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Abstract
In decentralized finance (“DeFi”), automated market makers (AMMs) enable traders to program-
matically exchange one asset for another. Such trades are enabled by the assets deposited by
liquidity providers (LPs). The goal of this paper is to characterize and interpret the optimal (i.e.,
profit-maximizing) strategy of a monopolist liquidity provider, as a function of that LP’s beliefs about
asset prices and trader behavior. We introduce a general framework for reasoning about AMMs based
on a Bayesian-like belief inference framework, where LPs maintain an asset price estimate, which is
updated by incorporating traders’ price estimates. In this model, the market maker (i.e., LP) chooses
a demand curve that specifies the quantity of a risky asset to be held at each dollar price. Traders
arrive sequentially and submit a price bid that can be interpreted as their estimate of the risky asset
price; the AMM responds to this submitted bid with an allocation of the risky asset to the trader, a
payment that the trader must pay, and a revised internal estimate for the true asset price. We define
an incentive-compatible (IC) AMM as one in which a trader’s optimal strategy is to submit its true
estimate of the asset price, and characterize the IC AMMs as those with downward-sloping demand
curves and payments defined by a formula familiar from Myerson’s optimal auction theory. We
generalize Myerson’s virtual values, and characterize the profit-maximizing IC AMM. The optimal
demand curve generally has a jump that can be interpreted as a “bid-ask spread,” which we show
is caused by a combination of adverse selection risk (dominant when the degree of information
asymmetry is large) and monopoly pricing (dominant when asymmetry is small). This work opens
up new research directions into the study of automated exchange mechanisms from the lens of
optimal auction theory and iterative belief inference, using tools of theoretical computer science in a
novel way.
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1 Introduction

1.1 Exchanges and Market Makers
The purpose of an exchange is to enable the trade of two or more assets. At a stock exchange,
for example, shares of a stock might be exchanged for US dollars via a mechanism known as
a “limit order book” (LOB), in which buyers and sellers post “limit orders” (offers to buy or
sell a specified quantity at a specified price) that are then matched greedily.

Every trade has two sides: for one user to buy a risky asset at a given price, there must
be a corresponding seller willing to sell at that same price. Such trades can occur organically
due to a coincidence of wants from two traders, but in practice many trades are enabled by
professional market makers who continually match buy and sell orders whenever the price is
right. This paper is about the profit-maximization problem faced by such a market maker.
In particular, the market maker is continually updating their beliefs around the asset price,
according to a Bayesian-like belief inference framework, from a prior belief in conjunction
with observations by traders who report price estimates.

Digital assets secured by blockchains, such as cryptocurrencies, are also traded via
exchanges. In centralized exchanges such as Coinbase or Binance, users hand control of
their assets over to the exchange and, therefore, accept the credit risk of not getting them
back. Such exchanges are typically based on the CLOB design. Decentralized exchanges
(DEXs), on the other hand, operate purely programmatically (i.e., “on-chain”), are typically
non-custodial (meaning that traders at all times have direct control of their assets in the
sense that assets are not entrusted to a third party), and often depart from the CLOB
model. There are several reasons for this departure: on-chain computation and storage can
be expensive, and CLOBs need a lot of both; the markets for many digital assets (especially
long-tail ones) are thin and have no dedicated market makers, in which case CLOBs may fail
to provide an acceptable level of liquidity; and a general openness in the blockchain world to
experimental designs. The DEX design space is large, and many different designs have been
deployed (on Ethereum and other general-purpose smart contract platforms) over the past
years.

For example, Uniswap (especially in its earliest iterations, v1 and v2) is a canonical
example of an automated market maker (AMM). In an AMM (unlike in a CLOB), the roles
of traders and market makers are clearly separated. A market maker, which in this context
is called a liquidity provider (LP), deposits into the AMM some amounts of the assets being
traded (and is, by default, passive thereafter). At all times, the AMM defines a marginal
price as a function of its current reserves of those assets. (In the case of Uniswap v1 and
v2, the spot price of an AMM is simply the ratio of the quantities of its two assets.) The
AMM is willing to take either side of a trade (buy or sell) at its current marginal price, and
in this sense is always providing liquidity to traders. The latest iteration of Uniswap (v3)
blurs the line between AMMs and CLOBs by allowing a much wider range of LP demand
curves than in v2 (to some extent approximating what can be expressed by limit orders in a
CLOB), thereby encouraging an LP to more actively manage its demand curve as market
conditions evolve.

The goal of this paper is to characterize the solution to the following fundamental question:
What is the optimal liquidity demand curve for a profit-maximizing market maker? This
question is relevant for a market maker in a CLOB, an LP of an expressive AMM such as
Uniswap v3, or even the designer of a new AMM (in which case the market making liquidity
demand curve is defined programmatically rather than submitted by a third-party LP). This
paper offers a new model for reasoning about this question and a quite general answer, which
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resembles in many respects, and in fact generalizes, Myerson’s theory of optimal auctions [33].
To get a feel for our model and results, we next discuss a highly restricted but nonetheless
illuminating special case, and give a very brief overview of our general theory.

1.2 The Pure “Noise Trading” Case and an Overview of the General
Case

The theory of market microstructure (see e.g., [35]) differentiates between “informed traders,”
who have better information about the fundamental value of an asset than the market maker
does, and “noise traders,” who trade for idiosyncratic reasons that do not reflect any private
information about the fundamental value of the asset. Generally speaking, market makers
lose money to informed traders due to adverse selection: by virtue of such a trader being
willing to trade, it expects a profit, which, due to the zero-sum nature of common-value
assets, comes at the expense of the market maker. Market makers can, however, generally
profit from noise traders. In this section, we first consider (as an instructive warm-up) the
special case in which all traders are noise traders (and hence adverse selection plays no
role). Our general model, the results of which are briefly presented in the end of this section,
and which is detailed in Section 3 accommodates arbitrary mixtures of informed and noise
traders, and our general results must therefore reflect adverse selection effects in addition to
the aspects identified in this section.

Fundamentally, a market maker must decide, as a function of the information available
to it, how much of a risky asset they are willing to buy or sell at different prices. For this
example, we will assume that the market maker knows the true value p0 of the risky asset
that it is trading.

An obvious strategy for such a market maker is to accept exactly the orders on which it
makes money: all (and only) the buy orders with offered price more than p0, and all (and
only) the sell orders with offered price less than p0. However, as we will see, this is not in
general the profit-maximizing strategy for a market maker.

