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Abstract
We study low rank approximation of tensors, focusing on the Tensor Train and Tucker decompositions,
as well as approximations with tree tensor networks and general tensor networks. As suggested by
hardness results also shown in this work, obtaining (1 + ε)−approximation algorithms for rank k

tensor train and Tucker decompositions efficiently may be computationally hard for these problems.
Therefore, we propose different algorithms that respectively satisfy some of the objectives above
while violating some others within a bound, known as bicriteria algorithms. On the one hand,
for rank-k tensor train decomposition for tensors with q modes, we give a (1 + ε)-approximation
algorithm with a small bicriteria rank (O(qk/ε) up to logarithmic factors) and O(q · nnz(A)) running
time, up to lower order terms. Here nnz(A) denotes the number of non-zero entries in the input
tensor A. We also show how to convert the algorithm of [28] into a relative error approximation
algorithm, but their algorithm necessarily has a running time of O(qr2 · nnz(A)) + n · poly(qk/ε)
when converted to a (1 + ε)-approximation algorithm with bicriteria rank r. Thus, the running time
of our algorithm is better by at least a k2 factor. To the best of our knowledge, our work is the
first to achieve a near-input-sparsity time relative error approximation algorithm for tensor train
decomposition. Our key technique is a method for efficiently obtaining subspace embeddings for a
matrix which is the flattening of a Tensor Train of q tensors - the number of rows in the subspace
embeddings is polynomial in q, thus avoiding the curse of dimensionality. We extend our algorithm
to tree tensor networks and tensor networks on arbitrary graphs. Another way of coping with
intractability is by looking at fixed-parameter tractable (FPT) algorithms. We give FPT algorithms
for the tensor train, Tucker, and Canonical Polyadic (CP) decompositions, which are simpler than
the FPT algorithms of [52], since our algorithms do not make use of polynomial system solvers. Our
technique of using an exponential number of Gaussian subspace embeddings with exactly k rows
(and thus exponentially small success probability) may be of independent interest.
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79:2 Bicriteria Algorithms for Tensor Decompositions

1 Introduction

Data dimensionality reduction has played an important role in numerical linear algebra tasks,
such as regression and low rank approximation. Typically in such problems, one has as input
a matrix A ∈ Rn×d, and applies a random linear map S ∈ Rk×n for A, obtaining S · A,
where the dimension k is much smaller than n. This provides a compression of A, and often
still retains many of its useful properties, e.g., the row span of SA includes a good low rank
approximation to A. We refer the reader to [55] for an extensive overview of the applications
of sketching for dimensionality reduction.

We investigate the role of randomized dimensionality reduction for tasks involving tensors
– in many settings, it is more effective to represent data as a multidimensional tensor
T ∈ Rn×n×...×n, rather than as a matrix. This work proposes new algorithms for tensor
low-rank approximation. In cases where data is represented as a very large matrix A ∈ Rn×d,
significant space savings can be achieved using a low-rank approximation of A – concretely,
if we find matrices U ∈ Rn×k and V ∈ Rk×d such that UV ≈ A and k ≪ n, d, the space
required to represent the information in A is nk + kd, which is much less than the space
required for A itself. Similarly, significant space savings can be achieved with low rank tensor
decompositions of a q-mode tensor A ∈ Rn×...×n with n and q large. For instance, a Tensor
Train decomposition of A with rank k requires O(qnk2) parameters. If k is small, this can
be much fewer than the nq parameters required to store A.

There are multiple generalizations of the concept of rank to tensors with more modes.
Here, we use mode to refer to the number of indices required to access an entry of a tensor –
thus, a matrix A ∈ Rn×n has 2 modes, and a tensor A ∈ Rn×n×n has 3 modes. We frequently
use the letter q to denote the number of modes that an input tensor A has. We investigate
Tensor Train, Tucker, and CP decompositions, as well as general tensor networks in this
work. These decompositions are introduced shortly below.

Tensor low rank approximations have the potential to allow us to handle high-dimensional
data in many applications. Tucker and Tensor Train decompositions have been applied in
various fields such as simulation data and robotics ([21]), machine learning model compression
([59]), scientific computing ([54]), and machine learning theory ([56]). Tensor networks are
especially suited for solving high-dimensional scientific computing problems [31, 18, 30]. In
particular, they have found extensive use in quantum computing ([37]). They have also been
used recently to solve parametric PDEs ([19, 16]), Hamilton-Jacobi-Bellman PDE ([26, 22]),
and others ([31, 33, 36]).

The CP decomposition is one notion of low-rank approximation of tensors that we study
in this paper. To define the CP decomposition, we first define the outer product of two
tensors: 2

▶ Definition 1 (Outer Product). Let v1, v2, . . . , vq ∈ Rn. Then, the outer product of
v1, . . . , vq, denoted v1 ⊗ . . . ⊗ vq ∈ Rn×n...×n, is the q-mode tensor whose entry in the
index (i1, . . . , iq) is v1(i1) . . . vq(iq). More generally, given two tensors A ∈ Rn1×···×np , B ∈
Rm1×···mq , the tensor outer product of A and B, denoted A⊗B, is a tensor with dimensions
(n1, · · · , np, m1, · · · , mq). The (i1, · · · , ip, j1, · · · , jq)th entry of A⊗B is Ai1,··· ,ipBj1,··· ,jq .

2 We refer the interested reader to [51] for an overview of tensor decompositions.
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We can now define the rank-k CP decomposition:

▶ Definition 2 (Tensor Rank and CP Decomposition). Let A ∈ Rn×n×...×n be a q-mode
tensor. We say A has CP rank k if there matrices U1, · · · , Uq ∈ Rn×k such that A =∑k

i=1 U1
i ⊗ · · · ⊗ Uq

i .
For a general tensor A ∈ Rn×...×n, rank-k CP decomposition is the problem of finding

a tensor B ∈ Rn×...×n with CP rank at most k such that ∥A−B∥F is minimized. In other
words, rank-k CP decomposition is the problem of finding

U1
∗ , U2

∗ , . . . , Uq
∗ = argminU1,U2,...,Uq∈Rn×k

∥∥∥ k∑
i=1

U1
i ⊗ U2

i ⊗ · · · ⊗ Uq
i −A

∥∥∥
F

. (1)

Here, given a tensor A ∈ Rn×...×n with q modes, its Frobenius norm is defined as ∥A∥F =√∑n
i1,i2,...,iq=1 A2

i1,i2,...,iq
.

The work of [52] previously made a significant advance on sketching for low CP rank
decomposition – this work gave bicriteria and fixed parameter tractable algorithms for low
CP rank factorizations under a variety of loss functions, such as the squared Frobenius norm,
sum of Frobenius norms of faces, and so on. Here, by bicriteria, we mean that the rank
of the output can be slightly larger than k, though the approximation quality is compared
with the best CP rank-k approximation. When considering other notions of tensor rank, e.g.
Tensor Train rank, we use the term bicriteria to mean that the Tensor Train rank of the
output can be larger than k, while we compare to the best approximation of Tensor Train
rank at most k.

Unfortunately, the best CP low rank approximation is difficult to define, given border
rank issues 3, and even computing the CP rank is NP-hard, which rules out any relative
error low rank approximation in polynomial time. Due to these issues, practical work on
tensor decomposition has often studied other notions of rank, such as the Tensor Train rank
[28, 46] (Matrix Product State rank) and the Tucker rank [14, 32]. We first define the Tucker
rank, and the corresponding problem of low Tucker rank decomposition, using the concepts
of Kronecker product and matricization of tensors:

▶ Definition 3 (Kronecker Product). Let A ∈ Ra×b and B ∈ Rc×d. Then, their Kronecker
product is the matrix A⊗B ∈ Rac×bd whose entry in row (i, j) and column (k, l) is AikBjl.
We also occasionally denote the Kronecker product by A×B.

