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Abstract
In budget-feasible mechanism design, a buyer wishes to procure a set of items of maximum value from
self-interested rational players. We are given an item-set U and a nonnegative valuation function
v : 2U 7→ R+. Each item e is held by a player who incurs a private cost ce for supplying item
e. The goal is to devise a truthful mechanism such that the total payment made to the players
is at most some given budget B, and the value of the set returned is a good approximation to
OPT := max {v(S) : c(S) ≤ B, S ⊆ U}. We call such a mechanism a budget-feasible mechanism.
More generally, there may be additional side constraints requiring that the set returned lies in some
downwards-monotone family I ⊆ 2U . Budget-feasible mechanisms have been widely studied, but
there are still significant gaps in our understanding of these mechanisms, both in terms of what
kind of oracle access to the valuation is required to obtain good approximation ratios, and the best
approximation ratio that can be achieved.

We substantially advance the state of the art of budget-feasible mechanisms by devising mech-
anisms that are simpler, and also better, both in terms of requiring weaker oracle access and
the approximation factors they obtain. For XOS valuations, we devise the first polytime O(1)-
approximation budget-feasible mechanism using only demand oracles, and also significantly improve
the approximation factor. For subadditive valuations, we give the first explicit construction of an
O(1)-approximation mechanism, where previously only an existential result was known.

We also introduce a fairly rich class of mechanism-design problems that we dub using the
umbrella term generalized budget-feasible mechanism design, which allow one to capture payment
constraints that are much-more nuanced than a single constraint on the total payment doled out.
We demonstrate the versatility of our ideas by showing that our constructions can be adapted to
yield approximation guarantees in such general settings as well.

A prominent insight to emerge from our work is the usefulness of a property called nobossiness,
which allows us to nicely decouple the truthfulness + approximation, and budget-feasibility require-
ments. Some of our constructions can be viewed as reductions showing that an O(1)-approximation
budget-feasible mechanism can be obtained provided we have a (randomized) truthful mechanism
satisfying nobossiness that returns a (random) feasible set having (expected) value Ω(OPT).
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1 Introduction

The typical setup in budget-feasible mechanism design involves a ground set U of elements or
items, a valuation function v : 2U 7→ R+ satisfying v(∅) = 0, where v(S) specifies the value
obtained from set S ⊆ U , and a budget B. The mechanism designer (or buyer) seeks to
procure a maximum-value set of elements, where each element e is held by a strategic player
who incurs a private cost ce ≥ 0 for supplying item e. We use the terms player, element,
and item interchangeably. In order to incentivize players to reveal their true costs, one
needs to make suitable payments to the players. The utility of a player is then equal to
the (payment received by it) − (cost incurred by it). A truthful mechanism is one where
each player maximizes her utility by revealing her true cost and thereby has no incentive to
misrepresent her true cost; an individually-rational mechanism is one where the utility of
every truthful player is nonnegative.

The goal is to devise a truthful, individually rational mechanism that maximizes v(S)
subject to the budget-feasibility constraint that the total payment made by the mechanism
is at most a given budget B. We call a truthful mechanism satisfying budget feasibility, a
budget-feasible mechanism. We often refer to players in the output set as “winners”. We
say that a budget-feasible mechanism achieves approximation ratio α if it always returns a
set S with v(S) ≥ OPT/α, where the benchmark OPT := max {v(S) : S ⊆ U, c(S) ≤ B}
is the optimal value that can be obtained if the costs were public information. (Note
that α ≥ 1.) We say that a randomized mechanism is budget-feasible if it satisfies the
truthfulness, individual-rationality, and budget-feasibility conditions with probability 1, i.e.,
it is a distribution over deterministic budget-feasible mechanisms; it achieves approximation
ratio α if the expected value of the set returned is always at least OPT/α. (A distribution
over truthful mechanisms is called a universally-truthful mechanism.)

