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Abstract
We relate two important notions in graph theory: expanders which are highly connected graphs, and
modularity a parameter of a graph that is primarily used in community detection. More precisely,
we show that a graph having modularity bounded below 1 is equivalent to it having a large subgraph
which is an expander.

We further show that a connected component H will be split in an optimal partition of the host
graph G if and only if the relative size of H in G is greater than an expansion constant of H. This
is a further exploration of the resolution limit known for modularity, and indeed recovers the bound
that a connected component H in the host graph G will not be split if e(H) <

√
2e(G).
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1 Introduction and results

In this paper, we relate the property of a graph having expander induced subgraphs with
the notion of its modularity. (We recall the definitions of the modularity of a graph and
of expander graphs in Section 1.1 below.) Modularity was introduced by Newman and
Girvan [33], and it quantifies how well a graph can be divided into separate communities.
More precisely, to each graph G, we associate a quantity 0 ≤ q∗(G) < 1, and the higher q∗(G)
is the more “community structure” G has. Many community detection algorithms are based
on a modularity maximisation principle [4, 11, 36], with a wide range of applications, from
protein detection to connections between web sites. See [14, 34] for surveys on modularity.

On the other hand, expander graphs are important objects in graph theory and theoretical
computer science. An expander graph has a wide variety of properties: for instance,
the random walk mixes very fast [1, 16], and the eigenvalues of its Laplacian are well-
separated [2, 9]. In computer science, they are used for clustering with the expander
decomposition technique, see for instance [19]. We refer to [17] for a survey of expander
graphs and their applications.

The modularity value q∗(G) of a graph G is robust to small perturbations in the edge-set:
changing an ε proportion of the edges in the graph changes the modularity value by at
most 2ε [29]. In contrast, the property of being an expander, and the expansion constant, is
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influenced by even very small regions in the graph: for example adding a disjoint edge causes
the expansion constant to drop to zero. However, the property of having large expander
subgraphs is robust to changes in the edge-set, see also the discussion in [8, 22]. Here, by
“large” we mean containing at least a constant fraction of the edges of the graph. It turns
out this notion of containing large induced expander subgraphs will be the right expander
property of graphs to consider when relating modularity and expansion. The question of the
presence of large expanders in graphs has been considered in previous works [6, 21, 22, 26].

Here is a quick guide to the results, which will be presented after the definitions. The-
orem 1.1 shows that modularity bounded below 1 implies having a large expander subgraph
and vice versa; with detailed upper and lower bounds given in Propositions 1.2 and 1.3.
Our other main result, Theorem 1.4 shows that whether a connected component H in host
graph G is split (or kept as one part) in an optimal partition of G is characterised by the
ratio e(H)/e(G) and an edge expansion constant ĥH of H - see Section 1.1. This extends
the “resolution limit” known to exist for modularity.

The results are stated in Section 1.2 and proven in Section 2. In Section 3 we give families
of examples showing the tightness of Theorem 1.1 and part of Proposition 1.2, the other part
remains open, see Section 1.4.

1.1 Definitions

Graph definitions

Given a graph G, for disjoint sets A and B of vertices, let eG(A) be the number of edges
within A, eG(A, B) be the number of edges between A and B, and let the volume volG(A)
be the sum over the vertices v in A of the degree dv. We will sometimes drop the subscript
if it is clear from context. We restrict our attention to graphs G with at least one edge (that
is, non-empty graphs), usually without comment.

Our graphs may have multiple or weighted edges and loops. For such a graph G, eG(A)
and eG(A, B) are the sums of the weights of the corresponding edges. Similarly the weighted
degree dv of a vertex v is the sum of the weights of the incident edges, with loops counting
twice to the sum. The volume volG(S) of a set S of vertices is the sum of the weighted
degrees of the vertices in S.

Expansion definitions

Let us now introduce the property of graph expansion and two ways of measuring it: relative
to the volume of the smaller set or to a product of volumes. Given a graph G the conductance
or Cheeger constant hG is defined as follows. Write Ā to denote V (G)\A and let

hG(A) = eG(A, Ā)
min{volG(A), volG(Ā)}

for ∅ ≠ A ⊊ V (G), and hG = min
A

hG(A) . (1.1)

We say that G is a δ-expander for any 0 < δ ≤ hG. Observe that 0 ≤ hG ≤ 1, hG = 0 iff G

is disconnected, and hG = 1 iff G is K3 or K1,t for some t ≥ 1, see Remark 2.1.
Now define the following variant ĥG of graph expansion, by replacing the minimum with

a product and normalising. Let

ĥG(A) = eG(A, Ā)
volG(A)volG(Ā)

vol(G) for ∅ ≠ A ⊊ V, and ĥG = min
A

ĥG(A). (1.2)
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We say G is a δ̂-expander-by-products for any 0 < δ̂ ≤ ĥG. Observe that 0 ≤ ĥG ≤ 2, ĥG = 0
iff G is disconnected, and ĥG = 2 iff G is K2, see Remark 2.1. Further we always have

1
2 ĥG ≤ hG ≤ ĥG (1.3)

(and hG < ĥG if G is connected).
This notion ĥG of expansion-by-products was used for example by Kannan, Lovász and

Simonovits [18] as they found it a more natural definition to relate expansion and Markov
chains. We will find that under the notion of expansion-by-products we have a tight upper
bound for modularity in Proposition 1.2. Also the value ĥH of a connected component H

in host graph G, together with the relative size e(H)/e(G), characterise whether or not the
vertex set of the component is split in a modularity optimal partition of G, see Theorem 1.4.

Modularity definitions
For a graph G, we assign a modularity score qA(G) to each vertex partition (or “clustering”) A.
The modularity q∗(G) of G, sometimes called the “maximum modularity” of G, is defined to
be the maximum of these scores over all vertex partitions.

Modularity was introduced in Newman & Girvan [33]. Let G be a graph with vertex set
V and with m ≥ 1 edges. For a partition A of V , the modularity score of A on G is

qA(G) = 1
m

∑
A∈A

e(A)− 1
4m2

∑
A∈A

vol(A)2;

and the (maximum) modularity of G is q∗(G) = maxA qA(G), where the maximum is over all
partitions A of V . We will write modularity as the difference of two terms, the edge contri-
bution or coverage qE

A(G) = 1
m

∑
A∈A e(A), and the degree tax qD

A (G) = 1
4m2

∑
A∈A vol(A)2.

For a graph G with no edges, by convention we set qA(G) = 0 for every vertex partition A
and thus q∗(G) = 0.

1.2 Statement of Results

Modularity of G and expansion of subgraphs H

Recall that 0 ≤ q∗(G) < 1, and the closer q∗(G) is to 1 the more community structure G is
considered to have. Our main result, Theorem 1.1, is that having low modularity implies
having a large expander induced subgraph, and vice versa.

