The Non-Uniform Perebor Conjecture for
Time-Bounded Kolmogorov Complexity Is False
Noam Mazor &

Cornell Tech, New York, NY, USA

Rafael Pass &

Tel Aviv University, Israel
Cornell Tech, New York, NY, USA

—— Abstract

The Perebor (Russian for “brute-force search”) conjectures, which date back to the 1950s and 1960s
are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the

NP # P conjecture (which they predate) and state that for “meta-complexity” problems, such as
the Time-bounded Kolmogorov complexity Problem, and the Minimum Circuit Size Problem, there
are no better algorithms than brute force search.

In this paper, we disprove the non-uniform version of the Perebor conjecture for the Time-
Bounded Kolmogorov complexity problem. We demonstrate that for every polynomial ¢(-), there
exists of a circuit of size 24™/5+°(") that solves the t(-)-bounded Kolmogorov complexity problem on
every instance.

Our algorithm is black-boz in the description of the Universal Turing Machine U employed in the
definition of Kolmogorov Complexity and leverages the characterization of one-way functions through
the hardness of the time-bounded Kolmogorov complexity problem of Liu and Pass (FOCS’20),
and the time-space trade-off for one-way functions of Fiat and Naor (STOC’91). We additionally
demonstrate that no such black-box algorithm can have circuit size smaller than 27/27°(™),

Along the way (and of independent interest), we extend the result of Fiat and Naor and
demonstrate that any efficiently computable function can be inverted (with probability 1) by a
circuit of size 24*/5+t°("); as far as we know, this yields the first formal proof that a non-trivial
circuit can invert any efficient function.

2012 ACM Subject Classification Theory of computation — Computational complexity and crypto-
graphy

Keywords and phrases Kolmogorov complexity, perebor conjecture, function inversion
Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.80

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/175/ [18§]

Funding Noam Mazor: Research partly supported by NSF CNS-2149305 and NSF CNS-2128519.
Rafael Pass: Supported in part by NSF Award CNS 2149305, AFOSR Award FA9550-18-1-0267,
AFOSR Award FA9550-23-1-0387, a JP Morgan Faculty Award and an Algorand Foundation award.
This material is based upon work supported by DARPA under Agreement No. HR00110C0086.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Government, DARPA,
AFOSR or the Algorand Foundation.

1 Introduction

In his historical account, Thaktenbrot [22], describes efforts in the 1950s and 1960s in the
Russian Cybernetics program to understand problem that requiring brute-force search to
solve. [22, 23, 24]. The so-called Perebor (Russian for brute-force search) conjectures refer
to the conjectures that certain types of, what today are referred to as “meta-complexity”,
problems require brute-force search to be solve. These include (a) the Minimimum Circuit
© Noam Mazor and Rafael Pass;

37 licensed under Creative Commons License CC-BY 4.0
15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 80; pp. 80:1-80:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:noammaz@gmail.com
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2024.80
https://eccc.weizmann.ac.il/report/2023/175/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2

Mazor and Pass

Size problem (MCSP) [13, 22] — finding the smallest Boolean circuit that computes a given
function x, and (b) the Time-Bounded Kolmogorov Complexity Problem [15, 21, 3, 14, 10, 20]
— computing the length, denoted K(x) of shortest program (evaluated on some particular
Universal Turing machine U) that generates a given string x, within time ¢(|z|), where ¢ is a
polynomial. The Perebor conjectures state that solving these problems require an algorithms
with running time (in the uniform regime), or circuit size (in the non-uniform regime) close
to 2™ where n = |z is the size of the given instance x.

The Perebor conjecture can be viewed as an early precursor, and stronger form, of the
NP # P conjecture (as these meta-complexity problems reside in NP). In this work, we
focus on the Time-Bounded Kolmogorov Complexity Problem, and the stronger non-uniform
version of the Perebor conjecture for the time-bounded Kolmogorov Complexity problem.

1.1 Our Results

Circuit Complexity Upperbounds for Solving K!. Our main result disproves the non-
uniform Perebor conjecture for Time-bounded Kolmogorov Complexity:

» Theorem 1 (Main theorem). For every t € poly, there exists a circuit family C = {Cy,}, o
of size O(2*"/5) such that, for every n € N and for every x € {0,1}", C,,(z) = K'(x) (That
is, the circuits computes K'(z) on every instance x.)

In fact, our theorem is stronger than stated: we not only show how to compute K* but also
to find a so-called K'-witness (i.e., a shortest-length program generated the string x) — this
was referred to as the constructive version of the problem in [22].

We highlight that the fact that a non-uniform Perebor conjecture may be false may
perhaps not be shocking to experts; indeed, Ren and Santhanam [19] recently considered an
(average-case strengthening) of the non-uniform Perebor conjecture for the Time-bounded
Kolmogorov complexity and noted that by the recent connection [16] between average-case
hardness of the time-bounded Kolmogorov complexity problem and the cryptographic notion
of one-way functions [6], there is evidence pointing to this conjecture being false:

However, building on Hellman [11], Fiat and Naor [7] showed that no such one-way
function exists in the non-uniform RAM model. In particular, for any function
f:{0,1}" — {0,1}", there is an algorithm that runs in 2°™/* time, with random
access to an advice tape of length 2°™/*, and inverts f at any point. It is conceivable
that a similar attack could also be implemented in circuits, i.e. every function f could
be inverted by a circuit of size 299"/190 in the worst-case. This gives strong evidence
that the non-uniform version of Hypothesis 5.18 is false.

As far as we know, such a circuit implementation of [7] is not known — indeed, as we discuss
below, the natural implementation of their algorithm as a circuit leads to a “trivial” size
circuit, and does not beat Perebor.

Our main technical result is a non-trivial implementation of the Fiat-Naor algorithm
using a circuit of size O(2**/%) (note that this is larger than the running-time/advice size of
O(23"/4) achieved by Fiat and Naor):

» Theorem 2. For every efficiently computable function f:{0,1}" — {0,1}", there exists
a circuit family C = {Cp}, oy of size O(2*"/%) such that, for every n € N and for every
x €{0,1}", f(Cn(f(x)) = f(x) (That is, the circuits inverts f on every point in the range

of f)-

N. Mazor and R. Pass

We next combine Theorem 2 with the one-way function construction of [16] to conclude
Theorem 1 — leveraging the fact that the one-way function construction is length-preserving
and thus there is little loss in the parameters. We additionally note that if we instead rely
on the one-way function construction from the MCSP problem of [19] which also is length
preserving (but with slightly longer input size), then we directly also get an algorithm for
the Minimum Circuit Size (MCSP) problem with circuit size 24%/5+e(m) 1

Circuit Complexity Lowerbounds for Black-box Solving K*. We highlight that our K*
solving circuit is “black-box” in the description of the Universal Turing machine U employed
in the definition of Kolmogorov complexity (or more precisely, the circuit can be implemented

having simply oracle access to U) — we refer to such circuits as being a black-box K solver.

We finally demonstrate that subexponential-size black-box K! solvers cannot exists, and as
such our non-uniform K solver is “optimal” up to a constant in the exponent w.r.t. such
black-box algorithms.

» Theorem 3 (Informal). Every black-box Kt-solver must have circuit size at least 27/2=°(™).

1.2 Proof QOutline

We here provide a proof outline of Theorems 1 and 2.

1.2.1 Constructing a One-way Function from K

As mentioned above, our starting point is the one-way function construction of [16] from the
Time-bounded Kolmogorov Complexity problem. We note that this construction trivially
works also in the worst-case regime (i.e., any worst-case inverted for the one-way function also
solves K in the worst-case). But most importantly, this construction is length preserving: any
algorithm breaking the one-way function of inputs of length n+O(log n) solves the K* problem
on inputs of length n. This observation will be crucial as it means that the upperbound that
we get for inverting the one-way function will directly translate to (essentially) the same
bound for K*. (The same hold also for the one-way function construction from the MCSP
problem from [19], except that the input length now is n + o(n), where n is the MCSP input
length).

