CNF formula F rather than weakenings. However, the import rule
can be simulated by the Rev-Weaken rule at the cost of blowing up the size of the proof by a
polynomial factor in the size and width of the proof. For each clause D ∨ C that starts in
C1 or that we import later in the proof, we now put C in the starting multiset, and then
proceed one literal from D at time, we use Rev-Weaken to derive l1 ∨ C, l1 ∨ l2 ∨ C, . . .,
D ∨ C. Now we can run the proof ignoring any import. This process doesn’t change the
width of the proof.

▶ Definition 14 (Weighted Resolution-style proof systems). A Weighted Resolution-style proof
system is a Resolution-style proof system with the following modifications:

Every clause appearing in the proof is labeled with a “+” or a “−” sign.
C1 contains only clauses from F or weakenings of such clauses, all such clauses are labeled
with a “+”.
The final multiset contains some number of copies of +⊥.

Y. Li, W. Pires, and R. Robere 74:11

All clauses in the final multiset Cl are labelled with a “+”. In particular, such proof
systems do not have a notion of “with Terminals”.

Again, the size of the proof is given by
∑l

i=1 |Ci|, and the width of the proof is the maximum
width of any clause appearing in some multiset.
For all the weighted resolution proofs systems we consider, the set of inference rules R
contains a + and − version of Rev-Res, Rev-Weaken, and Import. These correspond to the
rules defined previously, but now either all the premises and conclusions are labeled with a
“+” or they are all labeled with a “−”. For instance the + Rev-Weaken rule is the following
one:

+C + Rev-Weaken+C ∨ xi + C ∨ x̄i

▶ Definition 15 (Unary Weighted Resolution). Unary Weighted Resolution is a weighted proof
system, where the final multiset must contain at least one copy of +⊥. The set of allowed
rules is ±Rev-Weaken, ±Rev-Res, ± Import, Sign-Intro, Sign-Elim. By ±Rev-Weaken we
mean both the “+” and “−” versions of Rev-Weaken, and similarly for the two other rules.
Here, Sign-Intro and Sign-Elim are the following rules:

Sign Intro+C − C

+C − C Sign Elim
Unary Weighted Resolution as a proof system was already studied in [3], where it was

shown to be equivalent to the semialgebraic proof system unary Sherali-Adams, defined next.
▶ Definition 16. Given a CNF F = C1 ∧ . . .∧Cm, over variables x1, . . . , xn, a Unary Sherali-
Adams (uSA) refutation of F is given by a set of polynomials {Pi} ∪ {J0} ∈ Z[x1, . . . , xn]
such that :

m∑
i=1

PiC̄i = J0 + c

Where c is a constant such that c ∈ N≥1 is some constant and J0 is a conical junta, that is a
polynomial of the form

∑
k ck

∏
i∈Sk

xi

∏
j∈Tk

(1 − xj), where ck ∈ N.
The degree of the proof is defined as max ({deg(Pi) + deg(Ci)|i ∈ [m]} ∪ {deg(J0)}). The

size of the proof is defined as follows: fully expand each of PjC̄i and J0 and before cancellation,
sum the absolute value of the coefficient appearing in front of each monomial.

3 Characterization of PPAq

We first include the definition of problem Lonelyq, which is complete for the class PPAq for
any integer q ≥ 2 [23].
▶ Definition 17 (Lonelyq). The problem is defined by considering a vertex set V , where
|V | ≡ 0 mod q. We are also given a set V ∗ ⊆ V of distinguished nodes, with |V ∗| ≤ q − 1.
Each node v ∈ V has a successor pointer sv ∈ V . For nodes v1, . . . , vq we add the hyperedge
{v1, . . . , vq} iff sv1 = v2, sv2 = v3 . . . , svq

= v1.
The goal of the search problem is to output either:
v ∈ V ∗ if v is an hyperedge;
v ∈ V \ V ∗ if v isn’t in an hyperedge, i.e. v is lonely.

Often, we will abuse notation and say that we add the hyperedge e := {v1, . . . , vq} to a
Lonelyq instance. This can be done by fixing some ordering on the nodes in V in advance,
and then make each node v ∈ e output the next element in e according to the ordering,
unless v is the last node, in which case it outputs the first node according to the ordering.

ITCS 2024

74:12 Intersection Classes in TFNP and Proof Complexity

3.1 Proof systems for PPAq

3.1.1 Rq-Resolution with Terminals
In this section, we show the equivalence between PPAq and a new Resolution style proof
system called Rq-Resolution with Terminals. The key characteristic of this proof system is
that it is allowed to create or remove q copies of an arbitrary clause C, thus preserving the
number of copies mod q. This equivalence between PPAq and Rq-Resolution with Terminals
will be useful in later sections, in particular when we examine Resolution-style proof systems
for PPA ∩ PLS and PPAq ∩ SOPL.

▶ Definition 18. Let q ≥ 2. The clause deduction rules Fq-Elim and Fq-Intro are defined as
follows:

C . . . C Fq-Elim
Fq-Intro

C . . . C

The two above rules respectively allow us to remove q copies of an arbitrary clause C from a
multiset, or add them.

