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Abstract
We consider Stochastic Convex Optimization as a case-study for Adaptive Data Analysis. A basic
question is how many samples are needed in order to compute ε-accurate estimates of O(1/ε2)
gradients queried by gradient descent. We provide two intermediate answers to this question.

First, we show that for a general analyst (not necessarily gradient descent) Ω(1/ε3) samples are
required, which is more than the number of sample required to simply optimize the population loss.
Our construction builds upon a new lower bound (that may be of interest of its own right) for an
analyst that may ask several non adaptive questions in a batch of fixed and known T rounds of
adaptivity and requires a fraction of true discoveries. We show that for such an analyst Ω(

√
T /ε2)

samples are necessary.
Second, we show that, under certain assumptions on the oracle, in an interaction with gradient

descent Ω̃(1/ε2.5) samples are necessary. Which is again suboptimal in terms of optimization. Our
assumptions are that the oracle has only first order access and is post-hoc generalizing. First order
access means that it can only compute the gradients of the sampled function at points queried by
the algorithm. Our assumption of post-hoc generalization follows from existing lower bounds for
statistical queries. More generally then, we provide a generic reduction from the standard setting of
statistical queries to the problem of estimating gradients queried by gradient descent.

Overall these results are in contrast with classical bounds that show that with O(1/ε2) samples
one can optimize the population risk to accuracy of O(ε) but, as it turns out, with spurious gradients.
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1 Introduction

Adaptive data analysis is a recent mathematical framework [13] that aims to deal with
modern issues of false discoveries [16, 17, 23]. These issues, potentially, occur when datasets
are being reused in order to find statistically significant discoveries which, without proper
care, may lead to overfitting due to adaptivity of the analysis to the data. Motivated by
these issues, the framework of adaptive data analysis investigates a mathematical model
that considers an analyst that interacts with a fixed dataset through acces to an oracle or
mechanism. In this framework, the analyst is assumed to be malicious and its objective is to
find false discoveries i.e. queries for which the oracle fails to answer correctly. The oracle
on the other hand, tries to maintain the validity of the answers. Through this formalism,
investigators were able to provide new algorithms and methods that allow more principled
use of the data [3, 12, 5, 11], as well as complementary work that provides limitations to
what can be done with limited resources [25, 15, 24].

A very appealing, and studied [14, 26], example for adaptive data analysis emerges from
the setup of Stochastic Convex Optimization (SCO). In SCO, we want to construct an
algorithm that is given access to finite (convex) noisy samples of a convex function and its
objective is to minimize the function. A standard approach to the problem is via an iterative
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process where the algorithm initializes at some point w1 and then incrementally updates wt

using estimates of the gradient. For example, (full-batch) Gradient Descent performs an
update step of the form:

wt+1 = Π
(

wt − η

m

m∑
i=1

∇fi(wt)
)

, (1)

where fi are the i.i.d noisy instances of the function to be minimized and Π is a projection
operator. This approach to stochastic convex optimization falls nicely into the framework of
adaptive data analysis as follows: At each iteration the optimizer (which takes the role of
an analyst) asks the gradient for the population risk at wt, receives an estimation that is
computed from a dataset and updates its state according to the answer. In Equation (1),
the estimates are provided by the naive empirical mean.

Motivated by this example of adaptivity, in this work we revisit the framework of adaptive
data analysis, and consider it from the lens of optimization. One motivation is to allow us to
study the problem of adaptivity in a setting where the analyst has a well defined objective
which is not necessarily to generate, maliciously, false discoveries. This affects much of the
analysis, as the algorithms are fixed, as well as the number of needed queries and tolerance
to noise.

Perhaps the first result that comes to mind in this context is that of SGD: In SGD the
algorithm uses highly noisy estimates of the gradient. Instead of taking the empirical mean,
we just sample one point (without replacement) as an estimate. On the one hand, it avoids
the problem of adaptivity by using few examples per iteration. On the other hand, it does
not even try to provide correct gradients. From the optimization point of view this algorithm
achieves the optimal statistical rates [21].

But there are algorithms that don’t necessarily avoid adaptiveness and reuse the data
to estimate the gradient. For example, full-batch GD as depicted in Equation (1). How do
they perform, and how does the problem of adaptivity affect them? Perhaps as expected,
adaptivity does come with a certain cost. A recent construction by [2] shows that GD, with
standard choice of hyperparameters (i.e. learning rate and no. of iterations) can minimize
the empirical risk, and at the same time overfit and fail to generalize. A close examination
of the construction shows that, already in the second step, the gradient starts to be biased
and does not represent the true gradient of the loss function. In a subsequent work, [1], it
was shown that this problem is inherent in the estimator. Namely, no method can accept
the empirical gradients as estimates and optimize the problem with optimal rates. This is
perhaps a good example to the shortcoming of naive reuse of data.

There is a fix though. It leads to suboptimal rates in terms of computation but maintain
optimal sample complexity rate. Specifically, [3] showed that a smaller step size, and more
iterations (quadratically more, infact) would make the algorithm stable, and m = O(1/ε2)
samples suffice for this iterative process to work. But, from the adaptive data analysis
lens, this solution sort of shifts the responsibility from the estimation mechanism to the
analyst. In particular, the gradients are still provided as is, it is the analyst that is being
stabilized. Moreover, the analyst increased the number of queries. Namely, not only it did
not improve the estimates, it actually enhanced its interaction with this inexact mechanism.
Importantly, one can show that the solution does not make the gradients any more accurate
(see Theorem 4). Only the final output is being salvaged. The natural question, then, is
whether we can think of another fix within the framework of adaptive data analysis. Thus, let
us consider Gradient Descent as any algorithm that makes adaptive steps as in Equation (1)
but with any estimate of the gradient, not necessarily empirical mean. Then the question we
would like to answer is:
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What is the sample complexity of providing O(1/ε2), ε-accurate gradients of a 1-Lipschitz
convex function to Gradient Descent with learning rate η = O(ε)?