It will be convenient to encode a market maker’s strategy via the choice of a demand
curve g, which maps prices to quantities (i.e., an amount of risky asset that will be held
by the market maker). The interpretation is that the market maker would be interested in
selling g(p0) − g(p) units of the risky asset at the price p. (Note that this may be a negative
number of units, in which case the market maker will be buying the risky asset from the
trader.) A choice of p0 and g induces the allocation rule x(p) = g(p0) − g(p), the amount of
the risky asset allocated to a trader who reports a price of p.

Next, we assume that a trader reports a price p̂ ∼ D that is drawn according to a
distribution D known to the market maker. We assume that the trader is willing to buy or
sell at most a bounded amount of the risky asset (normalized to be 1 only for notational
convenience, since there is no difference whatsoever for any arbitrary finite bound on the
results), and that the demand curve g and price p0 accordingly satisfy g(p0)−g(p̂) ∈ [−1, 1] for
all p̂. When the noise trader reports their price p̂, they receive an allocation x(p̂) = g(p0)−g(p̂)
of the risky asset and must remit a payment y(p̂) to the AMM for this provision. As we
will see in Section 2, the natural notion of incentive-compatibility in this setting – that a
utility-maximizing trader who values the risky asset at a price p̂ will in fact report p̂ to the
AMM – uniquely pins down the payments (the y(p̂)’s) as a function of the allocation rule
(the x(p̂)’s).1

1 As the reader might guess, it is also essential that the allocation rule x is monotone in p̂, or equivalently
that the demand curve g is downward-sloping, with the market maker selling more and more of the
risky asset as the going price gets higher and higher. See Section 2 for details.
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With informed traders, a rational market maker will update its estimate p0 of the risky
asset’s true price following a trade (generally increasing it after a trader buys the risky
asset from the market maker and decreasing it after a sell). Our general model in Section 3
accommodates this through a generic update rule π(p0, p̂) that specifies the market maker’s
new estimate as a function of its old estimate p0 and the new information conveyed by a
trader reporting the price p̂. For example, π might correspond to a Bayesian update with
respect to some assumed information structure, and the update rule may come from and be
revised according to a no-regret learning algorithm used by the market maker on successive
rounds. In the simple special case of only noise traders being present, because the behavior of
noise traders is (by assumption) independent of the true value of the risky asset, the market
maker has no cause for updating its internal price (i.e., π(p0, p̂) = p0 for all p0 and p̂).

What is the optimal strategy (i.e., choice of demand curve g) for the market maker? That
is, which choice of g maximizes

E[Profit] = E[y(p̂) − p0 · x(p̂)], (1)

where the expectation is with respect to p̂ ∼ D, x(p̂) = g(p0) − g(p̂) is the allocation rule,
and y is the uniquely defined payment rule mentioned above?2 (In the general case, the “p0”
term in (1) is replaced by π(p0, p̂), with the market maker evaluating its portfolio according
to its new belief about the value of the risky asset, conditioned on observing the trader’s
report of p̂.)

The results in this paper imply that the answer to this question is always defined by a
posted-price-like mechanism with two prices (depending on D), pl ≤ p0 and ph ≥ p0. These
two prices split the price range into three intervals, and the optimal strategy is to always buy
the maximum amount in the lowest price interval, always sell in the highest price interval,
and refuse to trade in the middle price interval.

We will be interested in the length of this middle price interval, which we call the no-trade
gap. Bigger no-trade gaps are generally worse from a welfare perspective, with welfare-
increasing trades sacrificed in the name of higher profit to the market maker. The no-trade
gap is reminiscent of the “bid-ask spread” in CLOBs, which occupies a central position in
the study of traditional market-making in CLOBs.3 Traditionally, theoretical justifications
for non-trivial bid-ask spreads in CLOBs have relied on frictions (like transaction fees or
inventory costs) or adverse selection (with a market maker needing to exploit noise traders
to cover the losses to informed traders). In the current example, with neither frictions
nor adverse selection, the no-trade gap arises for a different reason, namely the monopolist
position of the market-maker. In our general model, with the possibility of informed traders,
monopoly pricing and adverse selection both contribute to the no-trade gap. For example,
no matter what the distribution D is, if all traders have perfect information (i.e., extreme
adverse selection), then the no-trade gap encompasses the full price range.

The prices pl and ph that split the price range into three intervals, and hence the no-trade
gap, are distribution-dependent. For example, intuitively, one might expect a smaller gap
for distributions D that are tightly concentrated around p0. In general, our analysis shows
that these two prices can be characterized as roots of two functions that resemble the virtual
valuation functions used in optimal auction theory [33].

2 Note that, obviously, the choice of the optimal mechanism does not need the knowledge of the reported
price by the trader; only its probabilistic characteristics are known according to the distribution D.

3 In a CLOB, the “bid” and “ask” refer to the highest price of an outstanding buy order and the lowest
price of an outstanding sell order, respectively. Because limit orders in a CLOB are always matched
greedily, the bid-ask spread is always non-negative. Small spreads are generally viewed as a good thing,
indicating a “highly liquid” market (with lower trading costs, at least for small quantities).
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We next give two example cases for pure noise-trading: if D is the uniform distribution on
[pmin, pmax], then pl = (pmin + p0)/2 and ph = (p0 + pmax)/2; the resulting optimal allocation
rule is depicted in Figure 1a. If D is the exponential distribution with parameter λ (on
[0, ∞)), then ph = p0 + 1

λ . The lower price pl does not have a closed-form expression in this
case, but can be easily approximated numerically (given p0 and λ); Figure 2 enumerates
some examples of how these lower prices vary, and an illustration of the optimal allocation
rule is contained in Figure 1b.

p0 pmax+p0
2

pmax

-1

0

1

pmin
pmin+p0

2

xa(p̂)

p̂

p0 p0 + 1
λ

-1

0

1

pl

xb(p̂)

p̂

Figure 1 Optimal allocation rule x(p̂) in “pure noise trading” showing the no-trade gap around
p0 when the distribution p̂ ∼ D is: (a) the uniform distribution on [pmin, pmax], (b) the exponential
distribution on [0, ∞) with parameter λ = 2 for p0 = 1 (the computation of pl can only be done via
numerical methods; see Figure 2).

p0 \ λ 0.5 1 2
0.25 0.123 0.121 0.118
0.5 0.242 0.235 0.221
0.75 0.358 0.342 0.314

1 0.470 0.443 0.396
1.5 0.684 0.627 0.537
2 0.886 0.792 0.653

Figure 2 Table of lower prices pl in “pure noise trading” when the distribution p̂ ∼ D is the
exponential distribution on [0, ∞) with parameter λ.

