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Abstract
Two of the fundamental no-go theorems of quantum information are the no-cloning theorem (that
it is impossible to make copies of general quantum states) and the no-teleportation theorem (the
prohibition on telegraphing, or sending quantum states over classical channels without pre-shared
entanglement). They are known to be equivalent, in the sense that a collection of quantum states is
telegraphable if and only if it is clonable.

Our main result suggests that this is not the case when computational efficiency is considered.
We give a collection of quantum states and quantum oracles relative to which these states are
efficiently clonable but not efficiently telegraphable. Given that the opposite scenario is impossible
(states that can be telegraphed can always trivially be cloned), this gives the most complete quantum
oracle separation possible between these two important no-go properties.

We additionally study the complexity class clonableQMA, a subset of QMA whose witnesses are
efficiently clonable. As a consequence of our main result, we give a quantum oracle separation
between clonableQMA and the class QCMA, whose witnesses are restricted to classical strings. We
also propose a candidate oracle-free promise problem separating these classes. We finally demonstrate
an application of clonable-but-not-telegraphable states to cryptography, by showing how such states
can be used to protect against key exfiltration.
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1 Introduction

One of the defining features of quantum information is the no-cloning theorem: that it
is impossible to copy a general quantum state [30, 34, 16]. Another fundamental no-go
theorem is the no-teleportation theorem: that it is impossible (without any pre-shared
entanglement) to send quantum information over a classical channel [33]. Because of the
potential confusion with the very possible task of quantum teleportation [14], we prefer to
use the term telegraphing to refer to this latter task.

These two no-go theorems are well-understood to be equivalent, in the following sense:
given a set of quantum states S = {|ψ1⟩, |ψ2⟩, · · · }, then states in S can be perfectly cloned
if and only if they can be perfectly telegraphed, both clonability and telegraphability being
equivalent to the states in S being orthogonal. Here, S being cloned means there is a process
mapping |ψi⟩ to two copies of |ψi⟩. S being telegraphed means there is a deconstruction
process which maps |ψi⟩ into classical information ci, and a reconstruction process that maps
ci back to |ψi⟩.
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Introducing Computational Constraints

The above discussion is information-theoretic. Here, we ask: what happens when computational
constraints are considered? We consider a set S to be computationally clonable if there is a
polynomial-time quantum algorithm that solves the cloning task on S. Likewise, we consider
S to be computationally telegraphable if there is both a polynomial-time deconstruction and
corresponding polynomial-time reconstruction procedure for S.

We observe the trivial relationship that computational telegraphing implies computational
cloning: by running reconstruction twice on the deconstructed classical information ci, one
obtains two copies of |ψi⟩, therefore cloning. This process is only twice as slow as the original
telegraphing procedure, and is therefore efficient if telegraphing is efficient. However, the
converse is a priori unclear: if a state can be cloned efficiently, it is not clear if there is an
efficient process to deconstruct the state into a classical ci and also an efficient process to
turn ci back into the quantum state.

1.1 Our Results
In this work, we provide evidence that no-cloning and no-telegraphing are not equivalent
properties in the computationally bounded setting. Our main theorem is:

▶ Theorem 1 (Informal presentation of Theorem 17). There exists a quantum oracle O and a
set of quantum states S such that S can be efficiently cloned relative to O, but there is no
efficient telegraphing procedure relative to O. Even more, there is no telegraphing procedure
where the reconstruction is efficient, even if we allow deconstruction to be unbounded.

In other words, while no-cloning implies no-telegraphing, the converse is not true, at least
relative to a quantum oracle.

Counter-intuitively, we prove this theorem by starting from a certain set of orthogonal but
computationally unclonable states (related to those used by [5]). By the trivial relationship
that telegraphing implies clonability, we observe that these states cannot be efficiently
telegraphed either. But of course, while these states can be cloned inefficiently (as they are
all orthogonal), we need them to be clonable efficiently. We therefore augment the setup with
a quantum oracle that performs this cloning in a single query. The main technical difficulty is
that we need to show that despite adding this cloning oracle, telegraphing remains inefficient.
We do this through a multistep process, gradually converting any supposed telegraphing
scheme that uses this oracle into a telegraphing scheme that does not, reaching a contradiction.

An interesting consequence of our proof is that the no-telegraphing property holds, even
if the sender is allowed to be inefficient. The only party that needs to be efficient to achieve
a separation is the receiver.

We additionally bring to light certain applications of clonable-but-untelegraphable states
to both complexity theory and cryptography.

1.1.1 Complexity Theory
An important open problem in quantum complexity theory is the question of whether
quantum states are more powerful than classical strings as proofs (or witnesses) for efficient
quantum computation. This is the question of whether the class QMA of problems which
have efficiently verifiable quantum proofs is contained in the class QCMA of problems where
a classical proof suffices [4]. A number of recent works [3, 18, 28, 23] have endeavored to give
increasingly strong oracle separations between the two classes. We take a slightly different
approach, inspired by clonable-but-untelegraphable states. We define a class clonableQMA
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of problems which have quantum proofs that are efficiently clonable. It is easy to see that
QCMA ⊆ clonableQMA ⊆ QMA, and we argue that clonableQMA is not likely equal to either
of the other two. Specifically, we use the clonable-but-untelegraphable states of Theorem 1
to show a quantum oracle separation with QCMA:

▶ Theorem 2 (Informal). There exists a unitary quantum oracle O such that clonableQMAO

is not contained in QCMAO.

We also give a candidate oracle-free promise problem separating these classes, and we
show that any such problem would immediately yield clonable-but-untelegraphable quantum
states. Finally, we argue that it is unlikely that QMA is contained in clonableQMA, as it
would mean that every QMA-complete problem would have efficiently clonable witnesses and
act as a barrier against the existence of public-key quantum money. For details on these
complexity theoretic applications, see the full version of this paper [29].

1.1.2 Cryptography
While no-cloning has seen significant attention in cryptography (e.g. [1, 2, 7, 15]), no-
telegraphing has so far received little-to-no attention. We give a proof-of-concept application
of clonable-but-untelegraphable states to protecting against key exfiltration. See Section 1.2.1
below for a more expansive discussion of the result. This motivates the use of no-telegraphing
as an useful cryptographic tool.

1.2 Motivation
The importance of the interplay between quantum information and computational complexity
is becoming increasingly clear. For example, computational complexity played a crucial role
in Harlow and Hayden’s resolution to the black hole Firewall Paradox [22].

This interplay is also fundamentally important for many cryptographic applications.
For example, despite certain information-theoretically secure quantum protocols [13], most
cryptographic tasks still require computational constraints even when using quantum informa-
tion [26, 25]. Nevertheless, combining quantum information with computational constraints
opens up numerous possibilities, from minimizing computational assumptions [20, 8] to
classically-impossible applications [1].

The previous examples show that scenarios with quantum information can be fundamen-
tally altered by the presence of computational considerations. It is therefore important to
develop a broad understanding of quantum information in the computationally bounded
setting. This includes the famous no-go theorems of quantum information. Numerous prior
works have studied no-cloning in the computational setting (see references in Section 1.3).
However, the computational difficulty of telegraphing has, to the best of our knowledge,
not been previously studied. As our work shows, the equivalence of two of the most im-
portant quantum no-go theorems no longer holds in the computationally bounded setting,
giving a very different picture and allowing for new possibilities that do not exist in the
information-theoretic setting.

1.2.1 Cryptographic Applications
Besides addressing fundamental questions, we also explore potential cryptographic applica-
tions of our separation.

Concretely, consider the following key exfiltration scenario: a server contains a crypto-
graphic key, say, for decrypting messages. An attacker remotely compromises the server, and
then attempts to exfiltrate the key, sending it from the compromised server to the attacker’s
computer.

ITCS 2024
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A classical approach to mitigate this problem is big key cryptography [11, 10, 27], where
the secret decryption key is made inconveniently large. This may make it impossible for the
attacker to exfiltrate the key (perhaps there are bandwidth constraints on outgoing messages
from the server) or at least makes it easier to detect the exfiltration (the large communication
of the key may be easily detected). Unfortunately, such large keys are also inconvenient
for the honest server, as now the server needs significant storage for each key (perhaps the
server is storing keys for many different users). Moreover, decrypting using the key may be
problematic, since the server will have to compute on a large key, which at least requires
reading it from storage. If the server is decrypting many messages simultaneously using
parallelism, then each process would presumably need to separately load the entire key from
memory.