1.2.2 The Hellman/Fiat-Naor Algorithm

The Hellman Algorithm. Before describing the Fiat-Naor algorithm for inverting arbitrary
functions, we describe the algorithm of Hellman [11] for inverting a permutation. The main
idea of Hellman is that for every permutation f: [2"] — [2"], and every image y € [2"], if

we compute the chain (y, f(y), f(f(y)),...), at some point we must find a pre-image of y.

Namely, there exists some k > 1 such that f*(y) =y, and thus f*~*(y) = f~'(y). Of course,
this k can be large, and it could even be that k = 2”. In this case, computing the chain
(y, f(v), f(f(y)),...) takes the same time as brute-force search.

To overcome this, Hellman’s algorithm uses an advice string. For a parameter T, this
advice string contains S entries of the form (x, f7(x)). Then, to find a pre-image of ¥, the
algorithm computes the chain of length T, (y, f(v),..., f(y)). If one of the points in the
chain is a pre-image of y, the algorithm finishes. Otherwise, the algorithm looks for an entry

! 'We thank an anonymous reviewer for noting that we can also apply the attacker to the MCSP problem.

80:3

ITCS 2024

80:4

Mazor and Pass

(x5, f¥(x;)) in the advice string, such that f7(z;) appears in the chain (y, f(v),. .., f%(y)).
If it finds such an entry, then it holds that f*(y) = f7(x;) for some k < T, or equivalently,
y = fT=%(x;). The algorithm then can find the pre-image of y by computing f7=*=1(xz;).

Every such entry (z;, f7 (x;)) in the advice can be used to invert the T’ images
(f(x:),... fT(x;)) using O(T) calls to f. Hellman showed that we can find at most S = N/T
points 1, ...xg, such that the advice ((z1, fT(z1)),...,(rs, fF(xs))) can be used to invert
any image with O(T) calls to f. This allows to invert any such permutation in time 0(2"/ 2)
using an advice of length O(2"/?).

When f: [2"] — [2"] is an arbitrary function, it is no longer true that y = f7=%(x;) if
¥(y) = f¥(x;). Moreover, it might be impossible to find a non-trivial number of points
Z1,...,Tg such that the T-length chains starting from these points cover all the images
of the function. However, Hellman showed under some assumptions on the structure of f
(that is, that f is “random enough”), that a similar algorithm to the above can work with
slightly worse parameters. Fiat and Naor later generalized Hellman’s result to work with
any function f.

The Fiat-Naor Algorithm. Let f: [2"] — [2"] be an arbitrary function. The first step in
the Fiat-Naor algorithm is to remove from f any image with too many pre-images. To do so,
for a parameter U € N, let A = {y1,...,y,} be the set of all images y; with more than U
pre-images. Observe that the size of A, r, is at most 2" /U. The Fiat-Naor algorithm adds
to the advice a pre-image x; of every y; € A. By saving (z;,¥;)y,c4 in the advice, we can
trivially invert any image y;. Thus, we are left to invert f over the domain D = {z: f(x) ¢ A}
of all inputs with a small number of “siblings”. Note that over the domain D, every image of
f has at most U pre-images. In the following, we restrict attention to functions with a small
number of heavy images. That is, we assume that |D| > 2" /2. (Fiat and Naor deal with this
issue later using a different parametrization, which would lead to further complications in
our setting. Nevertheless, as we shall explain in more detail below, we shall observe that
focusing on the above “simplified” case actually is without loss of generality.)

Next, [7] proceed by presenting an algorithm A with advice of length O(m) that makes
O(t) calls to f. For some choices of the parameters m and t, [7] presented a distribution
over advices, such that for every image y € f(D) and for a random advice, A successfully
invert y with probability roughly mt/N. By running the algorithm ¢ = O(N /mt) times with
¢ random advices, [7] get an algorithm that inverts all images y € f(D) simultaneously with
high probability. The resulting algorithm has advice of length S = ¢-m + |A|, and it makes
T = (-t calls to the function f.

We next describe the algorithm A. To make the function f behave more randomly,
Fiat-Naor uses a hash function g: [2"] — [D]. Then, the algorithm actually tries to invert
the function h = g o f. Choosing the function g such that it will have a succinct description
and yet will be easy to evaluate is an important part of the Fiat-Naor algorithm. But for
now, we can think of g as a random function. As in Hellman’s algorithm, the advice contains
(x;, ht(x;)) for m randomly chosen points @1, ..., Zp.

Given the advice (z;, h*(2;))icjm], the function g and an input y = f(z) to invert, the
algorithm A starts with computing g(y) = h(x). Next, the algorithm proceed by computing
the t-length chain (h(x),h?(x),...,h*(z)). Then, for every i € [m] such that h(x;) = h*(z)
(that is, h'(x;) appears in the chain (h(z), h?(x),...,h*(z))), A computes 2’ = h*~*(z;) and
checks if f(z’) = y. Importantly, when f is not a permutation, it is possible that f(z’) # y.
In this case, we say that ¢ is a false-positive index.

N. Mazor and R. Pass

The Correctness Proof. Fiat and Naor showed that for every y € f(D), when the parameters
are chosen such that mt?U = 2", and over a random choice of the function g and the points
X1y...,Tm < [2"], the algorithm succeeds in finding a pre-image of y with probability roughly
mt/N. Moreover, to bound the running time of the algorithm Fiat and Naor showed that the
expected number of false-positive indexes is constant. For the convenience of the interested
reader, we give a high level sketch of the proof in the full version of this paper (but this will
not be relevant for the rest of the paper — we will use this part of Fiat-Naor in a black-box

way).

The Function g. We next describe how to choose the function g used by A. As mentioned
above, we want g to have a succinct description and we need to be able to evaluate it
efficiently. Recall we want g to be from [2"] to D. However, the range D is defined by the
function f, and it thus does not have an efficient representation. However, given the set A,

and the function f, it is easy to check if a point z is in D: simply check if f(z) is not in A.

Using this fact, to construct the function g, Fiat and Naor [7] constructed first a function
g': [2"] x [2"] — [2"]. Then, they defined g(z) to be ¢'(z, z) for the minimal z € [2"] for
which ¢'(z,z) € D. By our assumption that D is large (at least 2"/2), if ¢’ is a random
function (or (1)-wise independent), the expectation of this z is O(1). Thus, we will not
need to evaluate ¢’ too many times to evaluate g. Moreover, in the RAM model, checking if
g'(z,2) € D can be done efficiently (using hash tables or binary search), and thus evaluating
g has roughly the same cost as evaluating ¢’.

For the function ¢’, [7] used a random O(t)-degree polynomial. Such a polynomial has
a (relatively) succinct description, and the resulting function ¢’ is O(t)-wise independent,
which is enough for their analysis to go through. However, evaluating ¢’ on a single point
takes O(t) time, which is more than we can afford.

[7] solved this issue by exploiting the fact that we run the algorithm A ¢ times in parallel,
and by using the FFT algorithm. Specifically, as we actually need to construct ¢ functions,

gi,---,9p [7] constructed these polynomials in a correlated way, such that the amortized
cost of evaluating each polynomial g on a point z; will be O(1). In other words, computing
g1(z1), ..., gy(xe) simultaneously can be done in time O(¥).

The Time and Space Complexity. As mentioned above, the Fiat-Naor algorithms has time
T = O(f-t) and space S = O(¢-m + |A]), where |A] < 2"/U and ¢ = 2" /mt. That is,
T = O(2"/m) and space S = O(2"/t + 2" /U). Thus, [7] can choose parameters such that

U = t. Moreover, by the analysis above we need to choose parameters such that mt?U < 27.

To minimize T+ S, we want to choose parameters such that 2" /m = 2"/t = 2" /U, which
imply that m =t = U = 2/%. In this case, we get that S = T = 237/,

On Implementing the Attack as a Circuit. When trying to implement the Fiat-Naor
algorithm as a circuit, the main difference from the above is in the evaluation of the functions
g1, - .-, ge. Specifically, to evaluate g; on a point x, we need to evaluate the function g, on

x, z for multiple values of z, and for each one, to check if f(g}(z,z)) appears in the list A.

