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Abstract
We introduce a new framework for the analysis of preprocessing routines for parameterized counting
problems. Existing frameworks that encapsulate parameterized counting problems permit the usage
of exponential (rather than polynomial) time either explicitly or by implicitly reducing the counting
problems to enumeration problems. Thus, our framework is the only one in the spirit of classic
kernelization (as well as lossy kernelization). Specifically, we define a compression of a counting
problem P into a counting problem Q as a pair of polynomial-time procedures: reduce and lift.
Given an instance of P , reduce outputs an instance of Q whose size is bounded by a function f of
the parameter, and given the number of solutions to the instance of Q, lift outputs the number of
solutions to the instance of P . When P = Q, compression is termed kernelization, and when f is
polynomial, compression is termed polynomial compression. Our technical (and other conceptual)
contributions can be classified into two categories:

Upper Bounds. We prove two theorems: (i) The #Vertex Cover problem parameterized by
solution size admits a polynomial kernel; (ii) Every problem in the class of #Planar F-Deletion
problems parameterized by solution size admits a polynomial compression.

Lower Bounds. We introduce two new concepts of cross-compositions: EXACT-cross-composition
and SUM-cross-composition. We prove that if a #P-hard counting problem P EXACT-cross-
composes into a parameterized counting problem Q, then Q does not admit a polynomial compression
unless the polynomial hierarchy collapses. We conjecture that the same statement holds for SUM-
cross-compositions. Then, we prove that: (i) #Min (s, t)-Cut parameterized by treewidth does not
admit a polynomial compression unless the polynomial hierarchy collapses; (ii) #Min (s, t)-Cut
parameterized by minimum cut size, #Odd Cycle Transversal parameterized by solution size,
and #Vertex Cover parameterized by solution size minus maximum matching size, do not admit
polynomial compressions unless our conjecture is false.
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1 Introduction

Preprocessing is an integral part of almost any application, ranging from lossless data
compression to microarray data analysis for the classification of cancer types. Therefore,
kernelization (or, more generally, compression), the mathematical paradigm to analyze
preprocessing procedures, is termed “the lost continent of polynomial time” [21]. Formally,
a decision problem P admits a compression into a decision problem Q if there exists a
polynomial-time algorithm that, given an instance (I, k) of P , translates it into an equivalent1

instance (I ′, k′) of Q of size f(k) for some computable function f that depends only on
k. When P = Q, a compression is termed kernelization. It is known that a (decidable)
problem admits a kernel if and only if it is in fixed-parameter tractable (FPT) [7].2 Thus, the
most central question in kernelization is: Which problems admit compressions (or kernels)
of size f(k) where f is polynomial in k, termed polynomial compressions? Techniques to
show upper bounds on (polynomial or other) kernel sizes have already emerged in the early
1990s [25]. On the other hand, Bodlaender et al. [3] proved that, unless the polynomial
hierarchy collapses, there exist problems that do not admit a polynomial compression (and,
hence, neither a polynomial kernel).

Due to the centrality and mathematical depth of compression/kernelization, the underlying
framework has been extended to capture optimization problems, and, more generally, the
computation of approximate (rather than only exact) solutions for optimization problems, by
Lokshtanov et al. [34] (building upon [22]). In particular, a compression of an optimization
problem P into an optimization problem Q is a pair of polynomial-time procedures: reduce
and lift. Given an instance of P , reduce outputs an instance of Q whose size is bounded by a
function f of the parameter, and given an optimal solution to the instance of Q, lift outputs
an optimal solution to the instance of P . More generally, to encompass the computation
of approximate solutions with a loss of factor α ≥ 1, given a β-approximate solution to
the instance of Q, for any β ≥ 1, lift must output an α · β-approximate solution to the
instance of P . Since its introduction, this notion of compression/kernelization (termed
lossy compression/kernelization) has already found a wide range of applications; see, e.g.,
[37, 27, 20, 33, 32, 1, 44, 19] for just a few illustrative examples.

In this paper, we introduce a new framework for the analysis of preprocessing routines for
parameterized counting problems. Existing frameworks that encapsulate parameterized count-
ing problems permit the usage of exponential (rather than polynomial) time either explicitly
or by implicitly reducing counting problems to enumeration problems (see Section 1.1). Thus,
our framework is the only one in the spirit of classic compression/kernelization in particular,
and lossy compression/kernelization in general. Specifically, we define a compression of a
counting problem P into a counting problem Q as a pair of polynomial-time procedures:
reduce and lift. Given an instance of P , reduce outputs an instance of Q whose size is bounded
by a function f of the parameter, and given the number of solutions to the instance of Q,
lift outputs the number of solutions to the instance of P . We demonstrate the depth of our
framework by proofs of both positive and negative results (see Section 1.2). In particular,
in terms of conceptual contribution, in addition to the framework itself, we also introduce
two new types of cross-compositions, termed EXACT- and SUM-cross-compositions, aiming
to provide analogs to the classic OR- and AND-cross-compositions used to derive negative
results for (classic) kernels.

1 That is, (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance.
2 We refer to Section 3 for basic definitions in parameterized complexity and graph theory.
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Over the past two decades, the body of works on parameterized counting problems has
grown quite rapidly (see, e.g., [23, 11, 36, 5, 15, 13, 12] for a few illustrative examples of
recent developments). In both theory and practice, there are various scenarios where counting
the number of solutions might be equally (or more) important than only detecting a single
solution (if one exists) [10]. This includes, for example, the computation of graph motifs
to observe certain phenomena in social and biological networks [38], and determination
of thermodynamic properties of discrete systems by partition functions [28]. However,
most natural counting problems are not known to (and unlikely to) admit polynomial-time
algorithms: Beyond problems whose decision versions are NP-hard, there also exist numerous
problems whose decision versions are solvable in polynomial time, but whose counting versions
are unlikely to be (e.g, a prime example of such problems is the Maximum Matching
problem on bipartite graphs [43, 42]). Naturally, this makes the study of the parameterized
complexity of counting problems very attractive.

1.1 Related Frameworks
Prior to our work, there existed three frameworks relevant to the analysis of preprocessing
routines for parameterized counting problems. However, all of these three frameworks
(explicitly or implicitly) correspond to computation in exponential (rather than polynomial)
time, as well as to either enumeration (rather than counting) or data reduction other than
compression/kernelization. Thus, they serve purposes that are very different than what
compression/kernelization of parameterized counting problems should be (though, of course,
they are of interest on their own right). Moreover, we are not aware, with respect to any of
these three frameworks, of the establishment of any non-trivial lower bound – that is, a lower
bound that does not simply follows from fixed-parameter intractability. Below, we elaborate
on each of these three frameworks.

Among the three aforementioned frameworks, the one whose utility is most similar to ours
was developed by Thurley [41], yet, even this framework concerns, implicitly, enumeration
and computation in exponential time (indeed, it is referred to as a formalization of so-called
enumeration compactors in [30], and as a reduction of counting to enumeration in [26]).
Roughly speaking, the definition of Thurley [41] can be interpreted as follows when using
two polynomial-time procedures (as we do), reduce and lift. Here, given an instance of a
counting problem P , reduce outputs an instance of an enumeration problem Q whose size is
bounded by a function f of the parameter. We suppose that each solution to the instance
of Q corresponds to a set of solutions to the instance of P ; then, the collection of sets of
solutions to the instance P corresponding to the different solutions to the instance of Q

should form a partition of the set of solutions to the instance of P . Accordingly, given a
particular solution s to the instance of Q, lift outputs the number of solutions to the instance
of P that correspond to s. In particular, given an enumeration of the solutions to the instance
of Q, by calling lift for each one of them, we can obtain (in exponential time, depending on
the number of solutions) the number of solutions to the instance of P .

The second framework is explicitly designed for enumeration problems. Still, we briefly
discuss it here, since it shares some similarity to the framework of Thurley [41]. This
framework was introduced by Creignou et al. [9] and refined by Golovach et al. [26]. Roughly
speaking, in its latter incarnation, we are also given two polynomial-time procedures, reduce
and lift. Here, given an instance of an enumeration problem P , reduce outputs an instance of
an enumeration problem Q whose size is bounded by a function f of the parameter. Then, lift
is defined similarly as before, except that now, given a particular solution s to the instance
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of Q, it enumerates (either in polynomial time or with polynomial delay) the solutions to the
instance of P that correspond to s. Like before, to derive the number of solutions to the
instance of P , it is required to spend exponential time.