We shall use the following function f , see Figure 1.2. For 0 < α ≤ 1 let f(α) be the
maximum value of

∑
i x2

i where 0 ≤ xi ≤ α for each i and
∑

i xi = 1; so

f(α) = α2⌊1/α⌋+ (1− α⌊1/α⌋)2 for 0 < α ≤ 1 . (1.4)

Notice that f is continuous and increasing, f(α) = α when α = 1/k for some integer k,
and always α− α2/4 ≤ f(α) ≤ α, so for small α we have f(α) ∼ α.

▶ Theorem 1.1. Let 0 < α < 1 and let ε > 0.
(a) (i) If the graph G contains a subgraph H with e(H) ≥ αe(G) which is an α-expander

(that is hH ≥ α) then q∗(G) ≤ 1− α2.
(ii) Conversely, for all sufficiently large m ∈ N, for each graph H with e(H) ≤ αm

there exists an m-edge graph GH containing H as an induced subgraph such that
q∗(GH) ≥ 1− α2 − ε.

ITCS 2024
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H

αm edges

︸ ︷︷ ︸
(1− α)m edges

(a) GH with q∗(GH)≥1−α2−O(m−1).

∼ b 1
α
c cliques each with ∼ αm edges

︸ ︷︷ ︸

to use remaining edges

clique plus a matching

(b) Gα with q∗(Gα)=1 −f(α)+O(m− 1
2 ).

Figure 1.1 Example constructions for Theorem 1.1, see Section 3.1 for details.

(b) (i) There exists δ > 0 such that every graph G with q∗(G) < 1− f(α)− ε contains an
induced subgraph H with e(H) ≥ αe(G) which is a δ-expander (that is hH ≥ δ).

(ii) Conversely, for all sufficiently large m ∈ N there is an m-edge graph Gα with
q∗(Gα) < 1 − f(α) + ε such that each subgraph of Gα with at least α m edges is
disconnected.

Constructions for the two “converse” statements (a)(ii) and (b)(ii) in the theorem are
shown in Figure 1.1, with full details and proofs of the bounds deferred to Section 3.1. Notice
that the construction for (a)(ii) is particularly simple - given H we may form GH by adding
e(G)− e(H) disjoint edges to H. Notice also that in (a)(ii) we may for example take H to
be an α-expander. (by products).

The first statements (a)(i) and (b)(i) in Theorem 1.1 follow immediately from the next
two propositions, which give bounds on the dependence between the modularity value of
G and the relative size and expansion constant of subgraphs of G. Recall from Section 1.1
that hH denotes the usual notion of conductance, while ĥH is a measure of edge expansion
normalised by the product of the volumes of the two parts.

▶ Proposition 1.2.
(i) For all 0 < α ≤ 1 the following holds. Let G be a graph and let H be a subgraph with

relative size e(H)/e(G) ≥ α. Then

q∗(G) ≤ 1− α min{ĥH , α}

(ii) Conversely, for all ε > 0, 0 ≤ a ≤ 1, 0 ≤ δ̂ ≤ 1, there exists a graph G with induced
subgraph H of relative size α = e(H)/e(G) such that |α− a|, |ĥH − δ̂| < ε and

q∗(G) ≥ 1− α min{ĥH , α} − ε.

In Proposition 1.2, the converse statement (ii) shows that the inequality in (i) is tight. Since
hH ≤ ĥH by (1.3), from (i) we have

q∗(G) ≤ 1− α min{ĥH , α} ≤ 1− α min{hH , α};

and in the special case α = 1 we obtain q∗(G) ≤ 1−min{ĥG, 1} ≤ 1− hG see Section 1.4 for
a discussion.
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Figure 1.2 The function f , see (1.4).

▶ Proposition 1.3. For all α > 0 and δ > 0, the following holds. Let G be a graph and
suppose that each induced subgraph H with relative size e(H)/e(G) ≥ α has hH < δ. Then

q∗(G) > 1− f
(
min{1, α + 3

2 δ}
)
− 3

2 δ⌈log2(1/α)⌉.

To prove the first statements (a)(i) and (b)(i) in Theorem 1.1 from these two propositions,
one just needs to assume hH ≥ α (since then also ĥH ≥ α) in Proposition 1.2(i); and δ small
enough in Proposition 1.3, and use the fact that f is continuous.

When should we split a component?
In an optimal partition of any graph G without isolated vertices, for each part A the induced
subgraph G[A] is connected [7]. (If not, say e(A′, A\A′) = 0 for some ∅ ≠ A′ ⊂ A, then
replacing part A by parts A′ and A\A′ strictly increases the modularity score: the edge
contribution stays the same while the degree tax is strictly decreased.) This implies that
each connected component H is partitioned separately from the rest of the host graph.

We find that whether an optimal partition of G splits H into multiple parts or keeps the
vertices of H together in one part is characterised by α and ĥH . Let OPT(G) be the set of
partitions A for G such that qA(G) = q∗(G).

▶ Theorem 1.4. Let H be a connected component in a graph G and let α be the relative
size e(H)/e(G).

If α < ĥH then ∀A ∈ OPT(G), H is not split.
If α > ĥH then ∀A ∈ OPT(G), H is split.
If α = ĥH then ∃A,A′ ∈ OPT(G) such that H is not split in A and H is split in A′.

Note that ĥH is a minimum of a function over cuts or bipartitions of V (H), rather than
over all partitions of V (H) including those containing more than two parts. Hence it is
interesting that α and ĥH are enough to determine when a connected component is split in
an optimal partition of the host graph.

Recall the original resolution limit bound, in [15], that any modularity optimal partition
will not split a connected component H in graph G if e(H) <

√
2e(G). This is implied by

Theorem 1.4. To see this, note first that e(U, V (H)\U) ≥ 1 for all ∅ ≠ U ⊊ V (H) (since H

is connected). Also maxU vol(U)(vol(H) − vol(U)) ≤ vol(H)2/4 = vol(H)e(H)/2. Hence
ĥH ≥ 2/e(H). By the theorem, H will not be split if e(H)/e(G) < 2/e(H) (since then
e(H)/e(G) < ĥH). Rearranging, we see that H will not be split if e(H) <

√
2e(G), which

recovers the resolution limit bound.

ITCS 2024
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Theorem 1.4 also shows that connected components with modularity zero will not be
split in any optimal partition of G.

▶ Corollary 1.5. Let the graph G have no isolated vertices, and let H be a connected component
of G with e(H) < e(G). Let A be an optimal partition for G, that is, qA(G) = q∗(G). If
q∗(H) = 0 then V (H) is a part in A.

To see why Corollary 1.5 follows from Theorem 1.4 (and Proposition 1.7), note by Pro-
position 1.7 that q∗(H) = 0 implies ĥH ≥ 1. Now since e(H) < e(G) we have that
α = e(H)/e(G) < ĥH and thus by Theorem 1.4 the component H is not split in any optimal
partition of G.

This corollary tells us, for example, that each clique in Figure 1.1 forms its own part in
any optimal partition.

Modularity near one
The next result says roughly that q∗(G) ≈ 1 if and only if each “large” subgraph H of G has
hH ≈ 0.

▶ Corollary 1.6.
(a) For all α, δ > 0 there exists ε > 0 such that if the graph G has a subgraph H with

at least α e(G) edges which is an δ-expander then q∗(G) < 1 − ε (indeed we may take
ε = α min{α, δ}).

