
On the Size Overhead of Pairwise Spanners
Ofer Neiman #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Idan Shabat #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Given an undirected possibly weighted n-vertex graph G = (V, E) and a set P ⊆ V 2 of pairs, a
subgraph S = (V, E′) is called a P-pairwise α-spanner of G, if for every pair (u, v) ∈ P we have
dS(u, v) ≤ α · dG(u, v). The parameter α is called the stretch of the spanner, and its size overhead is
define as |E′|

|P| .
A surprising connection was recently discussed between the additive stretch of (1+ ϵ, β)-spanners,

to the hopbound of (1 + ϵ, β)-hopsets. A long sequence of works showed that if the spanner/hopset
has size ≈ n1+1/k for some parameter k ≥ 1, then β ≈

(
1
ϵ

)log k. In this paper we establish a new
connection to the size overhead of pairwise spanners. In particular, we show that if |P| ≈ n1+1/k,
then a P-pairwise (1 + ϵ)-spanner must have size at least β · |P| with β ≈

(
1
ϵ

)log k (a near matching
upper bound was recently shown in [18]). That is, the size overhead of pairwise spanners has similar
bounds to the hopbound of hopsets, and to the additive stretch of spanners.

We also extend the connection between pairwise spanners and hopsets to the large stretch regime,
by showing nearly matching upper and lower bounds for P-pairwise α-spanners. In particular, we
show that if |P| ≈ n1+1/k, then the size overhead is β ≈ k

α
.

A source-wise spanner is a special type of pairwise spanner, for which P = A × V for some
A ⊆ V . A prioritized spanner is given also a ranking of the vertices V = (v1, . . . , vn), and is required
to provide improved stretch for pairs containing higher ranked vertices. By using a sequence of
reductions: from pairwise spanners to source-wise spanners to prioritized spanners, we improve
on the state-of-the-art results for source-wise and prioritized spanners. Since our spanners can be
equipped with a path-reporting mechanism, we also substantially improve the known bounds for
path-reporting prioritized distance oracles. Specifically, we provide a path-reporting distance oracle,
with size O(n · (log log n)2), that has a constant stretch for any query that contains a vertex ranked
among the first n1−δ vertices (for any constant δ > 0). Such a result was known before only for
non-path-reporting distance oracles.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Graph Algorithms, Shortest Paths, Spanners

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.83

Related Version Full Version: https://arxiv.org/pdf/2311.13673.pdf

Funding Partially supported by the Lynn and William Frankel Center for Computer Sciences and
ISF grant 970/21.

1 Introduction

Spanners and hopsets are basic graph structures that have been extensively studied, and found
numerous applications in graph algorithms, distributed computing, geometric algorithms,
and many more. In this work we study pairwise spanners, and prove an intriguing relation
between pairwise spanners, general spanners, and hopsets. We then derive several new results
on source-wise and prioritized spanners and distance oracles.

© Ofer Neiman and Idan Shabat;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 83; pp. 83:1–83:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neimano@cs.bgu.ac.il
mailto:shabati@post.bgu.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2024.83
https://arxiv.org/pdf/2311.13673.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 On the Size Overhead of Pairwise Spanners

Let G = (V, E) be an undirected n-vertex graph, possibly with nonnegative weights on
the edges. An (α, β)-spanner is a subgraph S = (V, E′) such that for every pair u, v ∈ V

dS(u, v) ≤ α · dG(u, v) + β , (1)

where dG, dS stand for the shortest path distances in G, S, respectively. A spanner is called
near-additive if its multiplicative stretch is α = 1 + ϵ for some small ϵ > 0.1 Given a set
P ⊆ V 2 of pairs, a P-pairwise α-spanner for G has to satisfy Equation (1) (with β = 0) only
for pairs (u, v) ∈ P . The size overhead of a pairwise spanner is defined as |E′|

|P| . A source-wise
spanner2 is a special type of pairwise spanner, in which P = A × V for some set A ⊆ V .

An (α, β)−hopset for a graph G = (V, E) is a set of edges H ⊆
(

V
2
)

such that for every
u, v ∈ V ,

d
(β)
G∪H(u, v) ≤ α · dG(u, v) .

Here, G ∪ H denotes the graph G with the additional edges of H, and the weight function
w(x, y) = dG(x, y) for every {x, y} ∈ H. The notation d

(β)
G∪H(u, v) stands for the weight of

the shortest u − v path in this graph, among the ones that contain at most β edges. A hopset
is called near-exact if its stretch is α = 1 + ϵ for some small ϵ > 0.

1.1 Pairwise Spanners, Near-additive Spanners, and Hopsets
In [16, 21], a connection was discussed between the additive stretch β of near-additive
spanners, to the hopbound β of near-exact hopsets. Given an integer parameter k ≥ 1, that
governs the size of the spanner/hopset to be ≈ n1+1/k, a sequence of works on spanners
[17, 29, 26, 2, 13, 12] and on hopsets [8, 6, 19, 23, 14, 20, 15], culminated in achieving

β = O
(

log k
ϵ

)log k

for both spanners and hopsets. In [2] a lower bound of β ≥ Ωk

(1
ϵ

)log k−1

was shown. So whenever ϵ is sufficiently small, we have that β ≈
(1

ϵ

)log k. As spanners
and hopsets are different objects, and β has a very different role for each, this similarity is
somewhat surprising (albeit comparable techniques are used for the constructions).

In this paper we establish an additional connection, to pairwise spanners. Here the
parameter k governs the number of pairs, |P| ≈ n1+1/k,3 and we show that P-pairwise
(1 + ϵ)-spanners must have size at least β · |P| with β ≈

(1
ϵ

)log k. So the parameter β, which
is the additive stretch for near-exact spanners, and is the hopbound for hopsets, now plays
the role of the size overhead for pairwise spanners.

An exact version of pairwise spanners (i.e., with α = 1) was introduced in [9], where
they were called distance preservers. The sparsest distance preservers that are currently
known are due to [9, 7]. For an n-vertex graph and a set of pairs P, they have size
O
(
min{n2/3|P|, n|P|1/2} + n

)
. So whenever |P| ≤ n2−δ for some constant δ > 0, the size

overhead β is polynomial in n.
When considering near-exact pairwise spanners, following [21], in [18] a P-pairwise

(1 + ϵ)-spanner of size ≈ β · |P|, with β = O
(

log k
ϵ

)log k

was shown (where k is such that
|P| ≈ n1+1/k).

1 Spanners with additive stretch β > 0 are usually defined on unweighted graphs. A possible variation for
weighted graph has also been studied [12, 3], in which β is multiplied by the weight of the heaviest edge
on some u − v shortest path.

2 Source-wise spanners were called terminal spanners in [11].
3 In this paper we focus on P-pairwise spanners with |P| ≥ n. Note that for |P| < n there is a trivial

Ω(n) lower bound on the size.

O. Neiman and I. Shabat 83:3

Our Results

In this paper we show a near matching lower bound for P-pairwise (1 + ϵ)-spanners, that

β ≥ Ω
(

1
log2 k·ϵ

)log k−1
, establishing that the size overhead must be β ≈

(1
ϵ

)log k. We derive
this lower bound by a delicate adaptation of the techniques of [2] to the case of pairwise
spanners.

1.1.1 Larger Stretch Regime
As the stretch grows to be bounded away from 1, the connection between spanners and
hopsets diminishes (note that the lower bound of [2] is meaningless for large stretch). For
size ≈ n1+1/k and constant stretch α, one can obtain (α, β)-spanners and hopsets with
β ≈ k1+1/ log α [5, 24]. However, as the stretch grows to α = kδ (for some constant 0 < δ < 1),
there is a hopset with β ≈ k1−δ [5, 24], while spanners must have β = Ω(k).4 In [24], a lower
bound of β = Ω

(
k
α

)
for hopsets was shown.

Our Results

In this work we exhibit a similar tradeoff for pairwise spanners, as is known for hopsets.5
In particular, we devise a P-pairwise α-spanner with size β · |P| where β ≈ k1+1/ log α

α (and
k is such that |P| ≈ n1+1/k). We also show a lower bound β = Ω

(
k
α

)
on the size overhead

of such pairwise spanners. Note that this lower bound nearly matches the upper bound for
α ≥ kδ for any constant δ > 0, and in this regime we have β ≈ k

α for both hopsets and
pairwise spanners.

1.2 Source-wise and Prioritized Spanners and Distance Oracles
Source-wise spanners were first studied by [27, 25]. Given an integer parameter k ≥ 1 and a
subset A ⊆ V of sources, they showed a source-wise spanner with stretch 2k − 1 and size
O(kn · |S|1/k) (the spanners of [27] could also be distance oracles, while [25] had slightly
improved stretch 2k − 2 for some pairs). By increasing the stretch to 4k − 1, [11] obtained
improved size O(n +

√
n · |S|1+1/k). The current state-of-the-art result is by [21]. For any

0 < ϵ < 1, they gave a source-wise spanner with stretch 4k −1+ ϵ and size O(n+ |S|1+1/k) ·β,

where β ≈
(

log log n
ϵ

)log log n

.
Given an undirected possibly weighted graph G = (V, E), a prioritized metric structure

(such as spanner, hopset, distance oracle) is also given an ordering of the vertices V =
(v1, . . . , vn), and is required to provide improved guarantees (e.g., stretch, hopbound, query
time, etc.) for higher ranked vertices.