The third framework is designed specifically for counting, but it is less in the spirit
of compression/kernelization, and, accordingly, it is termed compaction. Additionally and
similarly to the two aforementioned frameworks, it corresponds to computation in exponential
time. This framework was introduced by Kim et al. [30] (and further surveyed in [40]).
Roughly speaking, here we consider a polynomial-time procedure compactor (that can be
thought of as reduce) and an exponential-time (or worse) procedure extractor (that is very
different in spirit than lift). Here, given an instance of a counting problem P , compactor
outputs an instance of a counting problem Q whose size is bounded by a function f of the
parameter. Having computed the output instance, one can essentially discard all knowledge
of the input instance, yet call the procedure extractor to solve the input instance. In a sense,
the definition of compaction can be viewed as an “intermediate” concept that lies in between
those of a fixed-parameter algorithm and a compression algorithm, which is of interest on its
own right. Perhaps the main drawback of this third framework is that, because extractor is
allowed (and must be allowed, if we deal with a #P-hard problem) to spend exponential-time
(or worse) in the size of the output of compactor, we might often want to employ, in the first
place, a fixed-parameter algorithm directly on the instance of P .

Very recently, simultaneously and independently of our work, Jansen and van der Steen-
hoven [29] presented results that are more in-lined in spirit with ours: Specifically, they
either solve the given instance, or output an instance of size polynomial in the parameter
and with the same number of solutions. They also speculate on developing a meaningful
theory of counting kernelization. We answer this speculation as in this paper, as we develop
a framework counting kernelization, along with a framework for proving lower-bounds.

1.2 Our Contribution
Our technical (and other conceptual) contributions can be classified into two categories:
upper bounds and lower bounds. Here, we discuss the statements our results, and the new
concepts that we introduce in the context of lower bounds. The technical aspects of our
work are overviewed later, in Section 2. (We remark that some additional simple statements
concerning our notion of compression/kernelization are proved in Section 4.)

Upper Bounds. Let us start with the discussion of our upper bounds. We begin by the
analysis of the #k-Vertex Cover problem, whose decision version is the most well studied
problem in parameterized complexity [14, 17]. The objective is to count the number of vertex
covers of size at most k in a given graph G. Here, it is important to note that we count all
vertex covers of size at most k, and not only the minimal ones (which is a significantly easier
task; see Section 5). For the #k-Vertex Cover problem, we prove the following theorem
in Section 5.

▶ Theorem 1. #k-Vertex Cover admits a polynomial kernel.

Next, we turn to consider a wide class of parameterized counting problems, termed
the class of #k-Planar F-Deletion problems. In particular, the class of k-Planar
F-Deletion problems encompasses a wide variety of well-known problems that have been
extensively studied from the viewpoint of parameterized complexity, such as Vertex Cover,
Feedback Vertex Set, Treewidth η-Deletion, and more [24]. While we present a
meta-theorem that resolves every problem in this class, we do not generalize our previous
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theorem – our meta-theorem yields compressions rather than kernelizations. Formally, the
class of #k-Planar F-Deletion problems contains one problem for every (finite) set of
connected graphs F that contains at least one planar graph – here, given a graph G and
k ∈ N0, the objective is to count the number of vertex sets of size at most k whose removal
from G yields a graph that does not contain any graph from F as a minor. For the class of
#k-Planar F-Deletion problems, we prove the following theorem.

▶ Theorem 2. #k-Planar F-Deletion admits a polynomial compression.

Lower Bounds. We present two new types of cross-compositions, which we term EXACT-
cross-composition and SUM-cross-composition. To understand the roots of these notions,
let us first briefly present the classic notion of OR-cross-composition. Roughly speaking,
we say that a decision problem P OR-cross-composes into a parameterized problem Q if,
given a set of instances x1, x2, . . . , xt of P , we can, in polynomial time, output a single
instance (y, k) of Q with the following properties: (i) the parameter k is bounded by a
polynomial function of maxt

i=1 |xi| and log t, and (ii) (y, k) is a yes-instance if and only if
at least one xi is a yes-instance. The importance of the notion of OR-cross-composition
to compression/kernelization is rooted at the following theorem: If an NP-hard problem P

OR-cross-composes into a parameterized problem Q, then, Q does not admit a polynomial
compression (and, hence, neither a polynomial kernel), unless coNP ⊆ NP/poly [3, 4].
The intuition behind the correctness of this theorem is that, if Q did admit a polynomial
compression, then that would have meant that, in polynomial time, we are able to turn t

instances of an NP-hard problem to a single instance whose size depends (roughly) only on
that size of a polylogarithmic number of them rather than all of them – intuitively, this
means that we were able to resolve instances of an NP-hard problem in polynomial time.

Now, let us first discuss our notion of EXACT-cross-composition.3 Roughly speaking,
we say that a counting problem P EXACT-cross-composes into a parameterized counting
problem Q if, given a set of instances x1, x2, . . . , xt of P , we can, in polynomial time, output
a single instance (y, k) of Q with the following properties: (i) the parameter k is bounded by
a polynomial function of maxt

i=1 |xi| and log t, and (ii) given the number of solutions to (y, k),
we can output, in polynomial time, the number of solutions to xi for every i ∈ {1, 2, . . . , t}.
For EXACT-cross-composition, we prove the following theorem.

▶ Theorem 3. Assume that a #P-hard counting problem P EXACT-cross-composes into
a parameterized counting problem Q. Then, Q does not admit a polynomial compression,
unless #P ⊆ “NP/poly” (which implies that coNP ⊆ NP/poly).

For an application of Theorem 3, we consider the classic #Min (s, t)-Cut problem. Here,
given a graph G and two vertices s, t in G, the objective is to count the number of minimum
(s, t)-cuts in G. Notably, the decision version of this problem is solvable in polynomial
time [8] (and, hence, it trivially admits a polynomial, and even constant-size, kernel, with
respect to any parameter). Moreover, it is easy to see that #Min (s, t)-Cut parameterized
by treewidth is in FPT. So, it is natural to ask whether #Min (s, t)-Cut parameterized by
treewidth admits a polynomial kernel (or at least a polynomial compression). We answer
this question negatively.

3 In the manuscript, we consider SUM-cross-composition first since the reduction we give in the context
of EXACT-cross-composition builds upon one of the reductions that we give in the context of SUM-
cross-composition.
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77:6 Kernelization of Counting Problems

▶ Theorem 4. #w-Min (s, t)-Cut does not admit a polynomial compression, unless #P ⊆
“NP/poly” (which implies that coNP ⊆ NP/poly).

Lastly, let us discuss our notion of SUM-cross-composition. Roughly speaking, we say that
a counting problem P SUM-cross-composes into a parameterized counting problem Q if, given
a set of instances x1, x2, . . . , xt of P , we can, in polynomial time, output a single instance
(y, k) of Q with the following properties: (i) the parameter k is bounded by a polynomial
function of maxt

i=1 |xi| and log t, and (ii) the number of solutions to (y, k) is equal to the sum
of the number of solutions to xi over every i ∈ {1, 2, . . . , t}. For SUM-cross-composition, we
have the following conjecture, termed the SUM-conjecture: If a #P-hard counting problem
P SUM-cross-composes into a parameterized counting problem Q, then Q does not admit a
polynomial compression. The reason why we believe that this conjecture is true is rooted at
the exact same intuition mentioned earlier for the correctness of the corresponding theorem
for OR-cross-composition.

As applications of our conjecture, we again consider the #Min (s, t)-Cut problem, now
parameterized by the size of a minimum (s, t)-cut (which is in FPT [2]). Additionally, we
consider the #Odd Cycle Transversal problem parameterized by solution size and
the #Vertex Cover problem parameterized by solution size minus either its LP-value or
the size of a maximum matching (we refer to Section 3 for formal definitions). We remark
that the decision versions of these parameterized counting problems are known to admit
polynomial kernels [31]. For the aforementioned parameterized counting problems, we prove
the following theorem.

▶ Theorem 5. #k-Min (s, t)-Cut, #k-Odd Cycle Transversal, #ℓ-Vertex Cover
and #m-Vertex Cover do not admit polynomial compressions, unless the SUM-conjecture
is false.

2 Overview of Our Proofs

In what follows, we present an overview for the proofs of our main theorems. We start by
discussing the positive results, being Theorems 1 and 2.