(b) For all ε > 0 there exists α > 0 such that if the graph G has no subgraph H with at least
α e(G) edges which is an α-expander then q∗(G) > 1− ε.

This last result shows that, given a sequence Gm of m-edge graphs, as m→∞ we have
q∗(Gm)→ 1 if and only if maxH⊆Gm

min{e(H)/m, hH} → 0. (This statement remains true
if instead of maximising over all subgraphs H of G we maximise over all topological minors H

of G, see [26].) Thus we have a characterisation of “maximally modular” graphs Gm as
defined in [32].

Modularity zero
Now consider the other extreme, when q∗(G) = 0. It is known that this holds for complete
graphs [7] and complete multipartite graphs [27, 5] and for all graphs constructed by taking
a complete graph on n vertices and deleting at most n/2 edges [30]. We can characterise
when q∗(G) = 0 in terms of a form of graph expansion. This can be expressed in a way
now involving not the minimum of e(A) and e(Ā) but their geometric mean, or involving a
product of vol(A) and vol(Ā). Here Ā denotes V (G) \A.

▶ Proposition 1.7. For a graph G, the following three conditions are equivalent:
(a) q∗(G) = 0
(b) e(A, Ā) ≥ 2

√
e(A)e(Ā) for all A ⊆ V (G)

(c) e(A, Ā) ≥ vol(A)vol(Ā)/vol(G) for all A ⊆ V (G) , i.e. ĥG ≥ 1.
By Proposition 1.7, if the graph G satisfies q∗(G) = 0, then

e(A, Ā) ≥ vol(A)vol(Ā)/vol(G) ≥ min{vol(A), vol(Ā)} · 1
2 for all A ⊆ V (G) ,

and so we have the following corollary concerning the conductance hG.

▶ Corollary 1.8. If the graph G satisfies q∗(G) = 0, then hG ≥ 1/2.

Proposition 1.7 also yields a short proof that complete multipartite graphs have modularity
zero, see [30].
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1.3 Relation to existing results and our contribution
Natural conditions to guarantee a large expander subgraph

What properties of the graph imply that it will have an expander subgraph on a linear
proportion of the edges? This question is asked in [8] which shows that having a positive
proportion of vertices such that a random walk starting from them is well-mixing is sufficient,
indeed, it implies the graph contains an almost spanning subgraph which is an expander.
We show that modularity bounded away from 1 is another such condition which guarantess
a linear sized expander subgraph.

Relation to spectral properties of subgraphs

Our results relate the expansion properties of subgraphs H of G to the modularity of G, but
how about spectral properties of H, what do these imply about the modularity of G?

Define the normalised Laplacian of graph H to be LH = D−1/2AD−1/2 where A is the
adjacency matrix of H, di is the degree of vertex i, and D−1/2 is the diagonal matrix with
i-th diagonal entry d

−1/2
i . The spectral gap of H is λ̄ = maxi̸=0 |1− λi| where the λi are the

eigenvalues of LH .
An expander-mixing lemma, see Corollary 5.5 of [10], says that for any graph H, ĥH ≥

1− λ̄H and thus the following is an immediate corollary of Proposition 1.2.

▶ Corollary 1.9. For all α > 0 and λ̄ > 0, the following holds. Let the graph G have a
subgraph H with spectral gap λ̄ and with e(H) ≥ α e(G). Then

q∗(G) ≤ 1− α min{α, 1− λ̄}.

Note that in the case α = 1, that is when the graph G itself has spectral gap λ̄ this
recovers the results q∗(G) ≤ λ̄ in [13, 37] (regular graphs) and [29] (general graphs). Spectral
results were used to prove upper bounds on the modularity in [29, 35, 28] and lower bounds
in [24].

Graphs with asymptotically maximal modularity

De Montgolfier, Soto and Viennot [32] defined the notion of maximally modular classes of
graphs as those for which q∗(G) → 1 as e(G) → ∞, and showed hypercubes and tori are
maximally modular, as well as trees with maximum degree ∆ = o(n1/5). This was extended
to the class of trees with ∆ = o(n) [28], to the class of graphs with treewidth such that the
product of treewidth and max degree is o(e(G)) [28], and to the class of minor-free graphs
with maximum degree ∆ = o(e(G)) [24]. This paper extends this to graphs G where any
expander subgraph H satisfies e(H) = o(e(G)), see Corollary 1.6.

Graphs with bounds on modularity values

Given that the most popular clustering algorithms for large networks are modularity based [23]
it is important to build up our theoretical knowledge on modularity. Finding the modularity
of graph classes helps us understand the behaviour of the modularity function. For a list of
results see the table in [29], noting that since then it has been established in [25] that whp
random cubic graphs have modularity value in the interval [0.667, 0.79998], and in [24] that
graphs with bounded genus and maximum degree o(n) have modularity asymptotically 1.
Also, the modularity of the stochastic block model is considered in [3, 11, 20] and of random
georemtric graphs in [12]. Our paper contributes to this line of work by proving upper and
lower bounds on modularity in terms of the relative size and expansion of subgraphs.

ITCS 2024
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Key contributions of this paper

We relate modularity and graph expansion by formulating and proving upper and lower
bounds for the modularity of graphs given the sizes and expansion coefficients of their
subgraphs. In the constructions, Section 3, we establish their modularity values and the
expansion-by-products of their subgraphs. This yields the tightness of the upper bounds on q∗

in Proposition 1.2 for all values of α and ĥH . Previously the special cases q∗(G) ≤ 1− hG

and q∗(G) ≤ λ̄G, as mentioned earlier, were known.
The other key contribution is to deepen the understanding of the well-known resolution

limit for modularity established by Fortunato and Barthélemy [15]. Loosely this says that
modularity cannot pick up the community structure of any connected component of an
m-edge graph if the component has fewer than

√
2m edges. Theorem 1.4 determines the

scale at which the community structure of a connected component becomes detectable by
modularity as a function of an expansion coefficient of the component.

1.4 Open questions
A direct consequence of Proposition 1.2, taking H = G and α = 1, is the following. (Recall
that hG and ĥG are the edge expansion parameters defined in Section 1.1.)

▶ Corollary 1.10. For any graph G we have

q∗(G) ≤ 1−max{ĥG, 1} ≤ 1− hG. (1.5)

In Proposition 1.2(ii) we showed that the first inequality in (1.5) is tight : for all ε > 0 and
0 ≤ δ̂ ≤ 1, we can find a graph G with |ĥG − δ̂| < ε and with q∗(G) ≥ 1 − ĥG − ε. The
construction is a clique with pendant leaves as depicted in Figure 3.1(b).

However, it is not clear whether the second bound in (1.5) is tight for all values of edge
expansion. The open question is to find the right upper bound for modularity in terms of hG.

▶ Open Question 1.11. What is the optimal function f for which is it true that for any
graph G we have q∗(G) ≤ 1− f(hG)?

We have a family of examples such that q∗(G) ≥ 1− 2hG − ε. Hence by these examples
and Corollary 1.10, x ≤ f(x) ≤ 2x.