In [10], among other results, prioritized distance oracles for general graphs were shown.6
For an n-vertex graph with priority ranking (v1, . . . , vn), a distance oracle with size
O(n log log n), query time O(1), and stretch O

(
log n

log n−log j

)
for any pair containing vj was

shown.7 Note that the stretch is constant for any pair containing a vertex ranked among

4 Note that an (α, β)-spanner is also an (α + β, 0)-spanner. Thus, with size n1+1/k it must have α + β ≥ k
[4].

5 For stretch 3 + ϵ with 0 < ϵ < 1, a pairwise spanner of size β · |P| with β ≈ klog 3+O(log(1/ϵ)) was shown
in [18]. However, we are not aware of any result for larger stretch.

6 A distance oracle is a data structure that can efficiently report approximate distances. The parameters
of interest are usually the query time, the size, and the multiplicative stretch.

7 Additional results with even smaller size and larger stretch were shown in [10] as well.

ITCS 2024

83:4 On the Size Overhead of Pairwise Spanners

the first n1−δ vertices (for constant δ > 0). However, that distance oracle could only return
distances, and could not report paths. In [10] an additional path-reporting distance oracle
was shown. Given an integer parameter k ≥ 1, it had size O(kn1+1/k), stretch 2

⌈
k log j
log n

⌉
− 1

for pairs containing vj , and query time O
(⌈

k log j
log n

⌉)
. Note that this oracle size is Ω(n log n)

for any k, and with size O(n log n) it has prioritized stretch 2 log j − 1, which is much worse
than the stretch that the previous oracle had for higher ranked vertices.

Our Results

By using a sequence of reductions, from pairwise spanners to source-wise spanners to
prioritized spanners, we improve on the state-of-the-art results. In particular, for any integer
parameter k ≥ 1, any 0 < ϵ < 1, and a subset A ⊆ V , we obtain a source-wise spanner with
stretch 4k − 1 + ϵ and size O(n log log n + |S|1+1/k · β) where β ≈

(
log log n

ϵ

)log log n

. Note
that β only multiplies the term |S|1+1/k, which could be much smaller than n, while in [21]
the size is always at least Ω(n · β).

Using the fact that the constructions of pairwise spanners can also be path-reporting, and
that our reductions preserve this property, we devise path-reporting distance oracles with size
O(n(log log n)2), query time O(1), and prioritized stretch O

(
log n

log n−log j−o(log log n)2

)
. That

is, we nearly achieve the improved parameters of the non-path-reporting oracles of [10] (in
particular, we get constant stretch for any pair containing a vertex ranked among the first
n1−δ vertices).

1.3 Technical Overview

1.3.1 Lower Bound for Near-Exact Pairwise Spanners
In [2], a series of lower bounds was shown for graph compression structures, such as near-
additive spanners, emulators, distance oracles and hopsets. Specifically, for the first three,
[2] proved that for any positive integer κ, any such structure with size O(n1+ 1

2κ−1), that
preserves distances d up to (1 + ϵ)d + β, must have β = Ω

(1
ϵκ

)κ−1. Almost the same lower
bound8 was proved by [2] for (1 + ϵ, β)-hopsets of size O(n1+ 1

2κ−1).
All the lower bounds mentioned above were demonstrated in [2] on essentially the same

graph. The construction of this graph relied on a base graph B̈, that was presented in [1]
and had a layered structure. That is, the vertices of B̈ are partitioned into 2l + 1 subsets,
such that any edge can only be between vertices of adjacent layers. The first and the last
layers of B̈ are called input ports and output ports respectively. This graph also had a set P̈
of pairs of input and output ports (u, v) such that there is a unique shortest path Pu,v from
u to v in B̈, that visits every layer exactly once. Moreover, each edge of B̈ is labeled by a
label from a set L̈, such that the edges of every such path Pu,v are alternately labeled by a
unique pair of labels a, b ∈ L̈ (meaning that no other pair (u′, v′) ∈ P̈ has its shortest path
Pu′,v′ alternately labeled by the same labels a, b).

On top of the base graph B̈, a graph Hκ was constructed, for every positive integer κ.
In fact, for hopsets, a slightly different graph was constructed in [2] than for near-additive
spanners (denoted as Hκ in both cases). The two constructions are recursive, with different

8 For hopsets of size O(n1+ 1
2κ−1) and stretch 1 + ϵ, the actual lower bound on β that was proved in [2]

was β = Ω
(

1
ϵ2κ

)κ−1, instead of Ω
(

1
ϵκ

)κ−1. It was suggested though, that a more careful analysis might
achieve the same lower bound as of (1 + ϵ, β)-spanners.

O. Neiman and I. Shabat 83:5

base cases. Moreover, since the construction for near-additive spanners must be unweighted,
edges with large weight in the construction for hopsets, must be replaced by long unweighted
paths. In this paper, we construct a graph, still denoted as Hκ, that is actually a combination
of their two constructions. In particular, we use the same base case as for near-additive
spanners, which is simply a complete bipartite graph Kp,p, while using edges of large weight,
similarly to the construction of Hκ for hopsets. In addition, we shift the indices of the
sequence {Hκ} by 1. We describe here the construction of H1, as the general construction is
more involved and appears fully in Section 3.1.

The graph H1 is the same graph as B̈, where every vertex in its 2l − 1 middle layers is
replaced by a copy of the complete bipartite graph Kp,p, where p is the number of labels in
L̈ (for κ > 1, these vertices are replaced by copies of Hκ−1). Each vertex in each side of the
copy of Kp,p is mapped to a label in L̈. An original edge of B̈, that had label a, now connects
these copies of Kp,p, by their vertices that correspond to the label a (see Figure 1 in Section
3.1 for a detailed illustration). In addition, these edges are assigned with a large weight of
2l − 1 (for κ > 1, this weight is (2l − 1)κ). This means that any shortest path in B̈ between a
pair (u, v) ∈ P̈ now must pass through 2l − 1 copies of Kp,p. Other paths that connect u, v,
on the other hand, must visit a layer more than once, and therefore their weight is larger than
dH1(u, v) by at least 2(2l − 1). Choosing l ≈ 1

ϵ (for κ > 1, l ≈
(1

ϵκ

)κ), this means that paths
other than the unique shortest path have stretch more then 1 + 2(2l−1)

d(u,v) ≈ 1 + 2(2l−1)
2l(2l−1) ≈ 1 + ϵ.

Hence, any P̈-pairwise (1 + ϵ)-spanner must contain the unique shortest paths between any
pair (u, v) ∈ P̈.

In our proof of a lower bound for pairwise spanners, we utilize an additional property
of the graph H1. Recall that the edges of Pu,v (a shortest path in B̈ that connects some
(u, v) ∈ P̈) are alternately labeled by a unique pair of labels a, b ∈ L̈. This means that in H1,
shortest paths that connect different pairs (u, v), (u′, v′) ∈ P̈ cannot share an edge of a copy
of Kp,p. This is due to the fact that if such path goes through the edge (x, y) of a copy of
Kp,p, and x corresponds to a label a, and y to a label b, then it uniquely determines the pair
of labels a, b of the path Pu,v. The result is that any P̈-pairwise (1 + ϵ)-spanner for H1 must
contain a disjoint set of 2l − 1 edges, for every (u, v) ∈ P̈. Hence, its size must be at least

(2l − 1) · |P̈| = Ω
(

1
ϵ

· |P̈|
)

.

For larger κ’s, the number of the edges that these paths do not share grows to β = Ωκ

(1
ϵ

)κ,
therefore the lower bound for the size is β|Pκ|, where Pκ is the corresponding set of pairs of
the graph Hκ. It can be proved that the number of pairs in Pκ is approximately n

1+ 1
2κ+1−1 ,

where n is the number of vertices in Hκ.

1.3.2 Lower Bound for Pairwise Spanners with Large Stretch
Our proof of a lower bound for pairwise spanners with stretch larger than 1 + ϵ (typically a
constant stretch, or stretch between 2 and k, where k is such that |P| ≈ n1+ 1

k) is demonstrated
on an unweighted graph with high number of edges and high girth (the length of the minimal
cycle). This kind of graphs was used in [28, 24] to show lower bounds for spanners, distance
oracles and hopsets. Specifically, we use a graph G = (V, E) from [22], that is regular, has
Ω(n1+ 1

k) edges, and has girth larger than k.
Given a desired stretch α > 1, we consider pairs of vertices in G of distance δ =

⌊
k

α+1

⌋
,

henceforth δ-pairs. The useful property of δ-pairs is that due to the high girth of G, they
have a unique shortest path that connects them, while any other path must have stretch

ITCS 2024

83:6 On the Size Overhead of Pairwise Spanners

more that α. Note the similarity of this property to the property of the unique shortest
paths from the lower bound for near-exact pairwise spanners. This property implies that any
P-pairwise α-spanner, for any set P of δ-pairs, must contain all the unique shortest paths
that connect the δ-pairs of P . We call such paths the δ-paths that correspond to the δ-pairs
in P.

Then, we use the regularity of the graph G = (V, E), as well as the high girth of G, to prove
some combinatorial properties of G. We prove that there are many δ-pairs - approximately
n1+ δ

k pairs - and that each edge e ∈ E participates in a large number of corresponding
δ-paths - approximately δn

δ−1
k .

To finally prove our lower bound for pairwise α-spanners, we sample a set P of O

(
n

1+ 1
k

δ

)
δ-pairs out of all the possible n1+ δ

k such pairs. This means that the sample probability is
1
δ n− δ−1

k . But since the number of δ-pairs whose corresponding δ-path pass through a specific
edge e ∈ E is approximately δn

δ−1
k , we expect that a constant fraction of the edges of G still

participate in a unique shortest path of the δ-pairs in P. Every P-pairwise α-spanner must
contain these edges, and therefore must have size

Ω(|E|) = Ω(n1+ 1
k) = Ω(δ|P|) = Ω

(
k

α
|P|
)

.