Budget feasible mechanisms were introduced by Singer [24] and have since been extensively
studied (see, e.g., [10, 26, 22, 7] and the references therein). Unlike the situation with the
algorithmic problem of computing a good approximation to OPT , due to the budget-
feasibility condition on payments, even the existence of “good” (i.e., O(1)-approximation)
budget-feasible mechanisms (bereft of computational concerns) is not guaranteed; therefore
even the development of good budget-feasible mechanisms setting aside computational
considerations is of interest, and has been the focus of a significant body of work.

Despite their extensive study, our understanding of budget-feasible mechanisms is still
sketchy in various respects, especially for valuation classes that are more general than
submodular valuations, such as XOS and subadditive valuations. (v is subadditive if
v(S ∪ T ) ≤ v(S) + v(T ) for all S, T ⊆ U ; it is XOS if it is the maximum of a collection of
additive valuations.) In particular, for XOS and subadditive valuations, the state-of-the-art
for budget-feasible mechanisms lags significantly behind that of the algorithmic problem of
computing a good approximation to OPT , both qualitatively, in terms of what kind of oracle
access to the valuation is required to obtain a good approximation ratio, and quantitatively, in
terms of the best approximation ratio that can be achieved. The algorithmic problem admits
a (polytime) (2 + ϵ)-approximation, even for subadditive valuations, using demand oracles [6],
while value oracles are insufficient to achieve anything better than

√
n-approximation in

polytime even for XOS valuations [24]. However, all existing O(1)-approximation budget-
feasible mechanisms [10, 1, 22] for XOS valuations require both a demand oracle and a
so-called XOS oracle, and the approximation ratio achieved, even ignoring computational
concerns, is rather large (244 [1, 3]); in particular, it was not known whether one can obtain
a polytime O(1)-approximation using only demand oracles, as with the algorithmic problem.
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More broadly speaking, we have limited understanding of how truthful mechanism design
interfaces with conditions on payments. While budget-feasible mechanism design considers a
single constraint on the total payment doled out by the mechanism, it is not hard to envision
settings involving more nuanced or complex payment constraints. For instance, players may
be divided into certain groups (based on geographical, political, or other factors), and one
may require that the total payment made to (the winners in) each group should fall within a
budget. Another scenario involves economic aid: the government may offer economic relief
to the buyer by deeming that it be responsible for only the ℓ largest payments (for some
parameter ℓ), so that the budget constraint now translates to the Top-ℓ constraint that
the sum of the ℓ largest payments should be at most the budget. To our knowledge, such
generalized budget-feasible mechanism design problems have not been considered; moreover,
as illustrated by our partial knowledge of budget-feasible mechanisms, we have quite limited
knowledge of techniques for approaching generalized budget-feasible mechanism design.

Our contributions and results. Our contributions are twofold. We make substantial progress
towards remedying the gap between the budget-feasible mechanism-design problem and the
algorithmic problem (of approximating OPT ), and in doing so obtain illuminating insights
into the relationship between these two problems. We devise mechanisms that are fairly
simple (to describe and analyze), and also better than the current state-of-the-art, both
in terms of requiring weaker oracle access to the valuation, and the significantly better
approximation factors they obtain. For XOS valuations, our results establish that polytime
O(1)-approximation can be achieved given only demand oracles, while for subadditive
valuations, we give an explicit construction of an O(1)-approximation mechanism. Second,
we initiate a study of generalized budget-feasible mechanism design, and take important
strides towards the development of techniques for truthful mechanism design in the presence
of a broader set of payment constraints. We showcase the broad applicability of our ideas by
demonstrating that our budget-feasible mechanisms can be adapted to yield guarantees for
both group budget constraints, and Top-ℓ budget constraints.

We consider a more general setup wherein we may have additional side-constraints
imposing that the set returned lie in some publicly-known downwards-monotone family
I ⊆ 2U of sets: in such a family, also called an independence system, if S ∈ I and T ⊆ S

then T ∈ I. (Of course, our benchmark OPT is now max {v(S) : S ∈ I, c(S) ≤ B}.) Our
mechanisms chiefly utilize two types of oracles.