Define the inference rule set Rq = {Rev-Res, Rev-Weaken, Import,Fq-Elim,Fq-Intro}.
The proof system Rq-Resolution with Terminals, ResTRq

, is a Resolution-style proof system
with Terminals, where the final multiset must contain c copies of ⊥ for some 1 ≤ c < q.

Let F be an unsatisfiable CNF formula. Any ResTRq
refutation of F of size s and width

w, can be turned into another proof of size sO(1) and width w where the final multiset
contains only copies of ⊥.

▶ Theorem 19. Let F be an unsatifiable CNF formula,
If there is a depth d, size s Lonelyq formulation of S(F) then there is ResTRq

refutation
of F of size sO(1)2O(d) and width O(d).
If there is a width w, size s ResTRq

refutation of F then there is depth w + 1, size O(s)
Lonelyq formulation of S(F).

3.1.2 Nullstellensatz over Zq

In this section, we show the equivalence between PPAq and NS∗
q for all q ≥ 2. In particular,

this implies that NS∗
q and ResTRq

are equivalent as proof systems. The equivalence between
NSp and PPAp was already shown in [21] for p = 2 and [27] any prime p. However, this new
equivalence allows us to use the characterizations of PPAq from [23] to study the relative
powers of NS∗ and NSq in Section 3.2 for composite q.

▶ Theorem 20. Let F be an unsatisfiable CNF formula,
If there is a depth d, size s Lonelyq formulation of S(F) then there is NS∗

q refutation of
F of size sO(1)2O(d) and degree O(d).
If there is a degree d, size s NS∗

q refutation of F then there is depth O(d), size sO(1)

Lonelyq formulation of S(F).

3.2 Characterizations of Nullstellensatz
Using the relationship between NS∗

q and PPAq from the above, we can obtain an interesting
characterization of Nullstellensatz over Zq. In particular, we informally have that NS∗

q =⋃
p|q NSp, while NSq =

⋂
p|q NSp. This roughly states that an unsatisfiable CNF formula

Y. Li, W. Pires, and R. Robere 74:13

has a low degree NS∗
q refutation if and only if has a low degree refutation in NSp for some

prime p diving q. On the other hand, an unsatisfiable CNF formula has a low degree NSq

refutation if and only if has a low degree refutation in NSp for all prime p diving q.
Before proving these statements, note that a consequence of Theorem 3 is that PPAp =

PPApk . While [23] don’t prove the above theorem using the language of query TFNP, we
can easily extract from their proof the following :

▶ Lemma 21. Let F be an unsatisfiable CNF formula. A size s, depth d Lonelypk formulation
of S(F), can be turned into a size sO(1) depth Θ(d) Lonelyp formulation of S(F).

In the proof of [23] each node v in the Lonelyp instance, corresponds to a subset Sv of at
most pk vertices from the Lonelypk instance. The successor function of v is computed by
looking at all the hyperedges the nodes of Sv are. This can be computed by looking at O(p2k)
decision trees. Finally a node v is lonely in the Lonelyp instance if and only if all the nodes
in Sv were lonely, so when v is a solution, we can just run the decision tree of v1 ∈ S.

We first have the following theorem regarding NS∗
q :

▶ Theorem 22. Let F be an unsatisfiable CNF formula, and q ≥ 2
If NS∗

q(F) = d then NSp(F) = O(d) for some prime p|q.
If NSp(F) = d for some prime p|q, then NS∗

q(F) = O(d).

We also have the following theorem:

▶ Theorem 23. Let F be an unsatisfiable CNF formula, and q ≥ 2
If NSq(F) = d then NSp(F) = O(d) for all primes p|q.
If NSp(F) ≤ d for all primes p|q, then NSq(F) = O(d).

4 Characterizations of PPAq ∩ PPADS

In this section, we focus on the intersection class PPAq ∩ PPADS for any constant integer
q ≥ 2 (so the class PPA ∩ PPADS is a special case in it). We first provide a graphical problem
called SOLq, which we show is complete for PPAq ∩PPADS. This is the first complete problem
distinct from Either(Lonelyq, SOL).

Next, we provide proof systems that characterize PPAq ∩ PPADS. In particular, we define
q-Sherali-Adams (in Section 4.2) and q-Weighted Reversible Resolution (in Section 4.3) and
show SOLq is complete for them.

4.1 A complete problem for PPAq ∩ PPADS
We first provide the definition of SOLq. Notably, when q = 2 (i.e., consider PPA ∩ PPADS),
our definition naturally preserves the graphical structure of the original PPA and PPADS
complete problems. It can be rephrased as follows: Given a directed graph in which every
node has degree at most two (with some conditions) and a distinguished out-degree-1 source,
find another degree-1 node.