This proves our lower bound of β = Ω
(

k
α

)
.

1.3.3 Upper Bound for Pairwise Spanners with Large Stretch
The state-of-the-art pairwise (1 + ϵ)-spanners and pairwise (3 + ϵ)-spanners of [18] were
achieved using the following semi-reduction from hopsets. Suppose that the hopset H has
stretch α and hopbound β, for a graph G = (V, E). Given a set of pairs of vertices P, we
construct a pairwise spanner S that consists of all the β-edges paths in G ∪ H that connect
pairs in P and have stretch α. Of course, these paths include edges of H that are not allowed
to be on the final pairwise spanner S (as they don’t exist in G). Therefore, an additional
step is required, that adds more edges to S, such that every edge (x, y) ∈ H will have a
path in S with weight w(x, y). This way, the distance between every pair (u, v) ∈ P is the
same distance as in the graph G ∪ H, which is at most α · dG(u, v). The size of the pairwise
spanner S is β · |P|, plus the number of edges that are required to preserve the distances
between every (x, y) ∈ H.

In [18], preserving the distances between pairs in H is done by relying on the specific
properties of the hopset H. Namely, it was observed that the relevant hopset H has small
supporting size - the minimal number of edges required to preserve the distances in H. We,
however, take an alternative approach. Instead of relying on specific properties of the hopset
H to preserve it accurately, we use a pairwise spanner with low stretch, to preserve the
distance in H approximately. In fact, we use the very same H-pairwise (1 + ϵ)-spanner of [18]
to do that.

Considering the process described above, we are only left to choose the hopset H that we
use, to achieve a pairwise spanner with relatively large stretch. The advantage of having
a large stretch α, is that the hopbound β can be much smaller, and as a result, so is the
size overhead of the resulting pairwise spanner. In particular, for pairwise (1 + ϵ)-spanners,
we know by Section 3.1 that the size overhead must be Ωk

(1
ϵ

)log k. But for a larger stretch
O(α), we can get a much smaller hopbound, and therefore a much smaller size overhead,
of β = k

1+ 2
ln α

α . This is done by using the state-of-the-art hopsets with this type of stretch,
from [5, 24].

O. Neiman and I. Shabat 83:7

However, the process of directly applying a pairwise spanner with low stretch on a hopset
described above, results in a somewhat large size of the pairwise spanner. This is because
the size of the hopset, which is roughly n1+ 1

k , is multiplied by the size overhead coefficient β,
which is at least poly(k). To reduce this size, and avoid the additional term of poly(k) · n1+ 1

k ,
we eventually do use certain properties of the hopsets of [24]. Specifically, we prove that their
hopsets could be partitioned into three sets H1, H2, H3, such that H1, H2 can be efficiently
preserved, while H3 is relatively small. Thus, we can use a pairwise spanner with low stretch
only on H3, instead of using it on the whole hopset H. Then, the coefficient β ≈ poly(k)
multiplies only the size of H3, which is significantly smaller than n1+ 1

k .

1.3.4 Subset, Source-wise and Prioritized Spanners
Our new results for subset, source-wise and prioritized spanners are achieved via a series
of reductions. These reductions implicitly appeared in [18, 10]. The first reduction receives
a pairwise spanner and uses it in order to construct a subset spanner. A subset spanner is
a special type of pairwise spanner, for which P = A × A for some A ⊆ V . The second is a
quite simple reduction that turns a subset spanner into a source-wise spanner with almost
the same properties. The last reduction uses source-wise spanners to construct prioritized
spanners. Using the new state-of-the-art pairwise spanners, we achieve new results for each
of these types of spanners.

Besides these new results, we believe that these reductions themselves could be of interest.
It is immediate to find backwards reductions, from prioritized spanners to source-wise
spanners, and from source-wise spanners to subset spanners. This means that, in a sense,
these three9 types of spanners are equivalently hard to construct. Every new construction of
one of these spanners immediately implies new constructions for the others.

Next we shortly describe the three reductions mentioned above.

From pairwise to subset spanners

Let G = (V, E) be an undirected weighted n-vertex graph, and let A ⊆ V be a subset, for
which we want to construct a subset spanner. We consider the graph K = (A,

(
A
2
)
), where

every pair of vertices u, v ∈ A is connected by an edge of weight dG(u, v). On the graph K,
we apply a known construction of emulator. That is, we find a small graph R = (A, E′), such
that

dG(u, v) = dK(u, v) ≤ dR(u, v) ≤ αE · dG(u, v) ,

for any u, v ∈ A. The parameter αE is the stretch of the emulator R. For this purpose, we
use either the distance oracle of Thorup and Zwick from [28], which can be thought of as
an emulator with stretch αE = 2k − 1 and size O(k|A|1+ 1

k), or the emulator from [18], that
has stretch αE = O(k) and size O(|A|1+ 1

k). Here, k is a positive integer parameter for our
choice. These two emulators are path-reporting, meaning that given u, v ∈ A, they can also
efficiently report a path of stretch αE inside the emulator itself.

Next, we consider the set R as a set of pairs of vertices from G, and apply a pairwise
spanner on this set. We use the existing pairwise spanners from [18] that have stretch either
αP = 1 + ϵ or αP = 3 + ϵ, and size10

O(|R| · β + n log log n) .

9 Note that the reduction that constructs a subset spanner, given a pairwise spanner, remains a one-way
reduction, in the sense that no efficient reduction in the other direction is known.

10 In [18], the size of these pairwise spanners was presented as O(|P| · β + n log k + n1+ 1
k), where

β ≈
(log k

ϵ

)log k, or β = kO(log 1
ϵ), and P is the set of pairs. We choose here k = log n since for small

ITCS 2024

83:8 On the Size Overhead of Pairwise Spanners

Here, β ≈
(

log log n
ϵ

)log log n

when αP = 1 + ϵ, and β = (log n)O(log 1
ϵ) when αP = 3 + ϵ

(there is also additional dependency on ϵ in the size of the pairwise spanner, in case that
αP = 1 + ϵ). These two pairwise spanners are also path-reporting.

Now fix a pair of vertices (u, v) ∈ A2. In the graph K, the shortest path between u, v is
the single edge (u, v), that has weight dG(u, v), and thus in R there is a path between u, v

that has weight αE ·dG(u, v). Note that this path consists of edges of R, which are not actual
edges of the graph G. For that reason, we use our pairwise spanner, to find, for every edge e

on this path, a path in G that replaces e and has weight of at most αP · w(e). The result is
a path in G, with stretch αE · αP . That is, the resulting spanner has a αE · αP -stretch path
for every pair of vertices in A. Hence, this is a subset spanner. Note that since both the
emulator R and the pairwise spanner we used were path-reporting, then so is the resulting
subset spanner.

From subset to source-wise spanner

Let G = (V, E) be an undirected weighted graph, and let A ⊆ V be a subset. Suppose that
S is an A-subset spanner with stretch α. To construct a source-wise spanner for A, we just
add to S a shortest path, from every vertex v ∈ V to its closest vertex p(v) in A. If the
shortest paths and the vertices p(v) are chosen in a consistent manner, it is not hard to prove
that the added edges form a forest. Thus, the increase in the size of the spanner S is by at
most n − 1 edges, and also we can easily navigate from a vertex v ∈ V to the corresponding
p(v) ∈ A (we simply go towards the root of v’s tree).

Given any v ∈ V and a ∈ A, the spanner contains the v−p(v) shortest path, concatenated
with the path in S from p(v) to a. It can be shown that it has at most 2α + 1 stretch. Also,
if the subset spanner S is path-reporting, then so is the new source-wise spanner.

From source-wise to prioritized spanner

In the setting of prioritized spanners, we get a priority ranking of the vertices of V :
(v1, v2, ..., vn). To construct a prioritized spanner based on source-wise spanners, we consider
a sequence of non-decreasing prefixes of this list:

A1 = {v1, ..., vf(1)}, A2 = {v1, ..., vf(1), ..., vf(2)}, · · · AT = {v1, ..., vf(1), ..., vf(2), ..., vf(T)} ,

where f is some non-decreasing function, and we apply a source-wise spanner on each of
them. The idea is that in the construction of the source-wise spanners for the first prefixes
in the list, we may use a smaller stretch. Then, since these prefixes are small enough, the
size of the resulting source-wise spanners will not be too large.

Specifically, our path-reporting prioritized spanner with size O(n(log log n)2) is achieved
by using a sequence of prefixes of sizes n

1
2 , n

3
4 , n

7
8 , ..., n1− 1

2i . Recall that the size of an
A-source-wise spanner with stretch O(k) is O(|A|1+ 1

k · β + n log log n), where β = no(1). Note

that for A = Ai, by choosing k = 2i − 1, the first term is |Ai|1+ 1
k ≤ n

2i−1
2i · 2i

2i−1 = n. Thus,
we must choose k a bit larger than 2i − 1, in order to obtain an Ai-source-wise spanner
with size O(n log log n) (this is the sparsest Ai-source-wise spanner we can obtain, since our
pairwise/subset/source-wise spanners always have an additive term of n log log n in their
size). Namely, for cancelling the factor β, we must choose k = 2i−1

1−2i·o(1) .

enough P, this is the most sparse that these spanners can get. In our case, the set P is the emulator R,
which is indeed small enough.