A quantum proposal would be to have decryption keys be quantum states. It is still
reasonable to consider such a setting where all communication is classical: after all, the
messages being encrypted and decrypted may just be classical. The server could therefore
force all outgoing communication to be classical by measuring it. This would prevent the
remote adversary from exfiltrating the key, by the non-telegraphability of the key.

Since telegraphing trivially implies cloning, we note that any classical program which has
been quantum copy protected [1] will be immune from classical exfiltration. Copy protection
for decryption keys was first considered by [19], and was constructed from indistinguishability
obfuscation by [15], along with copy protection for pseudorandom functions and signatures.

However, using copy protection comes with its own limitations. Indeed, suppose the
server is decrypting a large volume of incoming communication under a single decryption key.
Classically, the server could divide the communication across several processors, with each
decrypting in parallel. Unfortunately, this requires giving each processor a copy of the key.
While trivial classically, the whole point of copy protection is to prevent copying. In fact, [6]
consider exactly the task of preventing the use of parallelism via copy protection. The server
could simply store numerous copies of each copy-protected key, but it would have to store
these keys forever, even when the server is sitting idle or processing other tasks. This could
be a major burden on the server. It also requires security to hold given multiple copies of
the program, a non-trivial extension to single-copy security [24].

Instead, we imagine a protocol where the quantum keys are copy-able, but remain
impossible to telegraph. This would protect against exfiltration, while allowing the server to
only store a single copy of the key for long-term use. Then, if the incoming communication
load ever becomes large, it can copy the key and spread the copies amongst several quantum
processors that process the communication in parallel. After the load subsides and processors
would return to being idle, the copies of the key can simply be discarded.

Assuming states that can be cloned but not telegraphed, we show how to realize an
encryption scheme with the above features:

▶ Theorem 3 (Informal). Assume the existence of clonable-but-untelegraphable states which
can be efficiently sampled. Additionally assume the existence of extractable witness encryption
for QMA. Then there exists public key encryption with quantum secret keys that can be cloned
but not exfiltrated.

For the necessary witness encryption, we could use [9] as a candidate. Note that the states
we construct relative to an oracle in Theorem 1 are efficiently sampleable. However, witness
encryption requires non-black box use of the QMA language, meaning it cannot be applied
to query-aided languages like that implied by Theorem 1. However, any standard-model
realization of clonable-but-non-exfiltrateable states would suffice, and our Theorem 1 gives
some evidence that such states exist. For details on the cryptographic applications, see the
full version of this paper [29].
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This is just one potential application of no-telegraphing that does not follow immediately
from no-cloning. Our hope is that this work will motivate further study of no-telegraphing
in cryptography.

1.2.2 On Oracles
Our separation between no-cloning and no-telegraphing requires oracles. Given the current
state of complexity theory and the fact that these no-go properties are equivalent for
computationally unbounded adversaries, we cannot hope to achieve unconditional separations
between them in the standard model. As such, either computational assumptions or a
relativized separation (that is, oracles) are required.

For cryptographic applications such as Theorem 3, certainly a standard-model construction
from computational assumptions would be needed. On the other hand, by using oracles, we
are able to give an unconditional separation, independent of what assumptions may or may
not hold. While such a relativized separation does not necessarily rule out a standard-model
equivalence, it shows a fundamental barrier to such an equivalence. Indeed, an immediate
corollary of Theorem 1 is:

▶ Corollary 4. There is no black box reduction showing the equivalence of cloning and
telegraphing in the computational setting.

We also note that our oracles as stated are sampled from a distribution, rather than
being fixed oracles. This is typical of the cryptographic black-box separation literature. In
the setting of uniform adversaries, a routine argument allows us to turn this into a fixed
oracle relative to which the separations hold. We do this explicitly in the proof of Theorem 2
to get a separation relative to a fixed unitary oracle, and we further note that this directly
implies such a separation between cloning and telegraphing as well.

1.3 Other Related Work
Cloning in the complexity-theoretic setting has been extensively studied during the last decade,
in the context of public key quantum money [1, 17, 2, 37, 32] and copy protection [1, 7, 15].

A recent development in quantum money has been quantum money with classical com-
munication [31, 6, 32]. This can be seen as a complement to our separation, giving a setting
where a quantum state is telegraphable, but not clonable. In order to overcome the trivial
telegraphing-implies-cloning result, however, these works move to interactive telegraphing,
involving two or more messages between sender and receiver. Moreover, telegraphing happens
in only a weak sense: the receiver does not get the original quantum state. Instead, the
sender’s quantum money state is actually irreversibly destroyed, but in the process the
receiver is able to create a single new quantum money state.

1.4 Technical Overview
Let f be a random function with codomain much smaller than domain. Our clonable-but-
not-telegraphable states will be the the superpositions over pre-images of f :

|ψz⟩ = 1√
|f−1(z)|

∑
x|f(x)=z

|x⟩

where f−1(z) := {x|f(x) = z} is the set of preimages of z in f .

ITCS 2024
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As of now, the |ψz⟩ are easily shown to be unclonable: if one could create two copies of
|ψz⟩, then measuring each would give two pre-images x1, x2 such that f(x1) = z = f(x2).
Since f has a small codomain, there are exponentially many x in the support of |ψz⟩, and
therefore x1 ̸= x2 with overwhelming probability. Thus we obtain a collision for f , which is
known to be intractable for query-bounded algorithms to random oracles, even ones with
small codomains [36].

That the |ψz⟩ are unclonable seems to be counterproductive for our aims. But it allows
us to also readily prove that the |ψz⟩ are also un-telegraphable: if one could telegraph |ψz⟩, it
means one can generate a classical az such that from az it is possible to reconstruct |ψz⟩. But
by running reconstruction multiple times, one obtains multiple copies of |ψz⟩, contradicting
no-cloning. This is not exactly how we prove un-telegraphability, but provides an intuition
for why it should be true.

Now that we have an untelegraphable set of states, we make them clonable by adding a
cloning oracle, which very roughly maps |ψz⟩ 7→ |ψz⟩|ψz⟩ for all valid states |ψz⟩ and does
nothing on states that are not uniform superpositions of pre-images. This clearly makes the
|ψz⟩ clonable. The challenge is then to prove that telegraphing is still impossible, even given
this cloning oracle. This is proved through a sequence of stages:

Stage 1. Here, we remove the cloning oracle, and just consider the oracle f . We show
that, with arbitrary classical advice az of polynomially-bounded size dependent on z

(which could have been constructed in an arbitrary inefficient manner), it is impossible
for a query-bounded algorithm to reconstruct |ψz⟩. This is proved by showing that such a
reconstruction procedure could be used to contradict known lower bounds on the hardness
of finding K collisions [21].
The above shows that even if we give the sender the cloning oracle, then telegraphing is
still impossible for a query-bounded receiver, as long as the receiver does not have access
to the cloning oracle. Indeed, the hypothetical output of such a sender would be an az

contradicting the above.
Stage 2. Here, we upgrade the receiver to have a limited cloning oracle that only clones
a single |ψz⟩, namely the unique state |ψz⟩ that the receiver is trying to reconstruct.
The intuition is that such a limited cloning oracle is of no use, since in order to query it
on a useful input, the receiver needs to have |ψz⟩ in the first place. We make this formal
using a careful analysis.
Stage 3. Finally, we give the receiver the full cloning oracle. We show that if there is
such a query-bounded receiver that can successfully reconstruct, then we can compile it
into a query-bounded receiver for Stage 2, reaching a contradiction.
This is the most technically challenging part of our proof. The rough idea is that the
Stage 2 receiver will simulate a set of imposter oracles, where it forwards queries relating
to z to its own z-only cloning oracle, and all other queries it handles for itself. This
simulation is not perfect, and care is required to prove that the simulation still allows for
successful reconstruction.