While in the RAM model checking if f(gi(x, z)) appears in the list .4 can be done in log(].4])
time, with a circuit we must use a circuit of linear size. Since we evaluate g1, ..., gs overall
Q(t - £) times , the total cost of the above lookup is Q(|A| -t - £) = Q(2"/U - 2" /m). By the
constraint that mt2U < 27, we get that the resulting circuit size is at least 2" - t2, which is
more than the trivial size.

80:5

ITCS 2024

80:6

Mazor and Pass

1.3 Our Circuit Implementation

To solve the above issues, we first construct a new primitive that we call batched look-up
tables, and show that it is possible to look-up for multiple values in the list A with a small
amortized cost.

Then, we show that by choosing different parameters then Fiat and Naor [7], we can
obtain a non-trivial circuit.

Batched Look-Up Tables. Informally, Batched Look-Up circuits allow to search multiple
entries in a list, with a small amortized cost. In more detail, let T = (aq,...,a,) be a target
list, and let B = (z1,...,2,) be the inputs. We want to check for each x; if it appears in 7.
The batch look-up circuit returns a list of bits (b1, ..., bs) such that b; indicates if x; € T.

We show that there is a look-up circuit of size O(|T| 4 |B]). It follows that, when B is
long enough, the amortized cost of each search is O(l) We implement this circuit in three
steps:

First, we modify the list B such that each element in the list contains the index. That
is, we let B’ = ((z1,1),...,(x¢,¢)). We also let T/ = ((a1,0),...,(as,0)). Then, we use a
sorting circuit to sort the union of the lists (according to the first entry of each element, and
then the second). Let Ry be the output of this step.

Next, we check for each element (z,4) in R’ if there exists an element of the form (z,0)
earlier in the list. If there is, we change the entry to (1,4). If there is no such element, we
change the entry to (0,4). Since the list is sorted, this can be done with an efficient algorithm
that reads the list in one pass, and thus can be implemented with a small circuit. After this
step, the list contains one entry of the form (b,) for every ¢ € [¢], where the value of b is 1 if
and only if x; appears in T .

Lastly, we sort the list again, this time according to the indexes, and output the first
entry of each of the last ¢ elements in the sorted list.

Changing the Parametrization. Using the batched look-up circuit, we can now compute
the functions g1, ..., g, in a small amortized cost in parallel. Specifically, we can evaluate all
the ¢ functions, each on one point, in cost of O(£ + |A|). However, to compute a chain of
length ¢ using the function g;, the algorithm needs to evaluate g; sequentially. Recall that to
evaluate g; on a point z, we need to find z such that f(g}(z,z2)) ¢ A. Thus the look-up step
must be performed between every two consecutive calls g;. So while we can batch calls across
chains, in each chain we must perform the look-up separately for each call. This implies that
we need to apply the batch look-up circuit ¢ times, each time on ¢ calls. Thus, we need to pay
O((r 4 £)t) for this step. For the parameter choice of Fiat and Naor [7], when r = S = £ -m,
we get that ¢ - r = 2", and thus the circuit size is again trivial.

Fortunately, we can choose the parameters differently to get a better circuit size. Spe-
cifically, we choose r to be much smaller than £-m. In more detail, our final circuit size is
O((r 4 0)t +m - £).2 Recall that £ = 2" /mt, r = 2" /U, and we need to choose parameters
such that mt2U < 27, or equivalently mt? < r. Taking m =t and r = £ = 2" /t%, we get that
for t < 2"/5 the above constrain holds. In this case, the circuit size is O(2*"/?).

2 The term m - £ is since in the Fiat-Naor algorithm, we need to find all the indexes j such that (x;, h*(z;))
is in the advice and h®(z;) appears in the chain starting with y. For this step we also use a batch
look-up circuit.

N. Mazor and R. Pass

Other Issues. We note that the above outline oversimplifies a bit, and we are also require
to reanalyze certain aspect of the Fiat-Naor algorithm (on top of the above changes).

Inverting General Functions. The above approach only work when most points in the
range of the function has a small number of pre-images. Fiat and Naor show how to deal
also with the more general case, but this requires a more subtle choice of parameters and
this would complicate things for us. To overcome this issue (and of independent interest), we
observe that any function f: [2"] — [2"] can be converted into a function f’: [2-2"] — [2-2"]
satisfying the small-image requirement, in a way that inverting f can be reduced to inverting
f’. Indeed, we can simply let f'(x) = f(z) for every = € [2"], and f'(z) = = otherwise. As a
result, get that every function f can be inverted with a circuit of size 0(24”/ %).

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand
for the set of all polynomials. Given a vector v € X", let v; denote its i*" entry, let
Vi = (v1,...,v;-1) and v<; = (v1,...,v;). Similarly, for a set Z C [n], let vz be the ordered
sequence (v;);ez. For a function f: D — R, and a set S C D, we let f(S) = {f(z): z € S}.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {z: Prp[z] > 0}. For a
(discrete) distribution P, let x < P denote that = was sampled according to P. Similarly,
for a set S, let « +— S denote that x is drawn uniformly from S.

We will use k-wise independent functions in the construction.

» Definition 4 (k-wise independent). For a set R, n random variables Y1,...,Y, over Q
are k-wise independent if for every indexes iy, ..., ik, the joint distribution Y;,,...,Y;, is the
uniform distribution over RF.

A function family G = {g: [N] = R} is k-wise independent if the distribution of
g(1),...,9(N), for g+ G is k-wise independent.

2.3 Kolmogorov Complexity

Roughly speaking, the t-time-bounded Kolmogorov complexity, K(z), of a string x € {0,1}"
is the length of the shortest program II = (M, y) such that, when simulated by an universal
Turing machine, IT outputs « in ¢(|z|) steps. Here, a program II is simply a pair of a Turing
Machine M and an input y, where the output of P is defined as the output of M (y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(II, 1*) denote the output of IT when emulated on U for ¢ steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

» Definition 5. Let t be a polynomial. For all x € {0,1}", define

Ki(z) = min {11 : U(I, 102Dy = 2}

Ine{0,1}*

where |I1| is referred to as the description length of II.

80:7

ITCS 2024

80:8

Mazor and Pass

It is well known that for every x, Kt(x) < |z|+ ¢, for some constant ¢ depending only on the
choice of the universal TM U.

» Fact 6. For every universal TM U, there exists a constant ¢ such that for every x € {0,1}",
and for every t such that t(n) >0, Kj(z) < |z| +c.

We will use the following bound on the Kolmogorov complexity of strings sampled from the
uniform distribution.

» Lemma 7. For any universal TM U and every n € N, it holds that
Pro o1y [Kh(z) >n—i] >1-27"

In this paper, unless otherwise stated, we fix some universal Turing machine U that can
emulate any program II with polynomial overhead, and let K* = K{,.

2.4 Circuits

In this paper we consider circuits over the De-Morgan Basis, which contains the following
gates: A (“and” gate with fan-in 2), V (“or” gate with fan-in 2), and — (“not” gate with
fan-in one). The size of a circuit C, denoted by |C| is the number of gates in C. We will
sometime allow to use also f-gates in the circuits, for a function f: {0,1}" — {0,1}™.

» Definition 8 (Circuit with f-gates). For a function f: {0,1}" — {0,1}", a circuit with
f-gates is a circuit which have, in addition to A,V and — gates, a special f gates. Fach

f-gate has fan-in n, where each in-wire is label (uniquely) by a number in 1,...,n. Each
out-wire s labeled by a number in 1,...,m. The value of a out-wire labeled by i is the i-th
bit of f(w1,...,wy,), where w; is the value of the in-wire labeled by j.

The following lemma is a non-uniform version of the fast evaluation algorithm used by [7]
(see for example [2]), stating that it is possible to efficiently evaluate a polynomial on multiple
points. This lemma will help us to get better parameters in our construction.

» Lemma 9 (Evaluating a polynomial on multiplied points.). There exists a constant ¢ such that
the following holds. Let p be an arbitrary degree d polynomial in a field of size 227, forn > 1.
Then there exists a circuit C of size d-(n+logd)® such that C(x1,...,zq) = (p(z1),...,p(zq))
for every d field elements x1,...,2q.