O. Neiman and I. Shabat 83:9

In the choice of k above, the o(1) factor in the denominator is actually log β
log n . This

means that we cannot make this choice for prefixes Ai with i > log log n − log log β =
(1 − o(1)) log log n. For this reason, we cannot choose T such that the prefixes A1, ..., AT

will cover the entire priority ranking (v1, ..., vn), or most of it (to cover n
2 vertices, we need

T = log log n). Instead, we choose T to be roughly log log n − log log β. The size of the
resulting prioritized spanner is T · O(n log log n) = O(n(log log n)2), and the covered vertices
are the vertices vj such that j ≤ n

β . For queries that include a covered vertex vj , the stretch
is roughly O(2i), where i is the minimal integer such that j ≤ n1− 1

2i . That is, the stretch is
approximately O

(
log n

log n−log j

)
.

For uncovered vertices (i.e., vertices vj such that j > n
β), we simply add a (non-prioritized)

spanner, that has stretch O
(

log n
log log log n

)
for all the vertices of G. The size of such spanner

may be as low as O(n(log log n)2), using results from [18]. This spanner, as well as all the
source-wise spanners we used, are path-reporting, therefore the resulting prioritized spanner
is also path-reporting.

We provide another variation of a path-reporting prioritized spanner with reduced stretch,
at the cost of increasing the size to O(n log n). To achieve that, we change the sequence
of prefixes we use, to a sequence of prefixes with sizes n

1
2 , n

2
3 , n

3
4 , ..., n1− 1

i . This sequence
grows slower than the previous one. While increasing the size of the resulting prioritized
spanner, this enable us to control the stretch of each source-wise spanner more carefully.

1.4 Organization
After some preliminaries in Section 2, we prove our new lower bounds for pairwise spanners
in Section 3 (lower bounds for pairwise spanners with stretch 1 + ϵ are in Section 3.1, while
Section 3.2 is for higher stretch).

In the full version of this paper, we prove our new upper bounds for pairwise spanners in
the high stretch regime, and we show the reductions between pairwise, subset, source-wise
and prioritized spanners, which result in new upper bounds for these types of spanners.

2 Preliminaries

Given an undirected weighted graph G = (V, E), we denote by dG(u, v) the distance between
the two vertices u, v ∈ V . When the graph G is clear from the context, we sometimes omit
the subscript G and write d(u, v).

When the given graph is weighted, w(e) > 0 denotes the weight of the edge e. For every
set of edges P (e.g., a tree or a path), we denote w(P) =

∑
e∈P w(e). If P is a path, we

denote by |P | the length of P , i.e., the number of its edges.

3 Lower Bounds for Pairwise Spanners

3.1 Near-exact Pairwise Spanners
To prove our lower bound for pairwise (1 + ϵ)-spanners, we use almost the same construction
of a graph as the one appears in [2]. Our argument that achieves this lower bound, however,
is somewhat different. Before we go into the specific details of the construction, we overview
the properties of the graph of [2].

The authors of [2] constructed a sequence of graphs {Hκ}∞
κ=0, each with a layered

structure. The first and last layers of Hκ serves as input and output ports (respectively),
while the interior layers are made out of many copies of Hκ−1. Then a relatively large set

ITCS 2024

83:10 On the Size Overhead of Pairwise Spanners

Pκ of input-output pairs is defined, such that for every (u, v) ∈ Pκ there is a unique shortest
path in Hκ between u, v, that passes through each layer exactly once. The edges between the
layers of Hκ are heavy enough, such that any other path from u to v suffers a large stretch,
since it must visit at least two layers more than once (in the unweighted version, the edges
between the layers are replaced with long paths).

We now construct a sequence {Hκ} with the same properties. The construction is
essentially the same as in [2]. However, we fully describe it in details here, because (1) there
are slight differences from the original construction, and (2) our lower bound proof refers to
the specific details of this graph and the way it was constructed. We do use the second base
graph from Section 2.2 in [2] as it is (this graph is actually originated in [1]).

The second base graph is an undirected unweighted graph, denoted by B̈[p, l], where
p, l > 0 are two positive integer parameters. The vertices of this graph are organized in 2l + 1
layers, each of them with size p, such that all the edges of the graph are between adjacent
layers. The vertices on the first layer of B̈[p, l] are called input ports, and the vertices on
the last layer of B̈[p, l] are called output ports. Aside from the graph itself, there is a set of
pairs of input-output ports P̈[p, l], such that every pair in this set is connected in B̈[p, l] by
a unique shortest path. The size of P̈[p, l] is p2−o(1), thus it contains a large portion of all
the p2 possible input-output pairs. Lastly, the graph B̈[p, l] has labels on its edges, such
that the edges on the unique shortest path of every input-output pair in P̈[p, l] are labeled
alternately by two labels. One can think of these labels as routing directions to get from an
input to an output.

Formally, the graph B̈[p, l] is described in the following lemma. The proof of this lemma
is implicit in [2], in which the construction of the graph B̈[p, l] is described.

▶ Lemma 1. Let p, l > 0 be two integer parameters. There is a function ξ(p, l) = 2O(
√

log p log l)

which is non-decreasing in the parameter p, and there is an undirected unweighted graph
B̈[p, l], with the following properties.
1. The vertices of the graph B̈[p, l] are partitioned into 2l + 1 disjoint layers L0, L1, ..., L2l,

each of them of size p, such that every edge of B̈[p, l] is between vertices that belongs to
adjacent layers.

2. There is a set of edge-labels L̈[p, l] of size |L̈[p, l]| ∈
[√

p

ξ(√
p,l) ,

√
p

2

]
, such that for every

i < 2l, every vertex x ∈ Li, and every label a ∈ L̈[p, l], there is exactly one edge from x to
a vertex y ∈ Li+1, that is labeled by a (the vertex y is different for every label a ∈ L̈[p, l]).

3. Given a vertex u ∈ L0 and a pair of labels (a, b) ∈ (L̈[p, l])2, let Pu,v be the path that starts
at u, and its edges are labeled alternately by the labels a, b (starting by a). Here, v ∈ L2l

is the vertex in which the path Pu,v ends, and we denote v = out(u, a, b). Then, Pu,v is
the unique shortest path in B̈[p, l]. Moreover, for any other u′ ∈ L0 \ {u}, the path Pu′,v′ ,
that is alternately labeled by the same labels a, b and ends in v′ = out(u′, a, b) ∈ L2l, is
vertex-disjoint from Pu,v.

We define the set P̈[p, l] ⊆ L0 × L2l as

P̈[p, l] = {(u, out(u, a, b)) | u ∈ L0, a, b ∈ L̈[p, l]} . (2)

The size of this set is p · |L̈[p, l]|2, which is at least p ·
(√

p

ξ(√
p,l)

)2
= p2

ξ(√
p,l)2 and at most

p ·
(√

p

2

)2
= p2

4 , by Lemma 1.

O. Neiman and I. Shabat 83:11

The specific details of the construction of the graph B̈[p, l] appear in [2]. We, however,
only use the properties that are described in Lemma 1, and do not need these details for our
proof. We now define the sequence of graphs {Hκ[p, l]}∞

κ=0 recursively, where p, l > 0 are
any two integer parameters. For every κ, we also define a corresponding set Pκ[p, l] of pairs
of vertices from Hκ[p, l].

The graph H0[p, l] is defined to be the complete bipartite graph Kp,p. The corresponding
set of pairs Pκ[p, l] is defined to be all the pairs (u, v), of a vertex u from the left side of
H0[p, l] = Kp,p and a vertex v from its right side.

To construct Hκ[p, l] for κ > 0, we start with the graph B̈[p, l] from Lemma 1. The
vertices of this graph are partitioned into layers L0, L1, ..., L2l, where edges only exist in
between adjacent layers. We call the vertices in the first layer L0 input ports, and the vertices
in the last layer L2l output ports. The rest of the vertices of B̈[p, l] are called internal vertices.
The input and output ports also serves as the input/output ports of the graph Hκ[p, l] (in
particular, there are p input ports and p output ports in Hκ[p, l]). Let L̈[p, l] be the set of
edge-labels, as described in Lemma 1, and let P̈[p, l] be the corresponding set of pairs from
Definition 2. Let p′ = |L̈[p, l]|. We fix an arbitrary bijection π : L̈[p, l] → {1, 2, ..., p′}.

Consider the graph Hκ−1[p′, l]. Using π, we match each input/output port of this graph to
a label in L̈[p, l]. We replace each internal vertex of B̈[p, l] by a copy of the graph Hκ−1[p′, l].
For a vertex u in B̈[p, l], denote this copy by Hu

κ−1[p′, l]. Let (u, v) be an edge in B̈[p, l] with
label a ∈ L̈[p, l], such that u ∈ Li, v ∈ Li+1. In Hκ[p, l], we replace this edge by an edge of
weight (2l − 1)κ as follows.

If i is even, the new edge is added from the π(a)-th input port of Hu
κ−1[p′, l] (or, in case

that i = 0, from u itself) to the π(a)-th input port of Hv
κ−1[p′, l].

If i is odd, the new edge is added from the π(a)-th output port of Hu
κ−1[p′, l] to the

π(a)-th output port of Hv
κ−1[p′, l] (or, in case that i = 2l − 1, to v itself).

In other words, we can imagine that the copies of Hκ−1[p′, l] are inserted as they are in
odd layers, and reversed in even layers. This way, input ports are connected to input ports,
and output ports are connected to output ports. See Figure 1 for an illustration.