▶ Definition 24 (SOLq). The problem is defined on a graph G = (V, E), where V = V1 ∪ V2.
For input, we are given a subset V ∗ ⊆ V1 with 1 ≤ |V ∗| ≤ q − 1 as distinguished sources, a
successor pointer sv ∈ V1 ∪ {0} for each node v ∈ V1, a predecessor pointer pv ∈ V ∪ {0} for
each node v ∈ V1 \ V ∗, and a successor pointer sv ∈

(
V1
q

)
∪ {∅} for each node v ∈ V2.

For v, u ∈ V , we add edge (v, u) ∈ E if and only if u ∈ sv and v ∈ pu.
The goal of the search problem is to output either:

ITCS 2024

74:14 Intersection Classes in TFNP and Proof Complexity

v ∈ V ∗ if it has out-degree 0, i.e., it is not a source;
v ∈ V1 \ V ∗ if it has degree 1, i.e., it is a source or a sink; or
v ∈ V2 if deg+(v) ̸∈ {0, q} (equivalently deg+(v) ̸≡ 0 mod q).

Intuitively, the problem SOLq defined above is the same way as SOL except that
The vertex set is split into V1 and V2. Where nodes in V1 have in and out-degree at most
1, and nodes in V2 have in-degree 0 and out-degree at most q.
It is allowed to have sources with out-degree at most q (corresponding to nodes in V2);
and
We are given at least 1, at most q − 1 distinguished sources; the out-degree of each of
them is at most one (meaning that they are all from V1).

▶ Theorem 25. SOLq is PPAq ∩ PPADS-complete.

4.2 q-Sherali-Adams

In this section we show the equivalence between PPAq ∩ PPADS and q-Sherali Adams.
Intuitively, a q-Sherali Adams proof is a more restricted Sherali-Adams proof, but taking the
proof mod q gives a NS∗

q proof. As such, the following seems like a natural proof system for
the intersection of PPAq (NS∗

q) and PPADS (uSA).

▶ Definition 26. Let F = C1 ∧ . . . ∧ Cm be a CNF over variables x1, . . . , xn. A q-Sherali-
Adams (SAq) refutation of F is a unary Sherali-Adams refutation, with the further constraints
that 1 ≤ c ≤ q − 1 and the conical junta J0 can be written as q ∗ J ′

0. That is, if we write
J0 =

∑
k ck

∏
i∈Sk

xi

∏
j∈Tk

(1 − xj) then we always have ck ≡ 0 mod q.

We have the following equivalence between SAq and SOLq.

▶ Theorem 27. Let F be an unsatisfiable CNF formula,
If there is a depth d, size s SOLq formulation of S(F) then there is SAq refutation of F

of size sO(1)2O(d) and degree O(d).
If there is a degree d, size s SAq refutation of F then there is depth O(d), size sO(1) SOLq

formulation of S(F).

4.3 ±Rq-Weighted Resolution

In this section, we consider a form of Resolution, which we will show characterize PPAq ∩
PPADS formulations.

▶ Definition 28 (±Rq-Weighted Resolution). Let q ≥ 2. Define the weighted analogues of the
Fq-Elim and Fq-Intro rules as follows:

+C . . . + C − C . . . − C ±Fq Elim

±Fq Intro
+C . . . + C − C . . . − C

where there are q copies of + and − clauses in the above rules.

Y. Li, W. Pires, and R. Robere 74:15

Define the inference rule set

±Rq = {Intro, ±Rev-Res, ±Rev-Weaken, ±Import, ±Fq-Intro, ±Fq-Elim} .

The proof system ±Rq-Weighted Resolution, WRes±Rq
, is a weighted Resolution-style system

where the final multiset must contain c copies of +⊥ where 1 ≤ c ≤ q − 1 . Furthermore, all
clauses in the final multiset must be labeled with a “+”, and must be either a weakening of a
clause from F or +C must appear a multiple of q times.

To show the equivalence between WRes±Rq and PPAq ∩ PPADS, we will use the PPADS
complete problem Inj-PHP, defined as follow :

▶ Definition 29 (Inj-PHP). The problem is defined by two sets P and H, where |P | = |H|+1.
We view P as a set of pigeons and H as a set of holes. As input we are given for each pigeon
p ∈ P a hole sv, and for each hole h ∈ H we are given a pigeon sh.

We add an edge from p ∈ P to h ∈ H (the pigeon p flew into the hole h) if sp = h and
sh = p.

The goal of the search problem is to output a missing pigeon, i.e., p ∈ P such that p has
out-degree 0.

We then have the following characterization of WRes±Rq proofs.

▶ Theorem 30. Let F be an unsatisfiable CNF formula,
If there are both a Lonelyq and a Inj-PHP formulation of S(F) of depth d and size s,
then there is a width O(d) and size sO(1)2O(d) WRes±Rq

.
If there is width w and size s WRes±Rq refutation of F . Then there is depth O(w), size
sO(1) SOLq formulation of S(F).

5 Characterizations of PPAq ∩ SOPL

In this section, we provide our characterizations (complete problem and proof system) of
PPAq ∩ SOPL for any constant integer q ≥ 2.

