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Abstract
We define a new complexity class TFAP to capture TFNP problems that possess abundant solutions
for each input. We identify several problems across diverse fields that belong to TFAP, including
WeakPigeon (finding a collision in a mapping from [2n] pigeons to [n] holes), Yamakawa-Zhandry’s
problem [43], and all problems in TFZPP.

Conversely, we introduce the notion of “semi-gluability” to characterize TFNP problems that
could have a unique or a very limited number of solutions for certain inputs. We prove that there is
no black-box reduction from any “semi-gluable” problems to any TFAP problems. Furthermore, it
can be extended to rule out randomized black-box reduction in most cases. We identify that the
majority of common TFNP subclasses, including PPA, PPAD, PPADS, PPP, PLS, CLS, SOPL, and
UEOPL, are “semi-gluable”. This leads to a broad array of oracle separation results within TFNP
regime. As a corollary, UEOPLO ⊈ PWPPO relative to an oracle O.
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1 Introduction

The complexity class TFNP (Total Functions in NP) contains NP search problems which are
guaranteed to have a solution for any input. A number of notable problems fall into TFNP,
including Factoring, Nash, and Gradient-Descent, among others.

TFNP itself is not a well-behaved class; it is a semantic class and is conjectured to have
no complete problems [32, 35, 37]. Therefore, a main focus over the past three decades
is to classify TFNP problems into different syntactic subclasses of TFNP. Each syntactic
subclass of TFNP is defined by a canonical complete problem, which seeks to find an object
from an exponential-size search space, whose existence is guaranteed by the corresponding
combinatorial principle. For example, the PPP-complete problem Pigeon is to find a collision
when given a mapping (encoded by a circuit of poly(n) size) from [2n + 1] to [2n]. By the
pigeonhole principle, a collision is guaranteed to exist for every mapping. It is common to
use a syntactic subclass and its canonical complete problem interchangeably.

In this work, we study the relationship between TFNP subclasses through the lens of
abundance of solutions. The combinatorial principles underlying these subclasses often dictate
two fundamentally different behaviors concerning the number of solutions available.
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Table 1 Several common syntactic subclasses of TFNP.

Class Combinatorial Principle

PPA Every undirected graph with an odd-degree node must have another odd-degree node.
PPAD Every directed graph with an unbalanced node (out-degree ̸= in-degree) must have

another unbalanced node.
PPADS Every directed graph with a positively unbalanced node (out-degree > in-degree) must

have a negatively unbalanced node.
PLS Every DAG has a sink.
PPP Every mapping from [N + 1] to [N ] must have a collision.

For all TFNP subclasses enumerated in table 1, constructing inputs with a unique solution
is straightforward. Furthermore, it can be posited that these unique-solution instances are
the most challenging inputs. In most cases, it suffices to show oracle separation [4] or optimal
query/communication complexity lower bounds with unique-solution instances only (e.g.,
[8, 26, 44, 5, 24]). Recently, Chen, Li, and Yannakakis [10] showed that Tarski, a TFNP
problem situated in PPAD ∩ PLS, can be reduced to Unique-Tarski – a promised version
with a unique solution – through a generalized black-box reduction.

Conversely, certain TFNP subclasses inherently possess a multitude of solutions – often
exponentially many – for every input. A significant example is the class PWPP [28], which
is similar to PPP, but requires to find a collision pair in a mapping from [2n+1] to [2n].
Regardless of the chosen mapping, there will be a minimum of 2n pairs of distinct collisions.

Further motivation stems from cryptography and quantum computing. A seminal result by
Simon [40] showed that collision-resistant hash function cannot be constructed from one-way
permutation in a black-box manner, thereby indicating an oracle separation between PPP
(associated with one-way permutation) and PWPP (associated with collision-resistant hash
function). This proof leverages, to a degree, the contrast in the abundance of solutions
between these two problems. Adding to this, Rosen, Segev, and Shahaf [38] presented a series
of findings concerning the average-case complexity of TFNP and cryptographic primitives
where the number of solutions played a crucial role. For instance, they demonstrated that,
in the black-box setting, the existence of injective trapdoor functions does not imply the
average-case hardness of PPAD instances (specifically, End-of-Line instances on {0, 1}n)
with O(2o(n)) solutions.

Shifting to a quantum perspective. It is proven that the quantum and classical (either
randomized or deterministic) query complexity for total boolean functions are polynomially
related (see Aaronson et al. [2] for a comprehensive exposition). A long-standing open problem
was whether this relationship extends to total NP search problems. Until recently, Yamakawa
and Zhandry [43] refuted this possibility by constructing the first TFNP problem (we call it
Yamakawa-Zhandry’s problem)1 that exhibits polynomial quantum query complexity alongside
exponential randomized query complexity. One can check that Yamakawa-Zhandry’s problem
yields an exponential number of solutions for any input.

1 The original version of the Yamakawa-Zhandry’s problem was defined relative to a random oracle. It
was later adapted to constitute a total problem ([43], Section 6)
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In fact, by adapting an argument by Goldreich, Goldwasser, and Ron ([20], Theorem 4.1)
to the quantum setting, it can be shown that any TFNP problem exhibiting a super-polynomial
quantum speed-up cannot have an efficient quantum algorithm that is pseudo-deterministic2.
In essence, a large quantity of non-trivially distinct solutions is necessary for achieving a
super-polynomial quantum speed-up in black-box TFNP.

Given these pieces of evidence, we systematically investigate the following question:

How does the abundance of solutions influence the complexity of TFNP problems?

Here we use the term “abundance” rather than “number” because the mere number
of solutions is not a reliable metric. It is simple to modify any TFNP problems to have
exponentially many solutions by padding unnecessary bits to the end of each solution.

1.1 Our Contribution
In this section, We present our results in the black-box (query) model for ease of discussion.
Equivalently, these results can be interpreted as relative to specific oracles in the white-box
setting. Class and problems in the black-box setting are usually written with the superscript
“dt”, which stands for decision tree.

We define a new complexity class TFAPdt (“A” stands for “abundant”) to capture TFNPdt

problems that non-trivially have many solutions for every input. The definition of TFAPdt

utilizes a novel formalization of the abundance of solutions.

▶ Definition 1 (Informal). A TFNPdt problem belongs to TFAPdt if any nearly-complete
partial assignment is witnessing, or it can be reduced to a TFAPdt problem.

In this context, a partial assignment x is nearly complete if most of the input bits are
assigned in x; x is witnessing if a solution o exists such that o remains a valid solution for
all (complete) inputs consistent with x. Essentially, a problem within TFAPdt retains its
totality even when a minor portion of input bits is removed, and the term “abundant” can be
equated to a form of robust totality. Buss et al. [7] point out that weak pigeonhole principle
are “over-determined”, which is basically the concept “robust” defined in Definition 20.

We identify several members of TFAPdt, including PWPPdt and Yamakawa-Zhandry’s
problem as mentioned in the introduction, and all problems in TFZPPdt.

▶ Theorem 2. PWPPdt, Yamakawa-Zhandry’s problem, and TFZPPdt are contained in
TFAPdt.

The proof for the inclusion of PWPPdt is straightforward: removing a small number of
pigeons from the input still leaves sufficient pigeons to create a collision. The argument for
Yamakawa-Zhandry’s problem follows a similar logic, using the (weak) averaging principle.
The inclusion of TFZPPdt is also quite natural, since any problem in TFZPPdt must have
abundant random seeds that lead to valid solutions.