The next lemma states that it is possible to sort a list of integers by an nearly linear size
circuits.

» Lemma 10 (Sorting circuits [1]). There exists a circuit family of size O(n - poly(logn, k))
that sorts n numbers of k-bits each.

We will also use the following simple lemma, that states that any computation on a list
that can be done using efficient, one-pass algorithm, can be done also with a small circuit.

» Lemma 11 (Circuit of an one-pass algorithm.). There exists a universal constant ¢ such
that the following holds. Let A be an algorithm that gets as input a list L of length £ of n-bits
elements, and output a list L' of length £ of n-bits elements. Furthermore, assume that A
reads L in one pass: for i € [€], in the i-th step of the algorithm, A reads the i-th entry of L,
and apply a s-sized circuit on the entry and its own state to compute the i-th entry of L’
together with its new state. Then the function computed by A can be computed by a cl - s-size
circutt.

N. Mazor and R. Pass

3 The Fiat-Naor Algorithm

In this part we describe the algorithm of Fiat and Naor[7], and show how to implement it
using a small circuit. For this implementation, we need to choose different parameters than
the one used in [7]. For a function f: [2"] — [2"], our goal is to construct a small circuit
that inverts any image of f. We prove the following theorem.

» Theorem 12. There exists a constant ¢ such that the following holds. Let n € N be a
number, and let f: [2"] — [2"] be a function. Then there exists a circuit C' of size c-24"/.n°
with f-gates, such that

Prr<—[2"],y::f(m) [C(y) € f_l(y)} =1

Following [7], we start with focusing on functions which are not trivial to invert. Informally,
for a parameter U € N, a function f is said to be U-trivial to invert if there are many images
with more than U pre-images.

» Definition 13 (Trivial to invert function, [7]). Let U,n € N be two numbers. A function
f:[2"] — [27] is U-trivial to invert if

[{a: £ (f2)] < UY| < 27/2.

Notice that if f is U-trivial to invert, it also U’-trivial to invert, for every U’ < U. Such a
function f which is U-trivial to invert, can inverted with probability 1/2 (over a random
input) using a relatively short advice, by keeping one pre-image for every image with more
than U pre-images. As a simplification of independent interest®, we observe that any function
f:[2"] — [2"] can be converted to a function f': [2-2"] — [2-2"] which is not U-trivial
to invert for any U > 1. Indeed, define f'(x) be equal to f(x) if € [2"], or equal to x
otherwise. It immediately follows that f is injective on at least 1/2 of the domain. Moreover,
inverting f is equivalent to inverting f’. Thus, the assumption that f is not trivial to invert
is without loss of generality.

In the first step, following [7], we construct a distribution P over circuits of size O(2*"/%),
such that, for every y € f([2"]), it holds that Prcp[C(y) € f~*(y)] = 1/10. Then, by
sampling O(logn) circuits from P and combining them together, with high probability we get
a single circuit that inverts any image y. The main lemma and the derivation of Theorem 12
are formally stated next.

» Lemma 14. There exists a constant ¢ such that the following holds. Let n € N be a
number, and let f: [2"] — [2"] be a function which is not 2"/°-trivial to invert. There exists
a distribution P over circuits of size at most ¢ - 24™/% . n® with f-gates, such that for every

y € f([27]),
Procp[Cly) € 1 (y)] = 1/10.
Theorem 12 follows easily by Lemma 14.

Proof of Theorem 12. Let n/ = n+1and f': [2%'] — [2'] be as defined above. Let P be the
distribution promised by Lemma 14 with respect to f’. Consider the following distribution
over circuits P’. To sample a circuit C' from P’, we start by sampling 15n’ circuits from P,
Cy,...,C15n. Then, we let C' be the circuit that given y, computes z; = C;(y) for every

3 As mentioned in the introduction, Fiat and Naor, required a more subtle analysis to deal with also
U-trivial functions.

80:9

ITCS 2024

80:10

Mazor and Pass

i € [5n'], and checks if, for some 7, f'(x;) = y. If there exists some i, C' outputs z; (for the
minimal such), or arbitrary value otherwise. It is not hard to see that C' can be implemented
with size Zie[lEm’] |Ci| + poly(n) < ¢247'/5 . ne+2 using f'-gates. Since the function f’ can be
implemented by a circuit of size 5n with f-gates, and since n’ = n+1, C' can be implemented
as a circuit with f-gates, in size at most 10c - 247/5 . pot3,

For the correctness, fix y € f([2"]), and observe that every pre-image of y with respect
to f’ is a also a pre-image of y with respect to f. By the promise that a random sample
from P inverts y successfully with probability 1/10, we get that a random sample C' from
P’ fails to invert y with probability at most (9/10)'5"" < 1/22". By the union bound, C
inverts simultaneously all y € f([2"]) with probability at least 1 — 27",

Since with positive probability C' is a circuit of size ¢24*/5 . n°t2 that inverts f on any
image, such a circuit exists. <

3.1 Proving Lemma 14

We now move to prove Lemma 14. In the following, fix n € N and a function f: [2"] — [2"]
which is not trivial to invert. Let N = 2".

To prove Lemma 14, let m,t, ¢,k and U > 2"/ be parameters to be chosen later. Let
A = {y1,...,yr} be the set of all images y; such that |f‘1(yi)| > U, and observe that
r:= |A| < N/U. In the Fiat-Naor algorithm, we give as an advice to the inverter a pre-
image x; € f~!(y;) of every y; € A. As a result, we only left to invert f on y ¢ A.* Let
D = {z: f(x) ¢ A}. Since f is not U-trivial to invert (recall that U > 2/%), it holds that
|D| > N/2.

Next, we need to invert the function f on the domain D. For the yet to be chosen
parameter £, the algorithm of Fiat and Naor [7] uses ¢ hash functions ¢1,...,¢9¢: [N] — D.
We will later describe how to choose this functions, but for now this can be thought as ¢
random functions. Finally, for every i € [¢], let h;: [N] — D be defined by h;(z) = g;(f(x)).

In the following algorithm, for every i € [¢] and j € [m], let z;; € [IN] be inputs to
f, to be chosen (randomly) later. For every i € [r], let x; be such that f(x;) = y;, for
A={y1,-- .y}

Algorithm 1 Fiat-Naor [7].

. Parameters: m,t,/,U € N
- Advice: {(@"z’vyi)}ie[r]a {gi}ie[é]v {(xi7j’h£($i7j)}ie[£]7je[m]'
. Input: y € [N].
. a. Check if there exists ¢ € [r] with y; = y. If so, output ;.
b. For every i € [(], set ud = g;(y).
c. For every v € [t]:
i. For every i € [¢], compute u¥ = h;(u!™").
d. For every i € [f], let J; = {j: hi(zi;) € {ul,...,ul}}. Set 4f ; = x; ; for every i € [(]
and j € ;.
e. For every v € [t]:
i. For every i € [{] and j € J;, let 4, = hl(ﬁfgl)
f. For every i € [{],v € [t] and j € J;, compute f(4;), and output @7, if f(aF,) = y.

B WON =

4 Actually, in [7], for r = O(N/U), the points z1,...,x, are chosen uniformly at random from the domain
[N], and the set A is defined to be {f(z1),..., f(zr)}. In [7] it is shown that with high probability the
set A contains all the images with more than U pre-images, which is the only property of A that is
used in the proof. We could also choose A in the same way here.

N. Mazor and R. Pass

That is, for every hash function g;, the advice contains m points, z; 1,...,Zim. On each
such point z; ; we apply the function h; = g; o f ¢ times in a chain, to get hl(x; ;), and keep
the result in the advice.

Giving an input y, the algorithm first check if y € A. If it does, a pre-image of y
appears in the advice, and thus y can be trivially inverted. Otherwise, we want to check if

y = f(h¥(z;;)) for some 4, j and v < t. That is, if y appears in the chain starting with z; ;.