Proof of Theorem 1. Our reduction consists of two steps. Here, we note that most of
our efforts are invested in the second step. The first step yields two graphs: G1 and G2.
We begin by an exhaustive application of the classic Buss rule (Definition 22) on the input
instance (G, k). In particular, unless the answer is 0, this yields an instance (G1, k1) with
k1 ≤ k and |E(G1)| ≤ k2

1 whose number of solution equals the number of solutions to G. At
this point, we do not have a kernel (or compression) – |V (G1)| can contain arbitrarily many
isolated vertices. So, we define G2 as G1 where all isolated vertices are removed. However,
the number of solutions (denoted by x2) to (G2, k1) can be very different than the number
of solutions (denoted by x1) to (G1, k1), and it is unclear how to derive the second from the
first. Specifically, suppose that yi, i ∈ {1, 2, . . . , k2}, is the number of solutions to (G2, k1)
of size exactly i. It is easy to see that x1 =

∑k2
i=0(yi ·

∑k2−i
j=0

(|V (G1)|−|V (G2)|
j

)
). However, by

knowing x2, we cannot know the individual values of the yi’s! Although x2 =
∑k2

i=0 yi, there
can be more than one choice (in fact, there can be exponentially many choices) for the yi’s
given only the knowledge of x2.

Due to the above difficulty, we perform the second step of our reduction. Roughly
speaking, we define G3 (in Definition 26) by the replacement of each vertex of G2 by d

copies (false twins) of that vertex, and the addition of t new isolated vertices. To make
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latter calculations work, we pick d = |V (G2)| ≤ O((k2)2), and we pick t to be “large enough”
compared to d. Now, our main objective is to prove how from the number of solutions to
(G3, k3) (denoted by x3), we can derive the individual values of the yi’s.

To achieve the above-mentioned objective, we define a mapping from the set of solutions
to (G2, k1) to the power set of the set of solutions to (G3, k3). Specifically, each vertex subset
(in a collection denoted by Map(X)) of G3 that is mapped to a solution X to (G2, k1) is
the union of all “copies” of each vertex in X as well as at most k3 − d · |X| many other
vertices from G3 so that there does not exist a vertex outside X having all of its copies
chosen (Definition 29). We first assert that this mapping corresponds to a partition of the
set of solutions to (G3, k3) (Lemma 30). Then, we turn to analyze the sizes of the mapped
collections. Towards this, we begin with a simple proof that for every X is of size i, for
some i ∈ {0, 1, . . . , k2}, the size of |Map(X)| is the same (denoted by wi), captured by an
explicit formula (Lemma 31). In particular, x3 =

∑k2
i=0 yi · wi. Consider this equality as

Equation (*).
The main property of the wi’s is that, for every i ∈ {0, 1, . . . , k2}, wi is “significantly”

larger than the sum of all wj ’s for j < i (proved in Lemma 32). In particular, based
on Equation (*) and this property, we can derive, from x3, the individual values of the
yi’s. Specifically, this can be done by the following loop. For i = 0, 1, 2, . . . , k2, we let
yi ← ⌊x3/wi⌋, and update x3 ← x3 − yi · wi. This computation can be performed efficiently
(in polynomial time), since the wi’s can be computed efficiently by dynamic programming
(Lemma 33). In turn, this computation is the main part of the procedure lift, presented in
Section 5.3.

Proof of Theorem 2. At a high level, we follow the approach of [24] who give a polynomial
kernel for Planar-F Deletion. Given an instance (G, k), we compute a modulator X

using an approximation algorithm [24]. This modulator has size kO(1), assuming that G has
a F -deletion set of size at most k. Next, we consider the components of G−X. A component
C is irrelevant, if it is disjoint from every minimal F -deletion set of size at most k. Using the
properties of F -free graphs, we obtain that all but kO(1) components of G−X are irrelevant.
We delete all irrelevant components in the first phase of the reduction step. Let G′ be the
resulting graph.

The next reduction step, considers each component of G′ −X. For each such component
C, we observe that it is a near-protrusion [24], i.e. a subgraph that has constant-treewidth
and after the removal of a F-deletion set from G′, has a constant sized boundary. We then
apply several powerful results on boundaried graphs, to show that the information required
to count the number of F-deletion sets of size k′ in G′, for every k′ ≤ k, can stored in a
compressed form using kO(1) space.

Briefly, a boundaried graph is a graph H where a subset of vertices B are marked as
boundary vertices. These boundary vertices are labeled with integers. Given two boundaried
graphs H1 and H2, whose boundary vertices are labeled using the same set of integers, we
can “glue” them to obtain a graph H1 ⊕ H2, which is obtained by first taking a disjoint
union of the two graphs and then identifying boundary vertices with the same label. Using
the notion of boundaried graphs and gluing, we can define an equivalence relation, ≡F such
that H1 ≡F H2 if and only if for any other boundaried graph H3, H1 ⊕H3 is F-minor free
⇐⇒ H2 ⊕H3 is F-minor free. It is known that this equivalence relation has finitely many
equivalence class for any fixed F .

Intuitively, our compression for a connected component C of G′ −X, considers the effect
of deleting a F-deletion set S from G′, and records the number of ways this can happen.
Since C is a near protrusion, it has constant-treewidth and a constant size boundary in
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G − S that is a subset of X \ S. We treat G[(V (C) ∪ N(C)) \ S] as a boundaried graph
with boundary N(C) \ S, and note that N(C) ⊆ X. Note that G[(V (C) ∪N(C)) \ S] lies
in an equivalence class R of ≡F . Then, for each choice of R, N [C] \ S and |S ∩ V (C)| we
record the number of subsets SC of V (C) such that G[(V (C) ∪N(C)) \ S] with boundary
N [C] \ S forms a boundaried graph that lies in R. We compute and store this information
in a table TC for each component C. We show that the number of such choices is bounded
by kO(1), and each entry of TC can be computed polynomial time. We then argue that the
information stored in the table is sufficient to compute count(k′) which is the number of
F-deletion sets in G′ of size at most k′, for every k′ ≤ k. Note that computing count(k′)
takes time exponential in k.

The output of the reduce procedure for #Planar-F Deletion, given an instance (G, k),
is a modulator X of size kO(1) and a collection of tables {TC}, one for each non-irrelevant
component of G−X. Note that the size of the output is kO(1). Next, the lift procedure is
given the instance (G, k), the modulator X, the collection of tables TC for each component
of G′ −X, and finally the values {count(k′) | k′ ≤ k}. The lift procedure first computes τirr

which denotes the total number of vertices in the irrelevant components of G−X. Then,
from {count(k′) | k′ ≤ k} and τirr it is easy to count the total number of solutions of size at
most k in G in polynomial time. The reduce and lift procedures together prove this theorem.

We now turn to discuss the negative results, starting with Theorem 5 and then continuing
with Theorems 3 and 4.

Proof of Theorem 5. We start with the proof that #Min (s, t)-Cut (which is #P-hard [39])
SUM-cross-composes into #k-Min (s, t)-Cut. Suppose that we are given ℓ instances of #Min
(s, t)-Cut, (G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ), where the size of a minimum (si, ti)-cut
in Gi is assumed to be equal to the size of a minimum (sj , tj)-cut in Gj , for every i, j ∈ [ℓ].
(This assumption is justified by the more general definition of cross-compositions that makes
use of equivalence relations.) Then, the reduction to a single instance (G, s, t) of is performed
as follows: We take the disjoint union of the input graphs, and unify ti with si+1, for every
i ∈ {1, 2, . . . , ℓ− 1}; additionally, we let s = s1 and t = tℓ. With this construction at hand,
it is easy to see that each minimum (s, t)-cut in G corresponds to a minimum (si, ti)-cut in
one of the Gi’s, and vice versa. Thus, we derive that the number of minimum (s, t)-cuts in
G equals the sum of the number of minimum (si, ti)-cuts in Gi, over every i ∈ {1, 2, . . . , ℓ}.
Moreover, the parameter k is trivially bounded from above by maxℓ

i=1 |E(Gi)|.
Having asserted that #k-Min (s, t)-Cut does not admit a polynomial compression under