The rest of this paper develops a similarly precise understanding of optimal market-maker
strategies in a more general setting. We will now briefly present here the general results in
an informal way. For the details, the reader is referred to Section 3.

▶ Informal Theorem 1. There exist virtual valuation functions ϕu(s) and ϕl(s), such that
the expected profit, shown in Eq. (1) in the general case where the “p0” term is replaced by
π(p0, p̂), is equal to the expected virtual welfare of an auction with virtual values derived by
ϕu(s) if s ≥ p0 and ϕl(s) if s < p0.

▶ Informal Theorem 2. There exist two prices pl ≤ p0 and ph ≥ p0, such that the optimal
allocation rule of a market maker that maximizes their expected profit is to buy the maximum
amount if the trader reports a price p̂ ≤ pl and sell the maximum amount if the trader
reports a price p̂ ≥ ph, and refuse to trade in the interval between these two prices, i.e., when
p̂ ∈ (pl, ph).

ITCS 2024
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The formal statements of the above results are Theorem 4 and Theorem 5 respectively.
Finally, in Section 4, we examine how our general theory above applies in the interesting
special case of a linear update rule. Through this special case, we naturally show that the
structure of the no-trade gap captures precisely the complex effect that is the interpolation
between the effects of adverse selection (observed when all traders have perfect information)
and monopoly pricing (observed when all traders are noise traders). For further details, we
refer the interested reader to Section 4.

1.3 Related Work
Auctions. This paper critically relates to revenue maximizing auction design, initiated under
the pioneering work of [33]. Since then, various versions of virtual values have been used in a
variety of settings among others for specifying optimal auctions and their approximations,
including as to how they relate to no-regret learning in auctions (e.g., [7, 8, 24, 23, 10, 9,
2, 37, 36, 26]); in a similar spirit, we define and use functions that can be interpreted as
virtual valuations. For a survey of results around revenue-optimal mechanisms, virtual values,
optimal auctions, and their approximations, see the book by [25].

AMMs. Constant function market makers (CFMMs) have arisen from the idea of holding
some function constant across “trading states” (from states of the world, previously, on the
utility-based framework of AMMs for prediction markets by [11]), and are characterized
by such an invariant called a bonding function. This means that the AMM is willing to
take the other side of any trade that corresponds to remaining on a constant level curve
of the particular bonding function chosen. Tools from convex analysis – familiar to both
the algorithmic game theory and machine learning theory communities – are crucially
used to analyze CFMMs and prove “optimal behavior” properties for participating traders
[32, 31, 3, 4, 5].

The description of the framework that we use for AMMs – inspired by a reparameterization
of a CFMM curve (established by [3]) in terms of portfolio holdings of the pool with respect
to the price – resembles that in [30], who used a similar AMM framework for a different
purpose, namely unifying constant function market makers (CFMMs) and limit order books
(LOBs) and complexity-approximation trade-offs between them. The latter work considers
neither incentive-compatibility constraints nor the problem of optimal liquidity provision.

Asset price beliefs in AMMs. [22] also examine beliefs of LPs (specifically on CFMMs)
around future asset prices; however, in their model, these beliefs are static (i.e., similar to
a single prior that remains unchanged throughout the trades’ occurrence) or modeled by a
fixed price dynamic discounted to the present (i.e., still not dynamically revised in response
to incoming trades). The focus of [22] is the design of CFMMs that maximize the fraction of
trades that the CFMM can satisfy with small slippage under the stationary distribution of the
Markov chain induced by their model. Our work focuses instead on LP profit-maximization
with informed traders and noise traders, showing a formal relation between the optimal
auction design literature, including computational considerations in approximations of those,
and the market microstructure literature.

There is also work specific to Uniswap v3 from the LP perspective around how beliefs
about future prices should guide the choice of an LP’s demand curve [17, 38, 34].

Market microstructure. There is a large literature on the market microstructure of limit
order books; see the textbook by [35] and references therein. Closest to the present work is
the paper of [19]. Focusing on the role of asymmetric information, [19] considers the problem
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of a monopolist optimizing their liquidity demand curve, but in the presence of risk averse
traders (in contrast to our setting, where the traders can be viewed as risk neutral). The risk
averse setting is more technically challenging, and hence [19] is required to make very strong
and highly specific technical assumptions (normally distributed values and observation noise)
that are not necessary, obscure the general intuition in our setting, and do not add value.
Instead, the intuition provided by our model is much stronger and more general. Moreover,
our risk neutrality assumption unlocks a fruitful connection between optimal market-making
and the Myersonian theory of optimal auction design. [20] considers the related problem of
the liquidity demand curve in a competitive equilibrium. The latter paper is restricted to a
limit order book, and does not consider more general forms of liquidity provision in exchange
mechanisms, like the ones we do. [21] operate in a competitive regime with zero expected
profits, which gives a completely different reason for bid-ask spreads to arise than the one
given in our work. [27] develops a model where a single informed trader (“insider”) competes
with noise traders and market makers, showing the incorporation of insider information
into the equilibrium price. In this work, the focus is on the informed trader who is a
monopolist (there is only one), whereas in our work informed traders are unrestricted and
the market maker is a monopolist in their liquidity provision. [28] continues to examine
the informational efficiency of equilibrium prices in a slightly more general setting, where
there is competition among informed traders, showing that prices are less informative than
in the competitive equilibrium. Both of these papers use strong assumptions, predominantly
the normal distribution over both the values and the order sizes. While their models are
related to ours in their considerations of types of participants present and observations in
the optimal case, the present results were not known in either of these two works; neither
of these models is as general as ours, neither relates whatsoever to mechanism design and
incentive compatibility constraints, and both are based on very strong technical assumptions
that our work does not need.

Sequential market-making. Finally, the framework we describe is similar to sequential
market-making procedures in its use of iterative belief updating. Such procedures have been
studied in the past including in the context of online learning frameworks [1, 6, 15, 14].
Closer to our Bayesian setting, [15] consider the liquidity present across trade sizes in a
multi-period monopolistic market making model (and subsequently shows the superiority
of this compared to a competitive multi-dealer market). The above works, however, do not
show a connection between optimal market-making and the Myersonian theory of optimal
auction design, which is the key focus in our results.