Putting these together, we prove Theorem 1, that there cannot exist any telegraphing
scheme for the set of |ψz⟩ with a query-bounded receiver (regardless of whether the sender is
query bounded).
▶ Remark 5. The above description requires two oracles, a classical random oracle (queryable
in superposition) and the cloning oracle. We first note that superposition access to a random
oracle is in particular unitary, so the classical random oracle is also a unitary. Second, we can
view these two oracles as a single quantum oracle, which operates on two sets of registers,
applying one oracle to one register and the other oracle to the other. For the single combined
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oracle to be equivalent to the two individual oracles, we only need that the individual oracles
have efficiently constructible fixed points. This is true of both the oracles we use. Thus, we
obtain a separation relative to a single oracle sampled from an appropriate distribution.

2 Preliminaries

2.1 Query Magnitudes and Modifying Oracles

When working with quantum oracle algorithms, it is often useful to be able to bound the
effect that replacing one oracle with another can have on the result of the computation. To
this end, we recall the following definition and two theorems due to Bennett, Bernstein,
Brassard, and Vazirani [12]:

▶ Theorem 6 (Theorem 3.1 from [12]). If two unit-length superpositions are within Euclidean
distance ε then observing the two superpositions gives samples from distributions which are
within total variation distance at most 4ε.

▶ Definition 7 (Definition 3.2 from [12]). Let |ϕi⟩ be the superposition of MA on input x at
time i. We denote by qy(|ϕi⟩) the sum of squared magnitudes in |ϕi⟩ of configurations of M
which are querying the oracle on string y. We refer to qy(|ϕi⟩) as the query magnitude of y
in |ϕi⟩.

▶ Theorem 8 (Theorem 3.3 from [12]). Let |ϕi⟩ be the superposition of MA on input x
at time i. Let ε > 0. Let F ⊆ [0, T − 1] × Σ∗ be a set of time-strings pairs such that∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2

T . Now suppose the answer to each query (i, y) ∈ F is modified to
some arbitrary fixed ai,y (these answers need not be consistent with an oracle). Let |ϕ′i⟩
be the time i superposition of M on input x with oracle A modified as stated above. Then∣∣|ϕT ⟩ − |ϕ′T ⟩

∣∣ ≤ ε.
2.2 Measuring an approximation of a state

The following lemma is useful if we expect to have a pure quantum state |ψ⟩, but instead,
we only have an approximate version of it, ρ, which may in general be a mixed state. We
want that any measurement on |ψ⟩ can be approximately performed on ρ instead.

▶ Lemma 9 (Measuring an approximation of a state). Let |ψ⟩ ∈ H be a pure state, let Π be
a measurement operator for the binary projective measurement {Π, I − Π} on H, and let
ρ ∈ D(H) be a mixed state such that
1. ⟨ψ| ρ |ψ⟩ ≥ p1

2. ⟨ψ|Π |ψ⟩ ≥ p2

Then tr(Πρ) ≥ p1p2 − 2
√

(1− p1)(1− p2).

This means that if ρ is very close to |ψ⟩ ⟨ψ|, and the measurement given by Π succeeds
with good probability on |ψ⟩, then the same measurement also succeeds on ρ, though with
appropriately smaller probability. For a proof of Lemma 9, see the full version of this
paper [29].

ITCS 2024
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3 Fundamental Tasks and Their No-go Properties

3.1 Schemes of Quantum States
We introduce the following syntax for a scheme of quantum states. A scheme is the basic
structure on which the quantum no-go properties may or may not apply. In other words,
some schemes may be clonable, for instance, while other schemes may not. Schemes consist
primarily of a collection of quantum states, but they can also specify the collection of oracles
which may be used, as well as a distribution for sampling from those states.

▶ Definition 10 (Scheme). In the context of quantum no-go properties, a scheme, (S,D,O),
is an indexed collection of quantum states S = {|ψi⟩}i∈Z over an index set Z (which we call
the set of labels), a distribution D over the labels, and a collection O of any quantum oracles
that may be used.

Whenever either the distribution or the oracles are irrelevant or otherwise clear from
context, we will drop them from the notation and write (S,O), (S,D), or simply S. Note
that the distribution D, which allows sampling from the collection of states, is only important
for defining average-case security of the scheme, and O is only necessary when considering
oracle algorithms.

Under a certain scheme (S,D,O), verification of an unknown quantum state |ϕ⟩ for a label
z is the measurement of whether |ϕ⟩ passes for the intended state |ψz⟩, which succeeds with
probability p = |⟨ψz|ϕ⟩|2. When we say that an algorithm succeeds in passing verification
with some probability p, we mean that verification succeeds with that probability over the
randomness of the algorithm’s output as well as the randomness of the sampling from D and
that of the verification measurement. That is, if the algorithm is randomized and outputs
a mixed state ρz when label z is drawn, then we say that it succeeds at verification for z
with probability p = Ez←D⟨ψz|ρz|ψz⟩. This is the expected fidelity of the states produced
by the algorithm with the intended state. Whenever an algorithm is tasked with passing
verification for a label z, we call z the target label and we call |ψz⟩ the target state.

3.2 Cloning and Telegraphing
We now formally define the tasks of cloning and telegraphing.

▶ Definition 11 (Cloning). A scheme S is said to be η-worst case clonable if there
exists a quantum algorithm Clone(|ψ⟩) such that for every label z ∈ Z, when given |ψz⟩, its
corresponding quantum state in S, returns a quantum state |ϕ⟩ on two registers that, with
probability at least η, passes verification for z on both registers simultaneously. That is,∣∣( ⟨ψz| ⊗ ⟨ψz|

)
|ϕ⟩
∣∣2 ≥ η.

(S,D) is said to be η-average case clonable if there exists a quantum algorithm
Clone(|ψ⟩) that succeeds at the cloning task with probability η when z is sampled from the
distribution D.

▶ Definition 12 (Telegraphing). A scheme S is said to be η-worst case telegraphable if
there exists a pair of quantum algorithms Send(|ψ⟩)→ c and Receive(c)→ |ϕ⟩ where c is a
classical string, such that for every label z ∈ Z, when given |ψz⟩, its corresponding quantum
state in S, |ϕ⟩ := Receive(Send(|ψz⟩)) passes verification for z with probability at least η.

(S,D) is said to be η-average case telegraphable if there exists a pair of quantum
algorithms Send(|ψ⟩) → c and Receive(c) → |ϕ⟩ that succeed at the telegraphing task with
probability η when z is sampled from the distribution D.
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Note that quantum teleportation is the process by which a quantum state can be
transmitted through a classical channel by the use of pre-shared quantum entanglement [14].
Telegraphing can thus be viewed as describing a quantum teleportation protocol without
the use of entanglement: Send converts the quantum state |ψz⟩ to a classical description
c, which Receive then converts back into |ψz⟩, or an approximation thereof. This is why
the no-go theorem of the telegraphing task for general quantum states is often referred to
as the no-teleportation theorem, a name first coined by the originator of the theorem [33].
This terminology can be confusing, however, since teleportation is in fact always possible
when the sending and receiving parties are allowed to start out with an additional entangled
quantum state. To sidestep this confusion, throughout this paper we instead use the term
telegraphing for the unentangled no-go task. Here, and throughout this paper, any pair of
algorithms attempting to achieve the telegraphing task are attempting to do so without the
use of pre-shared entanglement.

3.3 Information Theoretic No-go Theorems
We now state a version of the (information theoretic) no-go theorems for these two tasks.
The No-Cloning Theorem was first proved by three independent papers [30, 34, 16], but
the version we present here is due to [35]. The No-Telegraphing Theorem (originally called
the No-Teleportation Theorem), a corollary of the No-Cloning Theorem, is due to [33]. We
present the two theorems here together to emphasize the direct connection between them.

▶ Theorem 13 (No-Cloning Theorem and No-Telegraphing Theorem). Let H be a Hilbert
space, and let S = {|ψi⟩}i∈[k] be a collection of pure quantum states on this Hilbert space.
The following are equivalent:
1. S can be perfectly cloned
2. S can be perfectly telegraphed
3. S is a collection of orthogonal states, with duplication (∀i, j |⟨ψi|ψj⟩|2 is either 0 or 1)

The proof of cases 1 and 3 is due to [35] and the addition of case 2 is due to [33].
Theorem 13 demonstrates that a general collection of quantum states cannot be cloned or
telegraphed, but all orthogonal collections can.