Note that both TFZPPdt and Yamakawa-Zhandry’s problem are in the intersection of
TFNPdt and FBQPdt, and we call this class TFBQPdt. We conjectured that TFBQPdt is also
contained in TFAPdt; more intuition behind this conjecture is discussed in Section 6.

2 An algorithm is pseudo-deterministic if on every input, there exists a canonical solution that is output
with high probability.

ITCS 2024
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On the other side, we call a TFNPdt problem (or a class) lean if it is not contained in
TFAPdt. We introduce the notion of “semi-gluability”, extending the “gluability” defined by
Göös et al. [22], to characterize lean problems. At a high level, semi-gluability only requires
being gluable for a distribution of inputs, rather than for worst-case inputs as required by
gluability. We establish a general theorem that separates semi-gluable problems from TFAP.

▶ Theorem 3. No many-one reduction exists from any semi-gluable TFNPdt problem to any
TFAPdt problem. Consequently, all semi-gluable problems are lean.

we show that the majority of common TFNPdt subclasses are semi-gluable, by which we
identify these classes as lean class.

▶ Theorem 4. PPAdt, PPADdt, PPADSdt, PLSdt, PPPdt, CLSdt, SOPLdt, and UEOPLdt are
semi-gluable.

▶ Corollary 5. UEOPLdt ⊈ PWPPdt.

Furthermore, we also rule out any randomized many-one reduction from UEOPLdt to
any TFAPdt problem. Consequently, such a stronger separation also works for any classes
that contain UEOPLdt. As most of the black-box separations results previously known in
TFNP only work for deterministic reductions [4, 33, 6, 22], our results may be of interest in
average-case complexity and cryptography.

▶ Theorem 6. There is no randomized many-one reduction from PPAdt, PPADdt, PPADSdt,
PLSdt, PPPdt, CLSdt, SOPLdt or UEOPLdt to any problems in TFAPdt.

Our framework of distinguishing “lean” from “abundant” leads to a wide range of oracle
separation results. See figure 1 for a summary.

PPP

“Lean” TFAP

PWPP

1
2
𝑛𝑛 – Ramsey(?)

PLC

UEOPL

PPADS TFBQP(?)

TFZPP

PLS PPA

SOPL

EOPL

PPAD

FP

Y-ZFactoring

Figure 1 A depiction of the TFNP landscape divided into the domains of TFAP and “lean” classes.
Bold arrows represent many-one reductions; dotted arrows are randomized many-one reductions.
Informally, our main result asserts that no arrow will point from the left side to the right side
in the black-box setting. “Y-Z” is an abbreviation for Yamakawa-Zhandry’s problem [43]. The
class PLC [36] and 1

2 n-Ramsey are introduced and discussed in Section 6. Note that TFBQP and
1
2 n-Ramsey are only conjectured to be in TFAP, marked with a red question mark.

Relationship with the work of Müller [34]

The authors were not aware of the work of Müller [34] at the time of submission, and it was
kindly pointed out by anonymous reviewers. Müller studies the same phenomenon from a
slightly different angle using bounded arithmetic. Müller formalizes and identifies weak and
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strong (“abundant” and “lean” in this work) combinatorial principles by forcing with partial
structures. He then proves a general separation theorem ruling out reductions from strong
principles to weak, similar to Theorem 3. Besides significant similarities with the work of
Müller [34], there are also several differences worth noting:

Our framework shows black-box separations for PLS and its subclass SOPL, CLS, UEOPL
over any TFAP classes; however, Müller’s framework is built upon theory T1

2(PV(α)),
where PLS can be reduced to the empty relation.
Our work rules out randomized non-uniform (decision-tree) many-one reductions; while
Müller’s work rules out deterministic uniform (Turing machine) Turing reductions.

We refer the reader to the full version for a more comprehensive discussion.

Paper organization

Section 2 provides the necessary background on TFNP and other definitions used throughout
this paper. We formally define class TFAPdt in Section 3, and show several members of this
class. Section 4 introduces the notion of “semi-gluability” and uses it to show that a large
portion of the common TFNP subclasses are lean classes. Section 5 discusses the implications
of TFAP in a white-box context. We conclude with a discussion on potential future directions
in Section 6.

1.2 Background, Related Works

TFNP was initially introduced by Megiddo and Papadimitriou [32]. TFNP problems cannot
be NP-hard unless NP = coNP [32]. Furthermore, in contrast to the FNP-complete problem
Search-SAT, which is equivalent to the decision problem SAT via the classic search-to-
decision reductions, the majority of TFNP problems are inherently search problems. These
are conjectured not to have corresponding decision problems ([4], Section 5).

Class PLS is proposed by Johnson et al. [29]; PPA, PPAD, PPADS, PPP are defined in the
seminal work by Papadimitriou [35], which also identified many important problems in these
classes. Since then, TFNP theory has effectively captured problems in various fields, including
game theory [12, 9], optimization [16, 14], cryptography [41], and combinatorics [18], to
name a few. In more recent developments, several new syntactical subclasses of TFNP are
defined to better characterize problems in the lower tiers of the TFNP hierarchy, including
PWPP [28], CLS [13], EOPL [17, 26], SOPL [23] and UEOPL [17].

There has been notable advancement in understanding the relationship between TFNP
subclasses. In a breakthrough result by Fearnley et al. [16], CLS is shown to be equal to
PLS ∩ PPAD; following this, Göös et al. [21] showed that EOPL = PLS ∩ PPAD = CLS and
SOPL = PLS ∩ PPADS. On the other side, proving an unconditional separation between
TFNP subclasses is not feasible as it would imply P ̸= NP. However, it is still possible to
prove unconditional separations relative to certain oracles. Oracle separation in TFNP is
of particular interest, given that all the known reductions between TFNP subclasses are
relativized.

Beame et al. [4] initiated the study of the oracle separation within TFNP and showed
all possible separations between PPP, PPA, PPAD, and PPADS. As of now, all possible
separation between PPP, PPA, PPAD, PPADS, PLS, CLS, SOPL, and UEOPL are known due
to a series of studies by Morioka [33], Buresh-Oppenheim and Morioka [6], and Göös et
al. [22]. A key instrument for achieving several oracle separation results in these works is the
inherent connection between proof complexity and black-box TFNP (cf. [15]).

ITCS 2024
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Papadimitriou [35] noted that one-way permutation implies the average-case hardness of
class PPP. Following this, there has been a large volume of works studying the relationship
between TFNP classes and cryptographic primitives (e.g., [28, 38, 41, 26, 25, 31]). Notably,
several works took the number of solutions into consideration [38, 25, 31]. The oracle
separation between PPP and PWPP is implied by the black-box separation between one-way
permutation and collision-resistant hash function, as proven by Simon [40]3.

The potential of TFNP problems as suitable candidates for efficient quantum algorithms
was first brought up by Papadimitriou during a talk in 2003. For a long time, only negative
result was known for the majority of TFNP subclasses in the black-box setting [3, 1, 11]. The
recent breakthrough by Yamakawa and Zhandry [43] introduced the first problem that not
only falls within the intersection of TFNPdt and FBQPdt, but also exhibits high randomized
query complexity.

2 Basics of TFNP

We cover the basics of TFNP in white-box (Turing machine) and black-box (decision tree)
settings in Section 2.1 and 2.2 respectively. We highlight the interrelation between these two
models in Section 2.3. Additional definitions of TFNP subclasses and problems are presented
in Section 2.4.