▶ Definition 4 (Vectorization and Matricization of Tensors). Let A ∈ Rn×n×...×n be a q-
mode tensor. Then the vectorization of A, denoted vec(A) ∈ Rnq , is the vector whose
(1 +

∑q
j=1(ij − 1)nq−j)th entry is A(i1, . . . , iq). The mode-t matricization of A, which we

denote by Mt(A) ∈ Rn×nq−1 , is the matrix whose jth row is vec(A(:, . . . , :, j, :, . . . , :)), where
A(:, . . . , :, j, :, . . . , :) denotes the slice of A whose index in the tth mode is j.

More generally, for m < q, the matricization Mi1,··· ,im(A) of a q-mode tensor A ∈
Rn×n×...×n is the nm × nq−m matrix whose (

∑m
t=1 jtn

m−t)th row is the vectorization of the
slice of A whose index in the ith

t mode is jt. For instance, given a q-mode tensor A ∈ Rn×...×n

for q ≥ 3, the matricization M1,2(A) is the n2 × nq−2 matrix whose (j1n + j2)th row is
vec(A(j1, j2, . . .)). Recall that A(j1, j2, . . .) denotes the slice of A containing the entries whose
entries in the first and second modes are j1 and j2 respectively.

3 The border rank of a tensor A is defined as the minimum k ∈ N such that ∀ε > 0, there exists a tensor
A′ =

∑k

i=1 ⊗q
j=1U j

i such that ∥A − A′∥ < ε. Border rank issues refer to that the CP rank of A is not
necessarily equal to the border rank of A.
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Thus, we can define the Tucker rank of a tensor:

▶ Definition 5 (Tucker Rank). Let A ∈ Rn×n×...×n be a q-mode tensor. We say A has Tucker
rank at most (k1, . . . , kq) if there exist U1 ∈ Rn×k1 , U2 ∈ Rn×k2 , . . . , Uq ∈ Rn×kq , and a
q-mode tensor G ∈ Rk1×k2×...×kq , such that A =

∑
i1∈[k1],i2∈[k2],...,iq∈[kq ] G(i1, . . . , iq)U1(:

, i1) ⊗ . . . ⊗ Uq(:, iq) = G ×1 U1 ×2 · · · ×q Uq, with ×j being the jth-mode product. As
noted in [51], this can be rewritten as vec(A) = (U1 × . . . × Uq)vec(G), or as Mt(A) =
U tMt(G)(U1 × . . . U t−1 × U t+1 × . . . Uq)T . This notion of rank is also referred to in the
literature as a multilinear rank.

One of the main problems that we study in this paper is that of approximating an
arbitrary tensor A by another tensor B which has a low Tucker rank. For simplicity, we
consider a special case for the tuple (k1, . . . , kq) in the definition above:

▶ Problem 6 (Tucker-(p, q) Decomposition). Let A ∈ Rn×n...×n be a q-mode tensor, and
k ∈ N. Then, we wish to find a q-mode tensor B ∈ Rn×n×...×n for which ∥B−A∥2

F is as small
as possible, subject to the constraint that B has multilinear rank at most (k, . . . , k, n, . . . , n)
(where this tuple has k in the first p coordinates and n in the last q − p coordinates). In
other words, the first p factors in the Tucker decomposition of B have k columns, and the
last q − p factors have n columns. Note that without loss of generality, this means that the
last q − p factors can be taken to be the n × n identity matrix. We refer to the Tucker-
(q, q) decomposition problem (i.e., the case where the tensor B has multilinear rank at most
(k, k, . . . , k)) as the Tucker-q decomposition problem.

We next define the Tensor Train rank, based on the concept of tensor contractions.

▶ Definition 7 (Tensor Contraction ◦i,j). Let A ∈ Rn1×···×np be a p−mode tensor and
B ∈ Rm1×···×mq a q−mode tensor. Assuming that ni = mj , their tensor inner product or
tensor contraction A ◦i,j B is defined as

∑u=ni=mj

u=1 A:,··· ,u,··· ,: ⊗B:,··· ,u,··· ,:, where u is an
index for the ith mode of A and jth mode of B. The operation ◦i is short for A ◦p,i B and
the operation ◦ is short for A ◦p,1 B. For example, when p = q = 2, A ◦ B corresponds to
matrix multiplication.

Additionally, we can take the tensor contraction for several modes at once, as follows. Let
A ∈ Rn1×...×np be a p-mode tensor and B ∈ Rm1×...×mq a q-mode tensor. Then, given two
tuples (i1, . . . , id) and (j1, . . . , jd) of modes (and assuming nir

= mjr
for all r ∈ [d]), we can

define the contraction A ◦(i1,...,id),(j1,...,jd) B as
∑ni1

k1=1
∑ni2

k2=1 · · ·
∑nid

kd=1 A(i1 = k1, . . . , id =
kd)⊗B(j1 = k1, . . . , jd = kd). Here we have used A(i1 = k1, . . . , id = kd) to denote the slice
of A in which the index for mode i1 is k1, and so on.

▶ Remark 8. This operation is referred to in the literature as tensor contraction because it is
equivalent to the self-contraction at modes (i, p + j) of A⊗B.

We now define Tensor Train rank, and the corresponding problem of rank-k Tensor Train
decomposition, which is another of the main problems that we study in this paper.

▶ Definition 9 (Tensor Train Rank and Tensor Train Decomposition (introduced by [46])). Let
A ∈ Rn×...×n be a q-mode tensor for some q ∈ N. We say A has Tensor Train rank
(k1, . . . , kq−1) for some k1, . . . , kq−1 ∈ N if there exist U1 ∈ Rn×k1 , Uq ∈ Rkq−1×n, and
Ui ∈ Rki−1×n×ki for i ∈ [q] \ {1, q}, such that A = U1 ◦ · · · ◦ Uq. We define the problem of
Tensor Train decomposition as follows. Let A ∈ Rn×...×n be a q-mode tensor for some
q ∈ N, and let k ∈ N. Then, we wish to solve

min
U1∈Rn×k,Uq∈Rk×n,Ui∈Rk×n×k

∥U1 ◦ · · · ◦ Uq −A∥F

In other words, we wish to find a tensor B of Tensor Train rank (k, . . . , k) such that ∥A−B∥F

is minimized.
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Although the formulation of the Tensor Train Decomposition approximation problem
in this work uses the original q−mode tensor A as the input, our subspace embedding and
algorithm could be adapted to perform dimensionality reduction when the input is given in
the Tensor Train format with a greater rank.

2 Our Contributions

As mentioned in the last section, even computing the CP rank is NP-hard. However, for both
the Tensor Train and Tucker decompositions, an O(√q)-relative error low rank approximation
in Frobenius norm is computable in polynomial time (see, e.g., the discussion and references
in [28]), thus suggesting that there are more efficient low rank approximation algorithms for
these notions of rank than for the CP rank. However, as suggested by hardness results in this
work, it is difficult to achieve both (1 + ε) relative error and rank exactly k in polynomial
time. Thus, we present bicriteria algorithms in both directions.

We obtain the first polynomial-time (1 + ε)-approximation algorithm for the Tensor
Train decomposition with any non-trivial bicriteria rank. In particular, our bicriteria rank is
O( qk

ϵ log( q
δ )), where δ denotes the failure probability of the algorithm. (In the rest of the

paper, unless otherwise noted, δ denotes a failure probability.)

▶ Theorem 10 (Special Case of Theorem 26 for Tensor Train Decomposition). Let A ∈ Rn×...×n

be a q-mode tensor. Then, with probability at least 1 − δ, Algorithm 1 outputs the factors
U1, . . . , Uq of a tensor M with Tensor Train rank at most O( qk

ϵ log( q
δ )) such that

∥M −A∥F ≤ (1 + ϵ) min
T
∥T −A∥F

where the minimum on the right-hand side is taken over all tensors T with Tensor Train
rank at most k. The running time of our algorithm is O(q · nnz(A)) up to lower-order terms.

Our analysis is novel compared to [28] (which proposed an O(√q)-approximation algorithm
for Tensor Train decomposition) as we introduce new techniques for efficiently computing
subspace embeddings for matrices which are the sequential contraction of several tensors.
We further discuss our analysis in Subsection 2. Compared to a tensor with Tensor Train
rank k, which requires O(qnk2) parameters to express, the tensor output by our algorithm
requires only Õ( q3nk2

ϵ2 ) parameters. Thus, the number of parameters we obtain has an optimal
dependence on n and k.