5.1 A complete problem for PPAq ∩ SOPL
We define a total search problem EOPLq and show it is complete for PPAq ∩ SOPL. Recall
that SOPL is essentially PPADS with extra potential on the nodes. We can expect that
EOPLq can be defined from SOLq in the same way (by adding potential on nodes). However,
from the proof system perspective, we would like the potential increase by exactly one along
the path. Also in some cases, it would be helpful to think about problems with potential on
a grid, as introduced in [19]. These lead to the following definition.

▶ Definition 31 (EOPLq). The problem is defined on a grid [L] × [2L]. As input, we are
given a subset V ∗ ⊆ [L] with 1 ≤ |V ∗| ≤ q − 1 as distinguished sources, a successor pointer
si,j ∈ [L]0 for each node (i, j) ∈ [L] × [L], a predecessor pointer pi,j ∈ [2L]0 for each
node (i, j) ∈ {2, · · · , L} × [L], and a successor pointer si,α ∈

([L]
q

)
∪ {∅} for each node

(i, α) ∈ [L] × ([2L] \ [L]).
For i ∈ [L − 1] and a, b ∈ [2L], we add an edge between (i, a) and (i + 1, b) if and only if

b ∈ si,a and a ∈ pi+1,b.
The goal of the search problem is to output either:
(1, j) for j ∈ V ∗ if (1, j) has out-degree 0, i.e., it is not a source;
(L, j) for j ∈ [L] if s(L,j) ̸= 0;

ITCS 2024

74:16 Intersection Classes in TFNP and Proof Complexity

(i, j) ∈ ([L] × [L]) \ ({1} × V ∗) if (i, j) has degree 1, i.e., it is a source or a sink; or
(i, α) ∈ [L] × ([2L] \ [L]) if deg+(i, α) ̸∈ {0, q} (equivalently deg+(i, α) ̸= 0 mod q).

We often refer to the nodes in the first L rows as type 1 and the nodes in the last L rows as
type 2. We note that we can always equivalently consider instances for which the nodes on
the last layer have no successor points, so there will be no second type of solution. However,
we use the current definition of EOPLq for simplicity when we work on proof systems later.

▶ Theorem 32. EOPLq is PPAq ∩ SOPL-complete.

5.2 R−
q -Resolution with Terminals

In this section, we show the equivalence between PPAq ∩ SOPL and the Resolution style
proof system R−

q -Resolution with Terminals. Intuitively, this proof system should be weaker
than both Reversible Resolution (SOPL) and ResTRq

(PPAq). Reversible Resolution, doesn’t
have the ability to generate copies of an arbitrary clause C, as such the intersection of both
proof systems shouldn’t have the Fq Intro rule and it should have terminals. Intuitively, the
reason that we are able to keep the Fq Elim rule, is that Reversible Resolution is a proof
system that doesn’t have terminals, so it has no need to “clean up” clauses, and thus even
if it had the Fq-Elim rule it likely wouldn’t be more powerful. For these reasons, it seems
natural that the proof system characterizing PPAq ∩ SOPL should just be ResTRq

, but with
the Fq-Intro rule removed.

▶ Definition 33 (R−
q -Resolution with Terminals). Define the inference set R−

q := Rq \
{Fq-Intro}. The Resolution-style proof system R−

q -Resolution with Terminals, ResTR−
q

, is a
Resolution-style proof system with terminals where the final multiset must contain c copies of
⊥, where 1 ≤ c < q.

We have the following equivalence between ResTR−
q

and PPAq ∩ SOPL.

▶ Theorem 34. Let F be an unsatisfiable CNF formula,
If there is a depth d, size s EOPLq formulation of S(F) then there is ResTR−

q
refutation

of F of size sO(1)2O(d) and width O(d).
If there is a width w and size s ResTR−

q
refutation of F . Then there is depth O(w), size

sO(1) EOPLq formulation of S(F).

6 Characterizations of PPA ∩ PLS

6.1 A complete problem for PPA ∩ PLS
Ishizuka [25] has studied the intersection of PPA and PLS, giving a complete problem called
PotentialOdd. In this section, we define a new complete problem on the grid, which is a
slightly different variant of PotentialOdd. Ultimately, our main motivation here is to show
the proof system defined in the subsequent section characterizes the class PPA ∩ PLS, and
our complete problem serves as the key bridge.

Intuitively, the problem defined below is the same as EOPL2 except the nodes in V1 =
[L] × [L] can have at most three predecessors.

▶ Definition 35 (MaxOdd). The problem is defined on a grid [L] × [2L], where (1, 1) is the
distinguished source. As input, we are given a successor pointer si,j ∈ [L]0 for each node
(i, j) ∈ [L]× [L], a predecessor pointer pi,j ∈ ∪3

k=0
([2L]

k

)
for each node (i, j) ∈ {2, · · · , L}× [L],

and a successor pointer si,j ∈
([L]

2
)

∪ {∅} for each node (i, α) ∈ [L] × ([2L] \ [L]).

Y. Li, W. Pires, and R. Robere 74:17

For i ∈ [L − 1] and a, b ∈ [2L], we add an edge between (i, a) and (i + 1, b) if and only if
b ∈ si,a and a ∈ pi+1,b.