3.4 Computational No-go Properties
We now define the efficient versions of the no-go tasks of cloning and telegraphing, and their
associated computational no-go properties.

Computational Restrictions. We call the algorithms Clone, Send, and Receive the adversaries
for their respective tasks. Specifying the class of algorithms from which the adversaries
may originate allows us to further parameterize the definitions of these no-go tasks by
computational complexity.

For instance, if the adversaries are required to be computationally efficient (polynomial-
time) quantum algorithms, we say that the scheme is efficiently or computationally clonable
(or unclonable, telegraphable, etc.). If the scheme includes oracles and the adversaries
are quantum oracle algorithms that make a polynomial number of oracle queries, that is,
query-efficient algorithms, then we say that the scheme is clonable (unclonable, telegraphable,
etc.) by efficient oracle algorithms or query-efficient algorithms. The one thing to note is
that for telegraphing by efficient oracle algorithms, we require as an additional restriction
that the classical message c be of polynomial length. We often use the words “computational”
and “efficient” as a catch-all for both computationally efficient and query-efficient algorithms,

ITCS 2024
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and we use more specific terminology whenever it is necessary to differentiate between them.
If the adversaries are not bounded in any way, we say that the scheme is statistically or
information-theoretically clonable (unclonable, telegraphable, etc.).

Success Probability. We say that a scheme is η-unclonable or η-untelegraphable (in either
the worst case or in the average case) if no quantum algorithm succeeds at the corresponding
task with probability greater than η. We will often just drop the parameter η and simply
say that a scheme is unclonable (or untelegraphable) if it is η-unclonable (respectively
η-untelegraphable) for every non-negligible probability η (non-negligible in the length of
the input, in qubits). We say that a scheme is perfectly clonable (or telegraphable) if it is
clonable (respectively, telegraphable) with probability 1.

Telegraphing Implies Cloning. We now give the trivial direction of the relationship between
computational cloning and computational telegraphing: that telegraphing implies cloning.
This implication and its proof are certainly not a new result, even in the context of computa-
tional efficiency. However, both directions of the relationship have too often been taken for
granted despite one direction not always holding. We therefore give a formal proof for the
direction that does still hold in the context of efficient algorithms, both for completeness, as
well as to contrast its simplicity with the relative complexity of the supposed converse.

▶ Theorem 14 (Telegraphing Implies Cloning). Any scheme that is (1− ε)-computationally
telegraphable is also (1− 2ε)-computationally clonable. Note that this applies to both compu-
tationally efficient and query-efficient algorithms as well as to both worst case and average
case versions of these properties.

Proof. We prove this for computationally efficient algorithms, and in the worst case, since
the other cases are nearly identical to this one.

Let S be a scheme that is (1 − ε)-telegraphable in the worst case by computationally
efficient adversaries. That is, there exist efficient quantum algorithms Send(|ψ⟩) → c and
Receive(c)→ |ϕ⟩ such that for all |ψz⟩ ∈ S, |ϕ⟩ := Receive(Send(|ψz⟩)) passes verification for
z with probability at least 1− ε.

Without loss of generality, we assume that Send always outputs some message to send
to Receive. This is because it can always output an arbitrary/random message, which is no
worse than outputting nothing. That is, on input |ψi⟩,

∑
c∈{0,1}∗ Pr[Send outputs c] = 1.

The probably of successfully telegraphing is

psuccessful telegraphing =
∑

c

Pr[Send outputs c] Pr[Receive succeeds on c] > 1− ε

where the probabilities are taken over the internal randomness and measurements of the
algorithms as well as over the randomness of verification.

So, if we run Send once on |ψi⟩ to get message c and then run Receive twice on the same
c, we get that the probability of successfully getting two copies of |ψi⟩ is

psuccessful cloning =
∑

c

Pr[Send outputs c]
(

Pr[Receive succeeds on c]
)2

≥

(∑
c

Pr[Send outputs c] Pr[Receive succeeds on c]
)2

≥ (1− ε)2 = 1− 2ε+ ε2 > 1− 2ε

Thus S is also (1− 2ε)-clonable in the worst case, in time that is at most twice what it took
to telegraph. ◀
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Our main result, which we show in Section 4, is that the converse to this theorem does
not hold, at least with respect to efficient oracle algorithms.

3.5 Reconstruction
Our central aim is to separate efficient cloning from efficient telegraphing. However, in
order to do so, we find it convenient to introduce an additional third task, which we call
reconstruction.

▶ Definition 15 (Reconstruction). A scheme S is said to be η-worst case reconstructible
if there exists a quantum algorithm Reconstruct(a) → |ϕ⟩ such that for every label z ∈ Z,
there exists an instance-dependent advice string1 az such that |ϕ⟩ := Reconstruct(az) passes
verification for z with probability at least η.

(S,D) is said to be η-average case reconstructible if there exists a quantum algorithm
Reconstruct(a) → |ϕ⟩ that succeeds at the reconstruction task with probability η when z is
sampled from the distribution D.

The different parameterized versions of reconstruction are defined analogously to those
of cloning and telegraphing. As with the classical message in the case of telegraphing, for
reconstruction by efficient oracle algorithms, we require as an additional restriction that the
advice string az be of polynomial length.

Reconstruction can be viewed in one way as a subtask of telegraphing, where we focus our
attention only on the receiving end of the telegraphing, or in another way as a telegraphing
protocol in which the sender is all-powerful and can implement a (potentially even nonphysical)
function from |ψz⟩ to az. (This function is in fact performing the task of what we call
deconstruction, which we do not define here, but which can be roughly described as assigning
a uniquely identifying label to every state in S.) Following this line of thought, we can
observe another trivial implication: between telegraphing and reconstruction.

▶ Theorem 16 (Telegraphing Implies Reconstruction). Any scheme that is η-computationally
telegraphable is also η-computationally reconstructible. Note that, as before, this applies to
both computationally efficient and query-efficient algorithms as well as to both worst case
and average case versions of these properties.

Proof. The proof here is even simpler than that of Theorem 14. As we did in that proof, we
prove this theorem only for computationally efficient algorithms, and in the worst case, since
the other cases are much the same. Let S be a scheme that is η-telegraphable in the worst case
by computationally efficient adversaries. That is, there exist efficient quantum algorithms
Send(|ψ⟩) → c and Receive(c) → |ϕ⟩ such that for all |ψz⟩ ∈ S, |ϕ⟩ := Receive(Send(|ψz⟩))
passes verification for z with probability at least η.

For every |ψz⟩ ∈ S, Send(|ψz⟩) produces an output cz that comes from some distribution
over classical strings. There must be at least one string c∗z in its support for which Receive(c∗z)
succeeds with probability at least η (otherwise, Receive(cz) has success probability less than
η for all cz, and so the telegraphing could not have succeeded with probability η). Thus, for
each z ∈ Z, let az := c∗z and let Receive be the reconstruction adversary, which we have just
shown will succeed on input az with probability at least η for all z ∈ Z. ◀

1 Note that classical tasks become trivial when an adversary is given trusted advice that is instance-
dependent, as opposed to depending only on the input length. However, the same is not the case for
quantum tasks. A quantum task such as that of preparing a quantum state may still be non-trivial,
even when given trusted classical advice that depends on each instance.

ITCS 2024



82:12 A Computational Separation Between Quantum No-Cloning and No-Telegraphing

The direct consequence of Theorem 16 is that in order to show that a scheme is not
telegraphable, it suffices to show that it is not reconstructible. In other words, in order
to prove our separation between computational cloning and computational telegraphing,
it suffices to show a scheme that can be computationally cloned but not computationally
reconstructed. Reframing our aim in such a way simplifies the analysis because now we
only have to deal with a single adversary in both situations (cloning and reconstruction), as
opposed to two interacting adversaries for telegraphing. Furthermore, by doing so, we in fact
end up showing a stronger separation.

4 Cloning without Telegraphability

We now come to the main theorem of the paper.