the SUM-conjecture, we transfer its hardness to the #k-Odd Cycle Transversal problem
by the design of a polynomial parameter transformation (Definition 16). Suppose that we are
given an instance (G, s, t) of #k-Min (s, t)-Cut where G is a connected graph. Then, we
first turn G into a graph G1 be subdividing each edge once. In particular, we thus derive
that all paths in G1 between vertices that correspond to vertices (rather than edges) in
G are of even length. Next, we turn G1 into a graph G2 by replacing each vertex of G1
that corresponds to a vertex of G by k + 1 copies (false twins). Intuitively, this will have
the effect that no minimal solution being of size at most k to our instance of #k-Odd
Cycle Transversal (defined immediately) will pick any vertex in G2 that corresponds to
a vertex in G (since we deal with edge-cuts, this property must be asserted for our proof
of correctness). Complementary to this, we will (implicitly) prove that our instance has no
solution of size smaller than k, so every solution of size at most k is of size exactly k and a
minimal one. The last step of the reduction is to turn G2 into a graph G′ by adding two new
adjacent vertices, xi and yi, for every i ∈ {1, 2, . . . , k + 1}, and making all the xi’s adjacent
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to all the copies of s, and all the yi’s adjacent to all the copies of t. With this construction
of G′ at hand (and keeping the parameter k unchanged), we are able to prove that: (i) every
odd cycle in G′ contains at least one path from a copy of s to a copy of t that corresponds
to an (s, t)-path in G, and (ii) every (s, t)-path in G can be translated to some particular set
of odd cycles in G′ such that, to hit that set with at most k vertices, it only “makes sense”
to pick vertices in G′ that correspond to edges in G. From this, we are able to derive that
the number of minimum (s, t)-cuts in G equals the number of odd cycles transversal of G′ of
size at most k.

Lastly, having asserted that #k-Odd Cycle Transversal does not admit a polynomial
compression under the SUM-conjecture, we transfer its hardness to the #ℓ-Vertex Cover
problem (where the parameter is k minus the LP-value) and the #m-Vertex Cover
problem (where the parameter is k minus the maximum size of a matching) by the design of
another polynomial parameter transformation. We remark that, since it always holds that
m ≥ ℓ, the hardness for #m-Vertex Cover implies the hardness for #ℓ-Vertex Cover.
While the transformation itself is the same as the known reduction from k-Odd Cycle
Transversal to m-Vertex Cover (Lemma 3.10 in [14]), the analysis somewhat differs.
In particular, for the correctness, we actually cannot use #k-Odd Cycle Transversal as
the source problem, but only restricted instances of it, where for every odd cycle transversal
S of size at most k, the removal of S from the input graph G yields a connected graph.
Then, we are able to show that the number of odd cycle transversals of G of size at most k

is exactly half the number of vertex covers of the output graph G′ of size at most k′. (The
parameter of the output instance, k′ −m, equals k.)

Proof of Theorems 3 and 4. The proof of Theorem 3 follows the lines of, yet is not identical
to, the proof of the analogous statement for OR-cross-composition. For example, one notable
difference concerns the part of the proof where we need to define a problem whose solution is
a function of solutions of another problem. While for OR-cross-compositions, the chosen
function is the logical OR of the given solutions, for us the chosen function is a weighted
summation of the given solutions with weights chosen so that, from the weighted sum, we
can derive each individual solution (that is similar to the spirit of the lift procedure given as
part of the proof of Theorem 1).

For the proof of Theorem 4, we prove that #Min (s, t)-Cut EXACT-cross-composes into
#w-Min (s, t)-Cut. The reduction begins by taking the instance (G, s, t) built in the proof
of the SUM-cross-composition discussed earlier. We note that the treewidth of G equals the
maximum treewidth of Gi, over every i ∈ {1, 2, . . . , ℓ}. However, recall that this construction
only yields that the number of solutions to (G, s, t) (say, q) equals

∑ℓ
i=1 qi where qi is the

number of solutions to (Gi, si, ti). So, by knowing only q, we are not able to derive the
individual qi’s (there can be exponentially many options for their values). So, we further
modify the graph G to obtain a graph G′ as follows. For the copy of each Gi in G, we
add a 2m·(ℓ−1) internally vertex-disjoint paths from si to ti, where m = 2 maxℓ

j=1 |E(Gj)|:
m(i− 1) of these paths have three internal vertices, and the rest have one internal vertex.
Notice that, to separate si and ti in this “extended” copy of Gi, we need to pick at least one
edge from each of the newly added paths, and we have two (resp., four) options for which
edge to pick from each of the paths with one (resp., three) internal vertices. Having this
insight in mind, we are able to show that the number of solutions to (G′, s, t) (say, q′) equals∑ℓ

i=1 qi · 2m(i−1)+m(ℓ−1). In particular, the coefficient of each qi is “significantly” larger than
the sum of the coefficients of all qj , j < i. In turn, this allows us to derive, from q′, the
individual values of the qi’s (similarly, in this part, to the corresponding parts of the proofs
of Theorem 1 and 3). Further, we show that the addition of the aforementioned paths does
not increase the treewidth of the graph (unless it was smaller than 2).
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Due to space constraints, we only provide the details of the proof of Theorem 1.
The complete details of all other proofs can be found in the full version.

3 Preliminaries

Let N0 = N ∪ {0}. For n ∈ N, [n] = {1, 2, . . . , n}. Given a universe U , 2U = {A : A ⊆ U}.

Graph Notation. Throughout the paper, we consider finite, simple, undirected graphs.
Given a graph G, let V (G) and E(G) denote its vertex set and edge set, respectively. Given
a subset U ⊆ E(G), let G− U denote the graph on vertex set V (G) and edge set E(G) \ U .
We say that S ⊆ V (G) covers U ⊆ E(G) if for every edge {u, v} ∈ U , S ∩ {u, v} ≠ ∅. A
vertex cover of G is a subset S ⊆ V (G) that covers E(G). The set S is said to be minimal if
every subset of it is not a vertex cover of G. An independent set of G is a subset S ⊆ V (G)
such that E(G) ∩ {{u, v} : v ∈ S} = ∅. A matching in G is a subset S ⊆ E(G) such that no
two edges in S share an endpoint. Let µ(G) denote the maximum size of a matching in G.
Given two distinct vertices s, t ∈ V (G), an (s, t)-cut in G is a subset S ⊆ E(G) such that in
G− S, the vertices s and t belong to different connected components. An (s, t)-cut in G is
minimum if there does not exist an (s, t)-cut in G of smaller size. Given a subset U ⊆ V (G),
let G[U ] denote the subgraph of G induced by U , and let G−U denote G[V (G) \U ]. An odd
cycle transversal of G is a subset S ⊆ V (G) such that G− S does not contain any odd cycle
(i.e., a cycle with an odd number of vertices, or, equivalently, of edges). The subdivision
of an edge {u, v} ∈ E(G) is the operation that removes {u, v} from G, adds a new vertex
x to G, and adds the edges {u, x} and {v, x} to G. Given a graph H, we write H ⊆ G to
indicate that H is a subgraph of G. A graph G is bipartite if there exists a partition (X, Y )
of V (G) such that E(G) ⊆ {{x, y} : x ∈ X, y ∈ Y }, that is, X and Y are independent sets.
Note that a graph G is bipartite if and only if it does not contain any odd cycle [16]. We
say that a graph H is a minor of a graph G if there exists a series of vertex deletions, edge
deletions and edge contractions in G that yields H. We say that G is a planar graph if it can
be drawn on the Euclidean plane so that its edges can intersect only at their endpoints.

Treewidth is a structural parameter indicating how much a graph resembles a tree:

▶ Definition 6. A tree decomposition of a graph G is a pair T = (T, β) of a tree T and
β : V (T )→ 2V (G), such that
1. for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T ) such that x, y ∈ β(v), and
2. for any vertex x ∈ V (G), the subgraph of T induced by the set Tx = {v ∈ V (T ) : x ∈ β(v)}

is a non-empty tree.
The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G, denoted by tw(G), is the
minimum width over all tree decompositions of G.

Problems and Counting Problems. A decision problem (or problem for short) is a language
P ⊆ Σ⋆. Here, Σ is a finite alphabet, and, without loss of generality, we can assume that
Σ = {0, 1}. Often, some strings in Σ⋆ are “irrelevant” to P (specifically, they clearly do not
belong to P ) – e.g., when P concerns graphs and a given string does not encode a graph;
so, the term instance of P is loosely used for strings that are relevant to P in some such
natural sense. An algorithm for P is a procedure that, given x ∈ Σ⋆, determines whether
x ∈ P . We say that an instance x of a problem P is equivalent to an instance x′ of a problem
Q if: x ∈ P if and only if x′ ∈ Q. A counting problem is a mapping F from Σ⋆ to N0. As
before, the term instance of F is loosely used – while one still needs to define the mapping of
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“irrelevant” strings, the consideration of this mapping will be immaterial to us. An algorithm
for F is a procedure that, given x ∈ Σ⋆, outputs F (x). A counting problem F is a counting
version of a problem P if, for every x ∈ Σ⋆, x ∈ P if and only if F (x) ≥ 1. When we refer to
“the” counting version of a problem P , we consider the counting version of P whose choice
(among all counting versions of P ) is widely regarded the most natural one, and it is denoted
by #P .