This completes the description of the graph Hκ[p, l]. We define the corresponding set
Pκ[p, l] as follows. Given some (u, v) ∈ P̈[p, l], let (a, b) ∈ (L̈[p, l])2 be the unique pair of
labels such that the u − v shortest path in B̈[p, l] is labeled alternately with a, b. Henceforth,
we call (a, b) the corresponding labels to (u, v). Denote by u′ the π(a)-th input port of
Hκ−1[p′, l], and by v′ the π(b)-th output port of Hκ−1[p′, l]. We say that (u, v) ∈ Pκ[p, l] if
and only if (u′, v′) ∈ Pκ−1[p′, l].

The following lemma is our version of Lemma 2.2 from [2]. We prove it here since our
construction of Hκ[p, l], Pκ[p, l] is slightly different.

▶ Lemma 2.

|Pκ[p, l]| ≥ p2

ξ(√p, l)2κ
.

Proof. We prove the lemma by induction on κ. For κ = 0, by definition

|P0[p, l]| = p2 = p2

ξ(√p, l)2·0 .

Fix κ > 0, and fix an input port u of Hκ[p, l]. Denote by Au the set of pairs (u, v) ∈ Pκ[p, l],
i.e., the set of pairs in Pκ[p, l] with u as their input port. We show a bijection between
the sets Au and Pκ−1[p′, l]. Let (u, v) be a pair in Au, and let (a, b) ∈ (L̈[p, l])2 be the

ITCS 2024

83:12 On the Size Overhead of Pairwise Spanners

Figure 1 An illustration of the graph Hκ[p, l]. The internal vertices of B̈[p, l] are replaced by
copies of Hκ−1[p′, l], where p′ is the number of edges-labels in B̈[p, l]. An edge of B̈[p, l] that had
label a, and is from an even layer to an odd layer, is replaced by an edge that connects the π(a)-th
input ports of the corresponding copies of Hκ−1[p′, l] (input port are represented in the figure by a
square shape). If the edge is from an odd layer to an even layer, the same happens for the output
ports of these copies (represented by circular shape).

corresponding labels to (u, v). By the definition of Pκ[p, l], the π(a)-th input port u′ and
the π(b)-th output port v′ of Hκ[p, l] satisfy (u′, v′) ∈ Pκ−1[p′, l]. Thus, we map the pair
(u, v) ∈ Au to the pair (u′, v′) ∈ Pκ−1[p′, l].

To prove that this mapping is a bijection, we now show the inverse mapping. Note that
for any (u′, v′) ∈ Pκ−1[p′, l], there are unique labels a, b ∈ L̈[p, l] such that u′ is the π(a)-th
input port and v′ is the π(b)-th output port of Hκ−1[p′, l]. This is true since π is a bijection.
Let v be the output port of Hκ[p, l], such that v = out(u, a, b) (using the notation out() from
Lemma 1). Then, (a, b) are the corresponding labels to (u, v), and since (u′, v′) ∈ Pκ−1[p′, l],
we conclude that (u, v) ∈ Pκ[p, l]. That is, (u, v) ∈ Au.

The two mappings that were described in the two paragraphs above are the inverse of each
other, hence our mapping is a bijection, and we conclude that |Au| = |Pκ−1[p′, l]|. Summing
over all the input ports u of Hκ[p, l], and using the induction hypothesis, we get

|Pκ[p, l]| =
∑

u

|Au| =
∑

u

|Pκ−1[p′, l]| ≥ p · (p′)2

ξ(
√

p′, l)2κ−2 .

By Lemma 1, we know that p′ = |L̈[p, l]| ≥
√

p

ξ(√
p,l) , and that ξ(

√
p′, l) ≤ ξ(√p, l), since ξ is a

non-decreasing function in the first variable (and p′ ≤
√

p

2 < p). Hence,

|Pκ[p, l]| ≥ p · (p′)2

ξ(
√

p′, l)2κ−2 ≥ p · p

ξ(√p, l)2ξ(
√

p′, l)2κ−2 ≥ p2

ξ(√p, l)2κ
. ◀

Next, we estimate the number of vertices in Hκ[p, l]. Denote this number by nκ[p, l].

O. Neiman and I. Shabat 83:13

▶ Lemma 3. For every κ ≥ 0,

2(2l − 1)κ

ξ(√p, l)2κ
p2− 1

2κ ≤ nκ[p, l] ≤ 2(2l)κp2− 1
2κ .

Proof. We again prove the lemma by induction on κ. For κ = 0, the graph H0[p, l] is the
complete bipartite graph Kp,p. Therefore,

2(2l − 1)0

ξ(√p, l)2·0 p2− 1
20 = 2p = n0[p, l] = 2p = 2(2l)0p2− 1

20 .

For κ > 0, recall that Hκ[p, l] was obtained by replacing each of the (2l − 1)p vertices in
the interior layers of B̈[p, l], by a copy of Hκ−1[p′, l]. The number of vertices in any of these
copies is

nκ−1[p′, l] ≤ 2(2l)κ−1(p′)2− 1
2κ−1 ≤ 2(2l)κ−1

(√
p

2

)2− 2
2κ

< 2(2l)κ−1p1− 1
2κ .

On the other hand, this number is also

nκ−1[p′, l] ≥ 2(2l − 1)κ−1

ξ(
√

p′, l)2κ−2 (p′)2− 1
2κ−1 ≥ 2(2l − 1)κ−1

ξ(
√

p′, l)2κ−2

(√
p

ξ(√p, l)

)2− 2
2κ

≥ 2(2l − 1)κ−1

ξ(√p, l)2κ
p1− 1

2κ .

In these bounds we used the induction hypothesis, the fact that ξ is a non-decreasing function,
and the bounds on p′ from Lemma 1.

We conclude that the number of vertices in Hκ[p, l] is

nκ[p, l] ≤ 2p + (2l − 1)p · 2(2l)κ−1p1− 1
2κ

= 2p − 2(2l)κ−1p2− 1
2κ + 2(2l)κp2− 1

2κ

κ≥1
≤ 2p − 2 · 1 · p3/2 + 2(2l)κp2− 1

2κ ≤ 2(2l)κp2− 1
2κ ,

and also

nκ[p, l] ≥ 2p + (2l − 1)p · 2(2l − 1)κ−1

ξ(√p, l)2κ
p1− 1

2κ ≥ 2(2l − 1)κ

ξ(√p, l)2κ
p2− 1

2κ .

This completes the inductive proof. ◀

In [2], the authors showed that any (1 + ϵ, β)-spanner for this graph11, that has less than
|Pκ[p, l]| edges, must have β = Ω

(1
ϵκ

)κ−1. But note that by Lemma 3, the number of vertices
in Hκ[p, l] is n = nκ[p, l] ≈ p2− 1

2κ , while Lemma 2 proves that the number of pairs in Pκ[p, l]
is roughly

p2 ≈
(

n
1

2− 1
2κ

)2
= n

2κ+1
2κ+1−1 = n

1+ 1
2κ+1−1 .

Thus, the result of [2] means that less than n
1+ 1

2κ+1−1 edges in a near-additive spanner
implies β = Ω

(1
ϵκ

)κ−1.

11 For the lower bound for near-additive spanners, one need to use an unweighted graph. Thus, [2] actually
used a similar graph where the edges between the copies of Hκ−1[p′, l] are replaced by paths of length
(2l − 1)κ−1. This graph has essentially the same properties as the graph Hκ[p, l] described here.

ITCS 2024

83:14 On the Size Overhead of Pairwise Spanners

In our case, we will show that any Pκ[p, l]-pairwise (1 + ϵ)-spanner for Hκ[p, l] must have
at least β|Pκ[p, l]| edges, for β = Ω

(1
ϵκ2

)κ. Otherwise, the stretch guarantee will not hold
for at least one of the pairs in Pκ[p, l].

To achieve this goal, we prove some properties of the shortest paths that connect the
pairs in Pκ[p, l]. A key notion will be that of a critical edge, which also appears in [2].

▶ Definition 4. An edge e of Hκ[p, l] is said to be critical if it lies in a copy of H0[p, l].

The following lemma is parallel to Lemma 2.3 in [2].

▶ Lemma 5. The distance between any input and output port of Hκ[p, l] is at least (2lκ +
1)(2l − 1)κ.

Moreover, for every pair (u, v) ∈ Pκ[p, l], there is a unique shortest path Pu,v in Hκ[p, l]
that connects u, v, and has weight w(Pu,v) = (2lκ + 1)(2l − 1)κ. This path does not share
a critical edge with any other shortest path Pu′,v′ , for (u′, v′) ∈ Pκ[p, l] \ {(u, v)}. That is,
there are no critical edges in Pu,v ∩ Pu′,v′ , for any pair (u′, v′) ̸= (u, v) in Pκ[p, l].

Proof. We prove the Lemma by induction over κ ≥ 0. For κ = 0, the graph H0[p, l] is the
complete bipartite graph Kp,p. One of its sides consists of the input ports, and the other
consists of the output ports. Thus, the distance between any input port and output port
is at least 1 = (2l · 0 + 1)(2l − 1)0. For every (u, v) ∈ P0[p, l], the edge (u, v) is clearly
the unique shortest path between u, v that has weight 1. In addition, this path does not
share its only critical edge (u, v) with any other u′ − v′ shortest path in H0[p, l] = Kp,p, for
(u′, v′) ∈ P0[p, l].

Fix κ > 0. Every path that starts from an input port of Hκ[p, l] and ends in an output
port must visit at least 2l − 1 copies of Hκ−1[p′, l], each one of them replaces a vertex from a
different layer of B̈[p, l]. By the induction hypothesis, passing through a copy of Hκ[p′, l],
from an input port to an output port (or vice versa), requires a path of weight at least
(2l(κ − 1) + 1)(2l − 1)κ−1. The edges that connect the different copies are of weight (2l − 1)κ.
Note that any path from the input layer of Hκ[p, l] to its output layer must pass through at
least 2l of these edges. Overall, such path must have weight of at least

2l(2l−1)κ+(2l−1)(2l(κ−1)+1)(2l−1)κ−1 = (2l+2l(κ−1)+1)(2l−1)κ = (2lκ+1)(2l−1)κ .