▶ Theorem 17. There exists a scheme, relative to a quantum oracle, that on the one hand,
can be perfectly cloned by an efficient quantum oracle algorithm in the worst case, but that
on the other hand cannot be telegraphed by a pair of efficient quantum oracle algorithms with
any non-negligible probability, even in the average case.

As mentioned before, we in fact prove the following stronger theorem, which, as a
consequence of Theorem 16, implies Theorem 17:

▶ Theorem 18. There exists a scheme, relative to a quantum oracle, that on the one hand,
can be perfectly cloned by an efficient quantum oracle algorithm in the worst case, but that
on the other hand cannot be reconstructed by an efficient quantum oracle algorithm with
any non-negligible probability, even in the average case.2

The rest of Section 4 contains the proof of Theorem 18. In Section 4.1, we define the
scheme, Scheme 23, and show that it is perfectly clonable. In Section 4.2, we prove that the
scheme cannot be efficiently reconstructed.

The form of our scheme is based on a set of states introduced by [5] which take a uniform
superposition over the preimages of a random oracle. These states cannot be cloned by query-
efficient algorithms, so by Theorem 14 this directly implies that they are untelegraphable.3
We want a scheme that is untelegraphable despite being clonable, so we add a cloning oracle,
a quantum oracle that clones only this set of states. The main technical challenge is to show
that access to this cloning oracle does not allow the adversaries to telegraph.

We start by showing that with just the random oracle, the states are not reconstructible,
via a reduction from the problem of finding multi-collisions in the random oracle. We then
show that allowing cloning for the target state cannot be detected by the adversary. We
finally simulate the rest of the cloning oracle by replacing the random oracle with an impostor
for which we know how to clone.

4.1 The Scheme
Before we give the scheme, we first give a few definitions that are useful both for defining
the scheme and for the proof of its unreconstructibility.

2 Note importantly that the fact that these quantum states cannot be efficiently reconstructed does not
preclude them from appearing naturally and being used in efficient quantum computation, since they
may nevertheless be efficiently samplable. That is, there may be an efficient way to sample from the set
of states without being able to reconstruct any particular one of them on command. In fact, this is
exactly the case for our scheme.

3 Note, however, that this does not imply that they are unreconstructable. Nevertheless, we show that
this is the case in Proposition 24.
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We first define a cloning oracle for orthonormal sets. This is an oracle that successfully
clones a specific subset of basis states for a given basis.

▶ Definition 19 (Cloning oracle for a set). Let H be a Hilbert space and let S = {|ψi⟩}i∈[k] be
an orthonormal subset of H. Augment H with a special symbol ⊥ outside the support of H.
That is, |⊥⟩ is orthogonal to all of H.

A cloning oracle CS on set S = {|ψi⟩}i∈[k] is a quantum oracle that, for all i ≤ k sends
|ψi⟩|⊥⟩ to |ψi⟩|ψi⟩ and |ψi⟩|ψi⟩ to |ψi⟩|⊥⟩. For all other orthogonal states, it applies the
identity. That is, when the second register is |⊥⟩, it clones any state in S and leaves all
other orthogonal states unmodified.

▶ Definition 20 (Preimage superposition state). Let f : {0, 1}m → {0, 1}n. A preimage
superposition state for image z ∈ {0, 1}n in function f is the quantum state that is the
uniform positive superposition of preimages of z in f :

|ψz⟩ = 1√
|f−1(z)|

∑
x|f(x)=z

|x⟩

where f−1(z) := {x|f(x) = z} is the set of preimages of z in f .

▶ Definition 21 (Preimage superposition set). Let f : {0, 1}m → {0, 1}n. A preimage
superposition set for f , Sf , is the set of preimage superposition states for all images in
the range of f .

Sf :=

 1√
|f−1(z)|

∑
x|f(x)=z

|x⟩

∣∣∣∣∣ z ∈ {0, 1}n


▶ Definition 22 (Cloning oracle relative to a function). Let f : {0, 1}m → {0, 1}n. A cloning
oracle relative to f , Cf , is a cloning oracle for the preimage superposition set, Sf , of f .

We now give the formal definition of the scheme:

▶ Scheme 23. Let H : {0, 1}m → {0, 1}n be a random oracle, where m ≥ 2n (but bounded
by a polynomial in n). Let CH be the cloning oracle relative to H. The scheme consists of
the following:

– The collection of oracles is O := {H, CH}.
– The set of states is S := SH , the preimage superposition set for H.
– The distribution, D, samples the image of a random domain element of H. That is, it

returns z ← H(x) for a uniformly random x ∈ {0, 1}m.

It is clear that the scheme presented here is perfectly clonable in the worst case by
an efficient quantum oracle algorithm. Specifically, the cloning oracle, CH , provides that
capability, and in a single oracle query. Therefore, it remains to show that no efficient
quantum oracle algorithm can reconstruct it. This is the main technical challenge of our
proof and takes up the remaining part of Section 4.4

4 As is evident from Scheme 23, we prove Theorems 17 and 18 relative to a quantum oracle (or rather, a
pair of quantum oracles) sampled from a probability distribution rather than a fixed quantum oracle.
However, as mentioned in the introduction to the paper, this is not a weakness, as a straightforward
transformation allows fixing the randomness at the cost of the proof becoming non-constructive. For
details, refer to the full version of the paper [29].
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4.2 Proof of Unreconstructibility
We wish to prove that Scheme 23 cannot be efficiently reconstructed by efficient quantum
oracle algorithms in the average case. We prove this in a sequence of three stages, beginning
with a simplified version of the scheme without a cloning oracle, then moving to one with an
oracle that can only clone a single state, and finally to the full scheme with the full cloning
oracle.

4.2.1 With No Cloning Oracle
In the first stage, we consider an adversary, R, which is a quantum oracle algorithm with
advice. R is given a polynomial length advice string az, and is allowed a polynomial number
of queries to the random oracle. It is tasked with producing a state that passes verification
for z, namely the positive uniform superposition over all the preimages of z in the random
oracle. Note that this first version does not yet have access to a cloning oracle of any sort.

▶ Proposition 24. Let R be a quantum oracle algorithm that is given a classical advice
string az ∈ {0, 1}ℓ for some polynomial ℓ in n, and makes q queries to the random oracle,
where q is a polynomial in n. For z ∈ {0, 1}n drawn uniformly at random, R cannot output
a quantum state that passes verification for z with probability that is non-negligible in n.5

Proof. The main idea is that if R were able to produce the target state |ψz⟩ with non-
negligible probability, then it can also do so without the advice by guessing the advice string,
albeit with significantly lower probability. Measuring |ψz⟩ then gives a random preimage of
the random oracle, and we can do this multiple times to produce several preimages of the
same image z, producing a multi-collision for the random oracle, which is harder to do than
this method would give.

We now give the proof. Suppose, for the sake of contradiction, that R, when given advice
string az, makes q queries to the random oracle and then produces the mixed state ρz which
passes verification for z with non-negligible probability η (that is, ⟨ψz| ρz |ψz⟩ ≥ η). We use
R to produce a large number of disjoint collisions of the oracle.

Let H−1(z) be the set of preimages of z in H. We have that with high probability,
|H−1(z)| ≥ Ω(2m−n). Let Γ ⊂ H−1(z) be an arbitrary polynomial sized subset of H−1(z),
and let Π be the binary projective measurement that projects onto the preimages of z
that are not in Γ, that is, onto the computational basis states H−1(z) \ Γ. We have that
⟨ψz|Π |ψz⟩ ≥ 1−ϵ for ϵ = |Γ|

|H−1(z)| ∈ negl(n). Given that ⟨ψz| ρz |ψz⟩ ≥ η, we apply Lemma 9
to get that tr(Πρi) ≥ η(1− ϵ)− 2

√
ϵ(1− η) ≥ 1

2η for sufficiently large n. In other words, for
any polynomial sized subset of preimages, and for sufficiently large n, we have that measuring
ρz will with non-negligible probability give a preimage of z outside that subset.