We require O(1/ε2) gradients and O(ε) learning rate as these are known to be necessary
for optimization [22, 20] (and it is also easy to see that it is sufficient). We focus here
on dimension-independent bounds as these are the optimal achievable rates. It is easy to
see that Õ(1/ε4) is a naive, dimension independent bound that one could achieve (where
the oracle uses O(1/ε2)-fresh new samples at each iteration, hence by standard dimension
independent concentration bounds [6]). Standard techniques of adaptive data analysis can
also be used to achieve rates of Õ(

√
d/ε3) [4] but this is both dimension dependent and

remains suboptimal for optimization purposes. The question above remains open, but we
provide two intermediate answers, which we next describe:

Our first result is for general analysts and not for GD: We show that if an analyst is
allowed to query gradients of a convex function then Ω(1/ε3) samples are needed in order to
provide O(1/ε2) ε–accurate answers. Our result here builds upon existing techniques and
attacks [8, 10, 24], and we obtain a new lower bound (which may be of interest of its own
right) to an analyst, in the standard statistical query setting, that queries many non-adaptive
queries in sequential bulks of adaptive rounds (where the rounds of adaptivity are known,
distinctively from [11]) and needs to obtain a fraction of true discoveries. We show that for
such an analyst there exists a lower bound of Ω(

√
T/ε2) samples, where T is the number of

rounds of adaptivity and ε is the accuracy. We then show a generic reduction to the setting
of convex optimization. Though the analyst is not GD, this result does demonstrate that
one cannot design a complete mechanism for any analyst with optimal rates. It does leave
open, though, the possibility of designing incomplete oracles that interact with specific types
of analysts (or algorithms) such as GD.

The second result is for GD. We provide a bound of Ω̃(1/ε2.5), but under further
assumptions: First, we assume the oracle is post-hoc generalizing [9, 25]. Roughly, post-hoc
generalization means that the algorithm does not query points where the empirical loss and
true loss differ. While this assumption may seem restrictive, we point out that we inherit it
from existing known bounds in the standard statistical query setting. Specifically, we provide
a generic reduction from statistical queries to the framework of GD. Then, we apply the
lower bound of [25] that assumes post-hoc generalization. But the reduction is generic, and
guarantees, given a lower bound for statistical queries of the form f(T, ε) where T is the
number of queries and ε is the desired accuracy, a lower bound of the form f(O(1/ε), O(ε))
in the setting of convex optimization (under a further first-order access assumption which we
discuss next).

The second assumption we make is what we term first-order access. Here we assume
that the oracle must compute the estimate only from the gradients at {w1, . . . wt} and not,
say, by using the global structure of the function (we mention that our result can easily be
extended to allow any local, but at a small neighbourhood, information of the function).
Note that, since the function must be fixed throughout the optimization process, and since
the optimization algorithm is fixed, allowing the oracle global access to the function restricts
us from using any type of randomness other than the randomness of the distribution. Hence,
while slightly more delicate then the first assumption, here too we require this assumption
since in the standard statistical query setting lower bounds are provided with respect to
random analysts. Our reduction, then, can turn a more general oracle (without first-order
access) into a procedure that can answer statistical queries against a deterministic analyst
(in the sense that the distribution may be random, but the analyst’s strategy is fixed and
known). This seems like an interesting question for future study.

ITCS 2024
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It is interesting, then, to compare these results to recent adaptations of the standard
model that restrict the analyst [26]. This is largely motivated by the reasoning that analysts
are not necessarily adversarial. Our result, though, may hint (if one considers GD as a non
malicious algorithm in this context) that the problem may be in the distribution of the data
and not necessarily in the analyst. Namely, a general reduction from statistical queries to
the framework of GD along our lines, will show that any lower bound can be described as
constructing a malicious distribution which leads to overfitting together with a non-malicious
analyst.

2 Background

2.1 Adaptive Data Analysis
We begin by revisiting the standard statistical queries setting of adaptive data analysis
introduced by [13]. In this model, we consider a subset Q of statistical queries over a domain
X . A statistical query is defined to be any function q : X → [−1, 1]. We consider a sequential
interaction between an analyst A and a statistical queries oracle O (or simply oracle) that
continues for T iterations and is depicted as follows:

At the beginning of the interaction the analyst A chooses a distribution D over X . The
Oracle O is provided with a finite collection of samples S = {x1, . . . , xm} drawn i.i.d from
the distribution D. Then the interaction continues for T sequential rounds: At round t ≥ 1,
A provides a statistical query qt ∈ Q, and the oracle O returns an answer at ∈ [−1, 1].
The answer at may depend on the dataset S as well as on previous answers and queries
{q1, . . . , qt}. The query qt may depend on previous answers {a1 . . . , at−1}, as well as on the
distribution D (which is thought of as known to the analyst). We denote by qt(D) and qt(S)
the following quantities:

qt(D) := E
x∼D

[qt(x)], qt(S) := 1
m

m∑
i=1

qt(xi).

The goal of the oracle is to preserve accuracy, as next defined. And, here, we mostly care
about the minimal size m that is required by O in order to succeed.

▶ Definition 1. An oracle O is (ε, γ, δ)-accurate for T adaptively chosen queries given m

samples in X if for every analyst A and distribution D, with probability at least (1 − δ) for
(1 − γ)T fraction of the queries output by A:

|at − qt(D)| ≤ ε.

We will write, for brevity, (ε, δ)-accurate instead of (ε, 0, δ)-accurate. An additional require-
ment of post-hoc generalization [9], is also sometimes imposed:

▶ Definition 2. An oracle O is (ε, δ)-post hoc generalizing for T adaptive queries with m

samples if: given m samples, for every analyst A, with probability at least (1 − δ): for all
t ∈ [T ]

|qt(S) − qt(D)| < ε.

The following result bounds the sample complexity of a post-hoc generalizing oracle:

▶ Theorem 3 (Cor 3.2 [25]). There exists an analyst A, such that for every Oracle O, if O
is (ε, 0.005) post hoc-generalizing and (ε, 0.005)-accurate, given m samples, for T adaptively
chosen queries by A, then

m = Ω(
√

T/ε2). (2)
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2.2 Stochastic Convex Optimization
We next review the setting of stochastic convex optimization. In this model we consider a
function f(w, x) : Rd × X → R, which is convex and O(1)-Lipschitz in the parameter w, for
every x ∈ X . We also consider a distribution D over X and we denote by F the population
risk:

F (w) = E
x∼D

[f(w, x)].