For δ = 1 we may take G a single edge, then hG = 1 and q∗(G) = 0 and thus the bound
q∗(G) ≤ 1− hG in (1.5) is tight for G = K2. Similarly for all ε > 0 if we take G a sufficiently
long path then hG < ε and q∗(G) > 1− ε which gives an example where the bound in (1.5)
is tight for δ = 0. For 0 < δ < 1 we have no such examples, and the question is open.

If Corollary 1.10 is tight, this means that a very regular expander exists, in which all big
subsets of vertices have roughly the same edge expansion. Otherwise, it would imply that
there is a structural reason why, in any graph, big subsets of vertices cannot all have the
same edge expansion.

2 Proofs

In this section we prove Propositions 1.2, 1.3 and 1.7. Note that this yields all the results
presented in Section 1, except for the “conversely” statements (a)(ii) and (b)(ii) in Theorem 1.1
and Proposition 1.2(ii) which are all based on proving properties of constructions, see
Section 3.

For completeness, we also include a remark on the upper bounds on hG and ĥG claimed
in the introduction, as we could not find a reference.
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▶ Remark 2.1. It is easy to see that hG ≤ 1. Let us show that hG = 1 iff G is K3 or K1,t for
t ≥ 1. First note that hG = hG(A) for some A with G[A] connected and volG(A) ≤ volG(Ā).
We may now see that hG = 1 iff G does not contain two disjoint edges. If G contains
two disjoint edges uv and xy say, and vol({u, v}) ≤ vol({x, y}) then hG({u, v}) < 1. If
G does not contain two disjoint edges then for any |A| ≥ 2 with G[A] connected we have
volG(A) > volG(Ā), so hG = hG(A) for some |A| = 1 and thus hG = 1 and we are done.

To show ĥG ≤ 2 with equality iff G is K2, one can argue as follows. For nonempty A ⊊ V

with say volG(A) ≤ volG(Ā), since vol(G)/volG(Ā) ≤ 2 we have

ĥG(A) ≤ eG(A, Ā)
volG(A) · 2 ≤ 2

with strict inequality unless volG(A) = 1
2 vol(G). But the only graph (without isolated

vertices) such that volG(A) = 1
2 vol(G) for each nonempty A ⊊ V is K2 and we are done.

2.1 Proof of Proposition 1.2
Proof of Proposition 1.2. Let A be a partition of V (G), let B = B(A, H) be the induced
partition of V (H) and define xB = volH(B)/vol(H) for parts B ∈ B. Let δ̂ := ĥH . We will
prove the statement

qA(G) ≤ 1− αδ̂ + α(δ̂ − α)
∑
B∈B

x2
B . (2.1)

To see that (2.1) implies the proposition note 0 <
∑

B x2
B ≤ 1 and hence qA(G) ≤

1− α min{ĥH , α}. Since hH ≤ ĥH for any graph H this implies qA(G) ≤ 1− α min{hH , α}.
As H is a δ̂-expander (as defined above), for each B ∈ B

eH(B, V (H)\B)/vol(H) ≥ δ̂xB(1− xB).

Thus,

qE
A(G) ≤ 1− α

vol(H)
∑
B∈B

eH(B, V (H)\B) ≤ 1− αδ̂
∑
B∈B

xB(1− xB)

and hence qE
A(G) ≤ 1− αδ̂(1−

∑
B∈B x2

B). For the degree tax

qD
A (G) ≥ α2

vol(H)2

∑
B∈B

volH(B)2 = α2
∑
B∈B

x2
B

which establishes the statement (2.1), and thus completes the proof of Proposition 1.2. ◀

2.2 Proof of Proposition 1.3
We shall use two preliminary lemmas in the proof of Proposition 1.3. For a vertex partition A
we let ∂G(A) denote the number of edges between the parts of A.

It will be convenient to use a different notion of expansion for the proof of Lemma 2.2.
For a graph H, define its expansion-by-edges, h′

H , by taking the edge boundary of sets relative
to the number of edges inside the set rather than the volume of the set. Let

h′
H(A) = eH(A, Ā)

min{eH(A), eH(Ā)}
and h′

H = min
A

h′
H(A) , (2.2)

where Ā denotes V (H)\A. We say H is a δ′-expander-by-edges for any 0 < δ′ ≤ h′
H .
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A1

Ak−1

G

︸ ︷︷ ︸Ak

W\Ak

W

Figure 2.1 Step k for the algorithm in Lemma 2.2. Since in G any induced subgraph H with
size e(H) > e0 is not a δ′-expander-by-edges (see definition on line (2.2)): if e(W ) > max{ 1

2 e(G), e0}
there is a vertex subset Ak with e(Ak) ≤ e(W \Ak) and e(Ak, W \Ak) < δ′e(Ak).

Since volH(A) = eH(A, Ā) + 2eH(A), for 0 ≤ δ < 1 the inequality eH(A, Ā) ≥ δ volH(A)
is equivalent to eH(A, Ā) ≥ 2δ

1−δ eH(A). Hence, for 0 ≤ δ < 1

eH(A, Ā) ≥ δ min{volH(A), volH(Ā)} ⇔ eH(A, Ā) ≥ 2δ
1−δ min{eH(A), eH(Ā)}.

Thus H is a δ-expander iff it is a δ′-expander-by-edges where δ′ = 2δ
1−δ , i.e. h′

H = 2hH/(1−hH).

▶ Lemma 2.2. Let e0 > 0 and 0 < δ < 1; and let G be a graph such that for all U ⊆ V (G)
with eG(U) > e0 the graph G[U ] is not a δ-expander. Then there is a partition A of V (G)
such that
(a) each part A of A satisfies e(A) ≤ max{ 1

2 e(G), e0}, and
(b) ∂G(A) ≤ δ

1+δ
3+δ

2 e(G).

Proof. Let δ′ = 2δ/(1 − δ). Observe that for each W ⊆ V (G) such that eG(W ) >

max{ 1
2 e(G), e0}, the graph G[W ] is not a δ′-expander-by-edges, so there is a non-empty set

A ⊂W such that eG(A) ≤ eG(W \A) and eG(A, W \A) < δ′ eG(A). Thus in the following
algorithm there will always be a set Ak as required, and so the algorithm will succeed and
will output a partition A with k + 1 ≥ 1 parts Aj . See also Figure 2.1.

Input : G – graph with no induced δ′-expander-by-edges H of size e(H) > e0.
Output :A – vertex partition of G.

1 W ← V (G), k ← 0
2 while eG(W ) > max{ 1

2 e(G), e0} do
3 k ← k + 1
4 pick ∅ ̸= Ak ⊂W with eG(Ak) ≤ eG(W\Ak) and eG(Ak, W\Ak) < δ′eG(Ak).
5 W← W\Ak

6 end
7 Ak+1 ← V (G)\(A1 ∪ . . . ∪ Ak)
8 return A = {A1, . . . Ak+1}

Clearly eG(Aj) ≤ 1
2 e(G) for each j = 1. . . . , k and eG(Ak+1) ≤ max{ 1

2 e(G), e0}, so A has
property (a) in the lemma.
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If k = 0 then A is trivial and ∂G(A) = 0. If k ≥ 1 then

∂G(A) = eG(A1, V (G) \A1) + eG(A2, V (G) \ (A1 ∪A2)) + · · ·+ eG(Ak, Ak+1)
≤ δ′eG(A1) + δ′eG(A2) + · · ·+ δ′eG(Ak)

= δ′
k∑

j=1,...,k

eG(Aj) = δ′(e(G)− eG(Ak+1)− ∂G(A)).