Notations

The notation poly(n) represents any function that is polynomial in n, while negl(n) stands
for any function that diminishes faster than 1

p(n) for any polynomial function p(n). We use
uppercase “N” for the input length of black-box problems, while lowercase “n” is mostly used
as a parameter for white-box problems, with the general assumption being n = O(log N)
throughout this paper. The i-th bit of a bit string x is represented as xi.

2.1 White-Box TFNP

▶ Definition 7 (White-Box TFNP). A total NP search (TFNP) problem in the Turing machine
model is a relation R ⊆ {0, 1}∗ × {0, 1}∗ where

R(x, o) is checkable in time poly(|x|, |o|);
for all input x, there is a solution o, |o| = poly(|x|) such that (x, o) ∈ R.

▶ Definition 8. A many-one reduction from R to Q is a pair of polynomial-time computable
functions f, g such that

(x, g(o)) ∈ R ⇐ (f(x), o) ∈ Q.

We present the definition of Pigeon in the white-box model.

▶ Definition 9. Pigeon: The input consists of an n-bit string 1n and a poly(n)-size circuit
f , which encodes a mapping f from 2n + 1 pigeons to 2n holes. The goal is to find a collision,
i.e., a pair of pigeons i, j ∈ [2n + 1], i ̸= j and f(i) = f(j).

3 Sotiraki et al. ([41], Section 1.1) mentioned that the separation between CLS is PWPP is known, albeit
no specific reference is given for this assertion.
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Class PPP includes any TFNP problems that can be many-one reduced to Pigeon.
Informally, a white-box TFNP problem is called natural if there is no circuit explicitly

given in the problem input4. For example,
Factoring: Given a number N (in binary encoding), output “PRIME” if N is prime;
otherwise, find a non-trivial factor of N .
Nash: Given two matrices A, B ∈ Rn×n as the payoff matrices of a bimatrix game, find
a Nash equilibrium.

All the canonical complete problems used to define syntactical TFNP subclasses are
unnatural problems, that is, there are explicit circuits given in their inputs. Moreover, all
the reductions we currently know between these canonical complete problems are black-box
(relativized), i.e., the reduction does not need to look into the implementation of the circuit.

2.2 Black-Box TFNP
▶ Definition 10 (Black-Box TFNP). A total search problem in the decision tree model is a
sequence of relations Rdt = {RN ⊆ {0, 1}N × ON }, where ON is a (finite) set of solutions,
such that for every input x ∈ {0, 1}N , there exists a solution o ∈ ON such that (x, o) ∈ RN .

A total search problem Rdt belongs to TFNPdt if, for each solution o ∈ ON , there is a
decision tree Vo of depth poly(log N) such that for every input x ∈ {0, 1}N , Vo(x) = 1 iff
(x, o) ∈ RN .

Any unnatural white-box TFNP problem corresponds to a black-box TFNP problem by
replacing the circuit given in the input with an oracle with query access. For instance,
consider defining Pigeon in the black-box model.

▶ Definition 11. Pigeondt: Given oracle access to a mapping f from N + 1 pigeons to
N holes. The goal is to find a collision, i.e., a pair of pigeons i, j ∈ [N + 1], i ̸= j and
f(i) = f(j).

WeakPigeondt: Same as Pigeon, but the input is a mapping from [2N ] to [N ].

To simplify, we adhere to several conventions:
For problems with the non-binary input alphabet, we simulate it with the usual binary
encoding. All problems discussed in this paper have poly(N) alphabet size and can be
simulated with O(log N) overheads.
The problem RN is permitted to have input bits on the order of poly(N).
We sometimes abuse notation by calling an individual relation RN a search problem,
rather than a whole sequence R = (RN ).
A decision tree is called low-depth if it has depth poly(log N).
The superscript “dt” is omitted when referring to TFNPdt problems if the context makes
it clear.

▶ Definition 12 (Decision Tree Reduction). A low-depth decision tree reduction from relation
R ⊆ {0, 1}N ×O to Q ⊆ {0, 1}M ×O′ is a set of low-depth decision trees fi : {0, 1}N → {0, 1}
for each i ∈ [M ] and go : {0, 1}N → O for each o ∈ O′ such that for any x ∈ {0, 1}N ,

(x, go(x)) ∈ R ⇐ (f(x), o) ∈ Q,

where f(x) ∈ {0, 1}M has fi(x) as the i-th bit.

4 The terminology of “natural” is adopted by most of the TFNP literature, though one may argue problems
like Pigeon are quite natural in common sense even with a circuit in it.

ITCS 2024
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A TFNPdt problem R = (RN ) can be many-one reduced to TFNPdt problem Q = (QN )
(written as R ≤m Q) if for each N , there is a low-depth decision tree reduction (fi, go) from
RN to QM with log(M) = poly(log N).

Class PPPdt and PWPPdt include any TFNPdt problems that can be many-one reduced
to Pigeondt and WeakPigeondt respectively.

▶ Definition 13 (Randomized Reduction). A TFNPdt problem R = (RN ) can be randomized
many-one reduced to TFNPdt problem Q = (QN ) if for each N , there is a distribution D of
low-depth decision tree reductions from RN to QM , such that log(M) = poly(log N), and for
any x ∈ {0, 1}N ,

Pr
((fi),(go))∼D

[(x, go(x)) ∈ R ⇐ (f(x), o) ∈ Q] ≥ 1
poly(log N) .

2.3 Connection Between the Two Realms
We call a TFNPdt problem R syntactical5 if all the (non-uniform) decision trees (Vo), o ∈ ON

in Definition 10 can be implemented by a single polynomial-time oracle Turing machine U ;
that is, for each N ,

U(o)x = Vo(x), ∀x ∈ {0, 1}N , ∀o ∈ ON .

For example, Pigeondt is syntactical because U can be efficiently implemented by making
two queries to the oracle to check whether its input encodes a collision. The oracle Turing
machine U can be interpreted as a syntax object that encodes a certain existing principle.

If the input oracle x is implemented by a poly(log N)-size circuit and this circuit is
explicitly given to the input, we get an unnatural problem in the white-box TFNP, which
further corresponds to a syntactical TFNP subclass. Conversely, given any syntactical TFNP
subclass A, one can replace the circuit in its canonical complete problem by an oracle, and
thus get a syntactical class in TFNPdt, written as Adt.

We have been using the following theorem implicitly throughout this work.

▶ Theorem 14 (Beame et al. [4], Informal). For two syntactical TFNP subclasses A, B,
Adt ⊈ Bdt implies the existence of a (generic) oracle O separating A from B.

2.4 More Definitions
▶ Definition 15. A TFNPdt problem R = (RN ) is in TFZPPdt if for each N , there exists a
set of low-depth decision trees (Tr), r ∈ D such that for any x ∈ {0, 1}N , Prr∼D[(x, Tr(x)) ∈
RN ] ≥ 1

2 .

The constant 1/2 here is arbitrary; one can achieve zero error via repetition with
poly(log N) queries in expectation.

▶ Definition 16 (End-of-Potential-Line, [17]). EoPLdt: Given mappings S, P : [N ] →
[N ] that P (1) = 1 ̸= S(1) and a function V : [N ] → [N ] such that V (1) = 1, find either
1. a vertex u ∈ [N ] such that S(P (u)) ̸= u ̸= 1 or P (S(u)) ̸= u, or
2. a vertex u ∈ [N ] such that u ̸= S(u), P (S(u)) = u, and V (S(u)) − V (u) ≤ 0.