Generalized demand oracle: given prices q ∈ RU
+, return argmax {v(S)−

∑
e∈S qe : S ∈ I}.

Knapsack-cover oracle: given prices q ∈ RU
+ and a target Val, return argmin {

∑
e∈S qe :

v(S) ≥ Val, S ∈ I} (or determine infeasibility); we use generalized knapsack-cover to refer
to the underlying optimization problem. (The terminology stems from the fact that for
additive v, I = 2U , this optimization problem is called the knapsack-cover problem [12],
or sometimes the covering knapsack problem.)

Both oracles have similar economic motivation: a generalized demand oracle is a demand
oracle restricted to the sets one is allowed to procure, and represents the best set one would
procure under the given prices; a knapsack cover oracle also captures this, but under the
constraint that the set procured achieves a target value.

Side constraints modeled by a downwards-monotone family I (of varying generality) have
been explicitly considered in some prior work; see, e.g., [2, 4, 22, 20]. Observe that it is
possible to fold the downwards-monotone family I into the valuation function, by defining
the new valuation function v′, where v′(S) = maxT ⊆S:T ∈I v(T ). It is not hard to see that:
(1) a {generalized demand, knapsack-cover} oracle for v is equivalent to having the same
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oracle for v′ but without any side constraints (i.e., with I = 2U ); and (2) if v is XOS or
subadditive, then so is v′. Therefore, existing results on XOS and subadditive functions also
apply to the above setup with side constraints (given suitable access to v′). We explicitly list
the side constraints in order to decouple, and better understand, the complexity arising from
the valuation function v, and the complexity due to the side constraints.

We now state our main results. (Recall that a randomized budget-feasible mechanism
satisfies truthfulness, individual rationality, and budget feasibility with probability 1.) For
XOS-valuations, we devise a variety of polynomial-time mechanisms whose guarantees depend
on the type of oracle access available.

▶ Theorem 1.1. For any downwards-monotone family and any XOS valuation function v,
we obtain polytime randomized budget-feasible mechanisms with the following guarantees, for
any ϵ > 0:
(a) 28-approximation given a generalized demand oracle for v (Theorem 3.1);
(b) (41 + ϵ)-approximation given a knapsack-cover oracle for v (Theorem 3.4);
(c) (33 + ϵ)-approximation given knapsack-cover and XOS oracles for v (Section 3.2).

Part (a) of Theorem 1.1 yields the first polytime O(1)-approximation budget-feasible
mechanism using only demand oracles, thereby placing the mechanism-design problem
qualitatively on par with the algorithmic problem in terms of access required to the valuation
function. The approximation ratios we achieve are all much better than the previous-best
244-approximation for XOS valuations [1], which is obtained by changing some parameters
of a mechanism in [10]. But perhaps more significantly, our mechanisms are also simpler to
describe and analyze, and this simplicity enables us to extract some illuminating insights
that paint a clearer picture of the complexity of budget-feasible mechanism-design versus
that of the algorithmic problem of approximating OPT .

Knapsack-cover oracle is a new oracle that we introduce in this work. Other than the
economic motivation behind this oracle, as we discuss below, in the context of budget-
feasible mechanism design, the use of a knapsack-cover oracle is quite well-motivated from
a computational perspective, and it also affords us a good deal of flexibility in mechanism
design. As noted earlier, due to the budget-feasibility condition on payments, even the
existence of good budget-feasible mechanisms is a priori unclear. A natural direction, and
a standard one followed in complexity theory, for understanding how much more complex
one class of problems is relative to another class of problems Π is oracle complexity: what
can be accomplished assuming we have an oracle for solving problems in Π? In budget-
feasible mechanism-design, this amounts to having an oracle for the algorithmic problem
of computing OPT . It is easy to see that an algorithm for computing OPT can always be
used to supply a knapsack-cover oracle via a binary search on the budget. Thus, part (b)
of Theorem 1.1 demonstrates that budget-feasibility can always be enforced given an oracle
for the underlying algorithmic problem, which is an illuminating insight that delineates the
complexity of budget-feasible mechanism design versus that of the algorithmic problem.