The other direction where we make contributions for these same decompositions is simpler
fixed-parameter tractable algorithms for exact rank k approximations under the Tensor
Train and Tucker decompositions. The work of [52] gives (1 + ε)-approximation algorithms
for the Tensor Train and Tucker decompositions, with output rank exactly k and running
time 2poly(k/ϵ) (ignoring the dependence on q and nnz(A)). However, the algorithms of [52]
have the following drawbacks: (1) the poly(k/ε) factors in the 2poly(k/ε) time are large and
perhaps suboptimal, and (2) their algorithms run polynomial system solvers for deciding
the existential theory of the reals (see, e.g., [6]), which was shown to be equivalent to
deciding CP-rank [49]. Note that generic polynomial system solvers are highly complex,
raising the question of whether simpler fixed-parameter tractable algorithms for the Tucker
and Tensor Train decompositions can be obtained. For (1), our fixed-parameter tractable
algorithm for Tensor Train decomposition improves the dependence on the poly(k/ϵ) factor
in the exponent by an O(k2) factor. For (2), our algorithms for both the Tensor Train and
Tucker decompositions only make use of dense Gaussian sketching matrices rather than
polynomial system solvers. We note that in addition to [52], there are also works, see, e.g.,

ITCS 2024



79:6 Bicriteria Algorithms for Tensor Decompositions

[20, 34, 14, 15, 39, 43, 46, 28] that compute low rank approximations in polynomial time,
but only provide additive error guarantees or take a prohibitive amount of time. We state
the guarantees that our fixed-parameter tractable algorithms achieve:

▶ Theorem 11. There is an algorithm for Tucker-(p, q) decomposition (Algorithm 2) which,
given a q-mode tensor A ∈ Rn×n×...×n, and k ∈ N, outputs U1, . . . , Up ∈ Rn×k for which,
with probability at least 4

5 ,

min
G
∥(U1 × . . .× Up × In × . . .× In)vec(G)− vec(A)∥F

≤ (1 + ε) min
U1,...,Up,G

∥(U1 × . . .× Up × In × . . .× In)vec(G)− vec(A)∥F (2)

with running time O(p · nnz(A)) + n · ( pk
ε )O( p2k2 log p

ε ).

▶ Theorem 12. There is an algorithm for Tensor Train decomposition (Algorithm 6 presented
in Subsection D.3 of the full version of this work) which, given a q-mode tensor A ∈ Rn×...×n,
and k ∈ N, outputs U1 ∈ Rn×k, U2, . . . , Uq−1 ∈ Rk×n×k, and Uq ∈ Rk×n, such that with
probability at least 2

3 ,

∥U1 ◦ · · · ◦ Uq −A∥F ≤ (1 + ε) min
U1,...,Uq

∥U1 ◦ · · · ◦ Uq −A∥F

with running time O(q · nnz(A)) + n · poly( qk
ε ) · eΘ( q2k2

ε log( qk
ε )) and polynomial space.

▶ Remark 13. Throughout we assume our input tensor has all modes of the same dimension
n. This is for presentation purposes only and our techniques can straightforwardly handle
tensors where modes have differing dimensions with minor modifications.

To summarize, we propose a polynomial-time bicriteria algorithm, using a novel sketch for
tensor contractions, for (1+ε)-approximate Tensor Train decomposition, obtaining a bicriteria
rank of O( qk

ϵ log( q
δ )). In addition, we give fixed-parameter tractable (1 + ε)-approximation

algorithms for the Tucker, Tensor Train and CP decompositions which do not depend on
polynomial system solvers.

We also include fine-grained hardness results for rank-1 Tucker-(2, 3) decomposition,
rank-1 CP decomposition, and Tensor Train decomposition with q = 3, which lower-bound
the optimal dependency in terms of 1/ε which any algorithm with output rank k can achieve.
Additionally, we consider further generalizations of our bicriteria algorithm for Tensor Train
decomposition, to other notions of tensor rank based on tensor networks. Lastly, we obtain
bicriteria algorithms for Tucker-(p, q) decomposition with a robust loss function.

2.1 Bicriteria Algorithm for Tensor Train Decomposition
We state known theoretical guarantees for polynomial time Tensor Train decomposition in
Table 1, along with our result. We stress that no polynomial time relative error (1 + ε)-
approximations were known – even for the case of Tensor Train decomposition, previous
work either obtained additive error or O(√q)-approximation.

Subspace Embeddings for Tensor Contractions

The key component in our bicriteria algorithms is a subspace embedding for matrices which
are implicitly defined in terms of tensor contractions – in other words, we give a technique for
obtaining a subspace embedding of matrices of the form M{1,...,i−1}(U1◦· · ·◦U i−1) ∈ Rni−1×k,
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Algorithm 1 (1 + ε)-approximation algorithm for Tensor Train decomposition with output rank
t = O( qk

ε
log( q

δ
)).

Require: A ∈ Rn×...×n with q modes.
Ensure: U1 ∈ Rn×k, U2, . . . , Uq−1 ∈ Rk×n×k, Uq ∈ Rk×n

// Compute U1, processing the first mode, first
T1 ← An O( q3k2

ε2δ )× nq−1 Countsketch matrix
R1 ← A t×O( q3k2

ε2δ ) matrix whose entries are drawn i.i.d. from {− 1√
t
, 1√

t
}

U1 ←M1(A)T T
1 RT

1 ∈ Rn×t

// Store a sketch of U1, which we denote M1, for future use.
S1 ← An s× n Countsketch matrix, where s = O( q4t2d3

ε2δ ) = O( q6k2d3

ε4δ log2( q
δ )).

M1 ← S1U1 ∈ Rs×t

A← S1 ◦1 A ∈ Rs×n×...×n, i.e. a q-mode tensor where the last q−1 modes have dimension
n.

// Now process modes 2 through q. At the beginning of the ith iteration, A has q − i + 2
modes,
// where the first has dimension s and the rest have dimension n.
for i = 2, . . . , q do

// First compute U i using Mi−1 which is a sketch of U1 ◦ · · · ◦ U i−1.
U i ←M†

i−1 ◦1 A ∈ Rt×n×...×n, with q − i + 2 modes.
if i is not q then

Ti ← An O( q3k2

ϵ2δ )× nq−i Countsketch matrix (i.e. an O( q3k2

ϵ2δ )× n× . . .× n tensor)
Ri ← A t×O( q3k2

ϵ2δ ) matrix whose entries are drawn i.i.d. from {− 1√
t
, 1√

t
}

// Note that in the following we represent RiTi as a t× n× . . .× n tensor.
U i ← U i ◦(3,...,q−i+2),(2,...,q−i+1) (RiTi) ∈ Rt×n×t

// Next compute Mi

Mi ←Mi−1 ◦ Ui ∈ Rs×n×t

Si ← An s× sn Countsketch matrix, represented as s× s× n tensor
Mi ← Si ◦(2,3),(1,2) Mi ∈ Rs×t

A← Si ◦(2,3),(1,2) A ∈ Rs×n×...×n

end if
end for

return U1, . . . , Uq

Table 1 Known algorithms for Tensor Train decomposition. In the algorithm of [28], p is a
parameter for oversampling on the output bicriteria rank. We can extend their algorithm to a
(1 + ε)-approximation algorithm with running time qr2 · nnz(A) + n · poly(qk/ε), where r is the
desired bicriteria rank. The leading order term in the running time is significantly slower than that
of our algorithm.

Work Running Time Approximation Factor Rank
[46] (TT-SVD) nO(q) √

q − 1 k

[28] O(q((k + p)2nnz(A) + (k + p)3n))
√

q − 1
(

1 + O(
√

12k
p

) + O( e
√

k+p

p+1 )
)

r = k + p

This work O(q · nnz(A)) + n · poly(qk/ε) (1 + ε) O(qk/ε log(q/δ))

ITCS 2024



79:8 Bicriteria Algorithms for Tensor Decompositions

with n ·poly(ik/ε) running time, without computing all k ·ni−1 entries of this matrix. Recall
that, as in [55], given a matrix A ∈ Rn×d, a (1 ± ε) subspace embedding of A is a matrix
S ∈ Rs×n such that ∥SAx∥2 = (1± ε)∥Ax∥2 for all x ∈ Rd.