The objective of an optimization algorithm A (or analyst) is to calculate w⋆ such that:

F (w⋆) ≤ min
∥w∥≤1

F (w) + ε.

In order to achieve this goal, we also assume an interaction with what we’ll call here
exact-first-order oracle, Of,∇f (w, x), for the function f that, given w and x returns

Of,∇f (w, x) = (Of (w, x), O∇f (w, x)) := (f(w, x), ∇f(w, x)). (3)

Gradient Descent over the empirical risk

A very popular first-order approach to solve the above optimization problem is by performing
Gradient-Descent over the empirical loss . Here we perform a very simple update rule: At
first, the algorithm initializes at w1 = 0. Then, at each iteration t the algorithm updates

wt+1 = Π
[

wt − η

m

m∑
i=1

∇f(wt, xi)
]

, (4)

where Π is a projection on the unit ball and ∇f is provided by access to an exact-first-order
oracle. The output of the procedure is then:

wS = 1
T

T∑
i=1

wi.

This procedure can be considered as an algorithm that minimizes the empirical loss,
where given a sample S, we define the empirical loss to be

FS(w) = 1
m

m∑
i=1

f(w, xi).

It is well known (see for example, [7]) that ,given the above procedure:

FS(wS) ≤ min
∥w∥≤1

FS(w) + O

(
η + 1

ηT

)
.

In particular, a choice of η = O(1/
√

T ) leads to an error of O(1/
√

T ). But the output of the
procedure can also be related to the population risk through the following upper bound:

▶ Theorem ([3]). Let D be an unknown distribution, over X and suppose that f(w, x) is O(1)
Lipschitz and convex with respect to w ∈ Rd. Let S = {x1, . . . , xm} be a sample drawn i.i.d
from distribution D, and consider the update rule in Equation (4). Then for wS = 1

T

∑T
t=1 wt

E
S∼Dm

[F (wS)] ≤ min
∥w⋆∥≤1

F (w⋆) + O

(
η
√

T + 1
ηT

+ ηT

m

)
. (5)

ITCS 2024
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A choice of T = O(m2), η = 1/m3/2 leads to an error of O(1/
√

m) which is statistically
optimal. As discussed, [2] provided a matching lower bound for the number of iteration
required to achieve O(1/

√
m) error.

One could also ask whether the empirical estimates of the gradients also generalize.
Namely, is the empirical mean of the gradients close to their true expectations throughout
the procedure? A close examination of the construction used by [2] shows that, without
special care, the empirical estimate of the gradient fails to provide accurate gradients, even
if we choose the learning rate and number of iteration to minimize Equation (5). We provide
a proof sketch in the full version [19].

▶ Theorem 4. Given a sample x1, . . . , xm of i.i.d samples, suppose we run GD over the
empirical risk, as depicted in Equation (4). There exists a distribution over X and an O(1)
convex Lipschitz function. Such that if S is a sample drawn i.i.d from the distribution D of
size m and wt is defined as in Equation (4) then for t = 2, with probability 1/2 over w2:∥∥∥∥∥ E

S∼Dm

[
1
m

m∑
i=1

∇f(w2, xi)|w2

]
− ∇F (w2)]

∥∥∥∥∥ = Ω(1).

As discussed, there is in fact a simpler example to the fact that optimizing the objective doesn’t
require accurate gradients which is SGD. It is known that when T = m and η = 1/

√
T , the

analyst optimizes the objective to the same accuracy of O(1/
√

m). Remarkably, this requires
even less iterations and the gradient doesn’t even presume to be accurate. Nevertheless, the
analysis here rely on the fact that the gradient is an unbiased estimate, where adaptivity is
avoided since we use a fresh example at every round.

It is also worth mentioning that recently [18] showed that, in adaptive data analysis
terminology, SGD is an example to a non post-hoc generalizing algorithm in the following
sense: It can be shown that the output parameter wS provided by SGD may minimize the
population loss, but there is a constant gap between the empirical and population loss at wS .

3 Problem setup

We next describe our setting. We consider the problem of adaptiveness within the context
of stochastic convex optimization. We consider an interaction between an analyst A and a
first-order optimization oracle, OF . At the beginning of the interaction the analyst chooses a
function f and a distribution D. Then a sample S = {x1, . . . , xm} is drawn and provided to
the oracle. The interaction then proceeds for T rounds, where at round t ∈ [T ] the analyst
queries for a point wt, and the oracle returns OF (wt) ∈ Rd. The query points w1, . . . , wT

may depend on the distribution D and the oracle answer OF (wt) may depend on the sample
S, the function f , as well as on the sequence of previously seen w1, . . . wt−1.

Gradient Descent

Within our framework we describe GD as the following procedure: For every η > 0 we let
GD with learning rate η be defined by the following update at each iteration t ≥ 1 (setting
w1 = 0):

wt = Π (wt − η∇OF (wt)) , (6)

where Π is the projection operator over the ℓ2-unit ball. Notice that, if OF has an access to
an exact first order oracle for f , O∇f , and returns the empirical mean at each iteration then
we obtain GD over the empirical risk as described in Equation (1). Before we continue, we
notice that good generalization of OF is sufficient for optimization. Indeed, the following
result is an easy adaptation of the classical optimization bound for GD:
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▶ Theorem 5. Let D be an unknown distribution over X and suppose that f(w, x) is O(1)-
Lipschitz and convex with respect to w ∈ Rd. Let S = {x1, . . . , xm} be a sample drawn i.i.d
from distribution D, and consider the update rule in Equation (6). Assume that for every
iteration OF satisfies

|OF (wt) − ∇F (wt)| ≤ ε,

Then for wS = 1
T

∑T
t=1 wt

ES∼Dm [F (wS)] ≤ min
∥w⋆∥≤1

F (w⋆) + O

(
η + 1

ηT
+ ε

)
.