5 A syntactical TFNPdt problem is essentially a type-2 TFNP (TFNP2) problem, see [4].
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▶ Definition 17 (Unique-EoPL, [17]). UEoPLdt: Same as EoPLdt, but we allow one
more type of solution: two vertex u, v ∈ [N ], such that u ≠ v, u ̸= S(u), v ̸= S(v), and either
V (u) = V (v) or V (u) < V (v) < V (S(u)).

Class EOPLdt and UEOPLdt includes all problems that can be many-one reduced to
EoPLdt and UEoPLdt respectively. Göös et al. [22] showed that EOPLdt = CLSdt, so both
terms will be used interchangeably. Note that UEoPLdt is equivalent to EoPLdt when the
input is promised to have a unique valid line.

The definition of other TFNP subclasses are not explicitly used in this paper, and we
refer readers to, e.g., Göös et al. ([22], Section 3.2) for a comprehensive summary.

▶ Definition 18 (Yamakawa-Zhandry’s Problem [43], Simplified). Fix an error correcting code
C ⊆ Σn on alphabet Σ. Let (hk) be a family of λ-wise independent functions from C to
{0, 1}n.

The input encodes a mapping f : Σ → {0, 1}. The goal is to find a key k and t codewords
c(1) . . . , c(t) ∈ C such that

f(c(i)) ⊕ hk(c(i)) = 0n, ∀i ∈ [t],

where ⊕ is bitwise-XOR, and f(c(i)) := (f(c(i)
1 ), . . . , f(c(i)

n )).
The parameters satisfy n < λ ≪ t = poly(n), |C| ≥ 22n, and |Σ| = 2poly(n).

According to the convention, when the problem is considered in the black-box setting, the
mapping f is given by the query access to an oracle; in the white-box setting, f is encoded
by a poly(n)-size circuit.

We assume the λ-wise independent functions family (hk) is implemented by the well-
known low-degree polynomial construction (see, e.g., Vadhan [42], Section 3.5.5). A folded
Reed-Solomon code with a certain parameter setting is used for C in [43] to make the problem
easy for quantum algorithms but hard for classical algorithms. We will only use the following
basic property of code C to show this problem is in TFAP.

▶ Fact 19. Let S be any subset of the alphabet Σ such that |S|/|Σ| = negl(n). Denote
the set of codewords that contain at least one of the characters in S by CS. We have
|CS |/|C| = negl(n).

3 Class TFAP and its Member

We formally define TFAP in the black-box setting (i.e., TFAPdt) and discuss some basic
properties of TFAPdt in Section 3.1. Then, in Section 3.2, we prove that WeakPigeondt,
Yamakawa-Zhandry’s problem, and all problems in TFZPPdt belong to TFAPdt.

3.1 Definition of TFAPdt

It is more natural to define the class TFAP in the black-box setting. Let R = (RN ), RN ⊆
{0, 1}N × ON be a TFNPdt problem. A partial assignment of RN is a string x ∈ {0, 1, ∗}N ,
where xi = ∗ means the i-th bit is not assigned yet. The size of a partial assignment is the
number of non-∗ bits in it. A partial assignment is witnessing if there exists some solution
o ∈ ON that for any (whole) input y ∈ {0, 1}N consistent with x, we have (y, o) ∈ RN .

▶ Definition 20. A TFNPdt problem R = (RN ) is robust if for any function h = negl(log N),
there exists a constant N0 such that for each N ≥ N0, any partial assignment x of size at
least (1 − h(N)) · N is witnessing regarding to RN .

ITCS 2024
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A TFNPdt problem R is in TFAPdt if it is robust, or it can be many-one reduced to a
TFAPdt problem.

A TFNPdt problem R is lean if it is not in TFAPdt.

We define a partial assignment x as nearly complete if it has size (1 − negl(N)) · N .
While there exist simple TFAPdt problems that scarcely meet the criteria for being robust

– for instance, letting the only solution be the first bit of the input – the subsequent lemma
demonstrates that, without sacrificing generality, we can presume a TFAPdt problem to be
robust.

▶ Lemma 21. For any TFAPdt problem R, there is a robust TFNPdt problem Q such that
R =m Q.

Proof. By definition, R = (RN ) can be reduced to an robust problem S. Let M = M(N) be
the input length of S when reducing from an instance of RN . Without loss of generality, we
assume M(N) ≥ N and M(N) is monotone increasing; otherwise, one can replace S with
solving multiple instances of S, which is an robust problem with longer input.

We construct problem Q = (QK) as follow. Assume K = N + M(N) for some N , we
interpret the first N bits of inputs as an instance of RN and the last M(N) bits as an
instance of SM . The goal is to find either a solution for the RN instance or a solution for
the SM instance.

Since M(N) ≥ N , S being robust implies Q is also robust. To reduce from R to Q, one
can first reduce R to S and then concatenate both instances as an instance of Q. The reverse
direction is trivial. ◀

Next, we scrutinize the definition of TFAPdt through a sanity check. First, we note
that merely appending unnecessary bits to the end of each solution does not enhance its
abundance; similarly, copying the entire input several times is useless.

Moreover, there exist problems that always have many solutions that, nonetheless, do not
qualify as robust according to our definition. For instance, the problem Pigeon(N + N0.9),
which mirrors Pigeon but features a mapping from [N + N0.9] to [N ]. Despite the fact that
it possesses at least N0.9 distinct collisions, a nearly complete partial assignment that only
allocates the holes for N pigeons might fail to witness any solution, especially if they form a
permutation of [N ]. Consequently, as per Definition 20, Pigeon(N + N0.9) does not satisfy
the criteria for being robust.

This outcome aligns with our expectations, given that Pigeon(N +N0.9) is indeed PPPdt-
complete through a copy argument: by copying any given Pigeon instance – comprising
M + 1 pigeons and M holes – M9 times, we get an instance of Pigeon(N + N0.9) where
N = M10. This implies that all collisions in the Pigeon(N + N0.9) instance potentially map
to a single collision in the original Pigeon instance. One can check that this copy argument
does not work for WeakPigeon.

For similar reasons, End-of-Line with multiple sources [19] – a problem shown to be
PPAD-complete – stands as another example of a problem with plenty of solutions yet not
technically robust.

3.2 Members of TFAPdt

▶ Theorem 22. PWPPdt ⊆ TFAPdt.



J. Li 75:11

Proof. It suffices to show WeakPigeondt is robust. In a WeakPigeondt instance, each
pigeon takes log N bits to encode the hole it gets mapped to. Now fix any partial assignment
x, a pigeon is eradicated in x if one of the bits belonging to that pigeon is not assigned in x.
Therefore, if x is nearly complete, only a negligible fraction of pigeons are eradicated. Use
the weak pigeonhole principle again, there must be a collision by two remaining pigeons. ◀

▶ Theorem 23. The Yamakawa-Zhandry’s problem is in TFAPdt.

Proof. We follow the same proof framework as Theorem 22. Fixing any nearly complete
partial assignment x, a codeword c is eradicated in x if there is a character w that appears
in c that the value f(w) is not assigned in x. Using Fact 19, only a negligible fraction of
codewords are eradicated in a nearly complete assignment x.