Parameterized Complexity. We start with the definition of a parameterized problem.

▶ Definition 7 (Parameterized Problem). A parameterized problem is a language P ⊆ Σ⋆×N0,
where Σ is a fixed, finite alphabet. For an instance (x, k) ∈ Σ⋆×N0, k is called the parameter.

An algorithm for P is a procedure that, given (x, k) ∈ Σ⋆ × N0, determines whether
(x, k) ∈ P . We say that P is fixed-parameter tractable (FPT) if there exists an algorithm
for P that runs in time f(k) · |x|O(1) where f is some computable function of k. Such an
algorithm is called a fixed-parameter algorithm. The main tool to assert that one problem is
in FPT based on an already known membership of another problem in FPT is the design of
a PPT, defined as follows.

▶ Definition 8 (PPT). Let P, Q ⊆ Σ⋆×N0 be two parameterized problems. A polynomial-time
algorithm A is a polynomial parameter transformation (PPT) from P to Q if, given an
instance (x, k) of P , A outputs an equivalent instance (x′, k′) of Q (i.e., (x, k) ∈ P if and
only if (x′, k′) ∈ Q) such that k′ ≤ p(k) for some polynomial function p.

A companion notion of FPT is that of a compression or a kernelization, defined as follows.

▶ Definition 9 (Compression and Kernelization). Let P and Q be two parameterized problems.
A compression (or compression algorithm for P is a polynomial-time procedure that, given
an instance (x, k) of P , outputs an equivalent instance (x′, k′) of Q where |x′|, k′ ≤ f(k) for
some computable function f . Then, we say that P admits a compression of size f(k). When
f is polynomial, then we say that P admits a polynomial compression. Further, when P = Q,
we refer to compression also as kernelization.

Now, we state two central propositions that concern kernelization.

▶ Proposition 10 ([7]). Let P be a parameterized problem that is decidable. Then, P is FPT
if and only if it admits a kernel.

▶ Proposition 11 (Folklore; See, e.g., Theorem 15.15 in [14]). Let P, Q be two parameterized
problems such that there exists a PPT from P to Q. If Q admits a polynomial compression,
then P admits a polynomial compression.

Towards the statement of the main tool to refute the existence of polynomial compressions
(and, hence, also polynomial kernels) for specific problems, we state the two following
definitions.

▶ Definition 12 (Polynomial Equivalence Relation). An equivalence relation R on a set Σ⋆ is
a polynomial equivalence relation if the following conditions are satisfied:

There exists an algorithm that, given strings x, y ∈ Σ⋆, resolves whether x ≡R y in time
polynomial in |x|+ |y|.
The relation R restricted to the set Σ≤n has at most p(n) equivalence classes, for some
polynomial function p.
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▶ Definition 13 (OR-Cross-Composition). Let P ⊆ Σ⋆ be a problem and Q ⊆ Σ⋆ × N0 be a
parameterized problem. We say that P OR-cross-composes into Q if there exists a polynomial
equivalence relation R and an algorithm A, called an OR-cross-composition, satisfying the
following conditions. The algorithm A takes as input a sequence of strings x1, x2, . . . , xt ∈ Σ⋆

that are equivalent with respect to R, runs in time polynomial in
∑t

i=1 |xi|, and outputs one
instance (y, k) ∈ Σ⋆ × N0 such that:

k ≤ p(maxt
i=1 |xi|+ log t) for some polynomial function p, and

(y, k) ∈ Q if and only if there exists at least one index i ∈ [t] such that xi ∈ P .

Now, we state the main tool to refute the existence of polynomial compressions for specific
problems.

▶ Proposition 14 ([3, 4]). Assume that an NP-hard problem P OR-cross-composes into a
parameterized problem Q. Then, Q does not admit a polynomial compression, unless coNP
⊆ NP/poly.

We remark that an analogous proposition, where OR is replaced by AND, has been
proved in [18].

We proceed to the definition of a parameterized counting problem.

▶ Definition 15 (Parameterized Counting Problem). A parameterized counting problem is a
mapping F from Σ⋆ × N0 to N0.

An algorithm for F is a procedure that, given (x, k) ∈ Σ⋆×N0, outputs F (x, k). As before,
we say that P is fixed-parameter tractable (FPT) if there exists an algorithm for P that runs
in time f(k) · |x|O(1) where f is some computable function of k. A parameterized counting
problem F is a counting version of a parameterized problem P if, for every (x, k) ∈ Σ⋆ ×N0,
(x, k) ∈ P if and only if F (x, k) ≥ 1. When we refer to “the” counting version of a
parameterized problem P , we consider the counting version of P whose choice (among all
counting versions of L) is widely regarded the most natural one, and it is denoted by #P .

▶ Definition 16 (PPT (Counting Version)). Let P, Q : Σ⋆ × N0 → N0 be two parameter-
ized counting problems. A pair of polynomial-time procedures (reduce, lift) is a polynomial
parameter transformation (PPT) from P to Q such that:

Given an instance (x, k) of P , reduce outputs an instance (x′, k′) of Q such that k′ ≤ p(k)
for some polynomial function p.
Given an instance (I, k) of P , the instance (I ′, k′) that is the output of reduce on (I, k),
and x′ such that P (I ′, k′) = x′, lift outputs x such that Q(I, k) = x.

The main concept to show that a problem is unlikely to be FPT is the one of parameterized
reductions analogous to those employed in classical complexity. Here, the concept of W[1]-
hardness replaces the one of NP-hardness, and for reductions we need not only construct
an equivalent instance in FPT time, but also ensure that the size of the parameter in the
new instance depends only on the size of the parameter in the original one. If there exists
such a reduction transforming a parameterized problem known to be W[1]-hard to another
parameterized problem P , then the problem P is W[1]-hard as well. Central W[1]-hard
problems include, for example, deciding whether a nondeterministic single-tape Turing
machine accepts within k steps, Clique parameterized be solution size, and Independent
Set parameterized by solution size. Naturally, #W[1]-hardness is the concept analogous to
W[1]-hardness in the realm of parameterized counting problems. For more information on
W[1]-hardness and #W[1]-hardness, we refer to [14, 10, 17].
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Problem Definitions. The counting problems studied in this paper are defined as follows.
#k-Vertex Cover (#k-Minimal Vertex Cover): Given a graph G and a non-
negative integer k, output the number of vertex covers (minimal vertex covers) of G of
size at most k. Here, the parameter is k.
#ℓ-Vertex Cover and #m-Vertex Cover: Defined as #k-Vertex Cover with
the exception that the parameters ℓ and m are k − LPVC(G) and k − µ(G), respectively.
Here, LPVC(G) denotes the optimum of the (standard) linear program that corresponds
to Vertex Cover (see [14], Section 3.4).
#k-Planar F-Deletion: Let F be a finite set of connected graphs that contains at
least one planar graph. Given a graph G and a non-negative integer k, output the number
of subsets S ⊆ V (G) of size at most k such that G− S does not contain any graph from
F as a minor. We remark that the #k-Planar F-Deletion problem encompasses
(based on different choices of F) various other problems, such as #k-Vertex Cover,
#k-Vertex Cover and #k-Vertex Cover.
#k-Min (s, t)-Cut: Given a graph G and two distinct vertices s, t ∈ V (G), output the
number of minimum (s, t)-cuts in G. Here, the parameter k is the size of a minimum
(s, t)-cut in G.
#w-Min (s, t)-Cut: Defined as #k-Min (s, t)-Cut with the exception that the parameter
w is the treewidth of G.
#k-Odd Cycle Transversal: Given a graph G and a non-negative integer k, output
the number of odd cycle transversal of G of size at most k. Here, the parameter is k.

4 Kernelization of Counting Problems

We define the notion of kernelization for counting problems as follows.