The above rate is optimal, which leads to the natural question, what is the sample needed
by an oracle that returns O(1/ε2) ε-accurate gradients for GD with learning rate O(ε). Such
an oracle improves over, the naive, empirical mean estimate which induces GD over the
empirical risk which requires Θ̃(1/ε4) iterations to achieve error of O(ε). The performance
of such an oracle should also be compared with SGD that can achieve a comparable bound
on the number of iterations and requires the optimal sample size of m = O(1/ε2). Next, we
provide natural extentions to the definition of adaptive oracles to the setting of stochastic
optimization.

▶ Definition 6. A first order oracle OF is (ε, γ, δ)-accurate against algorithm A for T

iterations, given m samples, if OF is provided with m samples and with probability at least
(1 − δ) for (1 − γ)T fractions of the t ∈ [T ]:

∥OF (wt) − ∇F (wt)∥ ≤ ε.

If O is (ε, γ, δ)-accurate against any algorithm A we say it is (ε, γ, δ)-accurate.

We will write in short (ε, δ)-accurate for (ε, 0, δ)-accurate.

▶ Definition 7. A first-order oracle OF is (ε, δ)-post hoc generalizing against algorithm A

for T iterations, given m samples if with probability at least (1 − δ): for every t ∈ [T ]

∥∇F (wt) − 1
m

m∑
i=1

∇f(wt, xi)∥ ≤ ε.

If O is (ε, δ)-post hoc generalizing against any algorithm A we simply say it is (ε, δ)-post
hoc generalizing.

First order local access

We next introduce the following assumption on the oracle:

▶ Definition 8. A first order first-order-access (FOA)-oracle OF is a procedure that, given
access to an exact-first-order oracle Of,∇f to the function f , and access to a sample S of
size m, returns for every point wt a gradient estimate OF (wt) that may depend only on

{(f(wt′ , xi), ∇f(wt′ , xi}}{(xi,wt′ ):xi∈S,t′≤t} .

Equivalently, we may think of an FOA oracle as a procedure that does not have access to
f , instead, at each iteration t receives as input the parameter wt as well as a function

ρ̄t : X → R × Rd,

such that ρ̄t(x) = (f(wt, x), ∇f(wt, x)) for every x. The output of the FOA at round t may
depend on ρ̄1, . . . , ρ̄t

The assumption of a FOA-oracle is very natural in the context of Stochastic Convex
Optimization, and in general, we do not assume access to a global structure of a convex
function. The above assumption indeed captures oracles that have only such local access.

ITCS 2024
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4 Main Results

We are now ready to state our main results. Our first result state that, for a general analyst,
the oracle cannot generalize for T = O(1/ε2) estimated gradients, unless it is provided with
m = Ω(1/ε3) examples. The proof is provided in Section 5.2.1

▶ Theorem 9. There exists constants γ, δ > 0 and a randomized analyst A the chooses a
determined 1-Lipschitz function f , defined over sufficiently large d, such if OF is a first-order
oracle that is (ε, γ, δ)-accurate against A for T iterations, then m = Ω

(√
T

ε2

)
. In particular,

any oracle OF that is (ε, γ, δ)-accurate for T = O(1/ε2) iterations must observe m = Ω
(
1/ε3)

examples.

Making no assumption on the analyst may seem non-realistic, especially to assume it is
malicious and attempts to achieve false gradients. Nevertheless there is value in producing
oracles that are foolproof. The above theorem shows that such security guarantees are
impossible with the standard sample complexity.

The next natural thing that we might want to consider is an oracle that is principled
under certain assumptions on the optimization algorithm. We might even hope to design
an incomplete oracle that can interact with specific optimization algorithms and halt when
certain assumptions are broken. The next result demonstrate that limitations from general
statistical queries can be translated into limitations for (FOA) oracles that interact with
gradient descent. The proof is provided in the full version [19].

▶ Theorem 10. For sufficiently large d, suppose that there exists a FOA oracle, OF , that
is (ε, δ)-accurate that receives m samples and answers T adaptive queries against Gradient
Descent with learning rate η = O(ε). Then there exists a (O(ε), O(δ))-accurate statistical
queries oracle, O, that receives m samples and answers Ω̃ (min{T, 1/η}) adaptive queries.

Moreover, if OF is (ε, δ)-post-hoc generalizing then O is (O(ε), O(δ))-post-hoc generalizing.

Together with Theorem 3 we obtain the following corollary

▶ Corollary 11. For sufficiently large d, let OF be an (ε, δ)-accurate and post-hoc generalizing
FOA that receives m samples and answers T > Ω(1/ε) adaptive queries against Gradient
Descent with learning rate η = O(ε). Then m = Ω̃

(
1/ε2.5).

We stress again that, in contrast with these results, an optimization algorithm can correctly
minimize the true loss using no more than Õ(1/ε2) iterations and Õ(1/ε2) examples [18].

5 Lower bounds against malicious analysts

In this section we set out to prove Theorem 9 and provide a lower bound to general oracles
against adversarial analysts. In section Section 5.2 we show how to turn a generic lower
bound for statistical queries to a lower bound in convex optimization. However, to the best
of the author’s knoweledge, there is no (unconditional) known lower bound that shows that
m = Ω(

√
T/ε2) examples are necessary to answer T queries. So we actually rely on a slightly

stronger reduction than from the standard setting of statistical queries. We rely, then, on the
fact that querying a single gradient carries more information than a single statistical query,
in fact d more. However, these may not be chosen adaptively, and the errors are spreaded.

The setting from which we provide the reduction is as follows: We consider an analyst
that at each iteration t can ask k non-adaptive queries. This is reminiscent to a similar
problem that was studied by [13], but there it is unknown what are the rounds of adaptivity.
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Here we consider a significantly simpler problem where the rounds of adaptivity are known
in advance and we show, using ideas from [8] (that constructs a similar lower bound but
in the setting of privacy), that for certain k = Ω(1/ε2),Ω(

√
T/ε2) samples are needed to

ensure a large enough fraction of the answers are correct. Then, as discussed, we provide a
generic reduction to convex optimization. We now turn to describe the setting of adaptive
non-adaptive queries and state our main lower bound for this setting.