2 Automated market makers

We begin by presenting a general framework of exchange for automated market makers
(AMMs) that allows us to consider market making as conducting an auction, and is based on
market participants (traders) trading with the AMM on the basis of future price beliefs.

More specifically, suppose there are two assets, a risky asset and a numéraire asset. An
AMM according to this framework is defined by a demand curve g : (0, ∞) → R+ such that
the function g(·) represents the current demand of the market maker for the risky asset as a
function of price, i.e., the amount of risky asset that the market maker wishes to hold at each
possible price, along with a payment rule y : (0, ∞) → R such that the function y(·) specifies
the quantity of numéraire that a trader needs to pay depending on the current AMM price
p0 (which instantiates a specific state of this AMM’s demand curve, i.e., a current demand

ITCS 2024
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of the AMM for g(p0) of risky asset) and what they declare to the AMM that their price
estimate is (see the following paragraph on trading for the precise definition). The market
maker is assumed to have no inventory costs or budget constraints.

The demand curve g along with an appropriately defined payment rule can arise through
bonding curves of traditional constant function market makers (CFMMs, i.e., functions
f such that the holdings of the joint pool (x, y) satisfy f(x, y) = c for some c) but this
is not necessary: the exchange mechanisms defined by this framework strictly generalize
CFMMs (see also [30]). Additionally, a non-continuous demand curve g can also be used to
express limit orders, with the discontinuities representing limit buy or limit sell orders at the
corresponding price, of quantity of risky asset equal to the jump at that price [30].

Trading. A trader who wants to trade with the AMM has some (hidden) belief about the
asset price. The trader will come to the mechanism and specify a price bid p̂. Based on their
bid, the trader will get a quantity g(p0) − g(p̂) of risky asset. Finally, the AMM revises its
current price (which was previously p0) according to some update rule (we will see more
about the update rule from Section 3 onwards; it will play no role in this section). We say
that the trader was allocated a quantity x(p̂) ≜ g(p0) − g(p̂) of asset. This interpretation
makes it natural to consider the transaction with the trader as an auction with one bidder;
the trader has a price estimate (valuation) for the risky asset, will be allocated a portion of
the risky asset (provided by the market maker) based on their submitted price bid, and will
need to pay the market maker an amount y(p̂) of numéraire for it. Notice that it may be the
case that x(p̂) < 0, which means that the trader will sell risky asset to the AMM, and the
market maker will now need to come up with the corresponding payment to the trader for it.

Example: Uniswap v2. Let’s consider the simple case of a constant product market maker
(CPMM), such as Uniswap v2, to show how it emerges from the framework above. Consider
the demand curve of the AMM to be of the form g(p) = c√

p , for some c > 0, and the
payment rule to be of the form y(p̂) = c

(√
p̂ − √

p0
)

, for the same c > 0. A trader who
will trade with this exchange at a current price p0 with a price bid p̂ will obtain a quantity

x(p̂) = g(p0) − g(p̂) = c

(
1√
p0

− 1√
p̂

)
of risky asset. Since the curve g(p) above is just a

reparameterization (in terms of prices) of the risky asset holdings of the CPMM curve4

xy = k where k = c2 [5], by comparing the expression of the quantity of risky asset that the
trader gets, we conclude that they get the same quantity as in the CPMM.

2.1 Incentive-compatible AMMs
We will now consider that traders interacting with AMMs have utility functions that emerge
naturally from their true belief about the asset price versus what they bid to obtain a quantity
of risky asset from the AMM. In particular, a trader who has a true belief of p for the asset’s
price, and submits a bid p̂ to the AMM seeks to optimize (maximize) their utility defined by

u(p, p̂) ≜ p · x(p̂) − y(p̂) , (2)

because they consider that the asset’s true value to them is p per unit, they obtain a quantity
x(p̂) of it, and pay y(p̂) for this trade.

4 Note that here x and y – without the parentheses – are not the functions above, but rather the current
total reserves of the AMM pool.
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▶ Definition 1 (Incentive-compatible AMM). An AMM defined according to a demand curve
g(p) and a payment rule y(p̂) is called incentive compatible (IC), if any trader whose utility
follows Eq. (2) has as an optimal strategy for interacting with the AMM to submit their true
belief about the asset price as their bid to the AMM.

Is an AMM defined by an arbitrary demand curve g(p) and an arbitrary payment rule
y(p̂) incentive compatible? The answer is no, and the characterization of IC AMMs follows
standard results of dominant-strategy incentive-compatible (DSIC) single-parameter auctions.

▶ Proposition 2 (Characterization of IC AMMs). An AMM defined according to a demand
curve g(p) can be paired with a payment rule y(p̂) to obtain an IC AMM, if and only if g(p)
is a non-increasing function.

Proof. First, we observe the analogy drawn to allocations of asset for trades: x(p̂) =
g(p0) − g(p̂). Since the utility function for the auction with a single bidder (the trader) is of
the form of Eq. (2), the proposition follows from the characterization of dominant-strategy
incentive-compatible (DSIC) single-parameter auctions’ allocation rules x(p̂) as only those
functions which are monotone, and specifically non-decreasing functions, because x(p̂) is
non-decreasing precisely if and only if g(p̂) is non-increasing.

More specifically, we follow the standard analysis to showcase the exact correspondence
of the settings but do not show the entire analysis, as this follows Myerson’s. In order for
the optimal strategy of any trader with true belief p to be to submit p to the AMM, we need
to have that for any p, p̂:

u(p, p) ≥ u(p, p̂) ⇔ p · x(p) − y(p) ≥ p · x(p̂) − y(p̂) ⇔ p · [x(p) − x(p̂)] ≥ y(p) − y(p̂) .

Additionally, if the converse holds, and the true belief of the trader was p̂ while it is considering
submitting p to the AMM, then we also need to have that for any p, p̂:

u(p̂, p̂) ≥ u(p̂, p) ⇔ p̂ · x(p̂) − y(p̂) ≥ p̂ · x(p) − y(p) ⇔ p̂ · [x(p) − x(p̂)] ≤ y(p) − y(p̂) .