If this is the case, then g;(y) = hy ™! (x;), and thus the chain (g;(y), hi(g:(v)), - - ., ht(g:(y)))
contains the point hf(z; ;). The algorithm therefore search for every i, j such that hl(x; ;) is
in the chain (g;(y), hi(9i(y)), - .., ht(gi(y))). For every such 4, j, the algorithm then computes
the chain starting with z; ;, (z;;,...h!(z;;)), and checks if one of the element in the latter
is indeed a pre-image of y.

Choosing g1,...,g¢. We next describe how to chose the functions g, ..., ge. The idea in
Fiat and Naor [7] is to choose these functions, such that, instead of being ¢ random functions,
each function will be O(t)-wise independent, and the joint distribution of the functions
will be pair-wise independent. This is enough for the analysis of the algorithm, and allows
computing the functions efficiently.

One problem we have is that the set D C [N] is dependent on the function f, and thus it
is not simple to construct a function from [N] to D. To overcame this, Fiat and Naor [7]
constructed, for each i € [¢], a function g¢: [N] x [N] — [N]. Then, for every = € [N], they

defined g;(x) to be equal to gi(x, z) for the minimal value of z € N for which ¢}(z, z) € D.

Notice that given the set A we can check efficiently if g/(x,z) € D, by checking whether
f(gi(z, 2)) € A. Moreover, since |D| > N/2, it is not hard to see that the expected value of
z is O(1).

To construct the functions g}, we think on the domain [N] x [N] as [N?]. Let k € N be
a parameter (we will choose k = O(t)), and for every j € [k], let aj,b; + [N?] be random
numbers. For every i € [{], let g/: [N?] — [N] be defined by g/(a) = (X jem (aji+bj)ad =<,
(where all the operations are preformed over a field of size N? = 22" and we take the first n
bits of the result).

By the construction the functions gi,..., g, are pair-wise independent, where each of
them is k-wise independent. As described above, for every = € [N], let g;(z) to be equal to
gi(x, z*) for z* = min{z: g/(z,z) € D} (letting z* = N if no such exists).

Correctness. By Fiat and Naor [7], for a random choice of points z; ; and the polynomials
gi, Algorithm 1 inverts f on any fixed y with a good probability. We need a slightly different
version of Fiat and Naor [7] theorem, stated below.

» Theorem 15. Let m,t,0,k,U € N be parameters such that m < N, 8log(4N) <t < N,
k = 8t, mk*U = N and { = N/mt. Let f: [N] — [N] be a function which is not U-trivial to
invert. Then, the following holds for every y € f([N]).

Over a random choice of {(a;, bj)}je[k] and {(xivj}ie[é],je[m]’ Algorithm 1 inverts y with

probability at least 1/8. Moreover, under the same distribution, E[Zie[éﬂji@ <.

We remark the [7] proved the above theorem for U = N/S. However, their proof directly
generalized to the above set of parameters.

Proof. Theorem 15 follows almost directly from the proof in [7]. There, to get the best
parameters, U is chosen such that N/U = m-£ , and we do not add this constrain. Theorem 15
follows by setting S = N/U in the proof of [7]. <

80:11

ITCS 2024

80:12

Mazor and Pass

3.1.1 Circuit implementation

We now show that, for the right choice of parameters, it is possible to implement Algorithm 1
with a relatively small circuit. Recall that we allow f-gates in our circuit.

One main component in the implementation of Algorithm 1 is the computation of the
functions g; on different inputs. This is done (£ - t) times during the algorithm, and thus
must be done efficiently. [7] showed that, due to the dependency between them, the evaluation
of the functions g1, ..., g simultaneously on one point each, can be done in O(¢) time (or, in

O(1) amortized time). The following claim shows that (for different parameters) this can be
done by a small circuit.

> Claim 16. There exists a constant ¢ such that the following holds for every n € N and
f:[2"] — [2"]. Let A, 7.k, gi,...,9; and g1, ..., ge be as defined above, and let 7,p € N be
numbers. There exists a C circuit of size ¢+ (r +k + 7 - p) - (n + log(7pr))© such that the
following holds. For every i € [7], let a(i) € [(] and u; € [N] be such that g ;) (ui, z) € D for
some z < p. Then given a(1),...,a(7) and uy, ..., u,, C computes go(1)(u1), -, Ja(r)(Ur)

It is worth to mention here that in the setting of [7], the main cost in evaluating g; is
the evaluation of the polynomial g;. Thus, for [7] it was enough to show how to compute
g4, .., gy simultaneously. While their technique helps us getting better parameters, the
crucial cost in the setting here is to check if the output of ¢}(z, z) is in the domain D, or
equivalently, if f(gi(z,z)) € A. With RAM machine this can be done efficiently, for example
using a binary search, but with a circuit we must a circuit with size linear in the length of A.
In the proof we show that this also can be done simultaneously with a smaller amortized
cost. An important part of our proof is showing that there is a near linear sized circuit that
preform a task for which we call “batch lookup”. This task is now defined.

» Definition 17 (Batch look-up). Given a list A= (ay,...,a,) € ({0,1}")" of length r, and
alist L= (y1,...,9y,) € ({0,1}")" of T n-bits numbers, the batch look-up functionality,
BLOOKUP(A, £) returns T bits by, ..., b,, such that b; = 1 if y; appears in A.

In Section 3.1.2 we show how to implement the batch look-up functionality with a small
circuit. We prove the following lemma.

» Lemma 18. There exists a constant ¢ such that the following holds for every n € N;r € N
and 7 € N. There exists a circuit C of size ¢+ (r + 7) - (n + log(r7))¢ that computes the
BLOOKUP functionality.

Using Lemma 18 we prove Claim 16.

Proof. In the following we use the notation O() to hide fixed multiplicative polynomial
factors in n and log(prr). Without loss of generality, assume that 7 - p > k. Recall that to
compute go(;)(ui), we need to find the minimal z € N such that g(’l(i)(ui, z) € D. Moreover,
by assumption, z € [p]. Thus we start with computing g,) (us, 2) for every z € [p] and for
every i € [7].

To do so, observe that for the polynomials A(z) = Y ajz/, and B(z) = > b;a’ (for
x € [N?]), we can write g}(x) = i- A(z) + B(z) for every i € [¢]. Thus, to compute oy (Ui> 2)
for every i € [7], z € [p], it is enough to compute A(u;,z) and B(u;, z) for every such i, z.
This can be done with a circuit of size O(k 4 7 - p), using Lemma, 9.

Next, given the values {g’a(i) (ui,z)}' . we need to find, for every ¢ € [r], the
1€(T],2€|P
minimal z for which g;(i)(ui, z) € D. This can be done by applying the BLOOKUP circuit

on -A and £ = (f(g:x(l)(ul, 1))7 Tt f(g:x@)(ul:p))? ct f(g&(7)<u7'7 1)>’ R f(g,/x(T) (uTap))> to

N. Mazor and R. Pass

compute (b11,...,b1p,.--,0r1,...,br,), where b; , = 1 if and only if f(g;(i) (u;,2)) € A
(or, equivalently, if g, (ui,z) ¢ D). Then, for each block i € [r] of size p, we can output
g;(i)(ui,z) for the first z in the block for which b; , = 0. Since the last step can be
implemented with an efficient one-pass algorithm, and by Lemma 18, the entire process can
be done with a circuit of size O(k + 7+ p- 7). Moreover, the output of the above process is

exactly ga(1)(1),- -+ Ga(r) (Ur)- <
We next use Claim 16 to prove Lemma 14.

Proof of Lemma 14. In the following we assume that n > 10, as we can choose the constant
¢ in Lemma 14 such that the theorem will hold trivially for every smaller n. Fix such n > 10
and a function f as in Lemma 14, and let N = 2",

We start with our choice of parameters. Let U = N%/64, m = N%, t = N5 and
¢ = N3. It is not hard to verify that the conditions of Theorem 15 hold with respect to
these parameters, and thus the correctness holds. Namely, for every y € f([V]), over a
random value of a1, ...,azb1,...,bp < [N?], and z1 1,...,Z¢m < [N], Algorithm 1 finds a
pre-image of y with probability at least 1/8.