The last two steps of the algorithm ensure that eG(Ak) ≤ eG(Ak+1) and eG(Ak ∪Ak+1) >

max{ 1
2 e(G), e0}. Also, we have

eG(Ak ∪Ak+1) = eG(Ak) + eG(Ak+1) + eG(Ak, Ak+1) ≤ eG(Ak) + eG(Ak+1) + δ′eG(Ak),

where the inequality comes from line 5 of the algorithm. Therefore, letting x = eG(Ak) and
y = eG(Ak+1),

x + δ′x + y ≥ eG(Ak ∪Ak+1) > max{ 1
2 e(G), e0} ≥ 1

2 e(G).

Thus, since x ≤ y, we have (2 + δ′)y > 1
2 e(G), and so y > 1

4+2δ′ e(G). Thus

(1 + δ′) ∂G(A) ≤ δ′(e(G)− y) ≤ δ′ 3+2δ′

4+2δ′ e(G) .

Hence

∂G(A) ≤ δ′

1+δ′
3+2δ′

4+2δ′ e(G) = δ
1+δ

3+δ
2 e(G) ,

as required for property (b). ◀

The following lemma records properties of the resulting partition after applying the
algorithm in Lemma 2.2 to each part of a given partition. Given a vertex partition A
of a graph G, let max_inG(A) denote max{eG(A) : A ∈ A} and max_outG(A) denote
max{eG(A, Ā) : A ∈ A}. Thus property (a) in the last lemma says that max_inG(A) ≤
max{ 1

2 e(G), e0}.

▶ Lemma 2.3. Let e0 > 0 and 0 < δ < 1; let ρ = δ
1+δ

3+δ
2 (so δ < ρ < 3

2 δ); and let G be
a graph such that for all U ⊆ V (G) with eG(U) ≥ e0 the graph G[U ] is not a δ-expander.
Let A be a partition of V (G). Then there is a partition B refining A such that
(a) ∂G(B) ≤ (1− ρ) ∂G(A) + ρ e(G) , and
(b) max_inG(B) ≤ max{ 1

2 max_inG(A), e0}, and
(c) max_outG(B) ≤ max_outG(A) + ρ max_inG(A).

Proof. We consider each part A ∈ A separately and apply Lemma 2.2: we see that there is
a partition BA of A such that

max_inG(BA) ≤ max{ 1
2 eG(A), e0} ≤ max{ 1

2 max_inG(A), e0}

and

∂G(BA) ≤ ρ eG(A) . (2.3)

Putting together the partitions BA gives a refinement B of A such that

max_inG(B) ≤ max{ 1
2 max_inG(A), e0}
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and

∂G(B) = ∂G(A) +
∑
A∈A

∂G(BA) ≤ ∂G(A) + ρ
∑
A∈A

eG(A)

≤ ∂G(A) + ρ (e(G)− ∂G(A)) = (1− ρ) ∂G(A) + ρ e(G).

For any B ∈ B and A ∈ A such that B ∈ BA observe that

eG(B, B̄) = eG(B, A\B) + eG(B, Ā) ≤ ∂G(BA) + eG(A, Ā).

and so (c) follows by (2.3) which completes the proof. ◀

We may now use Lemma 2.3 to complete the proof of Proposition 1.3.

Proof of Proposition 1.3. Let k = ⌈log2
1
α⌉ and e0 = αe(G). Start with the trivial one-part

partition A0 of V (G), with max_inG(A0) = e(G), max_outG(A0) = 0 and ∂G(A0) = 0.
Now apply the last lemma k times, repeatedly refining the partition. We obtain a sequence
A1, . . . ,Ak of partitions of V (G) such that for each j = 1, . . . , k

∂G(Aj) ≤ (1− ρ) ∂G(Aj−1) + ρ e(G) , (2.4)
max_inG(Aj) ≤ max{2−j , α} e(G) ,

max_outG(Aj) ≤ max_outG(Aj−1) + ρ max_inG(Aj−1) .

Denote Ak by B. Since 2−k ≤ α we have

max_inG(B) ≤ α e(G). (2.5)

Also

∂G(B) ≤ ρ e(G)
(
(1− ρ)k−1 + · · ·+ (1− ρ) + 1

)
= e(G) (1− (1− ρ)k) ,

and 1− (1− ρ)k ≤ kρ, so ∂G(B) < kρ e(G). Hence qE
B (G) = 1− ∂G(B)/e(G) > 1− kρ .

We may also bound max_outG(B) similarly,

max_outG(B) ≤ ρ e(G)
(
1 + 1

2 + 1
4 + . . . + 1

2k−1

)
< 2ρ e(G) , (2.6)

and hence by (2.5) and (2.6) (and since volG(A) ≤ 2e(G))

max{volG(A) : A ∈ B} = max{2eG(A) + eG(A, Ā) : A ∈ B}
≤ 2 max_inG(B) + max_outG(B) < 2 min{1, (α + ρ)}e(G).(2.7)

Recall that by convexity of the sum of squares if we have non-negative {xi}i with
∑

i xi = 1
and maxi xi ≤ x then the quantity

∑
i x2

i is maximized when we take as many xi = x as
possible plus one xj = 1− x⌊ 1

x⌋, hence we always have
∑

i x2
i ≤ f(x).

For A ∈ B set xA = volG(A)/2e(G) and thus (2.7) gives us

qD
B (G) =

∑
A∈B

x2
A < f(min{1, α + ρ}) .

Finally we have

q∗(G) ≥ qB(G) > 1− f(min{1, α + ρ})− kρ ,

and since ρ < 3
2 δ and f is increasing, we obtain

q∗(G) > 1− f
(
min{1, α + 3

2 δ}
)
− 3k

2 δ

as required. ◀
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Bconn = {V (H)}

U ∗

V (H)\U ∗

G\H G\H G\H

B2

B1 B3

Bk. . .

Bwitn = {U∗, V (H)\U∗} Bsplit = {B1, . . . , Bk} (k ≥ 2)

H H H

Figure 2.2 The three vertex partitions of H considered in the proof of Theorem 1.4.