Combining these two inequalities, we get that for any p, p̂:

p̂ · [x(p) − x(p̂)] ≤ y(p) − y(p̂) ≤ p · [x(p) − x(p̂)] ,

hence it is immediate (from the derived inequality (p − p̂) · [x(p) − x(p̂)] ≥ 0) that x(p̂) needs
to be non-decreasing. ◀

The next question to be answered is whether arbitrary payment rules y(p̂) are allowed
to be requested by an IC AMM. Not surprisingly, as is the case for payments defined by
an allocation rule of a DSIC mechanism, the payments need to be precisely defined by the
demand curve for an IC AMM. The below formula is familiar from Myerson’s single-parameter
DSIC auction design.

▶ Corollary 3 (Payments of traders on IC AMMs). Suppose that any trader who is allocated a
quantity 0 of risky asset pays 0 amount of numéraire to an IC AMM according to Definition 1
with a demand curve g(p). The IC AMM’s payment rule y(p̂) for a trader submitting a price
bid p̂ needs to be exactly:

y(p̂) =
∫ p̂

p0

s dx(s) = −
∫ p̂

p0

p dg(p) . (3)

The above integrals are Riemann–Stieltjes integrals. In cases where g(p) is differentiable, the
differential takes the form dg(p) = g′(p) dp.
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Proof. From Myerson’s single-parameter auction design, we know that there is a unique
payment rule (up to an additive constant) for DSIC single-parameter auctions; that is,
y(p̂) =

∫ p̂

p0
s dx(s) , where the arbitrary additive constant is no longer present, as we have

integrated the required normalization that for an allocation of x(p0) = g(p0) − g(p0) = 0
asset, the payment needs to be y(p0) = 0. This directly translates to the formula given in
the corollary’s statement in terms of the demand curve g(p) of the AMM. ◀

Note that the integral that defines the payments is non-negative if p̂ ≥ p0, and non-positive
if p̂ ≤ p0. This is compatible with the direction of the trade, as defined by the allocation
rule and Proposition 2, which is that x(p̂) ≥ 0 for p̂ ≥ p0, and x(p̂) ≤ 0 for p̂ ≤ p0.

3 Optimal liquidity provision via revenue maximization

3.1 Bayesian model for optimal allocation rule
First, we describe our model for how the market maker should optimize their allocation rule
for the asset. From now on, the market maker will be assumed to be risk-neutral, i.e., be
indifferent to “risk,” and only care to be profit-maximizing.

The Bayesian belief framework operates as follows: the market maker has a prior belief
distribution on the asset price, and the (single) price it decides to use is p0; for example, and
most commonly, p0 will be the mean of this prior distribution. A trader then comes to the
AMM with an estimate p̂ (that is the true belief of the trader, if the AMM is IC according to
Definition 1). Traders are on the market to buy or sell up to 1 unit of the asset;5 that is, the
allocation rule should satisfy −1 ≤ x(p̂) ≤ 1 for all p̂. The trader’s estimate p̂ is perceived by
the market maker as one observation of an asset price estimate coming from a distribution
D that is included in the market maker’s model. For this distribution D, we assume that
it has a continuous, positive density function f(p̂) on a compact support [pmin, pmax] and a
cumulative density function (CDF) F (p̂) =

∫ p̂

pmin
f(s) ds.6

Applying Bayes’ theorem allows the market maker to specify the posterior distribution
of the asset price, conditional on the observation from the trader. The market maker then
sets this posterior distribution as their new prior for future observations (trades). We will
assume that the way this posterior is used by the AMM is through valuing the quantity of
asset given or obtained at a price of π(p0, p̂) which can be, for instance, the mean of the
posterior distribution according to the Bayesian framework. (A very interesting special case
as to how a linear dependence arises on the mean of the posterior with normally distributed
prior and observational error is shown in Section 4.)

In general, we will call π(p0, p̂) the “update rule” and – for generality – we will not impose
further constraints arising from the Bayesian framework on what it may be other than that:

▶ Assumption 1. The following conditions have to hold for the update rule:
π(p0, p̂) lies in the interval between p0 and p̂.
π(p0, p̂) is non-decreasing in p̂.
π(p0, p0) = p0, i.e., if the trader’s estimate is the same as the market maker’s prior, then
the updated valuation of the market maker for the asset should be the same as their prior.
Ep̂∼D[π(p0, p̂)] = p0, i.e., the prior is consistent with the update rule.

5 This is just for notational convenience. In fact, it generalizes easily for demand up to any arbitrary
finite bound, and a subsequent normalization enables using exactly our results here with unit demand.

6 Our results can be extended to non-continuous density functions supported at possibly non-compact
intervals, e.g., (0, ∞), but for simplicity of exposition, we do not focus on handling these edge cases
here, since they do not add to the general discussion points of the paper.
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Therefore, according to the above, the market maker’s next best estimate for the asset’s
price is π(p0, p̂) conditioned on receiving the trader’s estimate p̂. It is then natural to consider
that, when selling (respectively, buying) some quantity x(p̂) of the asset from the trader,
the AMM will not only consider the amount of money that they receive (respectively, give)
but also their perceived best estimate of the value of the asset that they lost (respectively,
gained). This, then, arises as an interesting contrast to traditional auction theory, where
the revenue of the auction is only the payment that is made. Here, according to the above
reasoning, it makes sense for the AMM to value their profit according to

Profit = y(p̂) − π(p0, p̂) · x(p̂) . (4)

Therefore, an AMM choosing an optimal strategy to provide liquidity will consider the
strategy that maximizes their profit, among all feasible, incentive-compatible (for the traders)
strategies.

3.2 Equivalence of expected profit and virtual welfare, and virtual value
functions

By re-working Myerson’s optimal auction theory under the new objective that we want to
optimize and the constraints that come with the definition of the allocation rule from an
AMM, we get that:

▶ Theorem 4 (Expected Profit = Expected Virtual Welfare). The expected profit according
to Eq. (4) of a market maker under the assumptions of Section 3.1 is equal to the expected
virtual welfare, i.e.,

E
p̂∼D

[Profit] = E
p̂∼D

[|x(p̂)| · (ϕu(p̂) · 1p̂≥p0 + ϕl(p̂) · 1p̂≤p0)]

where 1A is the indicator function that is 1 when A holds and 0 otherwise, and ϕu(s), ϕl(s)
are the virtual value functions defined by

ϕu(s) ≜ s − 1 − F (s)
f(s) − π(p0, s) (5)

and

ϕl(s) ≜ π(p0, s) − s − F (s)
f(s) . (6)