Now fix a pair (u, v) ∈ Pκ[p, l]. Recall that by definition, we know in particular that
u, v are vertices of B̈[p, l], and (u, v) ∈ P̈[p, l]. By Lemma 1, in the graph B̈[p, l] there is
a unique u − v shortest path P = (u = u0, u1, u2, ..., u2l = v), labeled by some two labels
a, b ∈ L̈[p, l]. Denote by H1, H2, ..., H2l−1 the copies of Hκ−1[p′, l] that replaced the vertices
u1, u2, ..., u2l−1 in the construction of Hκ[p, l].

Recall that by its construction, the graph Hκ[p, l] contains the following edges. For every
even i ∈ [0, 2l − 1], it contains an edge of weight (2l − 1)κ from the π(a)-th input port of Hi

(or from u itself if i = 0) to the π(a)-th input port of Hi+1. For every odd i ∈ [0, 2l − 1], it
contains an edge of weight (2l − 1)κ from the π(b)-th output port of Hi to the π(b)-th output
port of Hi+1 (or to v itself if i = 2l − 1). Also, recall that since (u, v) ∈ Pκ[p, l], it means
that (π(a), π(b)) ∈ Pκ−1[p′, l] (here, and in the rest of this proof, we identify π(a), π(b) with
the π(a)-th input port and π(b)-output port of Hκ−1[p′, l]). Thus, when using the 2l edges
described above, we can also find paths inside the copies H1, ..., H2l−1, each of them with
weight (2l(κ − 1) + 1)(2l − 1)κ−1. We conclude that there is a path in Hκ[p, l] with weight

2l(2l − 1)κ + (2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 = (2lκ + 1)(2l − 1)κ .

O. Neiman and I. Shabat 83:15

Denote this path by Pu,v. Since we already proved that the distance between any input
port and any output port is at least (2lκ + 1)(2l − 1)κ = w(Pu,v), we deduce that Pu,v is a
shortest path between u, v.

Let P ′
u,v be a different path than Pu,v between u and v in Hκ[p, l]. Consider the list of

copies of Hκ−1[p′, l] that P ′
u,v passes through, by the same order they appear on P ′

u,v. Since
P ′

u,v ̸= Pu,v, there are two cases: either this list is identical to H1, H2, ..., H2l−1, but for at
least one j the path P ′

u,v passes through Hj using a different path than Pu,v, or this list is
not identical to H1, H2, ..., H2l−1.

In the first case, by the induction hypothesis, the path that P ′
u,v uses inside Hj has weight

strictly larger than (2l(κ − 1) + 1)(2l − 1)κ−1. The path inside the other copies has weight of
at least (2l(κ − 1) + 1)(2l − 1)κ−1, again by the induction hypothesis. Together with the
2l edges with weight (2l − 1)κ that connect these copies, we get that the weight of P ′

u,v is
strictly more than

2l(2l − 1)κ + (2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 = (2lκ + 1)(2l − 1)κ .

In the second case, we “translate” the path P ′
u,v into a path Q in B̈[p, l], by replacing

each copy of Hκ−1[p′, l] it passes through by the corresponding vertex of B̈[p, l]. The path
Q is different from the path P = (u, u1, u2, ..., u2l−1, v). Since the latter is the unique u − v

shortest path in B̈[p, l], the path Q must pass through a layer of B̈[p, l] more than once
(otherwise its weight would be equal to the weight of P). That is, Q passes through at least
2l + 1 internal vertices of B̈[p, l] and contains at least 2l + 2 edges. This means that the path
P ′

u,v contains at least 2l + 2 edges of weight (2l − 1)κ. Also, note that P ′
u,v (like any other

input-output path in Hκ[p, l]) must pass through at least 2l − 1 copies of Hκ−1[p′, l]. By the
induction hypothesis, the weight of P ′

u,v is at least

(2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 + (2l + 2)(2l − 1)κ > (2lκ + 1)(2l − 1)κ .

In conclusion, the path Pu,v has length (2lκ + 1)(2l − 1)κ, while any other u − v path in
Hκ[p, l] has a larger weight. Thus, Pu,v is a unique shortest path between u, v in Hκ[p, l].

To complete the proof, we have to show that if Pu,v and Pu′,v′ share a critical edge, for
some (u, v), (u′, v′) ∈ Pκ[p, l], then it must be that (u, v) = (u′, v′). Let (u, v), (u′, v′) be
such two pairs. Since their paths share a critical edge, they must pass through the same
copy of Hκ−1[p′, l]. Denote this copy by H. We saw that the path Pu,v is originated in a
path P in the graph B̈[p, l], which is the unique shortest path between u, v that satisfies
(u, v) ∈ P̈ [p, l], and that the edges of P are alternately labeled by some a, b ∈ L̈[p, l]. Moreover,
(π(a), π(b)) ∈ Pκ−1[p′, l], because (u, v) ∈ P̈[p, l] (recall that we still identify the numbers
π(a), π(b) with input and output ports of Hκ−1[p′, l]). Symmetrically, the path P ′ and the
labels a′, b′ that correspond to the path Pu′,v′ in B̈[p, l] satisfy (π(a′), π(b′)) ∈ Pκ−1[p′, l].
Note that the unique shortest paths between π(a), π(b) and between π(a′), π(b′) still share a
critical edge. Thus, by the induction hypothesis, (π(a), π(b)) = (π(a′), π(b′)), or equivalently
(a, b) = (a′, b′).

Notice that the two paths P, P ′ pass through the same vertex in B̈[p, l], because Pu,v, Pu′,v′

pass through the same copy H. We also know that they are alternately labeled by the
same to labels (a, b) = (a′, b′). By Lemma 1, it must be that P = P ′, and in particular
(u, v) = (u′, v′), otherwise they cannot have the same pair of labels a, b. This completes the
inductive proof. ◀

We are now ready to prove our main theorem.

ITCS 2024

83:16 On the Size Overhead of Pairwise Spanners

▶ Theorem 6. For infinitely many integers n > 0, and for any integer 1 < κ ≤ log log n and
real 0 < ϵ < 1

12κ , there is an n-vertex graph G = (V, E) and a set of pairs P ⊆ V 2 with size
at least n

1+ 1
2κ+1−1

−o(1), such that any P-pairwise (1 + ϵ)-spanner for G must have at least
β · |P| edges, where β = Ω

(1
ϵκ2

)κ.

Proof. Fix κ and 0 < ϵ ≤ 1
12κ . Let G, P be Hκ[p, l], Pκ[p, l], for l =

⌊ 1
6ϵκ

⌋
≥ 1 and some

arbitrary p. Denote b =
⌊ 2l−1

κ

⌋
+ 1. We will show that any P-pairwise (1 + ϵ)-spanner for G

must have size of at least bκ|P|. This proves the theorem for

β = bκ ≥
(

2l − 1
κ

)κ

≥
(1

3ϵκ − 3
κ

)κ

≥
(1

3ϵκ − 3
12ϵκ

κ

)κ

=
(

1
12ϵκ2

)κ

.

For the size of P , recall that the number of vertices in G is n ≤ 2(2l)κp2− 1
2κ , by Lemma 3.

Thus,

p2 ≥
(

n

2(2l)κ

) 2
2− 1

2κ ≥ n
1+ 1

2κ+1−1 · (2l)−2κ

4 .

Therefore, by Lemma 2, the size of P is at least

p2

ξ(√p, l)2κ
≥ n

1+ 1
2κ+1−1 · (2l)−2κ

4 · 2O
(

κ
√

log p log l
) = n

1+ 1
2κ+1−1 · 2−2κ log(2l)−2−O

(
κ
√

log n log l
)

= n
1+ 1

2κ+1−1
−o(1)

.

Here we used Lemma 1 to bound ξ(√p, l), we used the fact that κ ≤ log log n, and we used
the fact that p ≤ n (this is trivial, by the construction of Hκ[p, l]).

Let S be a subset of the edges of G = Hκ[p, l], with |S| < bκ|P| = bκ|Pκ[p, l]|. By
Lemma 5, for every pair (u, v) ∈ P , the unique u − v shortest path in G has a disjoint set of
critical edges that it goes through. Therefore, there must be some (u, v) ∈ P such that S

contains less than bκ of its critical edges.
We prove by induction on κ ≥ 0 that in the graph Hκ[p, l], if a pair (u, v) ∈ Pκ[p, l] has

less than bκ of its critical edges in S, then

dS(u, v) ≥ (2lκ + 1)(2l − 1)κ + 2(2l − b)κ .

For κ = 0, a pair (u, v) ∈ P0[p, l] that has less than b0 = 1 of its critical edges in S, means
a pair such that (u, v) /∈ S. Since the graph H0[p, l] = Kp,p is bipartite, dS(u, v) ≥ 3 =
(2l · 0 + 1)(2l − 1)0 + 2(2l − b)0.