2.3 Proof of Theorem 1.4
Proof of Theorem 1.4. Let A be an optimal partition of G. Since G has no isolated vertices
and A is optimal: for any A ∈ A the induced subgraph G[A] must be connected. Hence any
part in A is entirely within V (H) or V (G)\V (H). Let B ⊂ A be the set of parts in V (H).
The contribution of H to the modularity score of A is∑

B∈B

e(B)
e(G) −

vol(B)2

vol(G)2 (2.8)

which we will denote by qB(H, m). We shall consider three partitions on V (H): the connected
component partition Bconn placing all of V (H) into one part, Bwitn a bipartition of V (H)
into {U∗, V (H)\U∗} where U∗ is any witness, i.e. such that ĥH = ĥH(U∗), and Bsplit a
partition into at least two parts which achieves the maximal value for (2.8) i.e. Bsplit =
arg max|B|>1 qB(H, m). See Figure 2.2. Note it is possible that Bsplit = Bwitn. We proceed
via the following three claims which together imply the theorem. Write δ̂ = ĥH .

▷ Claim 2.4. If δ̂ > α, then qBconn(H, m) > qBsplit(H, m).

▷ Claim 2.5. If δ̂ < α, then qBwitn(H, m) > qBconn(H, m).

▷ Claim 2.6. If δ̂ = α, then qBconn(H, m) = qBwitn(H, m) = qBsplit(H, m).

Proof of Claim 2.4. Observe first that

qBconn(H, m) = e(H)
e(G) −

vol(H)2

vol(G)2 = α− α2. (2.9)

Denote by xB the proportion of the volume of H contained in part B, xB = vol(B)/vol(H).
Then for any partition B of V (H)

qB(H, m) = e(H)
e(G) −

∑
B∈B

(e(B, V (H)\B)
vol(G) + vol(B)2

vol(G)2

)
= α−

∑
B∈B

(α e(B, V (H)\B)
vol(H) +α2x2

B

)
.

But e(B, V (H)\B) ≥ δ̂vol(B)vol(V (H)\B)/vol(H) and so by the above equation

qBsplit(H, m) ≤ α−αδ̂
∑

B∈Bsplit

xB(1− xB)−α2
∑

B∈Bsplit

x2
B = α−αδ̂ + α(δ̂−α)

∑
B∈Bsplit

x2
B
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where the equality above is by noting
∑

B∈Bsplit
xB = 1. Hence by (2.9)

qBconn(H, m)− qBsplit(H, m) ≥ α(δ̂ − α)(1−
∑

B∈Bsplit
x2

B). (2.10)

Since
∑

B∈Bsplit
x2

B < 1, if δ̂ > α we have qBconn(H, m) > qBsplit(H, m) as required. ◁

Proof of Claim 2.5. Note that since U∗ a witness of ĥH = δ̂, we get that e(U∗, V (H)\U∗) =
δ̂vol(U∗)vol(V (H)\U∗)/vol(H). Thus similarly to qBsplit(H, m),

qBwitn(H, m) = α− αδ̂ + α(δ̂ − α)(x2
U∗ + (1− xU∗)2),

and so

qBwitn(H, m)− qBconn(H, m) ≥ α(α− δ̂)(1− x2
U∗ − (1− xU∗)2). (2.11)

Hence if α > δ̂ we have qBwitn(H, m) > qBconn(H, m) as required. ◁

Proof of Claim 2.6. This follows almost immediately from previous calculations. By (2.9)
and (2.11), if δ̂ = α then qBconn(H, m) = qBwitn(H, m); and by (2.10) if δ̂ = α then
qBconn(H, m) ≥ qBsplit(H, m). However by definition, always qBsplit(H, m) ≥ qBwitn(H, m); and
hence we must have equality between all three, as required. ◁

◀

2.4 Proof of Proposition 1.7
Proof of Proposition 1.7. We first show (a) and (c) to be equivalent.

Let G = (V, E) be a nonempty graph, and let ν = vol(G). For U ⊆ V , let pG(U) =
2e(U)ν − vol(U)2. Observe that pG(∅) = pG(V ) = 0. If A is a partition of V (G), then
qA(G) = ν−2 ∑

A∈A pG(A). Since vol(U) = 2e(U) + e(U, Ū) (where Ū denotes V \U),

pG(U) = 2e(U)ν − vol(U)2 = (vol(U)− e(U, Ū))ν − vol(U)(ν − vol(Ū))
= −e(U, Ū)ν + vol(U)vol(Ū).

Thus we may also write pG(U) as vol(U)vol(Ū)− e(U, Ū)ν; and this expression for pG(U) is
symmetric in U and Ū , so pG(U) = pG(Ū). Now, if A is a bipartition with parts U and Ū ,
then

qA(G) = ν−2(pG(U) + pG(Ū)) = 2ν−2pG(U).

Thus there is a bipartition A with qA(G) > 0 iff there is a set U of vertices with pG(U) > 0,
iff q∗(G) > 0. Equivalently, q∗(G) = 0 iff pG(A) ≤ 0 for each A ⊂ V , iff

e(A, Ā) ≥ vol(A) vol(Ā)
vol(G) for each A ⊆ V .

This gives the equivalence of (a) and (c) in Proposition 1.7.
Now let us prove the equivalence of (a) and (b) in Proposition 1.7. Let ∅ ≠ A ⊂ V and

let A be the bipartition of V with parts A and Ā. Then

m2qA(G) = (e(A) + e(Ā)) m− 1
4 ((2e(A) + e(A, Ā))2 + (2e(Ā) + e(A, Ā))2

= (e(A) + e(Ā))2 −
(
e(A)2 + e(Ā)2 + 1

2 e(A, Ā)2)
= 2e(A)e(Ā)− 1

2 e(A, Ā)2 .
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Hence

qA(G) > 0 iff e(A, Ā) < 2
√

e(A)e(Ā) ,

and so (since q∗(G) > 0 iff qA(G) > 0 for some bipartition A)

q∗(G) > 0 iff e(A, Ā) < 2
√

e(A)e(Ā) for some A ⊆ V .

This completes the proof. ◀

3 Constructions

3.1 Constructions related to Theorem 1.1

The following proposition gives example constructions for Gα and GH in the “converse”
statements (a)(ii) and (b)(ii) of Theorem 1.1.

▶ Proposition 3.1. Let f(α) = α2⌊1/α⌋+ (1−α⌊1/α⌋)2. For all 0 < α < 1 and for m large
enough,
(a) For any graph H with e(H) ≤ αm, let GH on m edges be constructed by adding m−e(H)

disjoint edges. Then H is an induced subgraph of GH and q∗(GH) ≥ 1− α2 −O(1/m).
(b) Let Gα on m edges be constructed by taking as many cliques on ⌊

√
2αm⌋ vertices as

possible, as large as possible a clique on the remaining edges, and disjoint edges for the
rest. Then q∗(Gα) = 1− f(α) + O(m−1/2) and any subgraph H of Gα with e(H) > αm

is disconnected.

Proof of (a). For the graph GH in part (b), let A be the partition with one part V (H) and
one part for each added isolated edge. Then

q∗(GH) ≥ qA(GH) = 1− (vol(H)2 + 4(m− e(H))/(4m2) ≥ 1− α2 + O(1/m),

as required. ◀

Proof of (b). By Corollary 1.5, since complete graphs have modularity value 0, the modular-
ity optimal partition is the connected components partition C, where we place each disjoint
clique (including each disjoint edge) into a separate part. Clearly qC(Gα) = 1− qD

C (Gα). To
calculate the degree tax requires bounds on the number of edges in each clique. Let x be the
number of edges in a clique on ⌊

√
2αm⌋ vertices. Then x < αm and

x > 1
2 (
√

2αm− 1)((
√

2αm− 2) = αm(1 + O(m−1/2)).