Let k be a sufficiently large polynomial in n, for instance let k = 2n(ℓ + 1) (note that
ℓ is itself a positive integer bounded by a polynomial in n). We run R repeatedly (on the
same target label z and advice az) a total of 8k/η times and measure the outcome in the
computational basis, with the goal of producing at least 2k unique preimages of z. By a
Chernoff bound, this then succeeds with constant probability Ω(1): that is, if X is the
number of valid unique preimages, Pr

[
X ≤ 1

2 (4k)
]
≤ e−4k/8 = e−n(ℓ+1) ≤ 1/2. Finally,

5 Note that the advice string, az, may in general contain any information, including, for instance, any
details about the set of preimages of z in H, or any other useful information about the task. We
show here that no polynomial amount of classical information of any kind will allow R to faithfully
reconstruct the state.



B. Nehoran and M. Zhandry 82:15

because every pair of unique preimages is a collision, this gives k disjoint collisions of the
random oracle. That is, this process therefore produces k disjoint collisions with constant
probability Ω(1).

Now, if this process succeeds given the advice az ∈ {0, 1}ℓ, then it can also succeed
without being given advice, though with a much lower probability, by guessing the advice
string with probability 2−ℓ, for an overall success probability of at least Ω(2−ℓ).

To recap, this gives an quantum oracle algorithm for producing k disjoint collisions of a
random oracle which makes t = 8kq/η oracle queries and succeeds with probability at least
Ω(2−ℓ).

On the other hand, we recall the following theorem from Hamoudi and Magniez [21]:

▶ Theorem 25 (Theorem 4.6 from [21]). The success probability of finding K disjoint collisions
in a random function f : [M ]→ [N ] is at most O(T 3/(K2N))K/2 + 2−K for any algorithm
making T quantum queries to f and any 1 ≤ K ≤ N/8.

Applying the bound from the above Theorem 25 with T = 8kq/η, K = k, M = 2m and
N = 2n, the success probability for this task must be at most

O

(
T 3

K2N

)K/2

+ 2−K = O

(
(8kq/η)3

k22n

)k/2

+ 2−k = O

(
kq3

η32n

)k/2

+ 2−k

≤ 2−Ω(k) ≤ 2−Ω(n(ℓ+1))

There therefore exists a sufficiently large n, for which this is a contradiction. This
completes the proof of Proposition 24. ◀

4.2.2 With a Limited Cloning Oracle
In the second stage, we allow R access to a limited cloning oracle which can clone only the
target state.

▶ Definition 26. Let z be a label and |ψz⟩ the corresponding quantum state from the scheme.
A z-cloning oracle, Cz, is a cloning oracle for the singleton set {|ψz⟩}.

▶ Proposition 27. Let R be a quantum oracle algorithm that is given a classical advice string
az ∈ {0, 1}ℓ for some polynomial ℓ in n, and makes q queries (where q is a polynomial in n)
to the random oracle as well as a z-cloning oracle. Let R′ be a run of R where queries
to the z-cloning oracle are instead returned unmodified (or equivalently, passed to a dummy
oracle which acts as the identity). Then the total variation distance between the outcomes of
the two runs is negligible in n.

Proof. The idea is that since the z-cloning oracle and the dummy oracle differ only on the
basis states where the first register is |ψz⟩, if R puts low query weight on those basis states,
then swapping between the oracles can only make minimal difference.

We now give the proof. Consider an adversary R which, when given advice string az,
makes k queries to the random oracle and q queries to the z-cloning oracle. Let R′ be a
quantum oracle algorithm which simulates a run of R in which the z-cloning oracle is replaced
by a dummy oracle (an oracle which acts as the identity on all states) by ignoring all of the
z-cloning oracle queries (equivalent to performing the identity on each one).

For each t ∈ [q], let R′t be a version of R′ in which the simulation is stopped prematurely
at cloning query number t and which then outputs the first register of the query input. Let
ρ′t be the reduced density matrix of the outputted state. Because the runs of R′ and R′t
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are identical up until R′t stops and outputs cloning query number t, ρ′t is also the reduced
state of the first query register when R′ requests query number t. Let η′t := ⟨ψz|ρ′t|ψz⟩ be
the probability that ρ′t would pass verification for z. As above, since each R′t is a quantum
oracle algorithm with advice that satisfies the conditions of Proposition 24, all the η′t must
be negligible in n.

Choose a basis {|χi⟩}i∈[0,dim (H)] for H′ := H ⊕ |⊥⟩ as in Definition 19, that includes
|χ0⟩ := |⊥⟩ and |χz⟩ := |ψz⟩ as two basis elements. Let D be a unitary from this basis
into the computational basis that sends |ψz⟩|⊥⟩ to |z⟩|0⟩ and |ψz⟩|ψz⟩ to |z⟩|1⟩ and which
arbitrarily assigns all other orthogonal states to computational basis states. (For example,
let B =

∑
i |i⟩⟨χi|, let C =

∑
ij /∈{(z,1),(z,z)} |i⟩|j⟩⟨i|⟨j| + |z⟩|1⟩⟨z|⟨z| + |z⟩|z⟩⟨z|⟨1|, and let

D = C · (B ⊗B).)
In this basis, both the z-cloning oracle and the dummy oracle can be expressed as

applications of binary classical functions on all but the last bit. The z-cloning oracle
becomes an application of the classical indicator function for the string (z, 0m−1): f=z(x) ={

1 x = (z, 0m−1)
0 otherwise

, and the dummy cloning oracle becomes an application of the all-zero

function f∅(x) = 0. Let O=z be the unitary application of the indicator function, f=z(x)
above, which XORs the result into the last bit. Then the z-cloning oracle can be expressed as
Cz = D†O=zD, and the dummy oracle can be expressed as C∅ = D†OidentityD = D†ID = I.

The algorithms R, R′, and {R′t}t∈[q] can therefore be reformulated as quantum oracle
algorithms that direct cloning queries to the classical oracles O=z in the case of R, or Oidentity
in the case of R′ and {R′t}t∈[q]. That is, before they make a cloning query, they apply the
change of basis D into the computational basis. They then query O=z or Oidentity, and then
apply the change of basis D† back to the original basis. Call the versions of R, R′, and
{R′t}t∈[q] in this new basis R, R′, and {R′t}t∈[q].

Note that the only difference between R and R′ is that cloning queries to O=z in R are
redirected to Oidentity in R′. Furthermore, O=z and Oidentity only differ on inputs where the
first register is |z⟩.

We now therefore compute the query magnitude of cloning queries of R′ on |z⟩. The
state of the first register of cloning query number t of R′ to Oidentity is given by Bρ′tB† =∑

i,j |i⟩⟨χi| ρ′t |χj⟩⟨j|. The query magnitude on |z⟩ is then ⟨z|
(∑

i,j |i⟩⟨χi| ρ′t |χj⟩⟨j|
)
|z⟩ =

⟨χz|ρ′t|χz⟩ = ⟨ψz|ρ′t|ψz⟩ = η′t.
We now apply Theorem 8 on the set F := {(i, y) | i ∈ [q], y = z} and ε :=

√
T
∑T

t=1 η
′
t,

with T := q. The sum of the query magnitudes of R′ on F is then
∑T

t=1 η
′
t ≤ ε2

T . Let |ϕ⟩
and |ϕ′⟩ be the states outputted by R and R′ respectively (and therefore also by R and R′

respectively). Since R is identical to R′, with the only difference being that the cloning oracle
queries are modified on the set F , then by Theorem 8,

∣∣|ϕ⟩ − |ϕ′⟩∣∣ ≤ ε. By Theorem 6, then,
the total variation distance between runs of R and R′ is therefore at most 4ε = 4

√
q
∑q

t=1 η
′
t,

which is negligible, since all the η′t are negligible and q is a polynomial. ◀

▶ Corollary 28. Let R be a quantum oracle algorithm that is given a classical advice string
az ∈ {0, 1}ℓ for some polynomial ℓ in n, and makes q queries (where q is a polynomial in n)
to the random oracle as well as a z-cloning oracle. For z ∈ {0, 1}n drawn uniformly at
random, R cannot output a quantum state that passes verification for z with probability that
is non-negligible in n.