Fix κ > 0, and let P ′
u,v be a u − v shortest path in S, for a pair (u, v) ∈ Pκ[p, l] that

has less than bκ of its critical edges in S. Consider the path Q in B̈[p, l] that is obtained
by replacing each copy of Hκ−1[p′, l] that P ′

u,v passes through by the corresponding vertex
of B̈[p, l]. If Q is not the unique shortest path P between u, v in B̈[p, l], then the path Q

must pass through a layer of B̈[p, l] more than once (otherwise its weight would be equal to
the weight of P). That is, Q passes through at least 2l + 1 internal vertices of B̈[p, l] and
contains at least 2l + 2 edges. This means that the path P ′

u,v contains at least 2l + 2 of
weight (2l − 1)κ. Note that P ′

u,v must pass through at least 2l − 1 copies of Hκ−1[p′, l], just
to get from u to v. By Lemma 5, the weight of P ′

u,v is at least

(2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 + (2l + 2)(2l − 1)κ

= (2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 + 2l(2l − 1)κ + 2(2l − 1)κ

= (2lκ + 1)(2l − 1)κ + 2(2l − 1)κ ≥ (2lκ + 1)(2l − 1)κ + 2(2l − b)κ .

O. Neiman and I. Shabat 83:17

If the path Q equals to P , the unique u − v shortest path in B̈[p, l], then it passes through
exactly 2l−1 internal vertices of B̈[p, l]. Hence, P ′

u,v passes through exactly 2l−1 of copies of
Hκ−1[p′, l]. We would like to know how many of them contain less than bκ−1 critical edges of
(u, v). Note that there cannot be less than 2l − b such copies: otherwise the number of copies
with at least bκ−1 critical edges of (u, v) is more than 2l − 1 − (2l − b) = b − 1, i.e., at least b,
so there are at least b · bκ−1 = bκ critical edges of (u, v) in S, in contradiction. Therefore, the
number t of copies in which there are less than bκ−1 critical edges of (u, v) is at least 2l − b.
In these copies, P ′

u,v suffers a weight of at least (2l(κ − 1) + 1)(2l − 1)κ−1 + 2(2l − b)κ−1,
by the induction hypothesis. In the other 2l − 1 − t copies, P ′

u,v must have a weight of at
least (2l(κ − 1) + 1)(2l − 1)κ−1, by Lemma 5. Together with the 2l edges that connect these
copies and have weight of (2l − 1)κ, we get

dS(u, v) = w(P ′
u,v) = 2l(2l − 1)κ + (2l − 1 − t)(2l(κ − 1) + 1)(2l − 1)κ−1

+t
[
(2l(κ − 1) + 1)(2l − 1)κ−1 + 2(2l − b)κ−1]

= 2l(2l − 1)κ + (2l − 1)(2l(κ − 1) + 1)(2l − 1)κ−1 + t · 2(2l − b)κ−1

= (2lκ + 1)(2l − 1)κ + t · 2(2l − b)κ−1

≥ (2lκ + 1)(2l − 1)κ + (2l − b) · 2(2l − b)κ−1

= (2lκ + 1)(2l − 1)κ + 2(2l − b)κ .

This completes the inductive proof. It shows that there is a pair (u, v) ∈ Pκ[p, l] = P
with

dS(u, v) ≥ (2lκ + 1)(2l − 1)κ + 2(2l − b)κ

= (2lκ + 1)(2l − 1)κ

(
1 + 2(2l − b)κ

(2lκ + 1)(2l − 1)κ

)
= dG(u, v) ·

(
1 + 2

(2lκ + 1)

(
2l − b

2l − 1

)κ)
= dG(u, v) ·

(
1 + 2

(2lκ + 1)

(
1 − b − 1

2l − 1

)κ)
≥ dG(u, v) ·

(
1 + 2

(2lκ + 1)

(
1 − 1

κ

)κ)
κ>1
≥ dG(u, v) ·

(
1 + 2

(2lκ + 1) · 1
4

)
> dG(u, v) ·

(
1 + 2

3lκ
· 1

4

)
= dG(u, v) ·

(
1 + 1

6lκ

)
≥ dG(u, v) · (1 + ϵ) ,

Where in the last step we used the definition of l =
⌊ 1

6ϵκ

⌋
. Thus, S cannot be a Pκ[p, l]-

pairwise (1 + ϵ)-spanner. In other words, any Pκ[p, l]-pairwise (1 + ϵ)-spanner must have size
of at least β|P|, where β ≥

(1
12ϵκ2

)κ. ◀

▶ Remark 7. Notice that the proof of Theorem 6 also works for every subset of the pairs
Pκ[p, l]. Therefore, the phrasing of Theorem 6 may be strengthen as follows.

For infinitely many integers n > 0, and for any integer 1 < κ ≤ log log n and real
0 < ϵ < 1

12κ , there is an n-vertex graph G = (V, E) and a number Q = n
1+ 1

2κ+1−1
−o(1),

such that for every integer q ≤ Q, there is a set of pairs P ⊆ V 2 with size q, such that any
P-pairwise (1 + ϵ)-spanner for G must have at least β · |P| edges, where β = Ω

(1
ϵκ2

)κ.

3.2 Large Stretch
The lower bound for pairwise spanners with large stretch is achieved using a graph with
high girth and large number of edges. This properties of a graph were used for proving
lower bounds for distance oracles and spanners (see [28]) and also for hopsets (see [24]). In

ITCS 2024

83:18 On the Size Overhead of Pairwise Spanners

particular, we use the same graph that was used in [24], which was introduced by Lubotzky,
Phillips and Sarnak in [22]. This graph has the additional convenient property of being
regular, besides its high girth and large number of edges. Its exact properties are described
in the following theorem.

▶ Theorem 8 ([22]). For infinitely many integers n ∈ N, and for every integer k ≥ 1, there
exists a (p + 1)-regular graph G = (V, E) with |V | = n and girth at least 4

3 k(1 − o(1)), where
p = D · n

1
k , for some universal constant D.

Fix α, k ≥ 1 such that k ≥ α + 1, and a large enough n ∈ N as in Theorem 8. Let
G = (V, E) be the corresponding (p + 1)-regular graph from Theorem 8. The girth of G is at
least 4

3 k(1 − o(1)), thus larger than k. Denote δ =
⌊

k
α+1

⌋
. Define the following set of pairs

P0 ⊆ V 2.

P0 = {(u, v) ∈ V 2 | dG(u, v) = δ} .

▶ Lemma 9. For every (u, v) ∈ P0, there is a unique shortest path Pu,v between u, v in
G. Furthermore, for every tour P ′

u,v between u, v, that has length |P ′
u,v| ≤ αδ, we have

Pu,v ⊆ P ′
u,v.

Proof. Let Pu,v be some u−v shortest path in G, and let P ′
u,v be a u−v tour with |P ′

u,v| ≤ αδ.
If Pu,v ̸⊆ P ′

u,v, then the union Pu,v ∪ P ′
u,v contains a cycle. This cycle is of length at most

|Pu,v| + |P ′
u,v| ≤ δ + αδ = (α + 1)δ ≤ k ,

by the definition of δ =
⌊

k
α+1

⌋
. This is a contradiction to the fact that the girth of G is

larger than k. Hence, Pu,v ⊆ P ′
u,v. In case P ′

u,v is also a u − v shortest path, i.e., |P ′
u,v| = δ,

then Pu,v ⊆ P ′
u,v implies Pu,v = P ′

u,v. That is, Pu,v is the unique shortest path between u, v

in G. ◀

Henceforth, we use the notations from Lemma 9, that is, we denote by Pu,v the u − v

shortest path in G.

▶ Lemma 10. Let P ⊆ P0 be some subset, and suppose that S is a P-pairwise α-spanner
for G. Then,⋃

(u,v)∈P

Pu,v ⊆ S .

Proof. Fix some (u, v) ∈ P ⊆ P0. Since S has stretch α for every pair in P, we know
that there is a u − v path P ′

u,v ⊆ S with |P ′
u,v| ≤ α|Pu,v| = αδ. By Lemma 9, the u − v

shortest path satisfies Pu,v ⊆ P ′
u,v ⊆ S. In conclusion, Pu,v ⊆ S for every (u, v) ∈ P, thus⋃

(u,v)∈P Pu,v ⊆ S. ◀

The following lemma describes several combinatorial properties of the graph G.

▶ Lemma 11. The number of edges in G = (V, E) is |E| = n(p+1)
2 . The number of paths in

P0 is n(p+1)pδ−1

2 . For every edge e ∈ E, there are δpδ−1 pairs (u, v) ∈ P0 such that e ∈ Pu,v.

Proof. The number of edges |E| is half the sum of the degrees in G. Since G is (p+1)-regular,
we get |E| = n(p+1)

2 .
Now fix some u ∈ V , and consider its BFS tree up to distance δ. The root u has p + 1

children in this tree, and every other internal vertex has a set of p children, disjoint from the
children set of any other vertex in this tree. This is true since otherwise there would be a

O. Neiman and I. Shabat 83:19

cycle of length at most 2δ ≤ (α + 1)δ ≤ k, in contradiction to the girth of G being larger
than k. Thus, the number of vertices v in the δ-th layer of this tree, is (p + 1)pδ−1. That is,
the number of v ∈ V such that dG(u, v) = δ is (p + 1)pδ−1. Hence,∑

u∈V

|{v ∈ | dG(u, v) = δ}| =
∑
u∈V

(p + 1)pδ−1 = n(p + 1)pδ−1 .