Hence there are ⌊ 1
α⌋ such cliques for m sufficiently large, with a total of ⌊ 1

α⌋αm(1+O(m−1/2))
edges. Thus the remaining clique has (1− α⌊ 1

α⌋)m(1 + O(m−1/2)) edges. The degree tax is
at least the contribution of these ⌊ 1

α⌋+ 1 cliques, (i.e. not including the disjoint edges), thus

qD
C (Gα) ≥ ⌊ 1

α
⌋ · α2(1 + O(m−1/2))2 + (1− α⌊ 1

α
⌋)2(1 + O(m−1/2))2 = f(α) + O(m−1/2)

as required. ◀
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3.2 Constructions related to Proposition 1.2(ii)
In this section we will construct a family of graphs and establish their modularity values and
the expansion ĥH for a subgraph H. This will prove Proposition 1.2(ii), and thus show that
the inequality in Proposition 1.2(i) is tight.

The constructed graph G will consist of disjoint edges together with the subgraph H,
where H is a complete graph with pendant vertices (leaves) - see Figure 3.1(b). Loosely,
in H the pendant vertices are always grouped together with the vertex in the complete
graph to which they join : both for expansion optimal vertex subsets (see Lemma 3.4) and
modularity optimal partitions (see Lemma 3.5). This will mean that it is enough to establish
expansion properties for H ′ a weighted complete graph with loops, and modularity values of
G′ where H is replaced by H ′.

We first show that we may construct a weighted graph with loops Gw fulfilling the
claims above, and then show that we may approximate this graph by a simple graph. See
Figure 3.1(a) for an illustration of Hw which is used to construct Gw.

▶ Lemma 3.2. Let Hw = Hw(a, b, k) be the weighted graph with loops constructed by taking
the complete graph on k vertices with all

(
k
2
)

edges of weight b/(k − 1) and adding a loop of
weight a/2 at each vertex. Construct Gw = Gw(Hw, α) by taking the disjoint union of Hw

and ⌊e(Hw)(1− α)/α⌋ disjoint edges each of weight 1. Then
(i) for k ≥ 2,

ĥHw
= b

a + b
(1 + 1

k − 1);

(ii) for any ε > 0 we may take k large enough such that

q∗(Gw) ≥ 1− α min{ĥHw , α} − ε.

Observe that the graph Hw is regular with weighted degree a + b at each vertex, and thus
vol(Hw) = k(a + b).

Proof of (i). Let Uj be a set of 1 ≤ j < k vertices of Hw (by symmetry all such sets of size j

are equivalent), and note that

ĥHw
(Uj) = e(Uj , Ūj)vol(Hw)

vol(Uj)vol(Ūj)
= j(k − j)b(k − 1)−1 · k(a + b)

j(a + b) · (k − j)(a + b) = b

a + b

(
1 + 1

k − 1
)

(3.1)

which is independent of j. But then

ĥHw
= min

j
ĥHw

(Uj) = b

a + b

(
1 + 1

k − 1
)

as required. ◀

Proof of (ii). Define α′ to satisfy e(Hw) = α′e(Gw) and recall by construction that e(Gw) =
e(Hw) + ⌊e(Hw)(α−1 − 1)⌋. Thus α ≤ α′ < α(1 + 1/e(Gw)). The optimal partition of Gw

will place each disjoint edge in its own part and hence, writing m = e(Gw),

q∗(Gw) = (1− α′)(1− 1/m) + α′ max
B

∑
B∈B

f(B) (3.2)

where the max is over partitions B of V (Hw) and

f(B) = 2e(B)
vol(B) −

vol(B)
2m

.
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︸︷︷︸ℓ p
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3
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2

a
2

a
2

a
2

(a) The weighted graph constructed by taking
the complete graph on four vertices, K4, and
adding a loop to each vertex. Note that each
weighted degree is a + b.

︸︷︷︸ℓ p
end

ant
ver

tice
s

(b) The graph constructed by taking the com-
plete graph on four vertices, K4, and adding ℓ
pendant vertices to each of its vertices.

Figure 3.1 Example construction for Proposition 1.2(ii) in (b). In Lemma 3.3 we show the
modularity value and expansion constant ĥ of the simple graph in (b) is the same as for the weighted
graph with loops in (a) for the correct parameter values.

Again, let Uj be a set of j vertices of Hw. We may calculate that e(Uj) = (
(

j
2
)
b/(k−1)+ja/2)

and vol(Uj) = j(a + b). Also, that 2m = vol(Hw)/α′ = k(a + b)/α′. Hence

f(Uj) = j(j − 1)b/(k − 1) + ja

j(a + b) − α′j(a + b)
k(a + b) = (j − 1)b/(k − 1) + a

a + b
− α′j

k
.

Rearranging, and recalling the expression for ĥHw shown in part (i), we get

f(Uj) = j

k

( bk

(k − 1)(a + b) − α′
)

+ a

a + b
− b

(k − 1)(a + b) = j

k
(ĥHw

− α′) + 1− ĥHw
,

where the second equality follows by adding b/(a + b) to the second term and subtracting
b/(a + b) from the third term. Thus the j which maximises f(Uj) depends on the relative
values of ĥHw and α′ :

max
j

f(Uj) =
{

f(U1) = 1− ĥHw
+ 1

k (ĥHw
− α′) if ĥHw

< α′

f(Uk) = 1− α′ if ĥHw
≥ α′ .

Thus we now know the form of the partition B which optimises (3.2). Denoting the vertices
of H by u1, . . . , uk, we have

arg max
B

∑
B∈B

f(B) =
{
{{u1}, . . . , {uk}} if ĥHw

< α′

{u1, . . . , uk} if ĥHw > α′ .

and if ĥHw = α′ then both the partitions above are maximal. Hence

max
B

∑
B∈B

f(B) =
{

1− ĥHw
+ 1

k (ĥHw
− α′) if ĥHw

< α′

1− α′ if ĥHw
≥ α′

and so by (3.2)

q∗(Gw) =
{

(1− α′)(1− 1/m) + α′(1− ĥHw
+ 1

k (ĥHw
− α′)

)
if ĥHw

< α′

(1− α′)(1− 1/m) + α′(1− α′) if ĥHw
≥ α′ .
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By taking k large enough (which for fixed a, b implies m large enough)

q∗(Gw) ≥ 1− α min{ĥHw
, α} − ε

as required. ◀

▶ Lemma 3.3. Let H = H(k, ℓ) be the simple graph constructed by taking the complete graph
on k vertices with and adding ℓ leaves at each vertex. Construct G = G(H, α) by taking the
disjoint union of H and ⌊e(H)(1 − α)/α⌋ disjoint edges. Let Hw = Hw(2ℓ, k − 1, k) and
Gw = Gw(Hw, α) be the weighted graphs with loops as defined in Lemma 3.2. Then if k ≥ 2
we have

(i) q∗(G) = q∗(Gw) and
(ii) if ℓ ≥ 1, ĥH = ĥHw .