Now assume a λ-wise independent function hk is randomly drawn. Let f be any mapping
that is consistent with x. Since λ > n, we have Pr[f(c)⊕hk(c) = 0n] ≥ 2−n for any codeword
c not eradicated in x. Define set of codewords

Ck,x := {c ∈ C : f(c) ⊕ hk(c) = 0n ∧ c is not eradicated in x}.

By the setting of parameters, we have

E[|Ck,x|] ≥ (|C| · (1 − negl(n))) · 2−n ≫ t.

Finally, by the averaging principle, there exists a key k with |Ck,x| ≥ t, i.e., there will
be a solution witnessed by x. This concludes that the Yamakawa-Zhandry’s problem is
robust. ◀

▶ Theorem 24. TFZPPdt ⊆ TFAPdt.

Proof. Consider a TFZPPdt problem RN solved by a distribution D of decision trees (Tr), r ∈
D. Observe that RN can be many-one reduced to a problem QN of finding a correct random
seed r, i.e., (x, r) ∈ QN ⇐ (x, Tr(x)) ∈ RN . It suffices to show that QN is in TFAPdt

regarding Definition 20.
To this end, we reduce QN to a robust problem SN . For simplicity, we assume all decision

trees Vr which check the validity of the seed r in QN have the same depth d. The input
of SN consists of d-bits blocks (Br) for each random seed r ∈ D. Let Br(i) be the i-th bit
of Br. A block Br is interpreted as a partial assignment of QN that corresponds to a path
in Vr. More specifically, the path is generated from up to down, at the i-th level of Vr, it
queries a bit (in the input of QN ) and receives answer Br(i).

There are two types of solutions to SN :
1. a seed r that Br encodes an accepting path of Vr, i.e., Br encodes a witnessing partial

assignment of QN ;
2. two seeds r1, r2 that the partial assignment corresponding to Br1 , Br2 are not consistent.

The reduction from QN to SN is straightforward. For each r, Br is generated by running
the decision tree Vr on the input of QN . There is no type-2 solution of SN in this case, and
any type-1 solution of SN is also a solution to QN .

It remains to show that SN is robust. For any nearly complete partial assignment x,
(1 − negl(log N)) fraction of blocks (Br) are entirely assigned in x since d is poly(log N).
Suppose there is no type-2 solution witnessed by x, then there exists an input y of QN such
that y is consistent with all blocks (Br) contained in x. Note that at least half of the blocks
(Br) in an instance of SN are witnessing when it is reduced from QN . Therefore, at least
one of the witnessing Br is entirely contained in x. This concludes that SN is robust. ◀
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4 Semi-Gluability and Lean TFNP Classes

In this section, we prove our main theorem that strongly separates the majority of the
TFNPdt subclasses from TFAPdt.

▶ Theorem 6. There is no randomized many-one reduction from PPAdt, PPADdt, PPADSdt,
PLSdt, PPPdt, CLSdt, SOPLdt or UEOPLdt to any problems in TFAPdt.

Our technique can be viewed as a generalization of the proof by Jain et al. [27], which
separates PPP from n-PWPP. First, we generalized the concept of gluability defined in [22]
(implicitly used in [4]) to distributional problems, and we call it semi-gluability. We formally
define semi-gluability and establish our major tool theorem in Section 4.1.

▶ Theorem 3. No many-one reduction exists from any semi-gluable TFNPdt problem to any
TFAPdt problem. Consequently, all semi-gluable problems are lean.

Then, we prove that all classes mentioned in Theorem 6 are semi-gluable.

▶ Theorem 4. PPAdt, PPADdt, PPADSdt, PLSdt, PPPdt, CLSdt, SOPLdt, and UEOPLdt are
semi-gluable.

We present a straightforward proof for the semi-gluability for PLSdt, CLSdt, SOPLdt, and
UEOPLdt in Section 4.2. The proof for other classes is even simpler, hence we have relegated
them Appendix A. Theorems 3 and 4 already imply a weaker form of Theorem 6, which rules
out deterministic many-one reduction.

It is worth noting that UEOPLdt is a subclass of all other classes mentioned in The-
orem 6 [17]. Therefore, only considering UEOPLdt suffices to prove Theorem 6. Nevertheless,
Theorem 4 underscores the independent interest in the concept of semi-gluability, as it
captures a significant portion of lean problems.

Finally, we complete the proof of Theorem 6 by ruling out randomized many-one reductions
from UEOPLdt to any TFAPdt problems in Section 4.3. In this step, we apply a “double-dice”
trick to bound the success probability of any randomized reduction, which also appears in
the concurrent work by Jain et al. [27] (Section 3.2).

4.1 Definition of Semi-Glueability
Our formalization of semi-gluability is built upon the work of Göös et al. ([22], Section
7.1). The key modification here is that we are defining gluability in relation to a specific
distribution of inputs.

Let R = (RN ), RN ⊆ {0, 1}N × ON be a TFNPdt problem. For a given distribution µ over
the inputs of RN , we use Dµ(RN |x) to denote the distributional query complexity6 of RN

conditional on the partial assignment x. For a witnessing partial assignment x, Dµ(RN |x) = 0.
We say a partial assignment x being good with respect to µ if Dµ(RN |x) is bounded by
poly(log N), and bad otherwise. Furthermore, two partial assignments x, y ∈ {0, 1, ∗}N are
consistent with respect to µ if there exists an input z in the support of µ such that both x

and y agree with z on all non-∗ bits.

6 Without loss of generality, we assume the distributional query complexity is defined in a way that the
algorithms have to succeed with probability at least 1/poly(log N), following Definition 13. The success
rate can be boosted up via repetition for TFNPdt problems.
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At a high level, an NP search problem is µ-gluable if, given any small collection of
consistent, bad (and “well-behaved”) partial assignments of poly(log N)-size, their union is
still bad.

We now defined a class of “well-behaved” partial assignments called trimmed assignments7.

▶ Definition 25 (Trimmed Assignments). Let (Tx), x ∈ {0, 1, ∗}N be a family of low-depth de-
cision trees over {0, 1}N , where each tree corresponds to a partial assignment x in poly(log N)-
size.

Given a (complete) input z ∈ {0, 1}N , the “trimmed assignment of x by Tx” is the union
of x and the leaf of Tx that is reached by following a path consistent with the bits specified
in z.

In other words, the trimmed assignment of x contains additional information derived
from the input z that complements the partial information in x, thereby extending x to a
more “complete” assignment while maintaining consistency with z. It is helpful to think
the whole input z is unknown and it is generated on-the-fly during the trimming process.
Therefore, we usually use a trimmed assignment without specifying the whole input z.

As an example of trimming, consider problems defined on non-binary alphabets [N ], like
Pigeondt. Here, each element of [N ] is represented using log N bits. We define a partial
assignment x to be trimmed with respect to the alphabet [N ] under the following condition:
if any bit representing a character w in [N ] is assigned in x, then all bits representing w must
be assigned in x. To facilitate this, we introduce a low-depth decision tree Tx, which can
process a partial assignment x of size poly(log N) over the alphabet [N ]. This tree operates
by querying all bits associated with any partially specified character in x to obtain a trimmed
assignment.

It is important to note that the set of decision trees (Tx) is utilized exclusively for query
purposes to attain a trimmed assignment; the actual outputs of individual trees in this set
are not of concern in this context.

▶ Definition 26 (µ-Gluable and Semi-Gluable). Let R = (RN ) be a TFNPdt problem and
µ = (µN ) be a sequence of distributions over {0, 1}N .