We can obtain such a subspace embedding for M{1,...,i−1}(U1 ◦ · · · ◦U i−1) as follows. We
wish to construct a linear map L : Rni−1 → Rs, for s = poly(ik/ε), such that for all x ∈ Rk,

∥LM{1,...,i−1}(U1 ◦ · · · ◦ U i−1)x∥2 = (1± ε)∥M{1,...,i−1}(U1 ◦ · · · ◦ U i−1)x∥2

However, for x ∈ Rk, the entries of M{1,...,i−1}(U1 ◦ · · · ◦ U i−1)x are in one-to-one corres-
pondence with those of the (i− 1)-mode tensor U1 ◦ · · · ◦ U i−1 ◦ x ∈ Rn×...×n. We can thus
significantly reduce the dimension of U1 ◦ · · · ◦ U i−1 ◦ x, while preserving its norm, for all
x ∈ Rk, as follows. First let S1 ∈ Rs1×n be a (1± ε/q) subspace embedding for U1 – then,
for all x ∈ Rk, we have the equality

∥S1 ◦ U1 ◦ U2 ◦ · · · ◦ U i−1 ◦ x∥2 = ∥S1U1M1(U2 ◦ · · · ◦ U i−1 ◦ x)∥2

= (1± ε/q)∥U1M1(U2 ◦ · · · ◦ U i−1 ◦ x)∥2

= (1± ε/q)∥U1 ◦ U2 ◦ · · · ◦ U i−1 ◦ x∥2 (3)

In addition, note that

A1 A2 A3 A4 A5

S1 S2 S3 S4 S5

Figure 1 Illustration for Subspace Embeddings for Tensor Contractions.

S1 ◦ U1 ◦ · · · ◦ U i−1 ◦ x = (S1U1) ◦ U2 ◦ U3 ◦ · · · ◦ U i−1 ◦ x

and S1U1 ∈ Rs1×k can be computed in O(s1nk) time, while (S1U1) ◦ U2 ∈ Rs1×n×k can be
computed in O(s1nk2) time. Now, define V 2 ∈ Rs1n×k by V 2 = M{1,2}((S1U1) ◦U2) – then,

∥V 2◦U3◦· · ·◦U i−1◦x∥2 = ∥(S1U1)◦U2◦U3◦· · ·◦U i−1◦x∥2 = (1±ε/q)∥U1◦· · ·◦U i−1◦x∥2

and thus the next step is to apply a subspace embedding S2 ∈ Rs2×n to V 2. In general, we
proceed iteratively – if we have computed V j ∈ Rsj−1n×k, such that for all x ∈ Rk,

∥V j ◦ U j+1 ◦ · · · ◦ U i−1 ◦ x∥2 = (1± ε/q)j−1∥U1 ◦ · · · ◦ U i−1 ◦ x∥2

then we can first compute SjV j where Sj ∈ Rsj×sj−1n is a subspace embedding for V j ,
followed by computing V j+1 := M{1,2}((SjV j) ◦ U j+1) ∈ Rsj×k – we then find that

∥V j+1 ◦ U j+2 ◦ · · · ◦ U i−1 ◦ x∥2 = (1± ε/q)j∥U1 ◦ · · · ◦ U i−1 ◦ x∥2

At the end of this procedure, we will have computed V i−1 ∈ Rsi−2n×k such that for all
x ∈ Rk,

∥V i−1x∥2 = (1± ε/q)i−1∥U1 ◦ · · · ◦ U i−1 ◦ x∥2

and if we let Wi−1 = Si−1V i−1 ∈ Rsi−1×k where Si−1 ∈ Rsi−1×si−2n is a subspace embedding
matrix, we find that

∥Wi−1x∥2 = (1±O(ε))∥U1 ◦ · · · ◦ U i−1 ◦ x∥2
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Table 2 Known algorithms for fixed parameter tractable (1 + ε)−approximation for different
decompositions – here TT refers to Tensor Train. For each of these decompositions, we remove the
use of generic polynomial system solvers that were used in [52]. Here s = poly( qk

ε
) · 2(poly(qk/ε))) in

our Tensor Train algorithm. We note that in row 2 of this table, the nδ factor in the running time
is not related to the failure probability, but rather is due to an assumption that [52] make on the
norms of the factors of the CP decomposition.

Work Running Time Decomposition Rank
[52] q · nnz(A) + n · poly(qk/ε) CP O((k/ε)q−1)
[52] (q · nnz(A) + npoly(qk/ε) + 2O(qk2/ε)) · nδ CP k

[52] nnz(A) + n · poly(k, 1/ε) + 2O(k2/ε+k3) Tucker-(3, 3) k

[52] nnz(A) + n · poly(k, 1/ε) + 2O(k4/ε) TT (q = 3) k

This work O(p · nnz(A)) + n ·
(

pk
ε

)O(p2k2 log p/ε) Tucker-(p, q) k

This work O(q · nnz(A)) + n · poly( qk
ε

) · 2Θ( q2k2
ε

log( qk
ε

)) TT k

This work (q · nnz(A) + n · poly(k, q/ε))poly(kq/ε) CP kq−1

and the overall computation is O(qsnk · (s + k)). We can choose sj = poly(qk/ε), meaning
the final matrix Wi−1 has dimensions poly(qk/ε)× k. We note that our subspace embedding
for tensor contractions may be of independent interest, and is part of a growing body of
work on obtaining subspace embeddings for matrices that are only represented implicitly
[3, 50, 29, 42].

In Section B of the full version of this work, we discuss how to apply this technique
to improve on previous work of [28] and obtain a bicriteria Tensor Train decomposition
algorithm. We show that the algorithm of [28] can be recast as a (1 + ε)-approximation
algorithm for Tensor Train decomposition, and show how our subspace embedding can be
used to reduce their running time to O(q ·nnz(A)), together with lower-order terms. We note
that our analysis is significantly different from [28], since we give a technique for obtaining
a subspace embedding of a matricization of a Tensor Train. In addition, our subspace
embedding does not follow directly from the subspace embedding of [1] – the subspace
embedding of [1] applies only to tensors with low CP rank, and would require a sketch size
of at least kq if applied to Tensor Train decomposition.

The way we have described the above subspace embedding for a tensor contraction is
sequential. One could instead matricize each mode in parallel, obtaining a matrix with n

rows and rank k2 for each internal mode matricization. One could then build a binary tree of
sketches, fusing and sketching two modes at a time for the internal nodes of the tree. While
this could help with multiple processors, the concrete ε, k, and q factors in the bicriteria rank
in our Tensor Train application in Appendix Section B of the full version of this work are a
bit worse.

We extend our techniques to obtain a (1 + ϵ)-approximation algorithms for decomposing
a tensor according to general tree networks as well. (See [10] for a survey of more general
tensor networks, which generalize the Tucker and Tensor Train ranks.) We do this using
a dynamic programming approach, by processing the tensors from the leaves to the root
(see [23] for a prior application of this approach to tree tensor networks).

2.2 Fixed Parameter Tractable Algorithms

We give fixed parameter tractable (1 + ε)-approximation algorithms for CP decomposition,
Tucker decomposition, and Tensor Train decompositions.

ITCS 2024
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The idea behind our algorithms is to generate an exponential (in k, q, and 1/ε) number
of guesses for the factor matrices and take the best solution found by sketching. Analyzing
such algorithms requires understanding common primitives, such as ℓ2-regression, subspace
embeddings, and approximate matrix product, but in a regime that has not been studied
before, namely, where the success probability is exponentially small. The reason the success
probability is so small is that we need to choose sketching matrices with exactly k rows
(as opposed to say, poly(k/ε)) in order to ensure that our output has rank exactly k.
Since the success probability of our primitives is 2−poly(kq/ε), by repeating 2poly(kq/ε) times
independently, one of the solutions found by sketching will provide a (1 + ε)-approximation.