5.1 Adaptive-non-Adaptive queries
In this section we take a little detour from our basic setting and return to the setting of
statistical queries.

5.1.1 Setup
We will consider now a natural generalization of the standard setting of adaptive data
analysis. Here, we allow the analyst to query at each round k queries simultaneously. In this
setting, as before, we have a family of queries Q as well as an analyst A and oracle O which
interact for T rounds. Distinictively from before, at round t we assume A asks k-statistical
queries qt = {qt,1, . . . , qt,k} ⊆ Qk, and O returns an answer vector at = (at,1, . . . , at,k). The
answer vector at may depend on the sample S and on previously published queries q1, . . . , qt.
Similarly the query vector may depend on previous answer vectors a1, . . . , at−1 and the
distribution D.

▶ Definition 12. Similar to Definition 1, we say that O is (ε, γT , γk, δ)-accurate for T

adaptively chosen queries, given m samples, if the oracle samples at most m samples and
with probability 1 − δ we have for (1 − γT ) fraction of the rounds, for (1 − γk) fraction of the
queries:

|O(qt,i) − qt,i(D)| ≤ ε.

We next set out to prove the following lower bound:

▶ Theorem 13. For X = {0, 1} For k = Ω(1/ε2.01), there exists a finite family of queries
Q over the domain X = {0, 1}k, constants γT , γk, δ, such that no oracle O is (ε, γT , γk, δ)
accurate for k-non adaptive T adaptively chosen queries given m samples unless m =
Ω
(√

T/ε2
)

Before we begin with the proof, we provide several preliminary results that we build
upon.

5.1.2 Overview Technical Preliminaries
The proof of Theorem 13 relies on a technical idea that appears in [8]. [8] starts by considering
two constructions in the context of privacy. The first, demonstrates a sample complexity
lower bound of Ω(

√
T ) for T private queries, and a second construction, a reconstruction

attack, that allows a certain reconstruction of the data unless the sample size is order of
Ω(1/ε2) for ε-accurate answers. Then, they provide a new construction that consolidates
these two bounds into one construction that operates on a certain product space of the two
domains. Here we do something similar only we replace the privacy attack with an adaptive
data analysis attacks that operates on i.i.d samples (which is not necessary when privacy is
considered). The consolidation is a little bit different as we must consider a dataset that
is generated by sampling i.i.d examples (as opposed to worst-case dataset in the case of
privacy).
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In more detail, the proof of Theorem 13 relies on two types of attacks that were introduced
by [24, 10]. Our first type of attack is a reconstruction attack, and we follow the definition
of [8]:

▶ Definition 14 (Reconstruction Attack). For a dataset S = {x1, . . . , xm}, we will say that
S enables an ε′-reconstruction attack from (ε, γ)-accurate answers to the family of statistical
queries Q if: There exists a function

B : R|Q| → [0, 1]m,

such that for every vector v ∈ [0, 1]m and every answer sequence a = (aq)q∈Q ∈ [0, 1]Q: If
for at least 1 − γ fraction of the queries q ∈ Q holds:∣∣∣∣∣aq − 1

m

m∑
i=1

q(xi)v(i)

∣∣∣∣∣ < ε,

then for b = B(a):

1
m

m∑
i=1

|b(i) − v(i)| < ε′.

The following result is due to [10], we state it as in [8] for the special case of considering
1-way marginals1 :

▶ Theorem 15. Let k ≥ 1/ε2.01, and assume ε is sufficiently small. There exists a constant
γ0 (independent of ε and k) such that for every ε′, there exists a dataset S = ({0, 1}k)m with
m = Ωε′(1/ε2) such that S enables an ε′-reconstruction attack from (ε, γ0)-accurate answers
to a family of queries Q of size k.

The second attack that we rely on provides an information theoretic lower bound of
Ω(

√
T ) to answer adaptive statistical queries:

▶ Theorem 16 (Thm 3.10 [24]). For all γ < 1/2, there is a function T (m, γ) ∈
O
(
m2/(1/2 − γ)4), such that there is no oracle O that is (0.99, γ, 1/2)-accurate for T (m, γ)

adaptively chosen queries, given m samples in {0, 1}d, where d ≥ T (m, γ).

We will require a dual restatement of Theorem 16, which essentially follows the same
proof together with standard minmax theorem:

▶ Theorem 17. There exists a randomized analyst A such that for any oracle O that interacts
with A for T (m, γ) rounds having m samples, then with probability at least 1/2 for at least
γT of the rounds:

|at − qt(D)| > 0.01.

Sketch. The proof is essentialy the proof of Theorem 16 as depicted by [24]. We only need
to argue that in the construction of [24] the advarsarial analysts that are being constructed
are from a finite set and then use standard minmax duality. To see that the analysts in the
original proof are supported on a finite set, first observe that the analyst chooses (randomly)

1 Note that in [8] k denotes the k-way marginal query class which we fix to be the 1-way marginal, and
the k in our statement is denoted by d in [8]
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a uniform distribution over a sequence of pairs (1, v1), (2, v2), . . . , (N, vN ) where N = T (m, γ)
and each vi depicts a secret key (where for the information-theoretic lower bound we choose
a one-time pad encryption and then vi ∈ {±1}N ). Hence the set of feasible distributions is of
size 2N , and N = O(T (m, γ)). Next, we note that at each iteration, the analyst rounds the
answer for O, at and chooses as a query, qt which is parameterized by a vector in {−1, 0, 1}N .
Hence, the query at round t depends on t vectors in {−1, 0, 1}N and {sgn(a1), . . . , sgn(at)}
hence overall there is a finite set of states to which the analyst can transition at each iteration,
so overall there is only a finite amount of analysts on which the distribution is supported. ◀

5.2 Proof of Theorem 13
Let k ≥ 1/ε2.01, and set Qε be a set of at most k queries over a dataset Sε and γ0 a parameter
that enables an ε′-reconstruction attack from (ε, γ0)-accurate answers to Qε as guaranteed
in Theorem 15. Without loss of generality we assume γ0 < 1/2, and ε′ is chosen such that:

ε′ <
0.01
3 · 26 .