We define R to be µ-gluable under the following conditions:
For an infinite series of N , the distributional query complexity DµN

(RN ) is greater than
any poly(log N) functions.
There exists a family of decision trees (Tx), such that for any collection P of partial
assignments that adhere to the following:

The set P contains poly(log N) assignments.
All partial assignments in P are consistent with each other in terms of µN .
Each partial assignment in P is trimmed by (Tx), has a size of poly(log N), and is bad
with respect to µN .

the union of all partial assignments in P remains bad with respect to µN .

A TFNPdt problem R is semi-gluable if there exists a sequence of distributions µ = (µN )
that R is µ-gluable.

We say a syntactic TFNPdt subclass is semi-gluable if any one of its complete problems is
semi-gluable.

7 Trimmed assignment is a simplified notion of “completions” defined in Göös et al. ([22], Definition 9).
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Now we are ready to prove the main Theorem 3. Broadly speaking, in the process of
reducing an average-case hard problem R to a robust problem Q, a majority of the bits in Q
yield a bad partial assignment of R. By removing all “good” bits in the input of Q, which is
a small fraction, the remaining input bits still witness a solution o of problem Q since Q is
robust. Now, all the bits used to verify solution o are “bad”, and so the union of them is
still bad by the µ-gluability of R. Consequently, solution o provides little help to solving the
original instance of R.

Proof of Theorem 3. Let R = (RN ) be any semi-gluable TFNPdt problem, i.e., there is a
sequence of distributions µ = (µN ) for which R is µ-gluable. Assume a family of decision
trees (Tx) is used to trim each partial assignment in the condition of the µ-gluability.

Let Q = (QM ) be any robust TFNPdt problem. It suffices to show that when RN instances
are drawn from distribution µN , any (deterministic) decision tree reduction (fi, go), i ∈
M, o ∈ O′ from RN ⊆ {0, 1}N × O to QM ⊆ {0, 1}M × O′ may make mistakes with non-zero
probability.

For each bit i ∈ [M ], we construct a new decision tree fT
i from fi: for each leaf node p of

fi, which corresponds to a partial assignment x ∈ {0, 1, ∗}N , we attach the decision tree Tx

to the bottom of node p, while each leaf of Tx still outputs the same value as p did. Note that
the functionality of fT

i is the same as fi, and its tree depth only increases by poly(log N).
Now each leaf node of fT

i corresponds to a trimmed assignment of RN . We call a leaf node
of fT

i good if its corresponding partial assignment in RN is good, and bad otherwise.
Let z be an instance of RN randomly drawn from µN . The crucial observation is that

the probability of fT
i (z) reaching an good leaf node is negl(log N). Otherwise, fT

i implies
a (randomized) poly(log N) query algorithm for RN which succeeds with non-negligible
probability. This contradicts to the fact that DµN

(RN ) is super-logarithmic in N .
Let γz be the fraction of index i over [M ] such that fT

i (z) reaches a good leaf node. By
the linearity of expectation, we have

Ez∼µN
[γz] = negl(log N).

Then by the Markov inequality,

Pr
z∼µN

[γz = negl(log N)] = 1 − negl(log N).

In other words, with (1 − negl(log N)) probability, (1 − negl(log N)) fractions of bits in fT (z)
are determined by a bad leaf. We call those bits from bad leaves by bad bits.

Now fixing an instance z of RN with γz = negl(log N), all the bad bits in fT (z) consist
of a nearly complete partial assignment x. Since QM is robust, there exists a solution o ∈ O′

of the QM instance fT (z) that is witnessed by x. The reduction then adversarially returns
this bad solution o.

Finally, we show that this bad solution o is indeed useless with µ-gluability. By running the
decision tree Vo on the QM instance fT (z) to verify the solution o, we get a poly(log N)-size
partial assignment y of input fT (z) with bad bits only. Each bit assigned in y corresponds
to a bad partial assignment of z; we denote this set of partial assignments by Po.

Without loss of generality, we assume the algorithm (i.e., the reduction) is given Po

besides the solution o. The set Po satisfies the conditions in Definition 26, so the union of
assignments in Po is bad by the µ-gluability of R. That is, the distributional complexity
Dµ(RN |Po) is still very large. Furthermore, the algorithm could only make poly(log N) more
queries in the decision tree go. Thus, this reduction will make mistakes on some inputs
consistent with Po. ◀
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4.2 Semi-Gluability of PLSdt, CLSdt, SOPLdt, and UEOPLdt

The crux of proving semi-gluablity is choosing a hard distribution of instances. As mentioned
in the introduction, it makes sense to focus on instances with a unique solution. Here we
prove the semi-gluability of CLSdt, and the proofs for PLSdt, SOPLdt, and UEOPLdt follow
from the same argument.

We work on problem EoPLdt (Definition 16), which is complete for CLSdt [21]. Recall
that in EoPLdt, a graph with N vertices is specified by a predecessor function P , a successor
function S, and a value function V . We construct a distribution µ = (µN ) for EoPLdt

instances as follow: For each N , let M = ⌊
√

N⌋. We uniformly pick a subset L′ of M − 1
vertices from [N ]\{1} and let L = L′ ∪ {1}. Vertices in L form a random line starting from 1
with the value monotone increasing by 1 in each step; all other vertices are isolated points
with value 1.

Formally, a random order σ : [M ] → L is uniformly chosen conditional on σ(1) = 1. We
have,
1. S(σ(i)) = σ(i + 1), ∀i ∈ [M − 1]; S(σ(M)) = σ(M);
2. P (σ(i)) = σ(i − 1), ∀i ∈ {2, . . . , M}; P (1) = 1;
3. S(u) = P (u) = u, ∀u /∈ L;
4. V (σ(i)) = i, ∀i ∈ [M ]; V (u) = 1, ∀u /∈ L.

Göös et al. ([22], Lemma 15) provided a family of decision trees (Tx) for trimming EoPLdt

instances. While instances in the support of µ allow us to use a simpler trimming method:
Assume the inputs are encoded in alphabet [N ]3, where each character in the input encodes
a triplet (S(u), P (u), V (u)) for some vertex u. We let each partial assignment trimmed over
the alphabet [N ]3. Now for a trimmed partial assignment x, we say a vertex u is queried by
x (written as u ∈ Qx) if the triplet (S(u), P (u), V (u)) is assigned in x; a vertex u is revealed
by x if u is queried, or u appears as the predecessor or successor in the queries made in x.

For every EoPLdt instance in µ, the unique solution is hidden at the end of the line L.
Given a trimmed partial assignment x, a score function s(x) is defined as the distance to the
end of the line L from the furthest points queried in x, i.e., s(x) = M − maxu∈Qx V (u). We
claim that s(x) decides the distributional query complexity of EoPLdt conditional on x.

▶ Lemma 27. For any trimmed partial assignment x of size poly(log N), we have

Dµ(EoPLN |x) = Θ(s(x)).

The semi-gluability of CLSdt follows from Lemma 27. Observe that a partial assignment is
bad if and only if its score function is large by Lemma 27. As the score function of the union
of multiple partial assignments only depends on the one with the smallest score function, the
union is still bad if each individual partial assignment is bad.

Finally, we present of proof of Lemma 27, which is rather straightforward by exploiting
the symmetrical nature of the distribution µ.

Proof of Lemma 27. Dµ(EoPLN |x) ≤ s(x) is implied by the simple line-tracing algorithm,
which keeps querying the successor of the current furthest point on the line, until reaching
the end.