Note that generalized knapsack-cover (i.e., the optimization problem solved by knapsack-
cover oracle) is a social-cost minimization problem, and part (b) can also be viewed as
showing that the VCG mechanism, which is a truthful, optimal mechanism for generalized
knapsack-cover, can be transformed in a black-box fashion to satisfy budget feasibility
with an O(1)-factor loss in approximation (with respect to OPT). This transformation
(see Algorithm XOS-Alg-KC in Section 3.2, which leads to Theorem 1.1 (b)) is in fact
approximation-friendly (see Remark 3.7): we do not actually need to solve generalized
knapsack-cover exactly, and can instead work with an approximate knapsack-cover oracle
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(and even a weaker approximate feasibility oracle) provided that this approximate oracle
satisfies: (i) monotonicity, the property that a winner remains a winner upon decreasing
her cost, which characterizes truthfulness in single-dimensional domains; and (ii) a property
called nobossiness, which means that fixing other players’ costs c−e, if a player e is a
winner under inputs (ce, c−e) and (c′

e, c−e), then the winner set stays the same for both
inputs. Thus, an interesting insight to emerge from Algorithm XOS-Alg-KC is that we
obtain a reduction from budget-feasible mechanism design to the design of truthful, nobossy,
approximation-mechanisms for generalized knapsack-cover. This serves to nicely decouple
the approximation + truthfulness, and budget-feasibility goals for XOS valuations (while
introducing a nobossiness requirement).

For subadditive valuations, we obtain the following result, which yields the first explicit
construction of an O(1)-approximation budget-feasible mechanism.

▶ Theorem 1.2 (Proved in Section 4). For any downwards-monotone family and any sub-
additive valuation function, we can obtain a randomized 33-approximation budget-feasible
mechanism.

We obtain Theorem 1.2 by distilling and refining a key insight from the existential 512-
approximation for subadditive valuations in [10] that allows us to reduce the budget-feasible
mechanism-design task to that of computing a suitable distribution over cost vectors (which
can always be computed in exponential time), which leads to a very simple mechanism. For
cardinality-based subadditive functions (i.e., v(S) depends only on |S|), we obtain a polytime
69-approximation budget-feasible mechanism.

In Section 5, we consider generalized budget-feasible mechanism design, wherein we may
have more complex constraints on the payments handed out by the mechanism. We consider
two types of payment constraints: group budget constraints, wherein players may be divided
into (potentially overlapping) groups, and we have a budget constraint on the total payment
made to each group; (2) Top-ℓ budget constraints, wherein we have budget constraints on the
sum of the ℓ largest payments doled out by the mechanism, for one or more indices ℓ ∈ [n].
We highlight the versatility of our ideas by showing that they can be leveraged to obtain
O(k)-approximation with k group budget constraints, or k Top-ℓ budget constraints, thereby
nicely generalizing our results for budget-feasible mechanisms (where k = 1).

▶ Theorem 1.3. For any downwards-monotone family, we obtain randomized truthful
mechanisms for generalized budget-feasible mechanism design with the following guarantees.
(a) O(k)-approximation for subadditive valuations with k group budget constraints; for XOS

valuations, we obtain a polytime mechanism with this guarantee given a generalized
demand oracle (Theorem 5.1)

(b) O(k)-approximation for subadditive valuations with k Top-ℓ budget constraints, via a
polytime reduction to budget-feasible mechanism design (Theorem 5.3).