Since we just enumerate over our guesses, we avoid the polynomial system solvers used in
[52]. Our algorithms are conceptually simpler and easier to implement (e.g., the algorithm
proposed in [6] relies on real algebraic geometry). Our techniques may be useful for other
linear algebra problems where known algorithms use polynomial system solvers, such as
weighted low rank approximation [4], and non-negative matrix factorization [2, 44].

Perhaps of interest independent of our FPT algorithms is the following Theorem which
shows that for the same optimal sketching dimension [11] considered in previous work for
approximate regression, one can solve for an approximate minimizer in the sketch space, and
argue this is a (1 + ε)-approximate solution in the original space.

▶ Theorem 14 (Strenghtened Version of Theorem 3.1 of [11]). Let ε, δ, τ ∈ (0, 1). Let
A ∈ Rn×d1 , B ∈ Rn×d2 , with A of rank at most k. Let S ∈ Rm×n be a random matrix such
that

S is a (1± 1
3 ) ℓ2 subspace embedding for the column span of A with probability at least

1− δ.
S has the (

√
ε/k, δ)-approximate matrix product property.

E[ST
i Sj ] is 1 if i = j and 0 otherwise, where Si denotes the ith column of S.

Then, with probability 1 − O(δ), if X∗ = argminX ∥AX − B∥F , then for all X̂ ∈ Rd1×d2 ,
such that ∥SAX̂ − SB∥F ≤ (1 + τ) minX ∥SAX − SB∥F , it holds that ∥AX̂ − B∥F ≤
(1 + O(ε) + O(τ/δ))∥AX∗ −B∥F . In particular, this holds if S ∈ Rm×n is a matrix whose
entries are each chosen from {− 1√

m
, 1√

m
} uniformly at random, with m = O(k log(1/δ)/ε).

Proof. Proof is included in the full version of this work. ◀

Previous work surprisingly could only show this for solving for the exact solution in the
sketch space. We use this in our Tensor Train FPT algorithm for finding candidate guesses.
More details on the techniques and results for each decomposition are summarized below.

Tucker FPT Algorithm

A key fact that guarantees the success probability of our FPT Algorithm (shown in Al-
gorithm 2) for (1± ε) rank-k approximation under the Tucker-(p, q) decomposition is the
following lemma

▶ Lemma 15 (e−poly(k/ε) Success Probability Subspace Embedding). Let n, k, s, t ∈ N, ε > 0,

and k, t < n. Suppose A ∈ Rn×k has rank k and B ∈ Rn×s has rank t. Let R ∈ Rk×n have
i.i.d. N (0, 1/k) entries. If X∗ = argminX ∥AX − B∥2

F and X̂ = argminX ∥RAX − RB∥2
F ,

then ∥AX̂ −B∥2
F ≤ (1 + ε)∥AX∗ −B∥2

F with probability at least e−Θ(k2 log k)( ε
k )O(kt).

Proof. Proof is included in the full version of this work. ◀



A. V. Mahankali, D. P. Woodruff, and Z. Zhang 79:11

As we range over the guesses of U produced by our algorithm, at least one guess is a good
guess, meaning it provides a (1± ε

p2 ) approximation. We then use an ℓ2 Kronecker Product
Regression result of [17] together with projection cost-preserving sketches [12], to efficiently
evaluate the cost of each guess.

▶ Theorem 16 (ℓ2 Kronecker Product Regression – Theorem 3.1 and Algorithm 1 of [17]). Let
A1, A2, . . . , Aq, where Ai ∈ Rni×di . Let n =

∏
i ni and d =

∏
i di. Let b ∈ Rn. Then, there is

an algorithm which, in running time
∑q

i=1 nnz(Ai)+poly(d/(εδ)) and with success probability
1−δ, returns x̂ ∈ Rd such that ∥(A1× . . .×Aq)x̂−b∥2 ≤ (1+ε) minx ∥(A1× . . .×Aq)x−b∥2,
and also returns ê = (1 ± ε)∥(A1 × . . . × Aq)x̂ − b∥2 − ∥b∥2 (where we use the notation
a = (1± ε)b to indicate that a ∈ [(1− ε)b, (1 + ε)b]).

Proof. Proof is included in the full version of this work. ◀

Tensor Train FPT Algorithm

Our FPT algorithm for Tensor Train decompositions uses similar tools as that for Tucker
decompositions, but notably it uses our new subspace embedding for tensor contractions
that we introduced above in the context of obtaining efficient bicriteria algorithms.

For Tensor Train and Tucker-(p, q) decompositions, our algorithm achieves output rank
exactly k and (1+ε) relative approximation error, in fixed-parameter tractable time. Previous
work, such as [53] which uses High Order SVD, generally produces either higher than (1 + ε)
approximation error, or higher output rank, or both. A summary of our results and previous
fixed parameter tractable algorithms that achieve (1 + ε)-approximation is presented in
Table 2.
▶ Remark 17. Note that for CP rank, the best rank k approximation may not exist in general.
To deal with the case where the best rank k approximation does not exist, we can add an
arbitrarily small additive error term γ to the approximation guarantees, as done in [52].

CP-Rank FPT Algorithm

Finally, our toolbox allows us to obtain new FPT algorithms for CP decompositions. Our
approach here is inspired by that of [52], but instead of using polynomial system solvers, uses
our low probability sketching primitives. For CP decomposition, our algorithm gives a tradeoff
compared to [52], as we obtain bicriteria rank kq−1, which is better than their bicriteria
algorithm but worse than their fixed-parameter tractable algorithm (which obtains output
rank k), but our running time is fixed-parameter tractable while their bicriteria algorithm is
polynomial time. As mentioned above, our algorithm does not use polynomial system solvers
unlike the fixed-parameter tractable algorithm of [52]. Note that by Theorem 1.1 of [49],
computing the CP rank of a tensor is equivalent to solving polynomial systems, meaning
obtaining output rank k is at least as hard as solving polynomial systems, which may not be
true for the Tucker and Tensor Train decompositions.

2.3 Hardness
We show new fine-grained hardness results for rank-1 Tucker-(2, 3) decomposition, rank-1
CP decomposition, and Tensor Train decomposition with q = 3. These three are in fact
equivalent decompositions. To see why, first note that rank-1 CP decomposition is equivalent
to rank-1 Tensor Train decomposition since a tensor A ∈ Rn×n×n with Tensor Train rank 1
can be written as u1 ◦ u2 ◦ u3 where u1 ∈ Rn×1, u2 ∈ R1×n×1, and u3 ∈ R1×n, and the
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Algorithm 2 Fixed-parameter tractable algorithm for obtaining a (1 + ε)-approximate rank
k solution for Tucker-(p, q) decomposition. Here, ErrorEstimate denotes the algorithm re-
ferred to in Theorem 16 (which is the algorithm of [17] with certain parameters modified) –
ErrorEstimate(U1, . . . , Up, Mj , δ) returns an estimate of the error minx ∥(U1 × . . .×Up)x−Mj∥2,
with failure probability δ. The variable NewError is referred to as ê in the analysis. Note that in
order to output the core tensor, we would incur a nq−p term in the running time. In the case p = q,
we can also output a near-optimal core tensor, by using the algorithm of [17], while still achieving
the desired running time. In addition, in the case p = q, it is not necessary to multiply Ap by a
PCP before performing Kronecker product regression.

Require: A q-mode tensor A ∈ Rn×...×n, p ≤ q, k ∈ N, ε ∈ (0, 1)
Ensure: U1, U2, . . . , Up ∈ Rn×k

// Generating guesses for Um for m ∈ [p]
T ← ( pk

ε )O( pk2 log p
ε )

for m = 1→ p do
Sm ← An O( p3k2

ε2 )× nq−1 Countsketch matrix
Tm ← An s×O( p3k2

ε2 ) matrix with i.i.d. ± 1√
s

entries, where s = O( pk log p
ε ).