Now we let d = |Sε| = O(1/ε2). Without loss of generality and for simplicity of notations we
assume Sε = [d] = {1, . . . , d}.

Suppose Q is a family of queries, and assume we have d analysts, in the standard model
(i.e. each analyst asks a single question), (A1, . . . , Ad). We define an analyst that asks k

queries A(A1, . . . , Ad) as follows:
First, when the analysts choose distributions D1, . . . , Dd over X , the analyst A defines a

distribution D over Sε × X that chooses first randomly and uniformly i ∈ [d] and returns
(i, x) where x ∼ Di. The oracle, in turn, observes i.i.d samples from the given product
distribution.

The interplay with the oracle proceeds as follows: At each iteration t, we assume
by induction that each analyst, A1, . . . , Ad, provides a query qt,1, . . . , qt,d. The analyst
A(A1, . . . , Ad) constructs for each query q ∈ Qε the query

q′
t((i, x)) = q(i)qt,i(x),

and asks these k non-adaptive queries.
Then, given the answer vector {aq′

t
}, we provide analyst Ai with the answer at,i, where

at = B(aq′
t
),

and B defines the reconstruction attack in Theorem 15. The analysts then provide the queries
qt+1,1, . . . , qt+1,d and the analyst A(A1, . . . , Ad) continues to the next round until round T.
Our analyst then depends on the d analysts, We choose them to be d i.i.d copies of the
analyst in Theorem 17 and we let Ā be the analyst induced by such A1, . . . , Ad.

Notice that when we fix A1, . . . , Ai−1, Ai+1, . . . , Ad, that are provided to A(A1, . . . , Ad)
we induce an oracle, that we denote by Oi that interacts with analyst Ai. In more detail, we
consider a randomized oracle Oi that operates as follows:

At the beginning of the interaction, before the first round, Oi draw a uniform sample
{s1, . . . , sm}. For each sample sj ̸= i the oracle also draws a sample (x ∼ Di). Then, given
mi samples {x1, . . . , xmi

} from Di where mi is the number of times i was drawn, the oracle
adds to the sample the sample points {(i, xj)}mi

j=1. Notice that this sample is drawn exactly
according to the process depicted above where (i, x) is drawn such that i is uniform and
x ∼ Di. The interaction with Ai along the rounds is continued where at each round Ā

transmit the question, O answers, and Ā transmit the answer back, as described above.
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In this interaction the number of samples is random, but notice that if T ≥ T (mi, 1/4),
where

T (m, 1/4) = O(m2),

is defined in Theorem 17, then with probability at least 1/2 for T/4 of the rounds, by
Theorem 17

∥at,i − qt,i(Di)∥ > 0.01.

This also entails that for every i:

E
Ai,Qi

(
1
T

T∑
t=1

|at,i − qt,i(Di)|
)

>
0.01
23 P(T ≥ T (mi, 1/4)). (7)

Now assume O is (ε, ε′, γ0, ε′)-accurate for T = T (4m/3d, 1/4) rounds, and consider A
as defined above. Then with probability 1 − ε′: for (1 − ε′)-fractions of the rounds, for
(1 − γ0)-fraction of the queries q′

t:

∣∣∣∣∣aq′
t

− 1
k

k∑
i=1

q(i)qt,i(Di)

∣∣∣∣∣ =
∣∣aq′

t
− q′

t(D)
∣∣ < ε.

Which entails by reconstruction attack, for the same fraction of rounds:

1
k

k∑
i=1

|at,i − qt,i(Di)| ≤ ε′.

Taken together we have

E

[
1

Tk

k∑
i=1

|at,i − qt,i(Di)|
]

≤ 3ε′ ≤ 0.01
26 . (8)

On the other hand, notice that for any analyst, with probability 1/4, Oi is provided with
less than 4m

3d samples from the distribution Di

So by choice T ≥ T (4m/3d, 1/4) = O(m2ε4), and by Equation (7), we have:

E
A,Q

(
1

Tk

T∑
i=1

k∑
i=1

|at,i − qt,i|

)
= 1

k

k∑
i=1

E
Ai,Qi

(
1
T

T∑
t=1

|at,i − qt,i|

)
>

0.01
25 .

contradicting Equation (8).

5.2.1 Proof of Theorem 9
We now proceed with the formal proof of Theorem 9. Given a family of queries |Q| ≤ d

index the coordinates of Rd by the elements of Q. Namely, we think of Rd as RQ where each
vector w ∈ RQ is thought of as a function w : Q → R.

We define a convex, over the parameter w, function in RQ:

f(w, x) =
∑
q∈Q

q(x) + 1
4 w2(q). (9)
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Note that, since |q(x)| ≤ 1, the above function is always convex and 1-Lipschitz for any
choice of queries and x. Let OF be a first order (ε, γT , δ)-accurate oracle, and let us consider
the setting of an analyst that requires k non adaptive queries for T rounds. Let A be an
analyst that asks k non adaptive, T adaptive queries, and consider an oracle O that performs
as follows: Given queries qt,1, . . . , qt,k, the oracle O transmit to the oracle OF the point:

wt = 1√
k

k∑
i=1

eqt,i
,

where eq is the vector in RQ that is eq(q) = 1, and eq(q′) = 0 when q′ ̸= q. In turn, the
oracle receives the answer vector OF (wt) = gt and returns the answers at,i = 2

√
kgt(qt,i) − 1

Now suppose that with probability (1 − δ) for γT fraction of the rounds:

∥gt − ∇F (wt)∥ ≤ ε,

then:

1
k

∑(
at,i − qt,i(D)

2

)2
=
∑(

at,i + 1
2
√

k
− qt,i(D) + 1

2
√

k

)2
≤ ∥gt − ∇F (wt)∥2 ≤ ε2.