Proof. Suppose that R, when given advice string az, makes k queries to the random oracle
and q queries to the z-cloning oracle, and then produces a state ρz which passes verification
for z with probability η. As in Proposition 27, let R′ be a run of R in which queries to the
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z-cloning oracle are returned unmodified. R′ is then a quantum oracle algorithm with advice
that satisfies the conditions of Proposition 24, so it must have negligible success probability
η′. By Proposition 27, the total variation distance between runs of R and R′ is negligible in
n so η is at most negligibly larger than η′, and thus negligible as well. ◀

4.2.3 With the Full Cloning Oracle
In the third stage, we finally allow R access to the full cloning oracle, which clones all valid
states of the scheme while doing nothing for invalid states.

▶ Proposition 29. Let R be a quantum oracle algorithm that is given a classical advice string
az ∈ {0, 1}ℓ for some polynomial ℓ in n, and makes q queries (where q is a polynomial in n)
to the random oracle and a full cloning oracle for the set of valid states. For z ∈ {0, 1}n

drawn uniformly at random, R cannot output a quantum state that passes verification for z
with probability that is non-negligible in n.

Proof. Note that in showing this, we are demonstrating that the ability to clone other valid
states does not help it produce the target state. The idea is use R to produce a new adversary
R′ which queries just the z-cloning oracle with comparable success. Ideally we would take
a z-cloning oracle and simply simulate the rest of the cloning oracle (for states other than
the target state) by using the random oracle. However, such a simulation would require a
large number of queries to the random oracle and thus be highly inefficient. We get around
this issue by creating an imposter random oracle and simulating cloning queries relative to it
rather than relative to the original random oracle. We must show first that the impostor
random oracle is indistinguishable from the original random oracle, and second that it is
possible to approximately simulate cloning queries to the impostor oracle.

We now give the proof. Consider an adversary R which, when given advice string az,
makes q queries to the random oracle and the full cloning oracle, and then with probability
η produces a state |ψz⟩ which passes verification for z. We use R to produce a similar
algorithm, R′, which only makes cloning queries to the z-cloning oracle, and which must
succeed with comparable probability. We produce R′ as follows:

We first sample a private random function, Hprivate : {0, 1}m → {0, 1}n \ {z}, which has
a limited codomain such that it does not output z. That is, for each input, independently
choose a uniformly random element of {0, 1}n \ {z}.

We then create an impostor random oracle, Himpostor : {0, 1}m → {0, 1}n, by combining
the original and private random oracles in the following way:

Himpostor(x) =
{
z H(x) = z

Hprivate(x) otherwise

That is, on query input x, if x is a preimage of z in H, it passes the query to the original
random oracle, producing z, but otherwise passes it to the newly sampled private random
oracle.

We also create a cloning oracle relative to this impostor random oracle, Cimpostor. This
impostor cloning oracle clones the states that are valid for the impostor random oracle, which
will in general be different than the set of valid states of the original random oracle. We
claim that the impostor oracles perfectly mimic the originals.

▷ Claim 30. The joint distribution of target image z and the impostor random oracle
Himpostor is identical to that of z and H. That is, Himpostor is distributed as a uniform
random oracle conditioned on z being one of its images.

ITCS 2024



82:18 A Computational Separation Between Quantum No-Cloning and No-Telegraphing

Proof. To show this, we begin giving an equivalent lazy method of sampling the random
oracle H, along with sampling the target image z.

First, we choose a random element x∗ ∈ {0, 1}m in the domain of H. We then randomly
choose z ∈ {0, 1}n as both its image in H and as the target image. Then, for each of the
remaining elements of the domain of H, sample a random image from its range.

We now describe a similar method for lazily sampling the impostor random oracle
Himpostor, along with the target image z.

As before, we choose a random element x∗ ∈ {0, 1}m in the domain, and a random image
z ∈ {0, 1}n as both its image in Himpostor and as the target image. For each remaining
element, x, of the domain, we first sample a random image y. If y ̸= z, resample an
independent sample y′ from {0, 1}n \ {z} to be the image of x. Since, conditioned on y ̸= z,
y is uniform on {0, 1}n \ {z}, and so is y′, the resampled image y′ is identically distributed
to the original y. The extra resampling performed to sample Himpostor thus has no effect
on the distribution, so this process produces a distribution identical to the one above for
sampling H and z. ◁

As a consequence, no quantum oracle algorithm can tell the difference between query
access to the original oracles H and CH , and query access to the impostor oracles Himpostor
and Cimpostor. That is, an algorithm R′′ which simulates R and redirects its oracle queries to
the impostor oracles will succeed with the same probability η.

This completes the first part, showing that the impostor oracles are perfect replacements
for the original oracles. It now remains to show that the impostor oracles can be simulated
efficiently in terms of the number of queries to the original random oracle H and a z-cloning
oracle Cz.

Note that implementing Cimpostor using H and Cz may be query inefficient. We therefore
create a new efficient impostor cloning oracle Ĉimpostor, which for each query only makes a
constant number of queries to H and Cz, but which nevertheless performs nearly as well as
the inefficient Cimpostor.

We would like to define Ĉimpostor by saying that it acts on computational basis states
approximately as

Ĉimpostor|x⟩|y⟩ =
{
Cz|x⟩|y⟩ H(x) = z

Cprivate|x⟩|y⟩ otherwise

However, in reality, this is not unitary, since the resulting states will not be exactly orthogonal.
We instead define it with an additional ancilla qubit as follows:

Define the following two unitaries acting on an ancilla qubit |b⟩ as well as the two input
registers (of the cloning oracle).

U1|b⟩|x⟩|y⟩ =
{
|b⊕ 1⟩|x⟩|y⟩ H(x) = z

|b⟩|x⟩|y⟩ otherwise

U2|b⟩|x⟩|y⟩ =
{
|b⟩ ⊗ Cz|x⟩|y⟩ b = 1
|b⟩ ⊗ Cimpostor|x⟩|y⟩ otherwise

The action of Cimpostor with an extra ancilla qubit can be expressed as I ⊗
Cimpostor |0⟩ |x⟩ |y⟩ = U1U2U1 |0⟩ |x⟩ |y⟩. That is, after applying U1, then U2 acts as I⊗Cimpostor
because whenever H(x) = z, then Cz|x⟩|y⟩ = CH |x⟩|y⟩ = Cimpostor|x⟩|y⟩. Furthermore, for
any x ∈ {0, 1}m, the support of the state Cimpostor|x⟩|y⟩ is only on computational basis states
|x′⟩|y′⟩ such that H(x′) = z ⇔ H(x) = z, which implies that the second application of U1
properly uncomputes its own action on the ancilla qubit.
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We now define a modified version of U2, but which makes no use of Cimpostor, and instead
uses Cprivate, the cloning oracle relative to Hprivate:

Û2|b⟩|x⟩|y⟩ =
{
|b⟩ ⊗ Cz|x⟩|y⟩ b = 1
|b⟩ ⊗ Cprivate|x⟩|y⟩ otherwise

We thus define Ĉimpostor = U1Û2U1, which we note makes two queries to H and one query6

to Cz on each application (note that Cprivate uses no oracle queries as it can be simulated
directly using the private random function Hprivate). It remains to show that, when the
ancilla qubit is initialized to |0⟩, Ĉimpostor cannot be distinguished from I ⊗ Cimpostor. That
is, we show that it is a good efficient approximation for Cimpostor.

We observe that the actions of I ⊗ Cimpostor and Ĉimpostor differ only in whether they
apply Cimpostor or Cprivate (in U2 and Û2 respectively) on the two non-ancilla registers, and
only on basis states for which the first of those registers is not a preimage of z. In fact they
differ only by a change of basis between a basis that includes the preimage superposition set
of Hprivate and one that includes the preimage superposition set of Himpostor.

Taking a closer look at Himpostor and Hprivate, the only difference between the functions is
that the domain elements that are preimages of the target image z in Himpostor are reassigned
to another random image in Hprivate. Moreover, since the difference we observe in this setting
is only for domain elements that do not map to z in H (and thus in Himpostor), we can set
aside z in the analysis and focus on the other images.

Let |ψi⟩ and |ψ̂i⟩ be the respective preimage superposition states of Himpostor and Hprivate

for image i ∈ {0, 1}n \ {z}. Let θi := cos−1
(
⟨ψi|ψ̂i⟩

)
be the small angle between them.