To implement Algorithm 1 as a circuit, we need a bound some running-time parameters.

That is, we need to bound the worst-case number of times we will need to evaluate g, for
each time Algorithm 1 evaluates g; (so we will be able to use Claim 16). Additionally, we
will need to bound the size of the sets J; defined in Step 4 of the algorithm.

In the following we show that with probability 0.99 over the choice of
aiy...,ae,b1,...,bg < [N?] it holds that:
1. For every « € [N] and i € [¢], there exists z € [3n] such that g/(x,z) € D, and,
2. Zie[z]|t7i| < 200¢.

Then, we show that when Items 1 and 2 above hold, we can implement Algorithm 1 with a
small circuit. Overall, by the union bound, this shows that for every y € f([N]), the following
holds with probability at least 1/8—0.01 > 1/10 over a random value of a1, ..., ap, b1, ..., by
[N?], and @11, ..., Z¢m < [N]: Algorithm 1 can be implemented with a small circuit and it
finds a pre-image of y. Given this promise, we can easily construct the distribution P: To
sample a circuit from P, we randomly choose the parameters ai,...,az, b1, ..., by < [N?],
and x11,...,Z¢m < [IN]. Then, if Algorithm 1 can be implemented with a circuit of size
O(N 4/ 5) with the chosen parameters, we output this circuit. Otherwise, we output an
arbitrary small circuit.

To see that Items 1 and 2 above holds, first notice that the second item hold with
probability 1 — 1/200 by Markov and the promise that E[Y".|7;|] < ¢. For the first item,
randomly choose a1, ..., az b1, ..., b < [N?]. We start with showing that ¢/(z, z) € D for

every i,z and some z € [3n]. Fix ¢ and = and recall that ¢ is a degree k > 3n polynomial.

Thus, for every z € [3n], Pr[g;(z,2) € D] = D/N > 1/2 (where the probability is taken over
the choice of {a;,b;}). By the k-wise independence of g, we get that

Pr[Vz € [3n] s.t. gl(z,2) ¢ D] <1/2°" =1/N>.
By applying the union bound on all possible values of i € [¢] and x € [N], we get that
Pr[3i € [{],z € [N],Vz € [3n] s.t. gi(x,2) ¢ D] <¢-N-1/N3 <1/N.

In other words, with all but 1/N probability, for every i and z, there exists some z < [2n)]
such that gi(x,z) € D, as we wanted to show.

80:13

ITCS 2024

80:14

Mazor and Pass

Next, we show how to implement Algorithm 1 with a small circuit, under the above
assumption. We implement each step of Algorithm 1 separately using a small circuit. Recall
that r = N/U = N 3. In the following we use the notation O(-) to hide fixed multiplicative
polynomial factors in n.

Step 1 can be done trivially by a circuit of size O(r) Similarly, the last step can be done
with a circuit of size O(f - t) under the assumption in Item 2, and using the f-gates.

By Claim 16, Step 2 can be implemented by a circuit of size O(r + k +¢). Similarly, as a
corollary of Claim 16, Steps 3 and 5 (under the assumption that Item 2 holds) can be done
with a circuit of size O(t - (r + k + £)).

Lastly, Step 4 can be done with circuit of size O(£ -t 4+ £ - m), by using batch look-up
again. In more detail, let A= (ud,...,ul,...,ud,...,ub) and £ = (ki (z11),..., hi(zem)).
We first compute BLOOKUP (A, £) to get R = (b1,1,...,be,m). Then, we can easily change
the list R such that it will contain the block index and the input z; ; in every coordinate,
that is R = ((b1,1,21,1,1), .- -, (be,m, Tem, £)). We can now sort the list according to the first
entry b; ;j, and keep only the last 100/ entries. By the assumption in Item 1, those entries
contains all the entries 4, j for which hi(z; ;) € {uf,...,ul}. Each element in the output list
contains both x; ; and 4, which is enough to apply Claim 16 in Step 5.

Overall, the entire process can be implemented by a circuit of size O(t(r +k~+£) 4+ £-m) =
O(N*/%), as stated. <

3.1.2 Implementing Batch Look-Up

We now prove Lemma 18. The main idea is to sort the lists A, £ together, and then find all
the duplications in the sorted list.

Proof. Let 7,7,n, A = (a1,...,a,) and £ = (y1,...,y-) be as in Definition 17. Let k =

[log 7] To compute BLOOKUP (A, £) we do the following:

1. First, we construct the lists A’ = ((ay,0%),..., (a,,0%)) € ({0,1}" x {0,1}*)" and
£ =((y1,1),...,(yr 7)) € ({0,1}" x {0,1}*)7. Namely, we add the index i (represented
as a k-bits string) to every element in £, and 0 for every element in 4. This can be done
with a circuit of size (r + 7)(n + k).

2. Next, we sort (A, L) jointly, according to the first and then the second entry. Let Rq be
the output. This can be done with a circuit of size ¢1 - (r + 7)(n + k + log(r + 7))°, by
Lemma 10, for some universal constant ¢;. Let Ry be the output of this step.

3. In the next step, we replace with 1 the first entry of every element (y;,¢) in R1, such that
an element of the form (y;, 0) appears earlier in the list R1. We replace by 0 the first entry
of every element (y;,%) in Ry, such that (y;,0) does not appear earlier in the list. Let Ro
be the output of this step. The result of this step is that Ro contains entries of the form
(bi, i), where b; is 1 if and only if y; appears in 4. As this step can be implemented by an
efficient, one-pass algorithm (the algorithm only needs to remember the first entry of the
last element with second entry equal to 0 as its state), it can be also be implemented by
circuit of size cg - (r 4+ 7)(n + k 4 log(r + 7))°* by Lemma 11, for some universal constant
Co.

4. Lastly, we sort the list again according to the second entry, to get the elements in order
according to the indexes. We output the first entry of each of the last 7 items in the
sorted list. It is not hard to see that the values we output are exactly the one we
wanted to compute. Moreover, this last step can also be implemented by a circuit of size
c1-(r+7)(n+k+log(r+7))°r.

N. Mazor and R. Pass

By concatenating the circuits for each of the above steps, we get a circuit of size
¢ (r+7)(n+logrr)° that computes the functionality BLOOKUP, for a sufficiently large
constant c. |

4 Computing t-Bounded Kolmogorov Complexity

In this part we use Theorem 12 to prove our main theorem. The latter is a corollary of the
following theorem.

» Theorem 19. For any universal TM U and every function t = t(n) there exists a circuit
family C = {Cy}, oy of size O(2*"/5 - poly(n)) such that the following holds for every n € N.
C, is a circuit with fo-gates, for fn: {0,1}=*" — {0,1}" defined by f,(II) = U(II, 1},
and for every x € {0,1}", C,,(z) outputs Ki)(z).

Recall that we defined K* = Kj; for some fixed U with polynomial running time overhead.
We get the following corollary.

» Corollary 20 (Main theorem). For everyt = t(n), there exists a circuit family C = {Cp}, oy
of size O(2"/> . poly(t(n),n)) (over the DeMorgan basis) such that, for every n € N and for
every x € {0,1}", Cy(z) outputs K'(z).

Proof of Corollary 20. Corollary 20 follows by Theorem 19, observing that we can replace
every fp-gate with a circuit of size poly(¢(n),n) that computes f,,. We get a circuit family
of size O(2*"/° - poly(n, t(n))) that computes K*. <

We now prove Theorem 19

Proof of Theorem 19. Let ¢ be a constant such that K*(z) < |z|+ ¢ for every z (see Fact 6).
Let f/,: {0,1}"7 x [n 4 ¢ = {0,1}" x [n + ¢] be defined as

£) = (fa(M<i), @) [fo(ll<i)| =7
o" Otherwise
Let n' = n+c+ [log(n + ¢)]. In the following, we assume that both the domain and the
range of f, is [2"'], by the use of appropriate encoding and padding.