Technical overview. We may assume that {e} ∈ I and ce ≤ B for all e ∈ U . Our
mechanism for XOS valuations in part (a) of Theorem 1.1 using a generalized demand oracle
is particularly simple to state and analyze. It consists of essentially three steps (see also
Algorithm XOS-Alg-GD in Section 3.1). We first obtain an estimate of OPT by randomly
partitioning the elements into two sets U1, U2, and computing an estimate V1 of the optimum
when we are restricted to only use items from U1. We let V1 be the optimal value of an
LP-relaxation (BudgP) of the problem (see Section 2) that is restricted to only use items
in U1, which can be solved efficiently using a generalized demand oracle. Next, we obtain
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84:6 Budget-Feasible Mechanism Design: Simpler, Better Mechanisms

a good candidate set S∗ ⊆ U2 by (roughly speaking) running a generalized demand oracle
with prices qe = λ·V1

B · ce, for a suitable value λ ∈ [0, 1]. Finally, considering elements of S∗

in some fixed order, we compute a maximal prefix T ⊆ S∗ having value at most λV1. (In the
actual algorithm, we replace λV1 by a slightly different quantity in both steps, to fine-tune
the approximation factor.) We return T with some probability p and e∗ := argmaxe∈U v(e)
with probability 1− p. (This random choice is for technical reasons; for intuition, it suffices
to focus on the outcome where we return T .)

The analysis is equally simple. For single-dimensional mechanism design, it is well
known [23] that an algorithm f can be combined with suitable payments to obtain a truthful
mechanism iff f is monotone, and in this case, the payment of a winning player is the
threshold value at which it transitions from a winner to a non-winner (see Theorem 2.4).
The key observation is that the generalized-demand-oracle computation already yields suitable
thresholds: we obtain that ce ≤ B

λV1
·

(
v(S∗) − v(S∗ − e)

)
for all e ∈ S∗, which yields

B
λV1
·
(
v(S∗)− v(S∗ − e)

)
as an upper bound on the threshold value of a winner e. For XOS

valuations,
∑

e∈T

(
v(S∗)−v(S∗−e)

)
≤ v(T ) (Claim 2.5), and so by our choice of T , we obtain

budget-feasibility and truthfulness. For the approximation guarantee, Bei et al. [10] show
the intuitive result that random partitioning can be used to well-estimate OPT as also the
optimum from U2 (see Lemma 2.8). We generalize this result to show that the LP-optimum is
also well-estimated (Lemma 2.9). We can assume therefore that V1 is roughly Ω(LP∗), where
LP∗ ≥ OPT is the LP optimum considering the entire ground set U . The LP-relaxation for
item-set U2 yields a distribution over sets having large value (i.e., Ω(LP∗)) and cost at most
B, and its optimal solution can be used to infer that v(S∗)− q(S∗) = Ω(LP∗). Since both V1
and v(S∗) are large, this immediately implies that v(T ) = Ω(LP∗). (More precisely, V1 and
v(S∗) are Ω

(
LP∗ − v(e∗)

)
and this is why we return e∗ with some probability.)

We are substantially aided in our analysis by the fact that we can focus on a single
winner-set T when considering a winner e ∈ T and changes to ce under which e remains a
winner. This is the nobossiness property mentioned earlier, and it follows because one may
assume that the generalized-demand oracle breaks ties consistently, so that we obtain the
same sets S∗ and T if any winner e ∈ T decreases her cost.

Algorithm XOS-Alg-KC for XOS valuations (Section 3.2), which uses a knapsack-cover
oracle and leads to part (b) of Theorem 1.1, utilizes similar ideas. We now let V1 be a
(1 + ϵ)-approximate estimate of the integer optimum from U1, which is easy to obtain using
a knapsack-cover oracle; again, this well-approximates OPT as also the integer optimum
from U2. We now use a knapsack-cover oracle with price-vector c and target value V1 to
obtain S∗, and one can assume that c(S∗) ≤ B. The knapsack-cover oracle does not directly
yield suitable threshold values (but it does yield some thresholds), so we now postprocess
S∗ by dropping elements as needed to ensure that every e in the remainder set A satisfies
ce ≤ B

λV1
·
(
v(A)− v(A− e)

)
. This computation preserves monotonicity, and since c(S∗) ≤ B,

one can argue that this does not drop the value by much. We now return a maximal prefix
T ⊆ A with v(T ) ≤ λV1, and given the above thresholds, budget-feasibility follows as before.