Sm ← ∅
Âm ←Mm(A)ST

mT T
m

for t = 1→ T do
Rm ← A k × s matrix with i.i.d. N(0, 1/k) entries.
Um

t ← ÂmRT
m

Sm ← Sm ∪ {Um
t }

end for
end for

// Evaluating error of each tuple in S1 × . . .× Sp

Ap ← An np × nq−p matrix whose ((i1, . . . , ip), (ip+1, . . . , iq))th entry is A(i1, . . . , iq)
SPROJ ← An O(k2p/ε2)× nq−p Countsketch matrix.
M ← ApST

PROJ ▷ Used as PCP for Ap in Kronecker product regression
Û1, Û2, . . . , Ûp ← 0
MinError← ∥A∥2

F

for U1 ∈ S1, . . . , Up ∈ Sp do
NewError← 0

for j = 1→ O(k2p/ε2) do
r ← O(k2p/ε2), the number of columns in M

NewError← NewError + ErrorEstimate(U1, . . . , Up, Mj , δ = 1
1000rT p )

end for
NewError← NewError + ∥M∥2

F

if NewError ≤MinError then
MinError← NewError
Û1, Û2, . . . , Ûp ← U1, U2, . . . , Up

end if
end for
return Û1, Û2, . . . , Ûp
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(i, j, k)th entry of u1 ◦ u2 ◦ u3 can be written as u1,iu2,ju3,k. Thus, every tensor with CP
rank 1 has Tensor Train rank 1, and vice versa. Additionally, suppose a tensor A ∈ Rn×n×n

can be written as a tensor with multilinear rank (1, 1, n) (corresponding to Tucker-(2, 3)
decomposition). Then, we can write A = (u1 × u2 × I)G for some tensor G ∈ R1×1×n and
u1, u2 ∈ Rn×1. Thus, A(i, j, k) = (e⊤

i u1×e⊤
j u2×e⊤

k I)G = u1,iu2,jG(1, 1, k) – in other words,
Tucker-(2, 3) decomposition is equivalent to rank-1 CP decomposition. It can also be seen
that the rank-1 Tucker-3 decomposition is equivalent to rank-1 CP decomposition using the
same argument. Thus, using for instance that rank-1 CP decomposition is NP-hard [27, 25],
all of these problems are NP-hard for ε = 0.

Moreover, as shown in [52], under the Exponential Time Hypothesis, there is a 2Ω(ε1/4)

time lower bound for rank-1 CP decomposition and thus for all of these problems. We make
a stronger assumption based on the 2-to-4 norm defined as follows.

▶ Definition 18. Let B ∈ Rn×n. Then, we define ∥B∥2,4 =
( ∑n

i=1 ∥Bi,:∥4
2

)1/4
, where Bi,:

is the ith row of B, and ∥B∥2→4 = sup∥x∥2=1 ∥Bx∥4.

▶ Conjecture 19. Any algorithm which, given a matrix A ∈ Rn×n, approximates ∥A∥2→4 to
a multiplicative O(1) factor, requires 2Ω(n) time.

We include some justification and discussion of this conjecture below after giving our
hardness result.

Running Time Lower Bound for Tucker-(2, 3) Decomposition

We show that under Conjecture 19, any (1 + ε)-approximation algorithm for rank-1 CP,
Tucker and Tensor Train decomposition requires 2Ω(1/ε) time.

▶ Theorem 20. For convenience, given a tensor A ∈ Rn×n×n, let Ak := A(:, :, k). If
Conjecture 19 is true, then any algorithm which, given A ∈ Rn×n×n, finds unit vectors
u, v ∈ Rn, such that

n∑
k=1
∥uuT AkvvT −Ak∥2

F ≤
(

1 + Θ
( 1

n

))
min

∥u∗∥2=∥v∗∥2=1

n∑
k=1
∥u∗uT

∗ Akv∗vT
∗ −Ak∥2

F

requires at least 2Ω(n) time. Thus, any algorithm which, given A ∈ Rn×n×n and ε ∈ (0, 1),
finds unit vectors u, v ∈ Rn, such that

n∑
k=1
∥uuT AkvvT −Ak∥2

F ≤ (1 + ϵ) min
∥u∗∥2=∥v∗∥2=1

n∑
k=1
∥u∗uT

∗ Akv∗vT
∗ −Ak∥2

F

requires at least 2Ω(1/ε) time.

This theorem implies that the rank-1 Tucker-(2, 3) decomposition problem requires
2Ω(1/ϵ) time if 1 + ϵ relative error is desired. To see why, recall that (see Definition 5) the
rank-1 Tucker-(2, 3) decomposition problem corresponds to finding u1 ∈ Rn, u2 ∈ Rn and
G ∈ R1×1×n such that ∥M3(G)(u⊤

1 × u⊤
2 )−M3(A)∥2

F is minimized. We can thus rewrite the
objective as

min
g,u1,u2

n∑
k=1
∥gk(u⊤

1 × u⊤
2 )− vec(Ak)∥2

F = min
g,u1,u2

n∑
k=1
∥gku1u⊤

2 −Ak∥2
F (4)

using the notation gk = G(1, 1, k) and Ak = A(:, :, k). Therefore, given a fixed u1 and u2, we
have gk := argmint ∥tu1u⊤

2 − Ak∥2
F . Additionally, by the Pythagorean theorem, assuming
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that u1 and u2 have unit norm (as otherwise, we can scale all the gk’s appropriately), we
have

∥tu1u⊤
2 −Ak∥2

F = ∥tu1u⊤
2 − u1u⊤

1 Ak∥2
F + ∥u1u⊤

1 Ak −Ak∥2
F

= ∥tu1u⊤
2 − u1u⊤

1 Aku2u⊤
2 ∥2

F + ∥u1u⊤
1 Aku2u⊤

2 − u1u⊤
1 Ak∥2

F + ∥u1u⊤
1 Ak −Ak∥2

F (5)

where we have applied the Pythagorean theorem twice. Thus, it is optimal to have gk =
u⊤

1 Aku2, and therefore, for unit vectors u, v ∈ Rn, the objective

n∑
k=1
∥uuT AkvvT −Ak∥2

F

is equivalent to the Tucker-(2, 3) decomposition objective. Thus, under this conjecture, our
fixed-parameter tractable algorithms for the Tucker and Tensor Train decompositions are
optimal in terms of their dependency on 1/ε in the running time.

Techniques

Our reduction from 2 → 4 norm uses the specific form of a Tucker-(2, 3) decomposition,
expanding the objective function, together with the fact that for symmetric matrices Ak, it
holds that max∥u∥2=1

∑m
k=1⟨Aku, u⟩2 = max∥x∥2=∥y∥2=1

∑m
k=1⟨Akx, y⟩2. We use an inequal-

ity relating ∥A∥2→4 to the sum of 4-th powers of Euclidean norms of slices of A, which in
turn is related to the Tucker-(2, 3) objective after applying this fact.

Justification for Conjecture 19

Conjecture 19 is a new conjecture which we introduce in this work. We essentially assume
that the algorithm of [5] for computing the 2→ 4 norm of a matrix (which is a well-studied,
important problem in complexity theory) has optimal running time – this is a style of
argument similar to that used in other fine-grained complexity reductions.

To our knowledge, existing upper bounds for approximating ∥A∥2→4 up to a multiplicative
O(1) factor do not contradict our conjecture. Indeed, the work of [5] shows how in 2O(n1/2)

time one can distinguish between the cases ∥A∥2→4 ≤ cσmin(A) and ∥A∥2→4 ≥ Cσmin(A) if
1 < c < C are fixed constants, where σmin(A) is the smallest singular value of A. However, for
super-constant c and C, one can show their algorithm takes 2Ω(n) time, and thus is no faster
than enumerating over a net. 4 Thus, either our lower bounds hold, or a major breakthrough
will be needed for approximating the ∥A∥2→4 norm. We note that such reductions are
common in fine-grained complexity theory (see [7]).