▶ Definition 17 (Compression of Counting Problem). Let P and Q be two parameterized count-
ing problems. A compression (or compression algorithm) of P into Q is a pair (reduce, lift)
of two polynomial-time procedures such that:

Given an instance (x, k) of P , reduce outputs an instance (x′, k′) of Q where |x′|, k′ ≤ f(k)
for some computable function f .
Given an instance (x, k) of P , the instance (x′, k′) that is the output of reduce on (x, k),
and s′ such that P (x′, k′) = s′, lift outputs s such that Q(x, k) = s.

When Q is immaterial, we refer to a compression of P into Q only as a compression of P .

When P = Q, a compression is called a kernel. The measure f(k) is termed the size of
the compression. When f is a polynomial function, then the compression (or kernel) is said
to be a polynomial compression (polynomial kernel). The following observation is immediate.

▶ Observation 18. Let P be a parameterized (decision) problem that does not admit a
polynomial kernel (or compression). Then, no counting version of P admits a polynomial
kernel (or compression).

Hence, we only consider parameterized counting problems whose decisions versions are
either in P, or, if they are not, then they at least admit polynomial kernels. Specifically, Min
(s, t)-Cut is in P [8], and polynomial kernels for k-Vertex Cover, ℓ-Vertex Cover (and
m-Vertex Cover), k-Planar F-Deletion, and k-Odd Cycle Transversal can be
found in [6], [31], [24] and [31] respectively.

Throughout the paper, whenever we discuss a compression, we suppose (implicitly) that
the compression is into a well-behaved problem, defined as follows:
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▶ Definition 19 (Well-Behaved Problem). Let P : Σ⋆ ×N0 → N0 be a parameterized counting
problem. Then, P is well-behaved if there exists a polynomial-time algorithm that, given n ∈ N
in unary, outputs N ∈ N in binary with the following property: for every (x, k) ∈ Σ⋆ ×N0 of
size at most n, P (x, k) ≤ N .

We remark that, essentially, every “natural” parameterized counting problem (that we
know of) is well-behaved.

▶ Lemma 20. Let P be a parameterized counting problem that is solvable in finite time.
Then, P is FPT if and only if it admits a kernel.

Proof. The proof follows lines similar to that of Proposition 10 (we also [35]). For the sake
of completeness, we present the details in the full version of the paper. ◀

Due to Lemma 20, every counting problem that is #W[1]-hard (and which is solvable in
finite time) does not admit any kernel, even not of exponential (or worse) size. We remark
that #k-Min(s, t)-Cut is shown to be FPT by Berge et al. [2], and #w-Min(s, t)-Cut is
can be shown to be FPT by the usage of straightforward dynamic programming over tree
decompositions (see, e.g. [14]).

▶ Lemma 21. Let P, Q be two parameterized counting problems such that there exists a
PPT from P to Q. If Q admits a polynomial compression, then P admits a polynomial
compression.

Proof. The proof follows lines similar to that of Proposition 11. For the sake of completeness,
we present the details in the full version of the paper. ◀

We remark that in the full version of the paper, we discuss two new notions of a cross-
composition for proofs of the unlikely existence of polynomial compressions for parameterized
counting problems.

5 Polynomial Kernel for #Vertex Cover

The purpose of this section is to prove the following theorem.

▶ Theorem 1. #k-Vertex Cover admits a polynomial kernel.

Towards the proof of this theorem, we first develop the reduction procedure. Then, we
discuss properties of the reduced instance. Afterwards, we present the lifting procedure and
conclude the correctness of the kernel. For the sake of brevity, throughout this section, we
write #Vertex Cover instead of #k′-Vertex Cover (where k′ is the current value of
the parameter).

5.1 Reduction Procedure and a Corollary for Minimal Vertex Covers
We define the procedure reduce as follows. Given an instance (G, k) of #Vertex Cover,
we will first exhaustively apply the following reduction rule, known as Buss Rule [6] (see
also [14]):

▶ Definition 22 (Buss Rule). If G contains a vertex v of degree at leas k + 1, then update
G← G− {v} and k ← k − 1.
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Let (G1, k1) be the instance of #Vertex Cover obtained after exhaustive application
of Buss Rule. Let G2 be graph obtained from G1 by the removal of all isolated vertices, and
denote k2 = k1. Let S (S1, S2) denote the set of vertex covers of G (G1, G2) of size at most
k (k1, k2) . Let n1 = |V (G1)| and n2 = |V (G2)|. We have the following known proposition:

▶ Proposition 23 ([6, 14]). The three following properties hold:
1. S = {S1 ∪ (V (G) \ V (G1)) : S1 ∈ S1}.
2. If |E(G2)| > (k2)2, then G does not contain any vertex cover of size at most k.
3. Else, |E(G2)| ≤ (k2)2, then |V (G2)| ≤ 2(k2)2.

Let x (resp., x′) be the number of vertex covers (resp., minimal vertex covers) of G of size
at most k, let x1 (resp., x′

1) be the number of vertex covers (resp., minimal vertex covers) of
G1 of size at most k1, and let x2 (resp., x′

2) be the number of vertex covers (resp., minimal
vertex covers) of G2 of size at most k2 . Then, due to the first item of Proposition 23 and
since no minimal vertex cover can contain isolated vertices, we have the following corollary.

▶ Corollary 24. The following equalities hold: x = x1 and x′ = x′
1 = x′

2.

Given this corollary, we can already conclude a polynomial kernel for the variant of
#Vertex Cover termed #k-Minimal Vertex Cover. (The challenge, dealt with in the
rest of Section 5, would be to derive a polynomial kernel for#Vertex Cover .)

▶ Theorem 25. #k-Minimal Vertex Cover admits a kernel of size O(k2).

Proof. Given an instance (G, k) of #k-Minimal Vertex Cover, the procedure reduce′

outputs: (i) (G2, k2) if |E(G2)| ≤ (k2)2, and (ii) (G′ = ({u, v}, {{u, v}}), k′ = 0) otherwise.
Observe that the procedure runs in polynomial time, and, due to the third item of Proposition
23, the size of the output is bounded by O(k2).

Given (G, k), the output of reduce′, and the solution x′
2 to this output, the procedure

lift′ returns x′
2. Observe that the procedure runs in polynomial time, and from the second

item of Proposition 23 and Corollary 24, we know that x′ = x′
2 and hence the procedure is

correct. ◀

Unfortunately, for #Vertex Cover, we cannot simply output (G2, k2). In particular,
observe that different vertex covers of G1 of size at most k1 might contain different numbers
of vertices that are isolated in G1, and hence the knowledge of x2 alone is insufficient in
order to deduce x1 (and x).

We proceed to modify G2 in order to define the graph that will be the output of the
reduction

▶ Definition 26. Let d = n2 and t = d + dk2 + 2(dk2)2. Then, let G3 be the graph whose
vertex set {vi : v ∈ V (G2), i ∈ [d]} ∪ T , where T is a set of t new vertices, and whose edge
set is {{ui, vj} : {u, v} ∈ E(G2), i, j ∈ [d]}. Additionally, let k3 = d · k2.

That is, G3 is the result of the replacement of every vertex of G2 by d copies (false twins)
of that vertex and the addition of t new vertices. We are now ready to define reduce.

▶ Definition 27 (Procedure reduce). Given an instance (G, k) of #Vertex Cover, the pro-
cedure reduce outputs: (i) (G3, k3) if |E(G2)| ≤ (k2)2, and (ii) (G′ = ({u, v}, {{u, v}}), k′ = 0)
otherwise.

Due to the third item of Proposition 23, we have the following immediate observation.

▶ Observation 28. reduce runs in polynomial time, and the size of its output is bounded by
kO(1).
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5.2 Properties of the Reduced Instance
For every i ∈ {0, 1, . . . , k2}, let Si

2 be the set of vertex covers of G2 of size exactly i. Then,
S2 =

⋃k2
i=0 Si

2 is the set of vertex covers of size at most k2 of G2. Let S3 be the set of vertex
covers of G3 of size at most k3. Let n3 = |V (G3)|. We say that a subset U ⊆ V (G3) is valid
if there does not exist v ∈ V (G2) such that {v1, v2 . . . , vd} ⊆ U . We proceed to define the
following mappings.

▶ Definition 29 (Mappings map and Map). The mappings map : S2 → 2V (G3) and MapS2 →
22V (G3) are defined as follows.

Given X ∈ S2, let map(X) = {vj : v ∈ X, j ∈ [d]}.
Given X ∈ S2, let Map(X) = {map(X) ∪ U : U is valid, U ∩ map(X) = ∅, |U | ≤
k3 − |map(X)|}.