Further, let |ψz→i⟩ be the equal positive superposition over any preimages of the target
image, z, in Himpostor that were reassigned to image i in Hprivate. Then we can write
|ψ̂i⟩ = cos(θi)|ψi⟩+ sin(θi)|ψz→i⟩.

Note that for all i ̸= j, ⟨ψi|ψ̂j⟩ = cos(θj)⟨ψi|ψj⟩ + sin(θj)⟨ψi|ψz→j⟩ = 0 because the
supports of the states (that is, their sets of preimages) are disjoint (where note again that
we exclude the target image z here). And of course, each of the preimage superposition sets
is orthogonal within the set: ⟨ψi|ψj⟩ = ⟨ψ̂i|ψ̂j⟩ = 0 ∀i ̸= j.

We can therefore partition the Hilbert space into 2n − 1 orthogonal planes, each of which
is spanned by a |ψi⟩ and its corresponding |ψ̂i⟩ (or |ψz→i⟩), as well as a remaining space
orthogonal to all those planes. With this perspective, the change of basis that differentiates
between Cimpostor and Ĉimpostor can be described as a small rotation of angle θi in each of
these planes and the identity in the remaining space.

U3 := I −
∑

i

(
|ψi⟩⟨ψi|+ |ψz→i⟩⟨ψz→i|

)
+
∑

i

(
cos(θi)|ψi⟩+ sin(θi)|ψz→i⟩

)
⟨ψi|+

(
− sin(θi)|ψi⟩+ cos(θi)|ψz→i⟩

)
⟨ψz→i|

Then,

I ⊗ Cimpostor |0⟩ |x⟩ |y⟩ = U1U2U1 |0⟩ |x⟩ |y⟩ and Ĉimpostor = U1(U†3 ⊗ U
†
3 )U2(U3 ⊗ U3)U1

6 Note that it is straightforward to implement a controlled version of Cz using a single query to Cz , as it
is for any oracle for which a fixed state, on which it acts as the identity, is known. In this case, the
fixed state is |⊥⟩|⊥⟩. To do so, we prepare the state |⊥⟩|⊥⟩ in an ancilla register. We then apply a
0-controlled SWAP gate between this register and the input register on which Cz acts, once before and
then then once again after applying Cz . If the control is a 0, then the fixed state |⊥⟩|⊥⟩ is swapped in,
neutralizing the application of the oracle. If the control is a 1, then nothing is swapped and the oracle
acts as expected.
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It therefore suffices to show that U3 cannot be distinguished from the identity except
with negligible advantage. Specifically, we want to show that the eigenvalues of I −U3 are all
negligible. That’s because if the magnitudes of all the eigenvalues of I−U3 are bounded from
above by a negligible function ε, then given any quantum state |ϕ⟩ before the application of
U3 or I, and any subsequent transformation, we have that the resulting Euclidean distance
is
∥∥|ϕ⟩ − U3|ϕ⟩

∥∥ =
∥∥(I −U3)|ϕ⟩

∥∥ ≤ ε, and thus by Theorem 6, when replacing I with U3, the
probability of success can change by at most 4ε.

Since I −U3 acts independently on and maintains the 2n− 1 orthogonal planes, it suffices
to look at each plane individually. Specifically, its non-zero eigenvalues come in pairs of
magnitude

|λi| = |1− e±iθi | = |1− cos(θi)∓ i sin(θi)| =
√

(1− cos(θi))2 + sin2(θi)

=
√

2(1− cos(θi)) =
√

2
(

1− ⟨ψi|ψ̂i⟩
)

In order to further break this down, let ki be the number of preimages of i in Himpostor
and let kz→i be the number of preimages of the target image, z, in Himpostor that were
reassigned to image i in Hprivate. We evaluate the inner product as

⟨ψi|ψ̂i⟩ =

 1√
ki

∑
x|Himpostor(x)=i

⟨x|

 1√
ki + kz→i

∑
x|Hprivate(x)=i

|x⟩


=
√

ki

ki + kz→i
=
√

1− kz→i

ki + kz→i
≥ 1− kz→i

ki + kz→i

which gives

|λi| =
√

2
(

1− ⟨ψi|ψ̂i⟩
)
≤
√

2kz→i

ki + kz→i

The following claim frames this bound in terms of n.

▷ Claim 31. With overwhelming probability in the choice of H and Hprivate, for all
i ∈ {0, 1}n \ {z}, we have that

kz→i

ki + kz→i
≤ 72n · 2−n

Proof. We show that the following all happen with overwhelming probability:
a) for all i ∈ {0, 1}n \ {z}, ki >

1
2 · 2

m−n

b) 1
2 · 2

m−n < kz < 3 · 2m−n

c) for all i ∈ {0, 1}n \ {z}, kz→i < 36n · 2m−2n

First we show that with overwhelming probability, for all i ∈ {0, 1}n \{z}, ki >
1
2 ·2

m−n.
The expected number of preimages of any image i is E[ki] = 2m−n. By a Chernoff bound,
P [ki ≤ 1

2 (2m−n)] ≤ e− 1
8 ·2

m−n for any particular image i. By a union bound over the 2n − 1
images, the probability that for any i, ki ≤ 1

2 (2m−n), is at most 2n ·e− 1
8 ·2

m−n ≤ e−( 1
8 ·2

m−n−n),
which is negligible in n as we have that m ≥ 2n.

We next bound the number of preimages of the target image z. Specifically, we show that
1
2 · 2

m−n < kz < 3 · 2m−n. The lower bound is identical to the one above for the other ki’s.
The upper bound is given by another Chernoff bound as P [kz ≥ 3(2m−n)] ≤ e−2m−n , which
is likewise negligible in n.



B. Nehoran and M. Zhandry 82:21

Finally, we bound the number of preimages of z in Himpostor that can be mapped to any
one i in Himpostor. Specifically, we show that for all i ∈ {0, 1}n \ {z}, kz→i < 36n · 2m−2n.
Since we just showed that with overwhelming probability, z has at least 1

2 · 2
m−n and at

most 3 · 2m−n preimages, the expected number of these preimages distributed to each of
the 2n − 1 other images is bounded by 1

2 · 2
m−2n < E[kz→i] < 6 · 2m−2n. By a Chernoff

bound, P [kz→i ≥ 6n(6 · 2m−2n)] ≤ e−
25n2
2+5n ·

1
2 ·2

m−2n

≤ e−
3
2 n·2m−2n for any particular image

i. As before, by a union bound over the 2n − 1 images, the probability that for any i,
kz→i ≥ 36n · 2m−2n is at most 2n · e− 3

2 n·2m−2n ≤ e−( 3
2 n·2m−2n−n) which is negligible in n as

m ≥ 2n.
Putting these three things together, by a union bound over the three above events, with

all but a negligible probability in n, for all i,

kz→i

ki + kz→i
≤ 36n · 2m−2n

1
2 · 2m−n

= 72n · 2−n ◁

We therefore get an upper bound of ε := 12
√
n · 2−n/2 on the eigenvalues of I −U3, which

is negligible in n, and therefore, as shown above, an upper bound of 4ε on the change in
success probability incurred by replacing I with U3.

We now use a standard hybrid argument over the at most 4q locations where U3 might
appear. We start with R′′, for which all such locations have the identity, and for which the
success probability is the original success probability of R, namely η. One at a time, we
insert a U3 at each location, each time incurring a loss of at most 4ε in the success probability.
With all 4q applications of U3, we therefore get a success probability η′ of at least η−16qε−γ
(where γ is an additional negligible loss from the negligible chance that the sampled H and
Hprivate are not covered by Claim 31).

We therefore construct R′ in this way as a quantum oracle algorithm with advice with
query access to the original random oracle H and a z-cloning oracle Cz. It simulates R and
redirects its oracles queries: Whenever R makes a random oracle query, it redirects the query
to its own simulated Himpostor, which makes at most a single query to H. Whenever R
makes a cloning oracle query, it redirects the query to its Ĉimpostor, which makes at most
one query to Cz and two to H. R′ thus satisfies the conditions of Corollary 28, so its success
probability η′ ≥ η − 16qε − γ must be negligible. Therefore, η, the success probability of
R, must be negligible, thus completing the proof of Proposition 29, and as a consequence,
completing the proof of our main theorems, Theorem 18 and Theorem 17. ◀
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