Proof. By Eq. (3) and re-writing x(p̂) using the normalization condition, we have that7

y(p̂) =
∫ p̂

p0

sx′(s) ds and x(p̂) =
∫ p̂

p0

x′(s) ds ,

so that the expected profit Ep̂∼D[Profit] is

7 This proof assumes differentiability of x(s) for simplicity of the technical exposition but carries through
verbatim in terms of Riemann–Stieltjes integrals where x′(s) ds = dx(s), which always exist because
x(s) is guaranteed to be monotonic by Proposition 2.
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∫ pmax

pmin

∫ p̂

p0

(s − π(p0, p̂)) x′(s)f(p̂) ds dp̂

=
∫ pmax

p0

∫ p̂

p0

(s − π(p0, p̂)) x′(s)f(p̂) ds dp̂ −
∫ p0

pmin

∫ p0

p̂

(s − π(p0, p̂)) x′(s)f(p̂) ds dp̂

=
∫ pmax

p0

∫ pmax

s

(s − π(p0, p̂)) x′(s)f(p̂) dp̂ ds −
∫ p0

pmin

∫ s

pmin

(s − π(p0, p̂)) x′(s)f(p̂) dp̂ ds

=
∫ pmax

p0

x′(s)
(

s(1 − F (s)) −
∫ pmax

s

π(p0, p̂)f(p̂) dp̂

)
ds

−
∫ p0

pmin

x′(s)
(

sF (s) −
∫ s

pmin

π(p0, p̂)f(p̂) dp̂

)
ds

= −
∫ pmax

p0

x(s) (1 − F (s) + (π(p0, s) − s)f(s)) ds +
∫ p0

pmin

x(s) (F (s) + (s − π(p0, s))f(s)) ds

=
∫ pmax

p0

|x(s)|
(

s − π(p0, s) − 1 − F (s)
f(s)

)
f(s) ds +

∫ p0

pmin

|x(s)|
(

π(p0, s) − s − F (s)
f(s)

)
f(s) ds ,

where the third line arises from switching the order of the integrals (and the correct switching
depends on the relative order of p0 and p̂ which is why the second line is needed; the first
integral when p̂ ≥ p0 and the second vice-versa), the fifth line from integration by parts, and
the sixth line because x(s) ≤ 0 for s ≤ p0 and x(s) ≥ 0 for s ≥ p0.

Therefore, the two virtual value functions are as in the theorem description. ◀

3.3 Derivation of the optimal allocation rule and the no-trade gap
We now turn our attention to optimizing the expected profit, i.e., finding the allocation
rule (equivalently, the demand curve up to an arbitrary positive additive constant) which
maximizes the expected profit.

▶ Theorem 5. The optimal allocation rule x⋆(p̂) that maximizes the expected profit according
to Eq. (4) under the assumptions of Section 3.1 has the form

x⋆(p̂) =


1, for p1 ≤ p̂ ≤ pmax

0, for p2 < p̂ < p1

−1, for pmin ≤ p̂ ≤ p2

,

where p1 ≥ p0 and p2 ≤ p0 are some roots of the upper and lower virtual value functions
ϕu(s), ϕl(s) of Eqs. (5) and (6) respectively.

Proof. We will use the equivalence of expected profit and expected virtual welfare established
by Theorem 4. Because we operate under the constraints that x(p0) = 0, x(p̂) ≥ 0 for
p̂ ≥ p0, and x(p̂) ≤ 0 for p̂ ≤ p0, we can just equivalently optimize the two integrals
arising from the right hand side of Theorem 4 separately to obtain the optimal allocation
rule. Additionally, since ϕu(p0) = − 1−F (p0)

f(p0) ≤ 0, ϕu(pmax) = pmax − π(p0, pmax) ≥ 0,
ϕl(pmin) = π(p0, pmin) − pmin ≥ 0, and ϕl(p0) = − F (p0)

f(p0) ≤ 0, there always exists a non-trivial
optimal solution to the optimization problem.

If ϕu(s) was monotone (increasing), then by the above sign changes, there would exist a
(unique) root p1 such that ϕu(p1) = 0. A simple argument by contradiction then shows that
the structure of the optimal allocation rule is to allocate the maximum allowable quantity
of asset (by the constraint of unit demand, x(s) ≤ 1) to be sold from the price p1 onwards;
that is,



J. Milionis, C. C. Moallemi, and T. Roughgarden 81:13

x⋆(s) =
{

1, for p1 ≤ s ≤ pmax

0, for p0 ≤ s < p1
. (7)

For the lower virtual value function, a similar argument shows that, if ϕl(s) was monotone
(decreasing), and p2 is its unique root (which is guaranteed to exist by the aforementioned sign
changes), then the optimal allocation rule obeying the constraint of unit demand x(s) ≥ −1
would be

x⋆(s) =
{

0, for p2 < s ≤ p0

−1, for pmin ≤ s ≤ p2
. (8)

In full generality, if the virtual value functions are not monotone, then there may now be
multiple roots of those functions. In this case, and with an argument by contradiction that
if the allocation rule were to switch in between roots then we could obtain better or equal
expected profit by modifying the allocation rule to remain constant in between roots, along
with the argument that if the allocation rule were not to allocate the entire available demand
(1, −1, respectively) then we could obtain better or equal expected profit by increasing
(or decreasing, respectively) the allocated quantity of the asset until the limit (of 1 or −1,
respectively), we obtain that the optimal allocation rule is exactly characterized by Eqs. (7)
and (8), where this time the choice of the roots as p1 (and p2, respectively) needs to be
the root of the upper (lower, respectively) virtual value function that gives the maximum
expected profit under the allocation rule that has the form of Eq. (7) (Eq. (8), respectively).
Therefore, the optimal allocation rule is as per the theorem statement. ◀

Therefore, in any case, we observe that the optimal solution of Eqs. (7) and (8) has a
well-specified no-trade gap around p0 where the market maker is not willing to buy or sell
any quantity of the asset to the trader. More specifically, the length of this no-trade gap is
precisely p1 − p2, where p1 ≥ p0, p2 ≤ p0 are as per the above analysis roots of the upper
and lower virtual value functions respectively.