It remains to show that Dµ(EoPLN |x) = Ω(s(x)). Consider any deterministic algorithm
A with (1 − negl(log N)) success rate. W.l.o.g., we assume A outputs a solution only when
the current score function is 0.
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A has two possible choices in each step: query a vertex that has been revealed, or has
yet been revealed. In the first case, the current score function will decrease by 1 or stay
unchanged.

In the latter case, by the symmetry of µ, A will hit a vertex in L with probability at most

M/(N − poly(log N)) = O( 1√
N

).

In which case, the current score function will decrease by at most s(x); if A hits an isolated
point, s(x) remains unchanged.

Combining the analysis for both cases, A requires at least O(s(x)) steps to achieve a high
success rate. ◀

▶ Remark 28. Hubácek and Yogev [26] provided a hard distribution of CLSdt instances8

indirectly by reducing from a distribution of local search instances with staircase construc-
tion [44]. In comparison, our proof enables a more fine-grained analysis of the distributional
query complexity condition on partial assignments.

4.3 On Randomized Reductions
Built upon Section 4.1, 4.2, we present a more fine-grained analysis in this section to further
rule out any randomized many-one reduction from UEoPLdt to any TFAPdt problem. Due
to its similarity with [27] (Section 3.2), we only provide a sketch for several proofs in this
section.

Recall that the distribution µ of EoPLdt instances defined in Section 4.2 contain a unique
solution hidden at the end of the only one path. Therefore, µ is also a distribution of
UEoPLdt instances with the same set of solution by Definition 16, 17, and UEoPLdt is
µ-gluable.

Again, we fix Q = (QM ) to be any robust TFNPdt problem. By Yao’s Minimax principle,
it suffices to show that when UEoPL instances are drawn from the distribution µ = (µN ),
any (deterministic) decision tree reduction (fi, go), i ∈ M, o ∈ O′ from UEoPLN to QM ⊆
{0, 1}M × O′ is correct with at most negl(log N) probability. Let d = d(N) be the depth of
this reduction.

Without loss of generality, we assume each query made in decision trees (fi, go) is querying
a triplet (S(u), P (u), V (u)) for a vertex u. This only incurs an O(log N) factor of overheads
to the depth of the reduction, and by this, we could assume all the partial assignments are
trimmed.

When (go) are depth-0

We say a reduction is depth-k (k ≤ d) if all the decision trees (go) are depth-k, while (fi)
are still depth-d. We start with a special case with depth-0 reductions, i.e., go ∈ [N ] is the
vertex that is claimed to be the unique end of the line in the UEoPLdt instance.

Denote the unique solution of the UEoPLdt instance z by u∗. The following lemma
bound the success probability of any depth-0 reductions.

▶ Lemma 29. For any depth-0 reduction (fi, go),

Pr
z∼µN

[go = u∗ ⇐ (f(z), o) ∈ QM ] < negl(log N).

8 Precisely, the problem considered in [26] is called EOMLdt (End-of-Metered-Line), which is equivalent
to EoPLdt as shown in Fearnley et al. [17].
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We apply a double-dice trick to prove Lemma 29: Let z(1) ∼ µN to be a random instance
of UEoPLdt with solution u∗. We generate a second instance z(2) from z(1) by uniformly
chosen a vertex v∗ ∈ [N ]\{1}, and swap u∗ and v∗. Note that the marginal distribution of
z(2) is also µN . The advantage of using two dice comes from the following fact.

▶ Fact 30. For any instance z(1) and any bad solution o of f(z(1)), o is also a bad solution
of f(z(2)) with probability 1 − negl(log N).

Proof. Since o is bad, vertex u∗ is not revealed in the set of partial assignments Po. Also,
z(2) is different to z(1) locally on u∗ and v∗. Therefore, with 1 − negl(log N) probability on
v∗, the union of Po is also a partial assignment of z(2), and o is a bad solution of z(2). ◀

Now we are ready to prove Lemma 29.

Proof Sketch of Lemma 29. We bound the success probability of the reduction on z(2)

indirectly with the help of z(1).
For a random z(1) drawn from µN , there are two possibilities: either f(z(1)) has a bad

solution, or f(z(1)) does not have any bad solution. The second case will happen with
negl(log N) probability by the proof of Theorem 3, so we simply assume the reduction is
correct in this case.

Now assume f(z(1)) has a bad solution o∗. From Fact 30, we know that o∗ is also a
bad solution of f(z(2)) with high probability; however, the reduction will output a fixed
solution go∗ on those z(2). In other words, the reduction could only be correct in the case
that v∗ = go∗ . Therefore, the reduction will be wrong on z(2) with 1−negl(log N) probability
condition on such kind of z(1).

Combining both cases, we prove that the success probability of any depth-0 reduction is
negl(log N). ◀

When (go) are depth-k

We first illustrate the idea for k = 1, and then generalize the proof to any k ≤ d. Now
consider a “triple-dice” method by generating three random instances z(1), z(2), z(3) in order:
1. z(1) is randomly drawn from µN with solution u∗;
2. z(2) is generated from z(1) by randomly permute the last two vertices u∗, P (u∗) on the

line in z(1); let v∗ be the solution of z(2).
3. z(3) is generated from z(2) by randomly permute the last vertex v∗ on the line in z(2); let

w∗ be the solution of z(3).

For each solution o of Q, denote the only query made by go by qo ∈ [N ]. W.l.o.g., we
assume qo = u∗ when o is a good solution of f(z). The following lemma shows that qo will
not hit the critical part of inputs with high probability.

▶ Lemma 31. For any depth-1 reduction (fi, go),

Pr
z∼µN

[qo ∈ {u∗, P (u∗)} ⇐ (f(z), o) ∈ QM ] < negl(log N).

Proof Sketch. Observe that the statement in Lemma 31 is almost the same as Lemma 29.
Therefore, we could deem qo as an output from a depth-0 reduction, and the reduction
succeeds if its output qo either hits u∗ or P (u∗).

We can replace the second dice in the double-dice argument by z(2), where both u∗, P (u∗)
are permuted. It is easy to check that Fact 30 still holds, and the rest of the argument is the
same as Lemma 29. ◀
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Note that the marginal distribution of z(3) is also µN , therefore, we could consider the
success probability of reduction (fi, go) on z(3).

▶ Lemma 32. For any depth-1 reduction (fi, go),

Pr
z(1),z(2),z(3)

[go(z(3)) = w∗ ⇐ (f(z(3)), o) ∈ QM ] < negl(log N).

Proof Sketch. The proof strategy is similar to Lemma 29.
For a random z(1) drawn from µN , we still consider two possibilities: either f(z(1)) has a

bad solution o∗ that qo∗ /∈ {u∗, P (u∗)}, or f(z(1)) does not have any solution of this kind.
The second case will happen with negl(log N) probability by Lemma 3, so we could assume
the reduction is correct in the second case.

Now assume f(z(1)) has a bad solution o∗ that qo∗ /∈ {u∗, P (u∗)}. Generalizing Fact 30,
we can show that with high probability, o∗ is also a bad solution of f(z(2)), f(z(3)), and
qo∗ /∈ {v∗, P (2)(v∗), w∗, P (3)(w∗)}, where P (2), P (3) are the predecessor functions for z(2), z(3)

respectively. In this case, we always have go∗(z(2)) = go∗(z(3)), and this reduction could only
be correct when w∗ = go∗(z(2)), which happens with very low probability. Note that there
may be go∗(z(1)) ̸= go∗(z(2)), since the vertex P (P (u∗)) may be queried by qo∗ , which reveals
the value of P (u∗).