Then by Markov’s inequality for any γk, for γk fraction of the queries we have:

|at,i − qt,i(D)| ≤ 2ε
√

γk
.

Which means O is an ( 2ε√
γk

, γT , γk, δ)-accurate oracle that answers k non adaptive T adaptive
queries. By Theorem 13, for small enough ε, with correct choice of γk, γT and δ:

m = Ω
(√

T/ε2
)

.

6 Gradient Descent

In this section we set out to prove Theorem 10. In contrast to previous result, here we fix the
analyst and assume that it performs predefined update steps. This puts several complications
into the lower bound as we cannot actively make it “adversarial”, at least not in the standard
way. Nevertheless our construction builds on a similar idea as the proof before. The idea
here is to think of the function as a “state” machine, where each coordinate represents a
query that may be asked. The analyst, given answers to the queries, moves to the next query.
The complication though, is that here the dynamic is predefined and we need to design our
function carefully so that GD will induce the correct transition between states.

The idea is captured in what is our main technical workhorse which is the notion of a
GD wrapper, which we build in the full version [19]. GD wrappers will be used to provide a
reduction from a special class of analysts termed Boolean analysts, which are depicted in
Section 6.1. Then we use a simple reduction from general analysts (see Lemma 18) to obtain
a reduction from general analysts to our setting.

We begin with a brief overview of the construction. After that, in Section 6.2 we depict
the technical notion of GD wrapper. We then explain, in the full version [19], how to deduce
Theorem 10 from the existence of a GD wrapper. In thethe full version [19], we provide a
construction of a GD wrapper, which concludes the proof.
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6.1 Brief overview
As discussed, the heart of our construction is the notion of a GD wrapper. The idea is quite
straightforward. Given an analyst A we want to construct a convex function fA that is
convex and such that the trajectory of the function provides the answers to our question.
We’ve done something similar in the construction of Equation (9). There too, we constructed
a convex function that the gradient of wt at a certain coordinate provides an answer to a
given query. The issue though is that there we could ask to query any coordinate we wanted.
Here we need to make sure that the dynamic of GD moves us from query qt to query qt+1.

Thus, the first requirement that we want from our function fA is that by looking at the
outputs: O(w1), . . . , O(wt−1) we can identify the answer to query qt. For one non-adaptive
query this is straight forward. Indeed, consider the linear function

fq(w, x) = q(x) · w(1).

Then, the gradient ∇Fq(w) = Ex∼D[q(x)]e1. So we can identify the answer to the first query.

Simulating an adaptive analysis with 2 questions

As a next step, let us construct a GD wrapper that works as follows: At the first step the
wrapper will provide answer to query q1, and if q1(x) > b1 for some threshold b1, then the
wrapper transitions to a state that identifies the answer to a query q+ and else moves to a
state that identifies q− (to simplify, we will assume that the answer is never q = b1). This is
still far from a general strategy of an analyst, but at the end of this overview we will discuss
how we can reduce the general problem to a problem of a similar form.

Also, for the exposition we don’t want to consider the oracle’s strategy, hence assume that
at each iteration the oracle returns the true gradient and we will show how the trajectory
simulates the adaptive query interaction:

fq,q+,q− = max
{

w(1) + η − 1 − q(x)
3 w(2) − 1 + q(x)

3 w(3), w(2) + q+(x)w(4), w(3) + q−(x)w(5)
}

.

Our function is described as the maximum of three linear functions hence it is convex. Now
let us follow the trajectory for the first two steps. At the first step, note that the first term
maximizes the term. Recall that the gradient of a function f = max{g1, . . . , gk}, is given by
∇f = arg max ∇i∈[k]gi hence we have that for w1 = 0, for every x:

∇fq,q+,q−(0, x) = e1 − (1 − q(x)
3 e2 − 1 + q(x)

3 e3.

hence:

w2 = w1 − η∇ E
x∼D

[fq,q+,q−(0, x)] = −ηe1 + (1 − q(D))
3 ηe2 + 1 + q(D)

3 ηe3.

Now, note that the first term is no longer maximized by w2 for any x, as we moved
against the gradient and now it is smaller. On the other hand, if q(D) < 0 the second term
is maximized, and else the last. Assume the first: then

E
x∼D

∇f(w2, x) = e2 + q+(D)e4,

Note that the gradient at w2 tells us excatly whether q(D) > 0 or q(D) < 0. In particular,
if O(w2)2 > 1/2, then we know the q(D) > 0. Any oracle that returns an approximate
answer will also identify the answer. Using a recursive process, along these lines, we then can
construct a convex function that moves from one query to another using gradient descent.



R. Livni 76:15

In general, the state of an analyst does not depend, necessarily, on some threshold value
as in our case above. However, as the next reduction shows, if we are willing to suffer a
log 1/ε factor increase in the number of queries, we can turn a general analyst to an analyst
whose decision indeed depend on some threshold as depicted here:

Boolean Analysts

We will call an analyst Boolean if it provides to the oracle a query qi : X → [−1, 1] and
its state at time t depends only on {sgn(a1), sgn(a2), . . . , sgn(at−1)}. A more general setup
could allow at each iteration a query qi and a threshold bi and the state may depend only
on sgn(a1 − b1), . . . , sgn(at−1 − bt−1). However, up to rescaling it can be seen that the two
types of analysts are equivalent.

For such a boolean analyst, we define an oracle to be (ε, δ)-accurate for T adaptive queries
against a Boolean analyst, if given m samples for every Boolean analyst A with probability
at least (1 − δ) for all t ∈ [T ] if at = 1 then

qt(D) > −ε,

and if at = −1

qt(D) < ε.

Similarly, an oracle O is (ε, δ)-post hoc generalizing for T adaptive queries against a
Boolean analyst, if given m samples for every Boolean analyst A with probability at least
(1 − δ) for all t ∈ [T ] if q(D) > 0 then

1
m

∑
qt(xi) > −ε,

and if q(D) < 0

1
m

∑
qt(xi) < ε.