We can now specialize in the two interesting extreme cases that were examined in
Section 1.2 to obtain the respective observations there: first, consider the pure noise trading
case, where the traders are assumed to offer no information on the true asset price, and
hence the market maker’s prior is static, i.e., in the case that the update rule is π(p0, p̂) =
p0, ∀p̂ ∈ [pmin, pmax]. In this case, we see that there is a non-trivial no-trade gap, since we
have for the extremal values that ϕu(p0) < 0, ϕu(pmax) > 0, ϕl(pmin) > 0, and ϕl(p0) < 0
(see the beginning of Section 3.3 for the expressions), hence the respective roots are contained
strictly in between their corresponding intervals (by continuity of the virtual value functions).
This no-trade gap is akin to a bid-ask spread observed in traditional CLOB-based markets,
and is attributable to the monopoly pricing power of the market maker. In addition, it is
distribution-dependent and its length can be intuitively understood as being smaller under
distributions D, according to which the traders’ estimates p̂ are distributed, that are more
“concentrated” around p0

8. To mention an example that illustrates this intuition, the no-trade
gap under pure noise trading and a uniform distribution supported on [p(1)

min, p
(1)
max] will be

smaller than the one under another uniform distribution supported on [p(2)
min, p

(2)
max], where

p
(1)
min > p

(2)
min and p

(1)
max < p

(2)
max.

8 With this statement, we intend to only give intuition around the length of the interval, because there
can be pathological cases of pairs of distributions that do not follow this generic intuition, and hence it
need not be true in full generality.
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At the other extreme, consider the case where the traders always have perfect information
about the true asset price, i.e., the market maker’s update rule is π(p0, p̂) = p̂, ∀p̂ ∈
[pmin, pmax]. In this case, we observe that the two virtual value functions become

ϕu(s) = −1 − F (s)
f(s) ≤ 0 and ϕl(s) = −F (s)

f(s) ≤ 0 ,

thus the optimal allocation rule is everywhere zero: x⋆(p̂) = 0, ∀p̂ ∈ [pmin, pmax]. It is
therefore the case that this corollary which may be phrased as a version of a no-trade theorem
in the presence of perfect adverse selection is distribution-independent: that is, regardless of
the distribution D of the traders’ asset price estimates p̂ ∼ D, if the market maker believes
that the traders have perfect information, then their optimal allocation rule is to perform
no-trade at all. More specifically:

▶ Corollary 6 (No-trade theorem when all traders have perfect information). If the update rule
π(p0, p̂) = p̂, ∀p̂ ∈ [pmin, pmax], then for every distribution D, the optimal allocation rule is
x⋆(p̂) = 0, ∀p̂ ∈ [pmin, pmax].

4 An important special case: linear instantiation of the update rule

We move on to consider an interesting special case of the update rule of Section 3.1: the
simplest specialization that allows us to capture an arbitrary mixture of both noise trading
and adverse selection, and enables us to show exactly how they intermingle with one another.
More specifically, we consider the case when the update rule is a convex combination of the
two above extreme cases, controlled by a parameter λ ∈ [0, 1]:

π(p0, p̂) = λp0 + (1 − λ)p̂ (9)

The extreme cases arise as follows: for λ = 1, we obtain that the update remains the
same as the market maker’s prior (p0), i.e., the pure noise trading model, where the trader is
assumed to provide no information on the asset price. For λ = 0, we obtain that the update
always follows exactly the trader’s estimate (p̂), thus the trader is considered as having
perfect information around the asset price, i.e., pure adverse selection is attained.

There are standard normality assumptions under which this linear update rule naturally
emerges as the update rule for Bayesian updating. For example, if we consider that the
asset value V ∼ N (p0, σ2

0) where N is the normal distribution, and the trader’s estimate is
p̂ = V + ϵ, where ϵ ∼ N (0, σ2

ϵ ), i.e., p̂ ∼ N (p0, σ2
0 + σ2

ϵ ), then the posterior according to a
Bayesian update step would also be a normal distribution with mean π(p0, p̂) = λp0 +(1−λ)p̂,
where λ = σ2

ϵ

σ2
0+σ2

ϵ
[18]. Of course, this is just an illustration of the motivation behind the

linear update rule; it ignores the fact that asset prices cannot obtain negative values, but a
similar calculation can be performed for log-normal distributions, for instance, and also holds
approximately for truncated Gaussian distributions in the case of the standard deviation
being small compared to the mean value. However, in this section, we will not be necessarily
making any such Gaussian assumptions; we will only be assuming that the conducted update
corresponds to a linear interpolation (in fact, convex combination) of the two cases of p0 and
p̂ that we have seen in Section 1.2 as indicative of noise trading and adverse selection.

In order to proceed with a more precise characterization of the interval of no-trade around
p0, we will make a similar assumption to the regularity of the distribution D made by [33]:
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▶ Assumption 2. The upper and lower virtual value functions, obtained by plugging in Eq. (9)
to Eqs. (5) and (6),

ϕu(s; λ) = λ(s − p0) − 1 − F (s)
f(s) and ϕl(s; λ) = λ(p0 − s) − F (s)

f(s)

are non-decreasing and non-increasing (respectively) with respect to s for all λ ∈ [0, 1].

Discussion of Assumption 2. Assumption 2 can be intuitively understood as stating that
the distribution of p̂ (i.e., D) does not have heavy tails away from p0 on either direction
(i.e., left or right tails). We now explain in a detailed way why this is the case and why this
assumption is standard and naturally motivated. First, observe that the original regular
distributional assumption of [33] is equivalent to the assumption that ϕu(s; λ) is strictly
increasing for λ = 1. Additionally, notice that an equivalent re-statement of Assumption 2 is
that the respective monotonicities hold for λ = 0, since this implies the monotonicities for all
λ ∈ [0, 1]. In particular, for the monotonicity of the upper virtual value function, we observe
that it exactly corresponds to having a monotone hazard rate, where the hazard rate of a
distribution is defined as

h(s) ≜ f(s)
1 − F (s) .

Distributions that have a monotone hazard rate (MHR) have been widely used before as
common distributional assumptions in revenue maximizing settings [25, 12, 13, 16]. More
generally, ϕu(s; λ) being non-decreasing for a specific λ corresponds to the notion of an α-
strongly regular distribution (Definition 1.1) of [13] where α = 1 − λ. As for the monotonicity
of the lower virtual value function assumption, we observe that if we make the change of
variables p′ = p0 − p̂ (where p̂ ∼ D is our original random variable, and p′ is the new one),
then ϕl(s; 0) being non-increasing would be equivalent to the distribution of p′ having a
monotone hazard rate (MHR), because if we denote by G(s) and g(s) the CDF and the PDF
of p′ respectively, then from standard probabilities, we get that G(s) = 1 − F (p0 − s), and
g(s) = f(p0 − s), hence

g(s)
1 − G(s) = f(p0 − s)

F (p0 − s) ,

and ϕl(s; 0) = − F (s)
f(s) being non-increasing is equivalent to f(p0−s)

F (p0−s) being non-decreasing.
Intuitively, distributions satisfying Assumption 2 are well-behaved, in the sense that they

correspond to distributions with MHR on both of their tails, i.e., distributions that have
both left and right tails that are no heavier than an exponential.