Combining both cases, we conclude that the success probability of any depth-1 reduction
is negl(log N). ◀

Finally, we complete the proof by generalizing to depth-k reductions.

Proof Sketch of Theorem 4. When (go) are depth-k, we will use (k+2) dice z(1), . . . , z(k+2).
For each i > 1, z(i) is generated from z(i−1) by randomly permute the the last k + 3 − i

vertices on its path.
Intuitively, after making i (0 ≤ i ≤ k) queries in go, the last k + 1 − i vertices in z(i+2)

are not revealed with high probability. Therefore, the reduction has to make a blind guess
for the solution of z(k+2) in the end, which will be wrong with high probability. ◀

5 TFAP in the White-Box Setting

In this section, we turn our attention to the definition of TFAP and its implications in the
white-box setting. While Definition 20 (of “abundant”) is fundamentally crafted for the query
model, it necessitates an indirect approach to define TFAP within the white-box setting.
Leveraging the insights shared in Section 2.3, we establish that every syntactic subclass of
TFNP in the white-box setting inherently mirrors a syntactic subclass in the TFNPdt domain.

▶ Definition 33. A syntactic subclass of TFNP, denoted as C, is classified under TFAP if its
corresponding syntactic TFNPdt subclass Cdt is contained in TFAPdt.

An unnatural TFNP problem, denoted as R, is classified under TFAP if its corresponding
syntactic TFNPdt problem Rdt is contained in TFAPdt.

A natural TFNP problem is contained in the white-box closure of TFAP if it can be
many-one reduced to an unnatural problem in TFAP.

This definition serves as a bridge, facilitating the exploration of TFAP in the white-
box setting by drawing upon its established characteristics in the TFNPdt framework. In
particular, the inclusion of PWPP, Yamakawa-Zhandry’s problem, and any unnatural TFZPP
problem (Theorem 22,23,24) can be cast into the white-box world. Like TFNP, TFAP is also
a semantic class, and thus we do not expect it to have a complete problem.
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Note that by its definition, TFAP is closed under relativized (black-box) many-one
reductions. However, it is not necessarily closed under non-relativized (white-box) many-one
reductions. Despite this, the known reductions between white-box syntactic TFNP subclasses
are relativized. This means that while we should use TFAP (and its white-box closure)
cautiously as a barrier separating white-box TFNP problems, finding a non-relativized result
that bypasses the “TFAP barrier” would be a significant development.

Looking at the Factoring problem offers an interesting perspective. Jeřábek [28]
demonstrated that Factoring falls under PWPP through a randomized reduction, and
according to Definition 33, PWPP is a subset of TFAP. Although at first sight Factoring
does not appear to be “abundant” due to the limited number of solutions in many inputs,
the randomized reduction to WeakPigeon enables us to employ a trick similar to that in
Lemma 21 to create an equivalent version of Factoring with plenty of solutions. Moreover,
due to the famous Shor’s algorithm [39], Factoring is a part of FBQP. Recall that our
earlier speculation regarding the potential subset relationship between TFBQPdt and TFAPdt,
the classification of Factoring within TFAP (through a randomized reduction) might not
be just a coincidence.

6 Future Directions

By examining the landscape of TFNP through the prism of the abundance of solutions, we
have delineated a distinct divide that separates the TFNP universe into the domains of TFAP
and lean classes. This fresh perspective opens up a rich vein of potential explorations both
within and possibly extending beyond the boundaries of TFNP.

Identifying more problems in TFAP

One of the most fascinating questions is the potential inclusion of TFBQPdt in the realms
of TFAPdt; it immediately implies oracle separations from TFBQP to the majority of TFNP
subclasses via our framework.

▶ Open Problem 1. Is TFBQPdt ⊆ TFAPdt?

To shed more light on this, the exponential speed-up achieved by a quantum query
algorithm is attributed to the querying of certain quantum states in a superposition of
exponentially many locations. In that case, a small fraction of input bits should not affect
the quantum algorithm’s outcome by much, a notion that resonates well with the essence of
our TFAPdt definition.

t(n)-Ramsey is another problem that we suspect might belong to TFAP. In this problem,
we are given a graph with 2n vertices and the task is to find either a clique or an independent
set of size t(n).

▶ Open Problem 2. Does n
2 -Ramsey belong to TFAP? If not, what about n

10 -Ramsey?

The reason we consider this problem is not just because it has many solutions; its totality,
based on the weak iterated pigeonhole principle, aligns with the principles underlying the
inclusion of WeakPigeon and Yamakawa-Zhandry’s problem in TFAP, which are based on
the weak pigeonhole principle. A new class, PLC, was introduced by Pasarkar et al. [36] to
capture n

2 -Ramsey, and they demonstrated that PPP ⊆ PLC, thereby proving that PLC is
also a lean class. If n

2 -Ramsey is indeed contained in TFAP, it automatically indicates an
oracle separation between PLC (or even PPP) and n

2 -Ramsey.
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Proof complexity, cryptography, and others

We have a few more broad questions concerning TFAP.
1. Can we find a natural counterpart of TFAPdt in proof complexity?
2. Theorem 3 already shows that no randomized many-one reduction exists from a semi-

gluable problem to TFAPdt. Could we extend this to rule out even stronger reductions,
especially those commonly used in cryptography? Moreover, aside from the known
distinctions between collision-resistant hash functions and one-way permutations, could
this framework help to explain more separations between cryptographic primitives, or
even help to find new ones?

3. Are there other sensible ways to formalize TFNP problems that have a large number of
non-trivially distinct solutions?

4. Could we extend our study to problems outside of TFNP, such as Range-Avoidance
problem [30], which clearly has a plethora of distinct solutions?

5. Can we unify the techniques used in this work and in Müller [34].
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Let us start from the semi-gluability of PPPdt. Consider the following distributions
µ = (µN ) for Pigeon instances: For each N , we have a function f that randomly assigns the
first N pigeons to N holes, according to a uniformly random permutation; the (N + 1)-th
pigeon is always placed to the first hole. In this case, the only solution is given by the other
pigeon i∗ ∈ [N ] which also gets mapped to hole 1 besides pigeon (N + 1).

Assume all the partial assignments are trimmed with respect to the alphabet [N ]. Using
the symmetric nature of the distribution µ, it is not hard to show that a partial assignment
x of poly(log N) size is informative iff x is witnessing, i.e., x assigns a pigeon i∗ ∈ [N ] that
f(i∗) = 1. Therefore, the union of any poly(log N) uninformative partial assignment is still
uninformative. According to Definition 26, PPPdt is semi-gluable.

The semi-gluablity of PPAdt, PPADdt, and PPADSdt follows from a similar approach. We
give a sketch here.

Inspired by the reduction from PPADSdt to PPPdt, each PPPdt instance drawn from
µ = (µN ) also corresponds to an instance of PPAdt, PPADdt, or PPADSdt, where the only
solution corresponds to the collision. The extra structure information in PPAdt, PPADdt, or
PPADSdt instances provides no advantages, as one can still use symmetry to show that a
partial assignment is informative only if x is witnessing. Therefore, PPAdt, PPADdt, and
PPADSdt are also semi-gluable.
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