In this sum, each pair (u, v) ∈ P0 is counted exactly twice, therefore |P0| = n(p+1)pδ−1

2 .
The proof of the third property is very similar. Fix some edge e = (v1, v2) ∈ E. For every

integer i ∈ [0, δ − 1], consider the BFS tree T i
1 of v1 up to distance i. Symmetrically, T i

2
denotes the BFS tree of v2 up to distance i. As before, the children sets of the vertices in
T i

1 ∪ T δ−1−i
2 are disjoint - otherwise there would be a cycle of length at most

max{i + 1 + δ − 1 − i, 2i, 2(δ − 1 − i)} < 2δ ≤ k ,

in contradiction. Hence, the number of vertices in the i-th layer of T i
1 is pi (note that v1 has

p children in this tree), and the number of vertices in the (δ − 1 − i)-th layer of T δ−1−i
2 is

pδ−1−i. For every pair (u, v) ∈ P0 such that e ∈ Pu,v, the path Pu,v has one end in the i-th
layer of T i

1 and the other end in the (δ − 1 − i)-th layer of T δ−1−i
2 , for some i ∈ [0, δ − 1].

See Figure 2 for an illustration. Thus, the number of such pairs is

δ−1∑
i=0

pi · pδ−1−i = δpδ−1 . ◀

Figure 2 Given an edge e = (v1, v2) (colored orange in the figure), we consider the BFS trees T i
1

and T δ−1−i
2 rooted at v1 and v2 respectively, up to distance i and δ − 1 − i respectively. There are

no cycles within these two trees, because of the girth guarantee. By regularity, we know that each
vertex in these trees, except the leaves, has exactly p children. Every path of length δ that passes
through e, such as the blue path in the figure, is determined by a leaf of T i

1 and a leaf of T δ−1−i
2 .

We are now ready for the main theorem of this section.

▶ Theorem 12. For infinitely many integers n > 0, and for any real α ≥ 1 and integer
k such that α + 1 ≤ k ≤ log n, there is an n-vertex graph G = (V, E) and a set of pairs
P ⊆ V 2 with size Θ

(
α
k · n1+ 1

k

)
, such that any P-pairwise α-spanner for G must have at

least Ω(n1+ 1
k) edges, that is, the size overhead is β = Ω

(
k
α

)
.

ITCS 2024

83:20 On the Size Overhead of Pairwise Spanners

Proof. By Theorem 8, for infinitely many integers n > 0, there is a (p + 1)-regular graph
G = (V, E) with n vertices and girth larger than k, where p = Θ(n 1

k). We use the same
notations for δ and P0 as in the beginning of this section.

Let P ⊆ P0 be a subset that is formed by sampling each pair in P0 independently with
probability 1

δpδ−1 . The expected number of pairs in P is

|P0|
δpδ−1 = n(p + 1)pδ−1

2δpδ−1 = n(p + 1)
2δ

= |E|
δ

,

by Lemma 11. Moreover, by Chernoff bound,

Pr
[∣∣∣∣|P| − |E|

δ

∣∣∣∣ >
|E|
2δ

]
≤ 2e− |E|

12δ = 2e− n(p+1)
24δ ≤ 2e− n

24 log n ≤ 2e−2 , (3)

for large enough n, where we used the fact that δ ≤ k ≤ log n.
We say that a pair (u, v) ∈ P0 covers an edge e ∈ E if e ∈ Pu,v. For an edge e ∈ E, the

number of pairs in P0 that cover e is δpδ−1, by Lemma 11. Therefore, the probability that
none of the pairs that cover e are in P is (1 − 1

δpδ−1)δpδ−1 ≤ e−1. Hence, If we denote by
E′ ⊆ E the set of edges that are not covered by any (u, v) ∈ P, then E[|E′|] ≤ |E| · e−1. By
Markov’s inequality,

Pr
[
|E′| >

2
e

|E|
]

≤ 1
2 (4)

Now, by the union bound, the probability that either
∣∣∣|P| − |E|

δ

∣∣∣ > |E|
2δ , or |E′| > 2

e |E|, is
at most 2e−2 + 1

2 < 1, using Inequalities (3) and (4). Therefore, there is a way to choose the
subset P ⊆ P0, such that the number of edges in E that are not covered by any (u, v) ∈ P is
at most 2

e |E|, and such that |E|
2δ ≤ |P| ≤ 3|E|

2δ . In particular,

|P| = Θ
(

|E|
δ

)
= Θ

(
n(p + 1)

2δ

)
= Θ

(
n1+ 1

k

δ

)
= Θ

(α

k
· n1+ 1

k

)
.

For this choice of P, the number of edges e ∈ E that satisfy e ∈ Pu,v for some (u, v) ∈ P is
at least

(
1 − 2

e

)
|E|. Notice that these are exactly the edges in

⋃
(u,v)∈P Pu,v. By Lemma 10,

any P-pairwise α-spanner for G must contain this set, and therefore must have size at least(
1 − 2

e

)
|E| ≥ 1

4 |E| ≥ 1
4 · 2δ

3 |P| = δ

6 |P| .

This proves the theorem for β = δ
6 = Ω

(
k
α

)
. ◀

References
1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. Journal of the

ACM (JACM), 64(4):1–20, 2017.
2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.
3 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen Kobourov, and Richard Spence.

Weighted additive spanners. In Graph-Theoretic Concepts in Computer Science: 46th Interna-
tional Workshop, WG 2020, Leeds, UK, June 24–26, 2020, Revised Selected Papers 46, pages
401–413. Springer, 2020.

4 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete Comput. Geom., 9:81–100, 1993.

O. Neiman and I. Shabat 83:21

5 Uri Ben-Levy and Merav Parter. New (α, β) spanners and hopsets. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1695–1714. SIAM,
2020.

6 Aaron Bernstein. Fully dynamic (2+ ε) approximate all-pairs shortest paths with fast query
and close to linear update time. In 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 693–702. IEEE, 2009.

7 Greg Bodwin. New results on linear size distance preservers. SIAM J. Comput., 50(2):662–673,
2021. doi:10.1137/19M123662X.

8 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. J. ACM, 47(1):132–166, 2000. doi:10.1145/331605.331610.

9 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In SODA:
ACM-SIAM Symposium on Discrete Algorithms, pages 660–669, 2005.

10 Michael Elkin, Arnold Filtser, and Ofer Neiman. Prioritized metric structures and embedding.
In Proceedings of the forty-seventh annual ACM symposium on Theory of Computing, pages
489–498, 2015.

11 Michael Elkin, Arnold Filtser, and Ofer Neiman. Terminal embeddings. Theor. Comput. Sci.,
697:1–36, 2017. doi:10.1016/j.tcs.2017.06.021.

12 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths with near-additive error
in weighted graphs. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands,
volume 227 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.SWAT.2022.23.

13 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. ACM Transactions on Algorithms (TALG), 15(1):1–29, 2018.

14 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM Journal on Computing, 48(4):1436–1480, 2019.

15 Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures, pages 333–341, 2019.

16 Michael Elkin and Ofer Neiman. Centralized, parallel, and distributed multi-source shortest
paths via hopsets and rectangular matrix multiplication. In Petra Berenbrink and Benjamin
Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science,
STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of
LIPIcs, pages 27:1–27:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.STACS.2022.27.

17 Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general graphs.
SIAM J. Comput., 33(3):608–631, 2004. doi:10.1137/S0097539701393384.

18 Michael Elkin and Idan Shabat. Path-reporting distance oracles with near-logarithmic stretch
and linear size. CoRR, abs/2304.04445, 2023. doi:10.48550/arXiv.2304.04445.

19 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear total update time. Journal of the ACM
(JACM), 65(6):1–40, 2018.

20 Shang-En Huang and Seth Pettie. Thorup-zwick emulators are universally optimal hopsets.
Information Processing Letters, 142, April 2017. doi:10.1016/j.ipl.2018.10.001.

21 Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower
bounds for hopsets. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 766–777. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00078.

22 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

ITCS 2024

https://doi.org/10.1137/19M123662X
https://doi.org/10.1145/331605.331610
https://doi.org/10.1016/j.tcs.2017.06.021
https://doi.org/10.4230/LIPIcs.SWAT.2022.23
https://doi.org/10.4230/LIPIcs.STACS.2022.27
https://doi.org/10.4230/LIPIcs.STACS.2022.27
https://doi.org/10.1137/S0097539701393384
https://doi.org/10.48550/arXiv.2304.04445
https://doi.org/10.1016/j.ipl.2018.10.001
https://doi.org/10.1109/FOCS54457.2022.00078

83:22 On the Size Overhead of Pairwise Spanners

23 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’15, pages 192–201, New York, NY, USA, 2015. ACM.
doi:10.1145/2755573.2755574.

24 Ofer Neiman and Idan Shabat. A unified framework for hopsets. In 30th Annual European
Symposium on Algorithms (ESA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

25 Merav Parter. Bypassing erdős’ girth conjecture: Hybrid stretch and sourcewise spanners. In
International Colloquium on Automata, Languages, and Programming, pages 608–619. Springer,
2014.

26 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. In
Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing,
pages 253–262, 2008.

27 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

28 M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of the 33rd ACM Symp. on
Theory of Computing, pages 183–192, 2001.

29 M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In Proc. of
Symp. on Discr. Algorithms, pages 802–809, 2006.

https://doi.org/10.1145/2755573.2755574

	1 Introduction
	1.1 Pairwise Spanners, Near-additive Spanners, and Hopsets
	1.1.1 Larger Stretch Regime

	1.2 Source-wise and Prioritized Spanners and Distance Oracles
	1.3 Technical Overview
	1.3.1 Lower Bound for Near-Exact Pairwise Spanners
	1.3.2 Lower Bound for Pairwise Spanners with Large Stretch
	1.3.3 Upper Bound for Pairwise Spanners with Large Stretch
	1.3.4 Subset, Source-wise and Prioritized Spanners

	1.4 Organization

	2 Preliminaries
	3 Lower Bounds for Pairwise Spanners
	3.1 Near-exact Pairwise Spanners
	3.2 Large Stretch