Observe that it is not so important for the above analysis that we have an exact knapsack
oracle: approximation factors in v(S∗) and c(S∗) are easily accommodated by choosing the
parameter λ suitably. However, what is crucial is that the knapsack-cover oracle satisfies
monotonicity and nobossiness. But as long as we have these two properties, even an
approximate knapsack-cover oracle would suffice. Furthermore, we only care about obtaining
some set S∗ with c(S∗) ≤ B and v(S∗) ≥ V1, and so we can work with an approximate,
monotone, nobossy feasibility oracle for this decision version of generalized knapsack-cover.
(There are settings where such an approximate feasibility oracle is easy to obtain in polytime,
whereas computing even an approximate generalized demand oracle is quite intractable.)
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For subadditive valuations, we utilize the following powerful tool (Lemma 4.1): for any
set S ⊆ U and any finite set K ⊆ RS

+, there exists a distribution D over K such that,
Eτ∼D

[
v({e ∈ S : ce ≤ τe})

]
≥ 0.5 · v(S) for any c ∈ K. Given this, we start off as in the

algorithm for XOS valuations with a knapsack-cover oracle, to obtain a set S∗ (in a monotone,
nobossy fashion) with c(S∗) ≤ B, and where v(S∗) = Ω(OPT ). Now, we simply consider the
set K = KS∗ :=

{
x ∈ ZS∗

+ :
∑

e∈S∗ xe ≤ B
}

, sample a random vector τ from the distribution
guaranteed by the above statement for K, and return {e ∈ S∗ : ce ≤ τe}. Since τ ∈ K, this
immediately yields truthfulness and budget feasibility, and the approximation guarantee
follows because c ∈ K, and so the expected value obtained is at least v(S∗)/2.

In fact, this distribution-based template is quite powerful. Even with general payment
constraints, it shows that if one can obtain a set S∗ of large value via a monotone, nobossy
algorithm, whose induced cost vector c|S∗ := (ce)e∈S∗ satisfies the payment constraints, then
one can prune S∗ using a random threshold vector sampled from a suitable distribution
and obtain a truthful mechanism satisfying the payment constraints (see Theorem 5.2).
Thus, we are again able to decouple the truthfulness + approximation, and budget-feasibility
requirements, now for subadditive valuations, with the addition of nobossiness. This leads to
the O(k)-approximation for subadditive valuations with group budget constraints.

An important takeaway from our simple and general constructions is that the underlying
insights – e.g., computing a set that maximizes v(S)− λOPT

B · c(S) followed by a pruning
operation suffices for budget feasibility – may potentially be exported to other problem
domains and allow us to tackle budget-feasibility constraints in other settings.

Other related work. Following the work of Singer [24], which introduced budget-feasible
mechanism design and gave a randomized O(1)-approximation budget-feasible mechanism for
monotone submodular valuations, various improvements in the approximation factor, as also
deterministic mechanisms, were obtained for monotone submodular valuations by [15, 21].
The deterministic mechanism in [15] was not efficient, but has been modified to yield efficient
mechanisms for various structured submodular functions such as coverage functions [2, 25],
and information gain functions [19]. More recently, various works have developed O(1)-
approximation mechanisms for nonmonotone submodular valuations [1, 4, 20]. The current-
best approximation factors for monotone and non-monotone submodular valuations are due
to [7]. All of these results utilize only a value oracle for accessing the submodular valuation.