To prove Lemma 3.3 we need results on which vertex subsets U minimise ĥ(U) in G

and Gw and which vertex partitions A maximise qA(G) and qA(Gw). The following result is
elementary but for completeness we provide a proof.

▶ Lemma 3.4. Let H be a connected graph and let ∅ ≠ U∗ ⊊ V (H) be such that ĥH = ĥ(U∗).
Then H[U∗] and H[V \U∗] are connected.

Proof. Suppose not and let U∗ be such that ĥH = ĥH(U∗) but at least one of H[U∗] and
H[V \U∗] is disconnected. Choose U ∈ {U∗, V \U∗} with G[U ] disconnected. We will show
there exists ∅ ≠ U ′ ⊊ U such that ĥ(U ′) < ĥ(U) = ĥ(U∗) which will prove the result.

As H[U ] is disconnected, it is the disjoint union of H[U1] and H[U2] for some ∅ ≠ U1 ⊊ U ,
U2 = U\U1. Note that since e(U1, U2) = 0 we have

e(U, V \U) = e(U1, V \U1) + e(U2, V \U2)

and thus

ĥ(U)
vol(H) = vol(U1)

vol(U1)+vol(U2)
e(U1, V \U1)

vol(U1)vol(V \U)︸ ︷︷ ︸
♢

+ vol(U2)
vol(U1)+vol(U2)

e(U2, V \U2)
vol(U2)vol(V \U)︸ ︷︷ ︸

♦

.

Since ĥ(U)/vol(H) is a weighted average of terms (♢) and (♦), one of the terms must be
at most ĥ(U)/vol(H): w.l.o.g. this is (♢) the term involving U1. Hence we may assume

ĥ(U)
vol(H) ≥

e(U1, V \U1)
vol(U1)vol(V \U) . (3.3)

However, H has no isolated vertices so vol(V \U) < vol(V \U1), and thus

ĥ(U1)
vol(H) = e(U1, V \U1)

vol(U1)vol(V \U1) <
e(U1, V \U1)

vol(U1)vol(V \U) .

Hence by (3.3) we have ĥ(U1) < ĥ(U), as required. ◀

The following lemma will imply that for the graph G in Lemma 3.3 – see also Figure 3.1(b)
– for any modularity optimal partition each pendant leaf is always together in the same part
as the vertex in the complete graph which they are incident with.

▶ Lemma 3.5 ([7, 31]). Suppose that G is a graph that contains no isolated vertices and no
loops. If A is a partition of V (G) such that qA(G) = q∗(G) then, for every A ∈ A, G[A] is a
connected subgraph of G with at least one edge.
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We are now ready to prove the graph in Figure 3.1(b) has the modularity claimed.

Proof of Lemma 3.3(i). We say a partition A is pendant-consistent if for each pendant
vertex v with pendant edge uv there is a part A ∈ A with u, v ∈ A.

For graph J , let J̃ be the graph obtained by replacing each pendant vertex by a loop
at its incident vertex, with a disjoint edge being replaced by a single vertex with a loop.
Note each vertex partition A of J induces a partition Ã of J̃ where Ã is obtained from A by
deleting vertices in V (J)\V (J̃).

In particular, if J is the graph G which consists of disjoint edges and subgraph H(k, ℓ),
i.e. the k-clique with ℓ pendant leaves at each vertex then J̃ is the graph with the disjoint
edges now disjoint loops and the subgraph H becomes a k-clique with a weight ℓ loop at
each vertex and weight 1 edges in the clique, i.e. the graph Hw(2ℓ, k− 1, k). Hence it suffices
to prove the more general statement that q∗(J) = q∗(J̃) for any graph J .

▷ Claim 3.6. For any graph J , if A is pendant consistent then qA(J) = qÃ(J̃).

Before we prove the claim we note that Lemma 3.5 implies that any modularity optimal
partition of J is pendant consistent and thus the claim implies the proposition.

Proof of Claim 3.6. This is almost immediate. Note it is enough to show qA(J) = qÃ(J̃)
where J̃ is obtained from J by taking a single pendant vertex and replacing it with a loop at
the incident vertex, or if there is already a loop at that vertex by adding weight one to the
weight of the loop. Let v be the pendant vertex with uv the pendant edge of weight wuv.
Since A is pendant-consistent there is a part A ∈ A such that u, v ∈ A. Thus Ã is the same
as A except the part A ∈ A is replaced by A\{v}. We may calculate

eJ(A) = eJ(A\{v}) + wuv = e
J̃
(A\{v})

and

volJ(A) = volJ(A\{v}) + wuv = vol
J̃
(A\{v})

while the edge counts and volumes of all other parts are unchanged, as well as the total
number of edges in the graph, i.e. e(J) = e(J̃). Hence the modularity scores qA(J) and
qÃ(J̃) are equal, as required. ◁

◀

Proof of Lemma 3.3(ii). Let ℓ ≥ 1 and k ≥ 2, H = H(k, ℓ) and Hw = Hw(2ℓ, k− 1, k). We
first note that for any set {u} consisting of a single vertex in u ∈ V (H), ĥH({u}) > 1. To
see this, note that since H has no loops, e({u}, V (H)\{u}) = deg(u) = vol({u}), and hence

ĥH({u}) = vol(H)
vol(V (H)\{u}) = vol(H)

vol(H)− deg(u) > 1

as by construction H has no isolated vertices.

▷ Claim 3.7. Let U2 = arg min2≤|U |≤n−2 ĥH(U). Then the partition {U2, V (H)\U2} is
pendant-consistent.

Proof of Claim 3.7. Suppose for a contradiction that there exists a leaf u and pendant edge
uv such that u ∈ U2 and v ∈ V (H)\U2 or vice-versa. W.l.o.g. we may assume u ∈ U2 and
v ∈ V (H)\U2. Recall by Lemma 3.4 both H[U2] and H[V (H)\U2] are connected. Since
|U2| ≥ 2 there must be another vertex w with w ∈ U2. However, since v /∈ U2 and u is a leaf
it must be that H[U2] is disconnected and we have our contradiction. ◁
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Similar to the proof of part (i), for U such that the partition {U, V (H)\U} is pendant-
consistent we have ĥH(U) = ĥHw

(Ũ). Thus by the claim we have

ĥH(U2) = ĥHw (Ũ2) = ĥHw

since the minimum of ĥHw (B) is obtained by all non-empty sets B ⊂ V (Hw) - see (3.1).
We established ĥHw

(2ℓ, k − 1) = 2ℓ(1 + (k − 1)−1)/(2ℓ + k − 1) in Lemma 3.2, and thus
that for k ≥ 2, ℓ ≥ 1 we have ĥHw

(2ℓ, k − 1) < 1.
We are nearly done. Note ĥH is by definition the minimum over all vertex sets, and since

ĥH(U2) < ĥH({u}) for any u ∈ V (H), it must be that ĥH = ĥH(U2) = ĥHw
as required. ◀
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