The goal of the search problem is to output either:
(1, 1) if (1, 1) has out-degree 0, i.e., it is not a source;
(L, j) for j ∈ [L] if s(L,j) ̸= 0;
(i, a) ∈ ([L] × [2L]) \ (1, 1) if (i, a) has odd degree; or
(i, a) ∈ [L] × [2L] if deg−(i, a) ̸= 0 and deg+(i, a) = 0, i.e., (i, a) is a sink.

To avoid confusion, we note that we can without loss of generality consider instances of
MaxOdd such that they are “promised” not to have the first and second type solutions,
namely, (1, 1) is promised to be a source and s(L,j) is promised to be 0. This follows from an
easy argument by locally changing the graph; we omit details of it.

▶ Theorem 36. MaxOdd is PPA ∩ PLS-complete.

6.2 Rcopy
2 -Resolution with Terminals

In this section, we show the equivalence between PPA ∩ PLS and the Resolution style proof
system Rcopy

2 -Resolution with Terminals. Despite the fact that the set of inference rules
Rcopy

2 defining the system are relatively simple, the proof of this characterization is (by far)
the most technical result in this work.

Intuitively, this proof system should be less powerful than ResTR2 , where we can create
2 copies of an arbitrary clause C. The proof system should also be weaker than Resolution,
where we can’t generate copies of an arbitrary clause, but we can make an extra copy of C if
it has already been derived. A natural intersection of the Copy rule and the F2-Intro rule is
the following F2-Copy rule: C ⊢ C, C, C. This allows us to both copy clauses and preserve
the parity of each multiset, and as such it seems natural that the following proof system
should correspond to the intersection of PPA (ResTR2) and PLS (Resolution).

▶ Definition 37 (Rcopy
2 -Resolution with Terminals). The F2-Copy rule is defined to be

C F2-Copy
C C C

Define the set of inference rules Rcopy
2 := R2 ∪ {F2-Copy} \ {F2-Intro}. The proof system

Rcopy
2 -Resolution with Terminals, ResTRcopy

2
, is a Resolution-style proof system with terminals

where the final multiset must contain a copy of ⊥.

We have the following equivalence between WRes±Rq and PPAq ∩ PPADS.

▶ Theorem 38. Let F be an unsatisfiable CNF formula,

If there is a depth d, size s MaxOdd formulation of S(F) then there is ResTR−
q

refutation
of F of size sO(1)2O(d) and width O(d).
If there is a width w and size s ResTRcopy

2
refutation of F . Then there is a SOD and a

Lonely formulation of S(F), each of depth O(w) and size sO(1).

7 Separations

In this section we provide oracle separations between the newly introduced intersection
classes PPA ∩ PLS, PPA ∩ PPADS, PPA ∩ SOPL and the previously defined TFNP classes.
These separation results, combined with earlier separation results, imply that no further
collapses occur in the black-box setting. The next theorem records the main new separation
results.

ITCS 2024

74:18 Intersection Classes in TFNP and Proof Complexity

▶ Theorem 39. We have the following separations in the decision-tree setting (and thus,
also with respect to a generic oracle O):

PLSdt ∩ PPAdt ̸⊆ PPADSdt,
SOPLdt ∩ PPAdt ̸⊆ PPADdt.

The theorem clearly implies that the three classes SOPLdt = PPADSdt ∩ PLSdt, PLSdt ∩
PPAdt, and PPADSdt ∩ PPAdt are all distinct in the black-box model, as if any two collapsed
then it would either violate the new non-containment above, or, one of the known separations
SOPLdt ̸⊆ PPAdt [20] or PPADdt ̸⊆ PLSdt [29, 4]. By a similar argument, none of the three
classes can collapse downwards to SOPLdt ∩ PPAdt, as this would similarly violate those
separation results. We further note that none of the classes PLSdt, PPADSdt or PPAdt can
collapse downwards to any of SOPLdt, PLSdt ∩ PPAdt, or PPADSdt ∩ PPAdt, as this would
violate the known separations between the classes PLSdt, PPADSdt, and PPAdt [1, 20]. Finally,
if PPADSdt ∩ PPAdt or SOPLdt ∩ PPAdt were contained in PPADdt then the above theorem
will be violated, and conversely if PPADdt ⊆ SOPLdt ∩ PPAdt then PPADdt ⊆ PLSdt, which
violates a known separation due to [29, 4]. Thus, once we prove Theorem 39 the classification
theorem Theorem 1 will be completely proved.

7.1 Separations for PLS ∩ PPA
In this section we show the following lemma.

▶ Theorem 40. PLSdt ∩ PPAdt ̸⊆ PPADSdt.

This separation follows by combining several tools from the literature. First, we crucially
rely on the following characterization of PPADSdt via low-degree Sherali-Adams refutations.

▶ Theorem 41 ([20]). A query total search problem R ∈ PPADSdt iff the associated family
of unsatisfiable CNF formulas FR has logO(1)(n)-degree, quasipolynomial-size Sherali-Adams
refutations over Z where the coefficients are written in unary.