Many interesting distributions satisfy the “non-heavy-tailed” property that Assumption 2
refers to. For example, all uniform and exponential distributions satisfy the assumption.
More generally, all distributions with log-concave densities have a monotone hazard rate [16],
and if centered around p0 (for instance symmetrically on both sides), both tail ends would not
be heavy and they would satisfy the assumption. As with classical non-MHR distributions,
Assumption 2 is not satisfied by most heavy-tailed distributions; the difference is that this
assumption includes both left and right tails of the distribution. A good example of a
double-sided (left and right) heavy-tailed distribution that would fail to satisfy Assumption 2
would be the Cauchy distribution with a location parameter of p0, for which the moment
generating function does not exist anywhere: in this case, both of its left and right tails
around p0 are heavy [29].
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We now move on to characterize the length of the no-trade interval present in the optimal
solution of Eqs. (7) and (8) as λ varies.

▶ Proposition 7. The length of the no-trade gap in the optimal solution that obtains the
maximum expected profit under Eq. (9) is a decreasing function of λ, when the distribution
D satisfies Assumption 2.

Proof. First, observe that under Assumption 2, the optimal allocation rule is exactly
characterized by Eqs. (7) and (8), whereby there exists exactly one root for each of the
corresponding upper and lower virtual value functions. We now need to show how the roots
move, while λ varies. In particular, we will prove that the root of the upper virtual value
function increases as λ decreases; the proof that the root of the lower virtual value function
decreases is similar. These two combined facts mean that, as λ decreases, the length of the
interval of no-trade increases (because each of the roots moves away from p0), thus proving
the desired result.

We finish the proof as follows: consider λ1 ≤ λ2. The roots p1, p2 of the upper virtual
value functions ϕu(s; λ1), ϕu(s; λ2) for λ1, λ2 respectively satisfy

ϕu(p1; λ1) = 0 and ϕu(p2; λ2) = (λ2 − λ1)(p2 − p0) + ϕu(p2; λ1) = 0 .

Additionally, (λ2 − λ1)(p2 − p0) ≥ 0 since λ1 ≤ λ2 and p2 ≥ p0 (by definition of the
upper virtual value function), so the latter equality means that ϕu(p2; λ1) ≤ 0 = ϕu(p1; λ1).
Therefore, by the monotonicity of ϕu(s; λ1), the latter is equivalent to the ordering p2 ≤ p1
of the respective roots, as desired. ◀

Proposition 7 allows us to make precise the important interpretation of how the effects
of monopoly pricing and adverse selection interplay in a model of trading that incorporates
both noise trading and better-informed traders. More specifically, in the optimal solution
to the profit maximization problem of the market maker, there is a minimal interval of
no-trade (corresponding to the pure noise trading case, λ = 1) that exhibits the monopoly
pricing power being the sole driving force of the shape of the optimal mechanism. As λ gets
smaller, and the market maker’s model for the trader pre-supposes more and more traders
with perfect information, according to Proposition 7, the interval around p0 on which the
AMM is not willing to trade grows larger and larger. This change is attributed to adverse
selection being added in the mixture because of the traders that are better informed than
the market maker. At the other extreme, where pure adverse selection is observed (λ = 0),
the optimal solution is to provide no liquidity, or equivalently, perform no trade. This is a
distribution-independent result that is due to the corresponding virtual value functions (both
upper and lower) being purely non-positive in that case (c.f., the expressions of Assumption 2
for ϕu(s; 0) and ϕl(s; 0) where we substitute λ = 0), making the optimal solution that obtains
the maximum profit be exactly the no-trade-anywhere solution x(p̂) = 0, ∀pmin ≤ p̂ ≤ pmax.

5 Conclusion and future directions

The goal of this work is to isolate the most essential and salient properties of the problem
of optimal liquidity provision: the zero-sum game between traders and liquidity providers,
uncertain valuations, asymmetric information, and price updates conditioned on trade.
We show how a “no-trade gap” (that arises as a “bid-ask spread” in traditional market
microstructure literature for reasons other than the ones considered here) surprisingly arises
in very general settings of liquidity provision in exchange mechanisms, like the ones we
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consider, allowing us to unlock a fruitful connection between optimal market-making and
the Myersonian theory of optimal auction design. This connection has not been made in
prior literature to the best of our knowledge.

Our general framework for reasoning about AMMs is based on a Bayesian-like belief
inference procedure. Such Bayesian updating procedures are well-known and widely used
in machine learning, even in the specific context of market-making [15]. The generality
of our framework has the exact intention of capturing any possible exchange mechanism,
including the most prominent examples of both limit order books and automated market
makers (see also [30]). At the same time, for the optimal allocation rule whose structure we
hereby characterize, it would be interesting to give the complexity of the market maker’s
computation with update rules other than the linear one, which we gave as an indicative
example of the mixing effects of both adverse selection and noise trading. In the case of
update rules that can arise from an online learning framework with iterative belief updates,
what makes the complexity determination not straightforwardly arise from these online
learning frameworks is exactly the needed calculation of the roots in Theorem 5.

It might seem, at a first glance, that the market maker in the framework given in this
work is not just risk-neutral but also myopic, i.e., maximizes expected profit from the next
trade given its update rule, belief distribution over traders’ estimates, and its own current
asset value estimate. However, our framework can capture much more generic structures of
dependencies that allow the market maker to not be myopic, including a (possibly discounted)
cumulative profit/reward structure. It would be an interesting future direction to examine
whether the insights we give in this work change in such cases; we conjecture that they do
not, but additional effects could be observed. In fact, our Bayesian (update rule) framework
can be adjusted to accommodate these more complicated structures, where the updated belief
(through the update rule) can have any future expectations already baked in. In particular,
sequentially, the market maker’s new updated belief of the prior round of trading becomes
their prior belief in the next trade, so that the prior at each round depends on the entire
past history of trades; the update rule at each time holds the best (future) expectation of
the market maker.

Finally, future empirical work that probes the model’s assumptions and results could be
explored, just as empirical work on revenue-maximizing auctions and online learning has
served to usefully probe Myerson’s original theoretical framework.
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