The following statement is easy to see:

▶ Lemma 18. Suppose that there exists an oracle O1 that is (ε, δ)-post hoc generalizing
(ε, δ)-accurate oracle against any Boolean analyst that answers T queries with m samples.
Then there exists a (4ε, δ)-post-hoc generalizing (4ε, δ)-accurate oracle, O2, that answers any
analyst (not necessarily Boolean) Ω

(
T

log 1/ε

)
queries with m samples.

General first order local access oracles

We so far assume a truthful Oracle, that provides the true answer. We now need to deal
with an oracle whose decision is both based on finite data and is strategic, in the sense that
it can manipulate the wrapper above with his answers.

Note that in order to construct the wrapper we designed a function whose dependent on
all possible states of the analyst A. In particular, an all powerful oracle can basically look at
the design of the function and get to know the exact strategy. That includes random bits as
the function needs to be determined and chosen at the beginning of the game. That is why,
as long as existing lower bounds for statistical queries rely on randomized analysts, for this
strategy to work, we need to somehow prohibit from the oracle to identify the random bits.
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Note that the reverse is also true. Without some restrictions on the oracle, the construction
against Gradient Descent becomes a pure strategy (modulus the choice of the distribution of
the data).

We thus assume that the oracle has only access through the local gradients at points
visited which restricts him from identifying the whole strategy of the analyst. In turn, we
need to make sure, in our construction, that such internal bits are indeed not transmitted
through the gradients. We therfore add in our notion of GD wrapper a further restriction
called correctness of gradients: In addition to requiring that answers can be extracted from
the gradients, we also require that the gradients of the instance functions can be completely
derived from the current state. This ensures us that an FOA Oracle may be operated solely
on already published information, hence its decision cannot be dependent on internal bits
which are independent of the current state. We now move on to introduce the notion of GD
wrapper, which explains exactly these requirements:

6.2 GD wrapper for an anlayst
We next describe the main technical tool for the proof which is a GD wrapper for an analyst
which can be thought of as an object that allows a statistical query analyst to interact with
a FOA Oracle. A GD wrapper (with learning rate η and initialization s), consists of
1. A wrapper function which is a function f(A; w, x) that accepts a deterministic Boolean

analyst and is convex and O(1)-Lipschitz in w ∈ Rd for every x.
2. A strictly increasing mapping T : [T1] → [T2], T (1) > 1. The wrapper is said to answer

T1 queries and to perform T2 iterations, and T is called the iteration complexity.
3. A sequence κ⃗ = {κt}T1

t=1 of T1 functions which are termed answering mechanisms:

κt :
(
Rd
)T (t) → [0, 1],

4. A sequence ρ⃗ = {ρt}T2
t=1 of T2 functions which are termed gradient access functions:

ρt := (ρ0
t , ρ1

t ) : Q ×
(
Rd
)t × X → R × Rd,

where T (t′) < t.

We consider the interaction between a GD wrapper and what we will term here a pseudo
oracle O, which is a deterministic mapping that outputs at step t O(t) ∈ Rd and receives a
vector ρ̄t : X → Rd (whose chosen in a manner that we will define next). The output of O at
times t, then, may depend on ρ̄1, . . . , ρ̄t, but it doesn’t necessarily obtain a query.

Given O, we define two sequences iteratively: the trajectory of the wrapper w1, . . . , wT2 ,
which is defined inductively where w1 = s, and

wt = Π (wt−1 − ηO(t − 1)) .

Second we define the answering sequence, which is updated whenver t = T (t′) for some t′:

at′ = κt′(O(1), . . . , O(t)).

Next, at each round t, suppose we have the answering sequence a1, . . . , at′ . Then, the
oracle receives, as input, the t-th gradient access function, considered as a function of the
argument x, defined as follows:

ρ̄t(x) = ρt(qt′+1, O(1), . . . , O(t), x),
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where qt′+1 is the t′ +1-th query asked by analyst A, given the answering sequence a1, . . . , at′

(if t′ = 0, i.e. T (1) > t, then, qt′+1 = q1). In turn, O outputs O(t + 1) ∈ Rd.
The GD wrapper is said to be (ε1, ε2, δ)-accurate against O if for every distribution D,

the following occurs w.p. (1 − δ), for every t0 ≤ T1:
If, for analyst A:

∥O(t) − E
x∼D

[∇f(A; wt, x)]∥ ≤ ε1. (10)

for every t < t0 Then:
(Correct gradients at t0:) For every x ∈ X :

ρ̄t0(x) = (f(A; wt0 , x), ∇f(A; wt0 , x)) , (11)

(Accurate answers) If Equation (10), in addition, holds for t = t0, and T (i) = t0 then
ai = 1 implies qi(D) > −ε2, and ai = −1 implies qi(D) < ε2, where qi is the i-th query
provided by A when provided with answer sequence a1, . . . , ai−1.

If a GD wrapper is (ε1, ε2, δ)-accurate against any oracle, we simply say it is (ε1, ε2, δ)-
accurate.

It can be seen that a GD wrapper together with an FOA Oracle imply an oracle that
answers statistical queries (we provide the proof in the full version [19]).

▶ Lemma 19. Suppose that there exists (2ε1, ε2, δ)-accurate GD wrapper with learning η > 0
that answers T1 queries and perform T2 iterations. Suppose also, that there exists an oracle
that is a (ε1, δ)-accurate FOA oracle, OF , that receives m samples and answers T2 adaptive
queries against Gradient Descent with learning rate η > 0.

Then there exists an (ε2, 2δ)-accurate oracle, O, that receives m samples and answers T1
adaptive queries against any Boolean analysts. Moreover, if OF is (ε1, δ)-post-hoc generalizing
then O is (2ε2, 2δ)-post-hoc generalizing.

In the full version [19] we provide a construction of a GD wrapper. Specifically, we prove
the following:

▶ Lemma 20. For sufficiently small ε, η > 0, and δ > 0. Assume η <
√

ε/48, and
T < min{1/16η, 1/24ε}. For sufficiently large d, there exists a (ε, O(ε), δ)-accurate GD
wrapper with a learning rate η > 0 and 1-Lipschitz wrapping function that answers T queries
and performs 2T iterations.
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