4 On page 64 of https://arxiv.org/pdf/1205.4484.pdf it is mentioned that if dim(V ) ≤ C2n2/q which
is C2n1/2 for q = 4, then brute force enumeration can be used and this would take time exponential
in dim(V ). Note that the goal is to determine whether ∥A∥2→4 ≥ Cσ where σ is the least singular
value of A. If no restrictions are placed on C, then it could be larger than n1/4, since for a fixed v,
∥Av∥4
∥Av∥2

could be as large as n1/4, and moreover, ∥Av∥2
∥v∥2

could be arbitrarily larger than σ, meaning ∥Av∥4
∥v∥2

could be larger than n1/4σ. Thus, brute-force enumeration would take 2O(n) time, in this case. If
brute-force enumeration is not used, then Corollary 10.2 of that work can be used to obtain the bound
∥V ∥2−>4 ≥

√
dim(V )/n1/4. Since dim(V ) ≤ n, this bound is at best n1/4, while C could be larger.

Thus, the algorithm of [5] can take exponential time if no restrictions are placed on C and c.

https://arxiv.org/pdf/1205.4484.pdf
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2.4 Robust Loss for Tucker Decomposition
As studied in [52], another question is whether it is possible to obtain low rank decompositions
with good relative error for loss functions which are more robust to outliers than the Frobenius
norm. The fact that the Frobenius norm is not robust to outliers can be seen from the
following simplified example in the setting of ℓ2 regression. Suppose we are given 4 pairs
(x1, y1), (x2, y2), (x3, y3) and (x4, y4), where the xi are in R2 and y1 = 1, y2 = −1, y3 = 10
and y4 = 2, and we wish to find a weight vector w ∈ R2 such that

∑4
i=1(w⊤xi − yi)2. Then,

for example when w = 0, the contribution of the data point (x3, y3) to the loss will be much
larger than that of the other data points. In general, this pattern holds: if a tensor has
certain very large entries, then performing low rank approximation using the Frobenius norm
can lead to those entries being fit at the expense of other entries. A number of works attempt
to address this question, see, e.g., [52, 8] for work which looks at the ℓ1-norm and sum of
Euclidean norm losses. We propose a new algorithm for Tucker decomposition where the
loss function is the sum of the Frobenius norms of the faces, where a face is a subtensor
obtained by fixing the index along the last mode. We note that [52] only consider robust loss
functions for the CP decomposition.

We consider the following norm ∥·∥R, which is less sensitive to outliers than the Frobenius
norm:

▶ Definition 21 (Sum of Frobenius Norms of Mode-q Faces). Let A ∈ Rn×...×n be a q-mode
tensor. Then, ∥A∥R =

∑
i∈[n] ∥A(:, . . . , :, i)∥F , where A(:, . . . , :, i) is the slice of A whose

index in the last mode is i. In other words, ∥A∥R is the sum of the Frobenius norms of the
faces along the last mode.

∥·∥R is a high dimensional generalization of the ℓ2,1 norm for matrices. ℓ2,1 norm has been
frequently adopted over the Frobenius norm for many optimization and maching learning
tasks. For example, [57] uses ℓ2,1 norm for discrimitive feature selection.

▶ Problem 22 (Robust Tucker-(p, q) Decomposition). Let A ∈ Rn×...×n be a q-mode tensor,
with p < q, and let k ∈ N. Then, we wish to find a q-mode tensor X ∈ Rn×...×n of multilinear
rank at most (k, . . . , k, n, . . . , n) (where the first p entries of the tuple are k and the last q− p

entries are n), such that ∥X −A∥R is minimized.

We give an O(p · (
√

k log k +
√

log(np)))-approximation algorithm with bicriteria rank
O(k log2 k) – we formally state our result in Appendix Section F of the full version of this
work. We make the assumption that p < q only for this robust loss function – all of our results
for Frobenius norm Tucker decomposition hold even if p = q. We make this assumption
since it allows us to apply techniques for ℓ1,2-norm matrix low rank approximation - different
techniques might be required if p = q.
▶ Remark 23. In all of our results, unidentifiability does not affect our guarantees, since we
are not recovering the ground truth. Instead, we compare the error to the best tensor which
can be represented according to the given network with a specified rank.

2.5 Generalization: Tensor Network Approximation
We extend our results summarized in Subsubsection 2.1 to general tensor networks, which
we define informally below. See Appendix Subsection A.1 of the full version of this work for
a formal definition.

▶ Definition 24 (General Tensor Network Contraction – Informal). Let G = (V, E) be a graph.
For each v ∈ V , suppose Uv is a tensor with deg(v) modes of dimension k (corresponding to
each edge incident to v) and one mode of dimension n. We define the contraction of G to be
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(a) Matrix Product
State/Tensor Train. (b) Tucker.

(c) Projected En-
tangled Pair State.

(d) Matrix Product
Operator.

(e) Projected En-
tangled Pair Oper-
ator.

Figure 2 Popular Tensor Networks.

the tensor obtained by contracting Uu and Uv for every edge (u, v) ∈ G, until we are left with
a single vertex. For convenience, we denote this contraction by G({Uv | v ∈ V }). We will
informally refer to k as the rank of the network according to G.

The Tensor Train decomposition is a special case of tensor networks with G being a line
graph. We first extend our Tensor Train decomposition algorithm to obtain a bicriteria
(1 + ε)−approximation algorithm for the special case of tree network decomposition.

▶ Theorem 25 (Theorem 26 – Informal). Let A ∈ Rn×...×n be a q-mode tensor and T be a
tree. Then, with probability at least 1− δ, our algorithm outputs a tree network M of rank
O( qk

ϵ log( q
δ )), such that

∥M −A∥F ≤ (1 + ϵ) min
T
∥T −A∥F

where the minimum on the right-hand side is taken over all tensors T with rank at most k

according to T . The running time of our algorithm is O(q · nnz(A)) + n · ( qk
ϵδ )O(d).

We also show how to apply the tree network decomposition algorithm to approximate
tensors with low ranks under a particular graph G which may have cycles. Many such
network-based decompositions have been used in different applications.

▶ Theorem 26. Let k, q, n ∈ N, and let A and T be as specified in Algorithm 3. Then,
Algorithm 3 finds {Uv | v ∈ V } with bicriteria rank t = O( qk

ε log( q
δ )) such that

∥T ({Uv | v ∈ V })−A∥F ≤ (1 + ε) min
Uv

∥T ({Uv | v ∈ V })−A∥F

with probability at least 1− δ. The running time of Algorithm 3 is O(q ·nnz(A)) + n · ( qk
εδ )O(d).

Tensors with Low General Tensor Network Rank

We show how to find a binary tree T on a vertex set V ′ containing O(q) nodes, and
corresponding tensors Uv, again with a mode corresponding to each edge e ∈ T of dimension
poly(kdeg(G)tw(G)q/ε), for which

∥T ({Uv | v ∈ V ′})−A∥2
F ≤ (1 + ε) · ∥G({U∗

v | v ∈ V })−A∥2
F ,

in O(nnz(A)q + n · poly(kdeg(G)tw(G)q/ε) time, where tw(G) is the treewidth of G, deg(G) is
the maximum degree of a vertex, and nnz(A) is the number of non-zero entries of A. Although
our output tensor T ({Uv | v ∈ V ′}) does not have the same topology as the original network
G, it performs as well, up to a (1 + ε)-factor, as the best tensor with network topology G, and
moreover, the number of parameters in the tree network T is at most a factor kO(deg(G)tw(G))

larger than that in G. The overall tree network will have q · n · kO(deg(G)2tw(G)2) parameters,
instead of nq.
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Algorithm 3 (1 + ε)-approximation algorithm for tree network decomposition with output rank
O( qk

ε
log( q

δ
)). Note that we can assume each of the leaves in T has one mode of dimension n – if a

leaf v has no such mode, then Uv is simply a k-dimensional vector, and can be contracted with its
parent and ignored for the purposes of approximating A.

Require: A ∈ Rn×...×n with q modes, and a tree T = (V, E) with O(q) vertices, such that
for any u, v ∈ V with (u, v) ∈ E, the edge between u and v has rank k, and each vertex in
V has at most one mode of dimension n. Without loss of generality, each leaf in V has
one mode of dimension n. All vertices of T have degree at most d ∈ N.