By Theorem 12, the above imply that there is a circuit family C= {én} with f/,
neN

gates, of size O(24"'/5 . poly(n)) = O(24"/% - poly(n)) that inverts f’, with probability 1.

Given a circuit C), that inverts f/,,, we can construct a circuit C), (with f/, gates) that
computes the K! complexity of any string = of length n. This can be done by computing
f’;l(x, 1),..., f’;l(x, n+c) and taking the output (I,) for the minimal value of ¢ such that
U, 14™) = 2 (the t-bounded Kolmogorov complexity of the string 0" can be hardcoded
in the circuit).

~

Observe that the size of C), is n’ - ‘C’n
size O(2*"/5 - poly(n)), with f’,, gates, that computes K.

Lastly, observe that f] can be efficiently computed from f,, thus we can replace the f,
gates with a small circuit. <

+ poly(n). Thus, there exists a circuit family of

80:15

ITCS 2024

80:16

Mazor and Pass

4.1 Solving MCSP

As we noted in Section 1.2.1, the only thing that we rely on from the [16] construction is that
(1) the construction works also in the worst-case regime and (2) the construction is length
preserving: any algorithm breaking the one-way function on inputs of length n + O(logn)
solves the K* problem on inputs of length n, and more generally, if the input length to the
worst-case one-way function is n/(n) > n, we get a circuit size of 24" /5poly(n’)?

Thus, if instead of relying on the one-way function construction of [16], we rely on a
variant of the construction from [19] — that outputs the evaluation a circuit and its circuit
size (instead of outputting the evaluation of a Turing machine and its length) — then the
same proof yields a solver for the Minimum Circuit Size Problem (MCSP) with circuit
size 24n'/ Spoly(n’) where n’ is an upperbound on the length of the description of a circuit
generating x, which as noted in [19] is bounded by |z| + o(]z|) (due to the circuit encoding
of [8]).% Relying on [19], we thus also get the existence of a circuit family C = {C}, o of
size 24/57F0(n) that given a truth table of a function f, outputs the minimal size of a circuit
that computes f.

It is also worthwhile to note why this approach does not work on the (folklore) construction
of worst-case one-way functions from the hardness of SAT: f(¢,z) = ¢, ¢(x). Inverting this
function enables deciding SAT; the issue is that the circuit size becomes 24/5-(Iz1+191) > ol

5 Lower Bound on the Circuit Size

The result presented in Section 4 holds when the complexity measure is defined with respect
to any succinct computation model (in particular, where programs can be evaluated in
polynomial size in the description length). Moreover, by Theorem 19, the result generalizes
to Kt defined also with respect to any universal TM U — even ones that do not have efficient
evaluation — if we allow the circuit to have oracle gates to the UTM U.

In this section we prove a lower bound on this type of circuits. Namely, we show that there
is a “black-box” universal TM, with respect to which there is no circuit of sub-exponential
size that computes K! using oracle gates to U. In more detail, we consider the black-box
universal TM definition from [17].

» Definition 21 (Black-box universal TM). A function U : {0,1}" x 1* — {0,1}" U {L}, we
say that U is a black-box universal Turing machine (black-box UTM) if
(Universality) There exists a universal Turing machine Uy such that for any (M, 1), if M
is a valid description of a Turing machine (w.r.t Ug), U(M,1") outputs what M outputs
after t steps.
(Unique output) For any M € {0,1}",t1,t2 € Nty <o, if U(M, 1) £ 1, U(M,1%2) =
U(M,1%).
We remark that the above definition is black-box in the following two ways: (1) U is defined
to be any (not necessarily efficient) function; (2) U is allowed to assign the output of invalid
“programs” with an arbitrary string.
For any black-box UTM U, we can define the time-bounded Kolmogorov complexity with
respect to U. Formally, for any black-box universal Turing machine U, any string = € {0,1}",
let

K{(r) = min {

| | UL, 18) = 2.
ndn . | | U(II,) =x}

5 We thank an anonymous reviewer for asking us to clarify this.
6 See the definition of, and bound on, C!, on page 36 in [19]. We thank an anonymous reviewer for asking
if our attack applies to the one-way function construction from the MCSP problem.

N. Mazor and R. Pass

In the following, for a universal TM U, a function ¢: N — N, and a number n € N, we let
fY be the function defined by fY(II) = U(IL, 1¥(™) for any II € {0,1}=*". Using appropriate
encoding, we can see fY as a function from n + logn bits to 2¢(n) bits.

A circuit C with oracle gates is a circuit C' with special O-gates. For a function f (with
the same input and output length), we let C/ be the circuit received by replacing the O-gates
with f-gates.

We next define black-box K'-solvers. We give two definitions, of fully black-box and
(plain) black-box. The first is now defined.

» Definition 22 (Fully black-box K'-solver). A circuit family C = {Cy}, oy is fully black-

box K!-solver if for every black-box universal TM U, for every n € N and for every input
U

z€{0,1}", Cf" (x) = KL,

That is, the circuit family C can be used to compute the K{; complexity with respect to
any universal TM U. Our construction in Section 4 is not fully black-box. Indeed, the circuit
family we construct is dependent in the universal TM with respect to we defined K. We next
define a weaker notion of black-box solutions, that captures these kinds of constructions.

» Definition 23 (Black-box K'-solver). For any black-box universal TM U, a circuit family
C = {Cn},cn s black-box K{,-solver if for every n € N, C,, is a circuit with fY-gates, and

u
for every input x € {0,1}", Cir (z) = K{.

Here we only require the circuit to compute K{; with respect to U, and allow the circuit to
use black-box access to the universal TM. Theorem 19 directly implies the following theorem.

» Theorem 24. For any universal TM U and every function t = t(n) there exists a black-box

K{) solver C = {Cy}, cy of size O(24"/5 - poly(n)).

In this part we prove the following lower bound on the size of black-box K? solvers. This
lower bound immediately generalized to fully black-box solvers.

» Theorem 25. There exists a black-box UTM U and a constant ¢ such that the following holds
for every function t(n) € poly with t(n) > n¢. For any black-box Kta-solver C={Cn} ey it

holds that |C,,| > 27/2=°) for infinitely many n € N.

We leave open the question of closing the gap between the lower and upper bounds on
the size of black-box K!-solvers.

In the following we give two proofs for the above theorem. In both proofs, we use an
universal TM U,.qce with an oracle as our black-box UTM. In the first proof, we we give
Uoracie an oracle to a random function, used as a pseudorandom generator (PRG). We then
use the Kt-solver to break the PRG. We use the result of Coretti, Dodis, Guo and Steinberger
[5] which states that a random function is a good PRG against circuits of size roughly on/2,

The second proof, which appears in the full version of this paper, gets slightly worse
parameters, but is based on more standard results. In this proof we take the oracle to be a
random permutation o, and use a result from [12] that states of that a random permutation
cannot be inverted by a circuit of size 2"/2. Then, we use Goldreich-Levin hardcore functions
to construct a PRG from o.

The first proof. For our first proof, we will use the following theorem from [5].

80:17

ITCS 2024

80:18

Mazor and Pass

» Theorem 26 ([5]). There exists a constant ¢ such that the following holds for every
numbers m > n. Let (Ag,A1) be a pair of oracle-aided algorithms, such that given a oracle
0:{0,1}" — {0,1}™, A§ outputs advice a of length S > n, and A; makes at most T queries
to O. Then

|Pr(’)<—]-'n,m,x<—{0,1}" [A?(Agv O(x)) = 1] - Pr(9<—.7:7,,,m,y<—{0,1}’" [A?(Af)g,y) = 1]|

<em(y/ 3T+ T

where F,, m is the family of all functions from {0,1}" to {0,1}™.

That is, a random oracle is a good PRG, even against adversaries with non-uniform advice.
The following corollary, stating that there exists a function which is a good PRG against
small circuits, follows almost directly from Theorem 26.

» Corollary 27. There exists a constant ¢ such that for every number n € N and for
m = n + logn, there exists a function G: {0,1}" — {0,1}", such that the following holds
for every circuit of size gn/2=2logn 4, G-gates.

|Pryc (0137 [C(G(2)) = 1] = Pry 0,13 [C(y) = 1]| < 1/10.