We have the following lemma regarding the vertex covers of G3.

▶ Lemma 30. We have that (i) S3 =
⋃

X∈S2
Map(X), and (ii) for distinct X, Y ∈ S2,

Map(X) ∩Map(Y ) = ∅.

Proof. We first prove the correctness of the first item. On the one hand, consider some
A ∈ S3. Let X = {v ∈ V (G2) : {v1, v2, . . . , vd} ⊆ X}, and U = A \ X. We claim that
X ∈ S2. Since |A| ≤ k3 (because A ∈ S3) and k3 = d · k2, it follows that |X| ≤ k2. Moreover,
consider an edge {u, v} ∈ E(G2). If there exists ui, vj ∈ V (G3) such that {ui, vj} ∩ A = ∅,
then we have a contradiction since A is a vertex cover of G3. Hence, {u, v} ∩X ̸= ∅. In turn,
we derive that X is a vertex cover of G2, which yields that X ∈ S2. Now, notice that, by
Definition 29, A = map(X) ∪ U and map(X) ∪ U ∈ Map(X). So, A ∈

⋃
X∈S2

Map(X).
On the other hand, let B ∈

⋃
X∈S2

Map(X). So, B ∈ Map(X) for some X ∈ S2. By
Definition 29, this implies that B = map(X) ∪ U for some valid subset U ⊆ V (G3) disjoint
from map(X), and |B| ≤ k3. So, to derive that B ∈ S3, it suffices to argue that map(X) is a
vertex cover of G3. To this end, consider some edge {ui, vj} ∈ E(G3). Then, {u, v} ∈ E(G2).
Because X is a vertex cover of G2, we have that {u, v} ∩X ̸= ∅. However, by Definition 29,
this implies that {ui, vj} ∩map(X) ̸= ∅. Thus, the proof of the first item of the lemma is
complete.

For the second item of the lemma, consider some distinct X, Y ∈ S2. Without loss
of generality, suppose that |X| ≥ |Y |. So, there exists v ∈ V (G2) such that v ∈ X \ Y ,
and, hence, {v1, v2, . . . , vd} ⊆ map(X) while {v1, v2, . . . , vd} ∩ map(Y ) = ∅. So, since a
valid set cannot contain {v1, v2, . . . , vd}, we derive that {v1, v2, . . . , vd} \ A ̸= ∅ for every
A ∈ Map(Y ). However, since {v1, v2, . . . , vd} \A = ∅ for every A ∈ Map(X), it follows that
Map(X) ∩Map(Y ) = ∅. ◀

We consider the sizes of the sets assigned by Map in the following lemma.

▶ Lemma 31. For every X ∈ Si
2 for i ∈ {0, 1, . . . , k2}, it holds that |Map(X)| = wi, where

wi =
∑

(a⋆,a1,a2,...,an2−i)∈Wi

(
t

a⋆

) n2−i∏
j=1

(
d

aj

)
, and

Wi = {(a⋆, a1, a2, . . . , an2−i) : a⋆ +
n2−i∑
j=1

aj ≤ k3 − d · i, a⋆ ≤ t, and for each j ∈ [n2 − i], aj ∈

{0, 1, . . . , d− 1}}.
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Towards the proof of this lemma and a latter lemma, for every r ∈ {0, 1, . . . , k3− i ·d}, let
us denote W r

i = {(a⋆, a1, a2, . . . , an2−i) : a⋆ +
∑n2−i

j=1 aj = r, a⋆ ≤ t, and for each j ∈ [n2− i],
aj ∈ {0, 1, . . . , d− 1}}, and wr

i =
∑

(a⋆,a1,a2,...,an2−i)∈W r
i

(
t

a⋆

) ∏n2−i
j=1

(
d
aj

)
.

Proof of Lemma 31. Let X ∈ Si
2. So, we need to count the number of subsets U ⊆ V (G3)

such that U is valid, U∩map(X) = ∅, and |U | ≤ k3−|map(X)|. Observe that |map(X)| = d·i.
So, because we demand that U ∩map(X) = ∅, every choice of U corresponds to the choice of
some r ≤ k3 − d · i vertices from V (G3) \map(X) such that the resulting set would be valid.
In turn, every such choice, for a specific r, corresponds to the choice of (a) how many vertices
to pick from T and how many vertices (a number between 0 and d − 1, due to validity)
to pick from {v1, v2, . . . , vd} for every v /∈ X, so that in total we pick r vertices, and (b)
given a choice of type (a), the choice of which specific vertices to pick from T and which
specific vertices to pick from {v1, v2, . . . , vd} for every v /∈ X. Clearly, we have a natural
1-to-1 correspondence between the the choices of type (a) and the vectors in W r

i . Then,
given a choice of such a vector (a⋆, a1, a2, . . . , an2−i), we have

(
t

a⋆

) ∏n2−i
j=1

(
d
aj

)
choices of type

(b). Considering all choices for r, we attain the formula stated in the lemma. ◀

In particular, we prove that the sizes in Lemma 31 satisfy the following.

▶ Lemma 32. For every i ∈ {0, 1, . . . , k2},

wi >

k2∑
j=i+1

(
n2

j

)
· wj .

Proof. Fix i ∈ {0, 1, . . . , k2}. First, observe that wp ≥ wq for all p, q ∈ {0, 1, . . . , k2} such
that p ≤ q, and

(
n2
j

)
≤ 2n2 for all j ∈ {0, 1, . . . , k2}. Hence, it suffices to prove that

wi ≥ k2 · 2n2 · wi+1. For this purpose, notice that n3 = dn2 + t. Additionally, on the one
hand, for all i′ ∈ {0, 1, . . . , k2},

wi′ ≤ k3 ·
(

n3 − di′

k3 − di′

)
= dk2 ·

(
d(n2 − i′) + t

d(k2 − i′)

)
.

We refer to this inequality as Inequality (1). To see its correctness, note that wr
i′ is maximum

when r is maximum (restricted to {0, 1, . . . , k3 − di′}), i.e., when r = k3 − di′ ≤ k3. Hence,
wi′ ≤ k3 ·wk3−di′

i′ . Now, observe that wk3−di′

i′ corresponds to the number of choices of k3−di′

elements out of a universe of size n3 − di′ that satisfy particular restrictions. Specifically, we
have a partition of the universe into n2 − i′ + 1 parts – one of size t and the others of size
d – and we can pick at most d− 1 elements from each of the parts of size d. In particular,
this simply means that wk3−di′

i′ is bounded from above by the number of choices of k3 − di′

elements out of a universe of n3 − di′ elements, which is
(

n3−di′

k3−di′

)
. Thus, Inequality (1) is

correct.
On the other hand,

wi′ ≥
(

n3 − di′ − n2

k3 − di′

)
=

(
d(n2 − i′) + t− n2

d(k2 − i′)

)
.

We refer to this inequality as Inequality (2). To see its correctness, note that wi′ ≥ wr
i′

for all r ∈ {0, 1, . . . , k3 − di′}. So, in particular, wi′ ≥ wk3−di′

i′ . Recall the combinatorial
interpretation of wk3−di′

i′ discussed above for the correctness of Inequality (1). Now, out of
that universe, suppose that we remove (arbitrarily) one element from each of the parts of
size d – so, in total, we remove n2 − i′ elements. Then, we remove i′ additional elements.

ITCS 2024



77:18 Kernelization of Counting Problems

Hence, we remain with a universe of size n3 − di′ − n2. However, every choice of k3 − di′

elements from this universe satisfies the particular restrictions stated in the aforementioned
combinatorial interpretation. Hence, wk3−di′

i′ is bounded from below by the number of choices
of k3 − di′ elements out of a universe of n3 − di′ − n2 elements, which is

(
n3−di′−n2

k3−di′

)
. Thus,

Inequality (2) is correct.
Hence, having Inequality (2) and since d = n2,

wi ≥
(

d(n2 − i) + t− n2

d(k2 − i)

)
.

= (d(n2−i)+t−d(k2−i))(d(n2−i)+t−d(k2−i)−1) · · · (d(n2−i)+t−d(k2−i)−n2+1)
(d(k2−i))(d(k2−i)−1) · · · (d(k2−i)−n2+1)

·
(

d(n2 − i) + t− d

d(k2 − i)− d

)
.