We also need the characterization of Sherali-Adams degree by pseudoexpectation operators.
If F is an unsatisfiable CNF formula, recall that a degree-d pseudoexpectation operator Ẽ is a
linear functional mapping multilinear polynomials p to Q such that the following holds:

Ẽ[1] = 1
For every clause C in F and every monomial m with deg(Cm) ≤ d, Ẽ[Cm] = 0
For every clause C with deg(C) ≤ d, Ẽ[C] ≥ 0.

The following result characterizes the minimum degree of Sherali-Adams refutations in terms
of the existence of pseudoexpectation operators.

▶ Theorem 42 ([18]). For any CNF formula F , there is no degree-d Sherali-Adams refutation
of F if and only if there is a degree-d pseudoexpectation operator Ẽ for F .

We also use the following result [24, 18] showing the existence of a pseudoexpectation
operator for certain unsatisfiable systems of 3XOR equations.

▶ Theorem 43. There are unsatisfiable systems Ax = b of 3XOR equations on n variables
and m = O(n) constraints such that any Sherali-Adams refutation of the CNF encoding of
Ax = b requires degree Ω(n). Furthermore, there is a pseudoexpectation Ẽ witnessing this
such that 2− deg(m) ≤ |Ẽ[m]| ≤ 1 for every monomial m.

Finally, we will use the characterization of PPAdt by Nullstellensatz degree over F2.

Y. Li, W. Pires, and R. Robere 74:19

▶ Theorem 44 ([22]). Let F be an unsatisfiable CNF formula. If there is a degree-d, size-s
Nullstellensatz refutation of F over F2, then there is a PPAdt formulation of S(F) with depth
O(d) and size O(s2d).

We combine these results together to prove the above separation.

Proof of Theorem 40. We show that if PLSdt ∩ PPAdt ⊆ PPADSdt, then PLSdt ⊆ PPADSdt.
This violates the known separation PLSdt ̸⊆ PPADSdt due to [20].

Define the unsatisfiable CNF formula Fn := SoDn(x) ∧ Gn(y), where the formulas are
understood to be on disjoint sets of variables, and the formula Gn(y) is the CNF encoding of
the 3XOR system from Theorem 43. We first observe that there is a O(m)-size, O(1)-degree
NS2 refutation of Gn(y). We may assume without loss of generality that the system of
equations Ay = b is minimally unsatisfiable, and thus summing up all equations yields 0 = 1.
Expand Gn(y) =

∧m
i=1

∧
j Cij , where

∧
j Cij are the clauses encoding the ith XOR constraint

aiy = bi. Since summing up all equations in the system Ay = b yields the system 0 = 1, it
follows that

m∑
i=1

∑
j

Cij = 1 mod 2

which is exactly our O(m)-size, O(1)-degree Nullstellensatz refutation of Gn(y). By applying
Theorem 44, we can therefore write Gn(y) = Lonelyp(n)(T (y)) for some polynomial p and
some O(1)-depth decision-tree substitution T . Applying the assumption that PLSdt ∩PPAdt ⊆
PPADSdt and the characterization of PPADSdt by Sherali-Adams refutations, we can conclude
that Fn has a logO(1) n-degree Sherali-Adams refutation of quasipolynomial size, where every
coefficient is written in unary.

Now, writing SoDn =
∧

j Dj , consider the Sherali-Adams refutation of Fn

−1 =
∑

k

pkDk +
m∑

i=1

∑
j

qijCij + J

where pk and qij are logO(1) n-degree polynomials, and J is a logO(1) n-degree conical
junta, all over the variables x, y. Let Ẽ be the pseudoexpectation for Gn(y) guaranteed by
Theorem 40, and note that 1/2deg(m) ≤ |Ẽ[m]| ≤ 1 for every monomial m over the y variables.
Extend Ẽ to apply to polynomials over both x and y variables by defining

Ẽ

∏
i

xi

∏
j

yj

 =
∏

i

xi · Ẽ

∏
j

yj

 ,

and then extending Ẽ to apply to all polynomials over x and y variables by linearity. Applying
Ẽ to the Sherali-Adams refutation yields

−1 = Ẽ[−1]

=
∑

k

Ẽ[pkDk] +
m∑

i=1

∑
j

Ẽ[qijCij] + Ẽ[J]

=
m∑

i=1

∑
j

q′
ijCij + J ′.

where q′
ij and J ′ are new polynomials and conical juntas over only x variables, respectively.

Finally, we note that since the original Sherali-Adams refutation had degree logO(1) n and

ITCS 2024

74:20 Intersection Classes in TFNP and Proof Complexity

total coefficient size nlogO(1) n, then since 1/2deg(m) ≤ |Ẽ[m]| ≤ 1 for every monomial m, it
follows that the new Sherali-Adams refutation also has bounded coefficient size. Thus the
above is a quasipolynomial-size, logO(1) n-degree Sherali-Adams refutation of SoDn, implying
PLSdt ⊆ PPADSdt, which is a contradiction. ◀

7.2 Separations for SOPL ∩ PPA
In this section we show the following lemma.

▶ Lemma 45. SOPLdt ∩ PPAdt ̸⊆ PPADdt.