Proof of Corollary 27. Fix large enough n € N, and assume toward a contradiction that
for every function G': {0,1}" — {0,1}"™, there exists a circuit C' with O: {0,1}" — {0,1}"™
oracle gates of size 2/2-21°8° " gych that

|PI':E<;{071}7L [C(G(.’E)) = 1] — Pryg{o’l}m [C(y) = 1” > 1/10
By flipping the answer of C, we can assume that
Prw<_{071}7b [O(G(LE)) = 1] - Pry<_{071}m[0(y) = 1] > 1/10

First, observe that the circuit C' can be described with less than S := 3. |C| - n? <
gn/2+3logn—2log” n }itg (see for example [9)).

Next, consider the oracle-aided pair of algorithms (Ag, A1), that given access to an oracle
G, A outputs a description of length 2n/2+3lesn=2log"n of the circuit C' that distinguish
G(z) from uniform. Given the advice, and an input z, A simulates C%(z). Clearly A,
makes at most T' = |C| queries to G. By our assumption, for every G,

Pro 013 [AY (AT, G(2)) = 1] = Prycqo.1ym [AT (A, y) = 1] > 1/10.

By taking expectation on G - F,, ,,, and by Theorem 26, it must holds that

ST T [ST 3
1/10 < Cm(on + 7:) < 2cm 27 < 4cn\/m7

2

which is a contradiction for large enough n. <
We can now prove Theorem 25.

Proof of Theorem 25. Let ' = {nj,na,...} C N be the infinite set defined by n; = 1 and
ni41 = 2™ . We will show a black-box UTM, with respect to, |Contiogn| > gn/4—o(n) for
every n € N, which concludes the theorem.

The black-box UTM we consider is an oracle universal Turing machine U, 4 such that
for any oracle O, UY. . simulates any oracle machine II with the oracle O. In addition, if IT
does not make oracle query, Ug,.qce Will also simulate the execution of II. We next describe

N. Mazor and R. Pass

our choice of the oracle O: For every large enough n € N, let G,,: {0,1}" — {0,1}" 18"

be the function promised by Corollary 27 (for m = n + logn). For every x € {0,1}" with
neN,let O(x) = Gy(z). For every x € {0,1}" with n ¢ N, let O(z) = z. Let U = U aete-
The choice of the sparse set N is to make sure that on input of length n, it is not useful to U
to call the oracle O on inputs with length different than n (see more detail below). This is a
similar technique to the one used in the sparsification lemma in [4].

Intuitively, we use the oracle O as a PRG. Observe that for every n € N, G can be
computed in polynomial time using the oracle to O. Let Mg be such an efficient oracle-
aided TM that computes (G, and let ¢ be a constant such that n¢ is a upper bound on the
running time of M¢g. Fix a function t(n) such that t(n) > n¢ for every n € N. Clearly,
K%(G(x)) <n+2|Mg| <n+0.1logn, for every z € {0,1}" and every large enough n.

On the other hand, for random Y «+ {0,1}", K%(Y) > n+ logn — 1 with probability at
least 1/2. Thus, every circuit C' that computes Ktﬁ on strings of length n 4 logn can be used
to distinguish between G(X) and Y, for X < {0,1}", with advantage 1/2 by outputting 1 if
the output of C' is larger or equal to n + logn — 1. By the choice of G,,, it follows that if C
is a circuit with G,-gates, it must holds that |C| > on/2-2log? ™ /n.

Recall that the circuits in C = {C,}, .y have oracle gates to f, :=
bound above only holds for circuits with G,, gates. To conclude the theorem, we thus need
to show that f,, can be implemented with a circuit of size poly(n) with G,,-gates. Indeed, in
this case, taking C' = Cp4iogn, We get that |Cpiiogn| > gn/2-2log ™ /poly(n).

To see that we can implement f,, with circuit of polynomial size (with G,-gates) first
observe that if we allow O-gates, we can simulate f, with a circuit of size poly(¢(n)). Thus,
we only left to implement the oracle O.

To do so, recall that on inputs z of length n, O(z) = G, (z). Therefore we only need to
simulate O on other input lengths. For every n’ > n with n’ € N, it holds that n’ > 2.
Since t(n) < 2™, we get that for every call to f,, U cannot call to O on inputs length n’ € N/
with n’ > n. Thus, we do not need to simulate @ on those inputs. Mo/reover, for every n’ < n
with n’ € NV, it holds that n’ <logn. Thus, O(x) for any x € {0,1}" can be computed by a
circuit of size O(2"") = O(n). Lastly, for every = with |z & N, it holds that O(x) = 2. Thus
the oracle can be implemented trivially also in this case. |

U and our lower

—— References

1 Miklés Ajtai, Janos Komlds, and Endre Szemerédi. An 0 (n log n) sorting network. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 1-9, 1983.

2 Mohmammad Bavarian. Lecture 6. Lecture notes in "6.5897: Algebra and Computation" by
Madhu Sudan, 2012.

3 Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets of
natural numbers. J. ACM, 16(3):407-422, 1969.

4 Kai-Min Chung, Edward Lui, Mohammad Mahmoody, and Rafael Pass. Unprovable security
of 2-message zero knowledge. Cryptology ePrint Archive, 2012.

5 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and
non-uniformity. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 227-258. Springer, 2018.

6 Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, pages 644-654, 1976.

7 Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. STAM
Journal on Computing, 29(3):790-803, 2000.

8 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size
of the hardest functions. Information processing letters, 95(2):354-357, 2005.

80:19

ITCS 2024

80:20

Mazor and Pass

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM Journal on Computing, 35(1):217-246, 2005.
URL: http://epubs.siam.org/SICOMP/VOLUME-35/art_44327 .html.

J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible computations.
In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 439-445,
November 1983. doi:10.1109/SFCS.1983.21.

Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transactions on Information
Theory, 26(4):401-406, 1980.

Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
np. In 2011 IEEE 26th Annual Conference on Computational Complexity, pages 104—114.
IEEE, 2011.

Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 73-79, 2000.

Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9-33,
1986. doi:10.1016/0304-3975(86)90081-2.

A. N. Kolmogorov. Three approaches to the quantitative definition of information. International
Journal of Computer Mathematics, 2(1-4):157-168, 1968.

Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243-1254. IEEE,
2020.

Yanyi Liu and Rafael Pass. On one-way functions and the worst-case hardness of time-bounded
kolmogorov complexity. Cryptology ePrint Archive, 2023.

Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
kolmogorov complexity is false. Technical Report TR23-175, Electronic Colloquium on
Computational Complexity, 2023.

Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography. In
36th Computational Complexity Conference (CCC 2021). Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2021.

Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (STOC), pages 330-335, 1983.

R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1-22, 1964. doi:10.1016/S0019-9958(64)90223-2.

Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384-400, 1984.

Sergey Yablonski. The algorithmic difficulties of synthesizing minimal switching circuits.
Problemy Kibernetiki, 2(1):75-121, 1959.

Sergey V Yablonski. On the impossibility of eliminating perebor in solving some problems of
circuit theory. Doklady Akademii Nauk SSSR, 124(1):44-47, 1959.

http://epubs.siam.org/SICOMP/VOLUME-35/art_44327.html
https://doi.org/10.1109/SFCS.1983.21
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1016/S0019-9958(64)90223-2

	1 Introduction
	1.1 Our Results
	1.2 Proof Outline
	1.2.1 Constructing a One-way Function from K^t
	1.2.2 The Hellman/Fiat-Naor Algorithm

	1.3 Our Circuit Implementation

	2 Preliminaries
	2.1 Notations
	2.2 Distributions and Random Variables
	2.3 Kolmogorov Complexity
	2.4 Circuits

	3 The Fiat-Naor Algorithm
	3.1 Proving Lemma 14
	3.1.1 Circuit implementation
	3.1.2 Implementing Batch Look-Up

	4 Computing t-Bounded Kolmogorov Complexity
	4.1 Solving MCSP

	5 Lower Bound on the Circuit Size