Ensure: {Uv | v ∈ V } such that for each v ∈ V , the dimension of Uv corresponding to each
of its outgoing edges in T is at most t = O( qk

ε log(q/δ))

// Process the leaves first
L← A list of all the leaves of T
for v ∈ L do

Tv ← An O( q3k2

ε2δ )× nq−1 Countsketch matrix
Rv ← A t×O( q3k2

ε2δ ) matrix whose entries are drawn i.i.d. from {− 1√
t
, 1√

t
}

i← the mode of Uv of dimension n

Ũv ←Mi(A)T T
v RT

v ∈ Rn×t

// Store a sketch of Ũv, which we denote Mv, for future use.
Sv ← An s× n Countsketch matrix, where s = O( q4t2d3

ε2δ ) = O( q6k2d3

ε4δ log2( q
δ )).

Mv ← SvŨv ∈ Rs×t

A← Sv ◦i A

end for

// Now process each vertex v ∈ V after processing its entire subtree.
I ← A list of the vertices in V \ L where each vertex appears after the rest in its subtree.
for v ∈ I do

// First compute Ũv using the sketches of the subtrees of the children of v.
Mv−subtree ←

⊗
u Mu ∈ Rsdeg(u)−1×tdeg(u)−1 , where u ranges over the children of v

G1 ← The modes of A corresponding to row dimensions of Mu for the children u of v

G2 ← The remaining modes of A

Ũv ←M†
v−subtree ◦G1 A

if v is not the root of T then
Tv ← An O( q3k2

ε2δ )× n|G2| Countsketch matrix
Rv ← A t×O( q3k2

ε2δ ) matrix whose entries are drawn i.i.d. from {− 1√
t
, 1√

t
}

Ũv ← RvTv ◦G2 Ũv ∈ Rt×...×t×t

end if

// Next, compute Mv.
Mv ←Mv−subtree ◦ Ũv ∈ Rsdeg(u)−1×t where the contraction is along the modes of Ũv

corresponding to the edges between u and its children
Sv ← An s× sdeg(u)−1 Countsketch matrix.
Mv ← SvMv

A← Sv ◦G1 A

end for

return {Ũv | v ∈ V }
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The main idea of our algorithm is that, given a graph G = (V, E) and a corresponding
set of factors {Uv | v ∈ V } where the ranks on the edges in E are all of rank k, there
exists a binary tree network T with corresponding factors {Wv | v is a vertex of T } which is
equivalent, i.e.,

T ({Wv | v is a vertex of T }) = G({Uv | v ∈ V })

Crucially, T also has low rank. Specifically, the ranks on the edges of T are at most
kdeg(G)tw(G). This is shown in Appendix Subsection C.1 in the full version of this work.

Using the observation above, we construct the binary tree T by contracting the edges of
G in a particular order, and each vertex w resulting from the contraction of an edge (u, v) has
two children u′ and v′ corresponding to u and v. In order for the edges of T to have low rank,
it is crucial for the degree of the vertices w obtained from contraction to be small. For this to
hold, we make use of the following result from [41]: there is an order in which we can contract
the edges of G, such that the largest degree of any vertex at any point during the contraction
is at most O(deg(G)tw(G)). Moreover, this order can be computed in poly(|V |)eO(deg(G)tw(G))

time. The technical details of the algorithm are presented in Appendix Section C of the full
version of this work.

3 Comparison to Prior Work

The study of fast algorithms for tensor decompositions is a vast subject with work in numerical
linear algebra, scientific computing, and theoretical computer science. We discuss several
other approaches to these problems below, but we emphasize the main differences with our
work here:
1. There is no previous work for general tensor network low rank approximation, despite

work that motivates studying this question [58].
2. We obtain relative error (1 + ε)-approximations, whereas, with the exception of [52],

previous work either gets an additive error or at best a fixed constant approximation
factor (e.g. [28] and [23] which obtain O(√q) approximation algorithms).

3. Previous works do not run in nnz(A) · q time, but rather at least nnz(A)poly(kq) time
(such as [28] which takes at least O(qs2nnz(A)) time where s is their output rank, and
[23] for Hierarchical Tucker decomposition which requires O(nq) time due to the use of
SVD).

In addition to the above, a major contribution of our work is to introduce many of the
advanced and recent techniques from randomized numerical linear algebra to the study of
more advanced tensor decompositions. We note that some such tools have been developed,
such as TensorSketch [47] and its optimizations [1], but they do not directly apply to
Tensor Train decompositions, for example. In this work, we develop new algorithmic tools,
such as sparse affine and subspace embeddings for tensors represented implicitly, such as
those represented as a sequence of ◦ operations, as well as new analytical tools such as the
propagation of JL-moment guarantees across the nodes of a tree network. We note that the
idea of implicit tensor maps is seen in prior works such as [35]. However, the context and
goal are vastly different, the map in [35] is specific to a subspace, where ours is an embedding.
[38] that has a similar goal in developing tensor embeddings does not present an end-to-end
algorithm and guarantees for approximate tensor decomposition.

Besides [52], there are some prior works on tensor decompositions using the same family
of techniques as ours, such as [53] with Tucker-factor-wise sketches, [48] with randomized
projections, [39] with subspace embeddings for tensors, and [40] with leverage score sampling.
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Table 3 Comparison of algorithms for the Tucker decomposition. ω is the matrix multiplication
complexity exponent.

Work Running Time Approximation Factor
[23] O(n 3

2 q) √
q

[53] O
((

s(1−s/n)q

1−s/n
+ qk

)
nq

)
2q

[43] O(
∑q

j=1(kjnq−j+1 + kjnq−j)) O(√q)
This work O(q · nnz(A)) + n · (qk/ε)O(q2k2 log q 1

ε
) 1 + ε

Several algorithms using more standard regression techniques have been developed for tensor
decompositions. This includes Alternative Least Squares algorithms such as [20], and SVD-
like algorithms such as [43], [46], [28], and [34]. These works are generally significantly more
computationally expensive, or have worse guarantees, or both. In particular, they do not
achieve (1 + ε)−approximation within a practical time complexity.

In [13] which studies the related problem of Tensor Train rounding, a Tensor Train
embedding similar to ours is proposed – the embedding consists of a Tensor Train network
where each factor has i.i.d. Gaussian entries. This work also proposes the “right-to-left partial
◦” operation to quickly apply this embedding to another Tensor Train. The work [13] does
not analyze the error incurred using this embedding in their algorithms, and the embedding
is not used as a subspace embedding or affine embedding. Instead, it is used to approximately
perform the QR decomposition of matrices of the form TX,nTY,n+1:N , where Y is a Tensor
Train of length N given as the input to the Tensor Train rounding algorithm, and TY,n+1:N
is a matrix formed from cores n + 1 through N of Y . Cores n + 1 through N of the Gaussian
Tensor Train network are applied to TY,n+1:N , and the column span of the resulting matrix
is computed.

The concurrent and independent [9] follows a different line of techniques towards ◦
based decompositions. Compared to ours, their Tensor Ring decomposition result makes
several additional assumptions, notably ∀i, j, k ∈ [q]|Ti,j,k − Tr(U∗

i UjU∗
k )| <= η and the

analogous second order constraint for the Sum-of-Squares technique. Their error guarantee
is poly(n, k, maxi∈q ||U∗

i ||F , 1/m)ηc over component-wise parameter distance (m is a lower
bound on the condition number of the fused matrix of an arbitrary combination of two
modes in the optimal solution), but each output component is of rank k. To remove the
n dependency in the error guarantee, they need additional smoothed analysis assumptions.
Our work takes a different approach to achieve a bicriteria algorithm and gets (1 + ε) relative
error guarantees with a comparable runtime.

We note that whether one can efficiently contract tensor networks with cycles is a question
that has been studied in quantum physics and quantum computation (e.g., [41, 24, 45], to
name a few examples). To our knowledge, the problem of approximating a given input tensor
A by a general tensor network of low rank has not been extensively studied. However, [58]
gives examples where the rank of a tensor A with respect to one tensor network can be
significantly lower than the rank with respect to another. We also note that hardness results
for contracting PEPS networks (e.g., [24]) suggest that either converting PEPS networks to
equivalent tree networks is hard to do efficiently, or that an equivalent tree network would
require a much larger rank.
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