This result follows from prior lower-bound results, along with the following characterization
of PPADdt via Nullstellensatz with integer coefficients.

▶ Theorem 46 ([20]). A query total search problem R ∈ PPADdt iff the associated family of
unsatisfiable CNF formulas FR has a logO(1)(n)-degree, quasipolynomial-size Nullstellensatz
refutation over Z when the coefficients are written in unary.

References
1 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.

The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.
doi:10.1006/jcss.1998.1575.

2 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of the 35th
Symposium on Foundations of Computer Science (FOCS), pages 794–806, 1994. doi:10.1109/
SFCS.1994.365714.

3 Ilario Bonacina and Maria Luisa Bonet. On the strength of sherali-adams and nullstellensatz
as propositional proof systems. In Proceedings of the 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3531130.3533344.

4 Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In Proceedings of the 19th IEEE Conference on Computational
Complexity (CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

5 Sam Buss, Noah Fleming, and Russell Impagliazzo. TFNP characterizations of proof systems
and monotone circuits. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer
Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA,
volume 251 of LIPIcs, pages 30:1–30:40. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.ITCS.2023.30.

6 Sam Buss and Jan Krajícek. An application of boolean complexity to separation problems in
bounded arithmetic. Proceedings of the London Mathematical Society, 69:1–21, 1994.

7 Samuel R Buss. Lower bounds on nullstellensatz proofs via designs. Proof complexity and
feasible arithmetics, 39:59–71, 1996.

8 Samuel R. Buss and Alan S. Johnson. Propositional proofs and reductions between NP search
problems. Ann. Pure Appl. Log., 163(9):1163–1182, 2012. doi:10.1016/j.apal.2012.01.015.

9 Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of arrow-debreu
equilibria in markets with additively separable utilities. In 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pages 273–282. IEEE Computer Society, 2009. doi:10.1109/FOCS.2009.29.

10 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. J. ACM, 56(3):14:1–14:57, 2009. doi:10.1145/1516512.1516516.

https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1145/3531130.3533344
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.4230/LIPIcs.ITCS.2023.30
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1145/1516512.1516516

Y. Li, W. Pires, and R. Robere 74:21

11 Xi Chen, David Durfee, and Anthi Orfanou. On the complexity of nash equilibria in anonymous
games. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 381–390. ACM, 2015. doi:10.1145/2746539.2746571.

12 Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone markets.
J. ACM, 64(3):20:1–20:56, 2017. doi:10.1145/3064810.

13 Bruno Codenotti, Amin Saberi, Kasturi R. Varadarajan, and Yinyu Ye. The complexity of
equilibria: Hardness results for economies via a correspondence with games. Theor. Comput.
Sci., 408(2-3):188–198, 2008. doi:10.1016/j.tcs.2008.08.007.

14 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009. doi:10.1137/
070699652.

15 Ben Davis and Robert Robere. Colourful TFNP and propositional proofs. In Amnon Ta-Shma,
editor, 38th Computational Complexity Conference, CCC 2023, July 17-20, 2023, Warwick, UK,
volume 264 of LIPIcs, pages 36:1–36:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.CCC.2023.36.

16 John Fearnley, Paul Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. J. ACM, 70(1):7:1–7:74, 2023. doi:10.1145/3568163.

17 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential line.
J. Comput. Syst. Sci., 114:1–35, 2020. doi:10.1016/j.jcss.2020.05.007.

18 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Foundations and Trends in Theoretical Computer Science, 14(1-2):1–221,
2019. doi:10.1561/0400000086.

19 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in TFNP. In Shachar Lovett, editor, 37th Computa-
tional Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume
234 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CCC.2022.33.

20 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 1150–1161. IEEE, 2022. doi:10.1109/FOCS54457.2022.00111.

21 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and tfnp. Electron. Colloquium Comput. Complex., TR18-163, 2018. URL:
https://eccc.weizmann.ac.il/report/2018/163.

22 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume
124 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITCS.2019.38.

23 Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the complexity
of modulo-q arguments and the chevalley-warning theorem. In Proceedings of the 35th
Computational Complexity Conference, CCC ’20, Dagstuhl, DEU, 2020. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2020.19.

24 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theor. Comput. Sci., 259(1-2):613–622, 2001. doi:10.1016/S0304-3975(00)00157-2.

25 Takashi Ishizuka. The complexity of the parity argument with potential. J. Comput. Syst.
Sci., 120:14–41, 2021. doi:10.1016/j.jcss.2021.03.004.

26 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79–100, 1988. doi:10.1016/0022-0000(88)90046-3.

27 Pritish Kamath. Some hardness escalation results in computational complexity theory. PhD
thesis, Massachusetts Institute of Technology, 2019.