Recall that t = d + dk2 + 2(dk2)2. So, for all j ∈ [d], d(n2 − i) + t − d(k2 − i) − j + 1 ≥
2(dk2)2 ≥ 2dk2 · (d(k2 − i)− j + 1). In particular, we derive that

(d(n2−i)+t−d(k2−i))(d(n2−i)+t−d(k2−i)−1) · · · (d(n2−i)+t−d(k2−i)−n2+1)
(d(k2 − i))(d(k2 − i)− 1) · · · (d(k2 − i)− n2 + 1)

≥ (2dk2)n2 > d(k2)2 · 2n2 .

Hence, the calculation above implies that

wi > d(k2)2 · 2n2 ·
(

d(n2 − i)− d

d(k2 − i)− d

)
≥ k2 · 2n2 · wi+1,

where the last inequality follows from Inequality (1). As discussed earlier, this completes the
proof. ◀

5.3 Procedure lift and Proof of Theorem 1
We start with a computation of the values wi, i ∈ {0, 1, . . . , k2}, defined in Lemma 31.

▶ Lemma 33. There exists a polynomial-time algorithm that, given i ∈ {0, 1, . . . , k2} and
having t, d, k2 and n2 at hand, outputs wi. Here, the input numbers are encoded in unary,
and the output number is encoded in binary.

Proof. Observe that wi =
∑k3−id

r=0 wr
i . Hence, for the proof, it suffices to fix some r ∈

{0, 1, . . . , k2− id}, and show how to compute wr
i in polynomial time. Now, denote ℓ = n2− i,

q = d− 1, and

ŵp
i =

∑
(a1,a2,...,aℓ)

s.t.

∑ℓ

j=1
aj =p, and ∀j∈[ℓ],aj ∈{0,1,...,q}

ℓ∏
j=1

(
d

aj

)
.

Then, wr
i =

t∑
a⋆=0

(
t

a⋆

)
ŵr−a⋆

i . So, for the proof, it suffices to fix some a⋆ ∈ {0, 1, . . . , t}, and

show how to compute ŵp
i , for p = r − a⋆, in polynomial time.

In what follows, we employ dynamic programming to compute ŵp
i . To this end, for every

ℓ′ ∈ [ℓ] and p′ ∈ {0, 1, . . . , min(p, ℓ′ · q)}, we allocate a table entry M[ℓ′, p′]. We define (for
the analysis):

Wℓ′,p′ =
∑

(a1,a2,...,a
ℓ′ )

s.t.

∑ℓ′

j=1
aj =p′, and ∀j∈[ℓ′],aj ∈{0,1,...,q}

ℓ′∏
j=1

(
d

aj

)
.



D. Lokshtanov, P. Misra, S. Saurabh, and M. Zehavi 77:19

The purpose of M[ℓ′, p′] would be to store Wℓ′,p′ . Then, since ŵp
i = Wℓ,p, we would

output M[ℓ, p].
The basis is when ℓ′ = 1. Then, for every p′ ∈ {0, 1, . . . , min(p, ℓ · q)}, we initialize

M[ℓ′, p′] =
(

d
p′

)
.

Now, for every ℓ′ ∈ [ℓ] in increasing order, and every p′ ∈ {0, 1, . . . , p} in arbitrary order,
we perform the following computation:

M[ℓ′, p′]←
min(p′,q)∑

s=0

(
d

s

)
·M[ℓ′ − 1, p′ − s].

Clearly, the computation can be performed in polynomial time (since the input numbers
are encoded in unary, and the numbers stored in the table are encoded in binary).

Combinatorially, the interpretation of Wℓ′,p′ is of the number of choices to pick exactly
p′ elements from a universe that is partitioned into ℓ′ parts of size d each, such that we can
pick at most q elements from each part. Equivalently, we can consider the number of choices
to pick exactly s ≤ p′ elements from the last part of the universe, and then, for each such
choice, we can consider the number of choices to pick exactly p′ − s additional elements from
the remainder of the universe, such that we can pick at most q elements from each part. This
yields the following equality:

Wℓ′,p′ =
min(p′,q)∑

s=0

(
d

s

)
·Wℓ′−1,p′−s.

In turn, using straightforward induction, this equality yields the correctness of the computa-
tion. ◀

Now, we define lift as follows.

▶ Definition 34 (Procedure lift). Given an instance (G, k) of #Vertex Cover, the output of
reduce, and the solution x⋆ to this output, the procedure lift performs the following operations:
1. Initialize x̂← x⋆.
2. For i = 0, 1, . . . , k2:

a. Use the algorithm in Lemma 33 to compute wi.
b. Let yi ← ⌊x̂/wi⌋.
c. Update x̂← x̂− yi · wi.
d. Let zi ← yi ·

∑k2−i
j=0

(
n1−n2

j

)
.

3. Return z =
∑k2

i=0 zi.

We start the analysis with the following observation, whose correctness is immediate from
Lemma 33 and the definition of lift.

▶ Observation 35. lift runs in polynomial time.

For every X ∈ S2, define Pull(X) = {X ∪ U : U ⊆ V (G1) \ V (G2), |X|+ |U | ≤ k1}. For
the correctness of lift, we prove the two following lemmas.

▶ Lemma 36. We have that (i) S1 =
⋃

X∈S2
Pull(X), and (ii) for distinct X, Y ∈ S2,

Pull(X) ∩ Pull(Y ) = ∅.

Proof. Recall that G2 is obtained from G1 be the removal of all isolated vertices, and that
k2 = k1. Hence, every vertex cover of G1 of size at most k1 is the union of two sets, A and
B, where A is a vertex cover of G2 of size at most k2, and B ⊆ V (G1) \ V (G2) is of size at
most k1 − |A|. So, the first item follows, and the second item is immediate. ◀
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▶ Lemma 37. For every i ∈ {0, 1, . . . , k2}, we have that (i) yi = |Si
2|, and (ii) zi =

|
⋃

X∈Si
2

Pull(X)|.

Proof. From Lemma 30, we have that x⋆ =
∑

X∈S2
|Map(X)| =

∑k2
i=0

∑
X∈Si

2
|Map(X)|. So,

by Lemma 31, we derive that x⋆ =
∑k2

i=0 |Si
2| · wi. Observe that for every i ∈ {0, 1, . . . , k2},

|Si
2| ≤

(
n2
i

)
. Hence, due to Lemma 32, it follows that for every i ∈ {0, 1, . . . , k2}, wi ≥

k2∑
j=i+1

|Sj
2 | · wj . Given the manner in which lift handles the variables x̂ and y0, y1, . . . , yk2 ,

this implies the correctness of the first item of the lemma.
Now, observe that for any X ∈ Si

2, |Pull(X)| =
∑k2−i

j=0
(

n1−n2
j

)
, and from the second item

of Lemma 36, it follows that |
⋃

X∈Si
2

Pull(X)| =
∑

X∈Si
2
|Pull(X)|. From these arguments,

and since we have already proved the correctness of the first item, we derive the correctness
of the second item as well. ◀

Having Corollary 24 and Lemmas 36 and 37 at hand, we prove the following lemma,
which implies the correctness of lift.

▶ Lemma 38. We have that |S| = z.

Proof. By Corollary 24, |S| = |S1|. From Lemma 36, we have |S1| = |
⋃

X∈S2
Pull(X)|, which

equals
∑k2

i=0 |
⋃

X∈Si
2

Pull(X)|. Further, from Lemma 37, we have
∑k2

i=0 |
⋃

X∈Si
2

Pull(X)| =∑k2
i=0 zi = z. So, we conclude that |S| = z. ◀

Thus, the correctness of Theorem 1 follows from Observations 28 and 35, and Lemma 38.

6 Conclusion

In this paper, we modified the framework of kernelization to be suitable for counting problems.
Within this framework, we presented both upper and lower bounds on the sizes of kernels for
the counting versions of several central parameterized problems. In a similar fashion, one
can also modify the more general frameworks of Turing kernelization and lossy kernelization
to be suitable for counting problems. For the case of Turing kernels, one may focus on
the restricted case where the number of calls should be bounded by a polynomial in k,
which may be more interesting in practice. In particular, it is easy to see that this already
substantially simplifies the case of #k-Vertex Cover, as then we can produce k + 1 many
instances (rather than just one) of the problem corresponding to k′ = 0, 1, 2, . . . , k. Another
motivation to consider Turing kernels for counting problems is that standard methods for
counting problems often use tricks such as polynomial interpolation to compute or extract
one hard-to-compute quantity from the answers to a collection of problem instances. We
leave these directions to future research.
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