ITCS 2024

https://doi.org/10.1145/2746539.2746571
https://doi.org/10.1145/3064810
https://doi.org/10.1016/j.tcs.2008.08.007
https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://doi.org/10.4230/LIPIcs.CCC.2023.36
https://doi.org/10.1145/3568163
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1561/0400000086
https://doi.org/10.4230/LIPIcs.CCC.2022.33
https://doi.org/10.1109/FOCS54457.2022.00111
https://eccc.weizmann.ac.il/report/2018/163
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.4230/LIPIcs.CCC.2020.19
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1016/j.jcss.2021.03.004
https://doi.org/10.1016/0022-0000(88)90046-3

74:22 Intersection Classes in TFNP and Proof Complexity

28 Ruta Mehta. Constant rank two-player games are ppad-hard. SIAM J. Comput., 47(5):1858–
1887, 2018. doi:10.1137/15M1032338.

29 Tsuyoshi Morioka. Classification of search problems and their definability in bounded arithmetic.
Master’s thesis, University of Toronto, 2001. URL: https://www.collectionscanada.ca/
obj/s4/f2/dsk3/ftp04/MQ58775.pdf.

30 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

31 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

32 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theor. Comput. Sci.,
295:323–339, 2003. doi:10.1016/S0304-3975(02)00411-5.

33 Pavel Pudlák. On the complexity of finding falsifying assignments for herbrand disjunctions.
Arch. Math. Log., 54(7-8):769–783, 2015. doi:10.1007/s00153-015-0439-6.

34 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56–87, 1991. doi:10.1137/0220004.

A Missing Definitions of TFNP Problems

▶ Definition 47 (SOL). The problem is defined on a graph with [n] nodes. As input, we are
given a successor pointer sv ∈ [n] for every v ∈ [n], and a predecessor pointer pv ∈ [n]0 for
every v ∈ [n] \ {1}.

For v, u ∈ [n], we add edge edge (v, u) if and only if u ∈ sv and v ∈ su.
The goal of the search problem is to output either:
The node 1 if deg+(1) ̸= 1, i.e., it is not a source.
The node v if deg−(v) = 1 and deg+(v) = 0, i.e., it is a sink.

▶ Definition 48 (SOD). The problem is defined on a grid [L] × [L], where the node (1, 1) is
the distinguished source. As input, we are given a successor pointer si,j ∈ [L]0 for each node
(i, j) ∈ [L] × [L].

We say a node (i, j) is active if si,j ̸= 0, otherwise it is inactive.
The goal of the search problem is to output either
(1, 1) if s1,1 = 0, i.e., it is not a source;
(n, j) if sn,j ̸= 0, i.e., it is an active sink;
(i, j) if si,j ̸= 0 and si+1,si,j

= 0, i.e., (i, j) is active and (i + 1, si,j) is a sink.

Intuitively, the SOPL defined below is the same as SOD but also has the predecessor
pointer.

▶ Definition 49 (SOPL). The problem is defined on a grid [L] × [L], where (1, 1) is the
distinguished source. As input, we are given a successor pointer si,j ∈ [L]0 for each node
(i, j) ∈ [L] × [L], and a predecessor pointer pi,j ∈ [L]0 for each node (i, j) ∈ ([L] \ {1}) × [L].

We add an edge between (i, j) and (i + 1, k) for i ∈ [L − 1] and j, k ∈ [L] if and only if
si,j = k and pi+1,k = j.

The goal of the search problem is to output either
(1, 1) if deg+(1, 1) = 0, i.e., (1, 1) is a source;
(n, j) if sn,j ̸= 0, i.e., it is an active sink;
(i, j) if deg+(i, j) = 1 and deg+(i + 1, si,j) = 0, i.e., (i, j) is active and (i + 1, si,j) is a
sink.

https://doi.org/10.1137/15M1032338
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.2307/2275583
https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1137/0220004

	1 Introduction
	1.1 Propositional Proof Complexity and Black-Box TFNP
	1.2 Main Results
	1.2.1 Separation Results and Feasible Disjunction

	1.3 Paper Organization

	2 Proof Systems and Preliminaries
	2.1 TFNP Preliminaries
	2.2 Proof Systems

	3 Characterization of {{PPA_q}}
	3.1 Proof systems for {{PPA_q}}
	3.1.1 R_q-Resolution with Terminals
	3.1.2 Nullstellensatz over {Z_q}

	3.2 Characterizations of Nullstellensatz

	4 Characterizations of {{PPA_q}} PPADS
	4.1 A complete problem for {{PPA_q}} PPADS
	4.2 q-Sherali-Adams
	4.3 +/- R_q-Weighted Resolution

	5 Characterizations of {{PPA_q}} {SOPL}
	5.1 A complete problem for {{PPA_q}} {SOPL}
	5.2 R_q^–Resolution with Terminals

	6 Characterizations of PPAPLS
	6.1 A complete problem for PPAPLS
	6.2 R_2^{copy}-Resolution with Terminals

	7 Separations
	7.1 Separations for PLSPPA
	7.2 Separations for {SOPL} PPA

	A Missing Definitions of TFNP Problems