With XOS valuations, value oracles cannot yield any bounded approximation [24], and
so work on XOS and more general valuations has considered demand oracles, possibly in
combination with other types of oracles. Dobzinski et al. [16] seem to have been the first to
consider more general valuations, and they gave an O(log2 n)-approximation for subadditive
valuations using demand oracles. Bei et al. [10, 11] made an important advance by providing
the first O(1)-approximation mechanism for XOS valuations. Their mechanism has essentially
remained the only mechanism for XOS valuations (its analysis has been improved by [3, 22]),
and they require both a demand oracle and a so-called XOS oracle. Thus, prior to our work,
there was no known O(1)-approximation budget-feasible mechanism for XOS valuations using
only demand oracles. Bei et al. also considered a very general Bayesian setting, and devised
an O(1)-approximation mechanism for subadditive valuations. In the journal version of their
paper [11], they observed that their result for the Bayesian setting also implies the existence of
a worst-case O(1)-approximation mechanism for subadditive valuations, using Yao’s minimax
principle. They also devised a polytime randomized O

( log n
log log n

)
-approximation for subadditive

valuations; more recently, this guarantee has also been obtained deterministically [7].
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Side constraints modeled by a downwards-monotone family I were explicitly considered
by [2, 22, 4, 20], and the most general setting that has been considered is that of (non-
monotone) submodular functions where I is a p-system (any two bases of a set differ in size
by a multiplicative factor of at most p), for which there is a polytime O(p)-approximation
budget-feasible mechanism [4].

Budget-feasible mechanism design has also been investigated under the large market
assumption, where no single player has a large value (see, e.g., [5, 8, 21]), and in online
settings [4, 9].

Future directions. One prominent insight to emerge from our work is the usefulness of the
nobossiness property, which as we have seen allows us to nicely decouple the truthfulness
+ approximation, and budget-feasibility requirements. (Nobossines was also exploited
by [17] to obtain a similar decoupling result in the context of cost-sharing mechanisms.)
As already noted, some of our constructions can be viewed as reductions showing that
an O(1)-approximation budget-feasible mechanism can be obtained provided we have a
(randomized) truthful mechanism satisfying nobossiness that returns a (possibly random)
feasible set having (expected) value Ω(OPT ); in other words, budget-feasibility can always be
injected into such a mechanism losing a small factor in the approximation. We believe that
understanding the power and limitations of this intriguing property is a pertinent research
question, and leave this for future work.

Generalized budget-feasible mechanism design is a research direction that is teeming
with open questions. Even the algorithmic questions here are not well-understood, even
in structured settings such as group budget constraints with disjoint groups. Obtaining a
toolkit of techniques capable of handling nuanced payment constraints would constitute an
important advance in mechanism design, and is an important direction for future work.

2 Preliminaries

We use R+ and Z+ to denote the set of nonnegative reals, and nonnegative integers respectively.
For an integer k ≥ 1, let [k] denote {1, . . . , k}. Throughout, OPT := max {v(S) : S ∈
I, c(S) ≤ B} denotes the optimal value, and we use O∗ to denote some fixed optimal set.
Also, n denotes |U |. For notational convenience, we assume that items in U are labeled
1, 2, . . . , n; when we say item e, we mean the item labeled e, and so U is essentially [n]. Given
w ∈ RU and a set S ⊆ U , we use w(S) to denote

∑
e∈S we.

We may assume that every element e ∈ U satisfies ce ≤ B and {e} ∈ I. Otherwise, we
can preprocess the input by discarding elements that do not satisfy this property. Note that
this does not degrade the approximation ratio, and does not impact truthfulness, individual
rationality, and budget feasibility. Throughout, we use e∗ to denote argmaxe∈U v(e). Note
that by the above preprocessing, we have OPT ≥ v(e∗).

All omitted proofs appear in the full version of the paper.

Valuation functions and oracles. Let v : 2U 7→ R+ be a valuation function. We will always
assume that v is normalized, i.e., v(∅) = 0. For an element e ∈ U and set S ⊆ U , we use v(e)
as a shorthand for v({e}), and S + e and S − e to denote S ∪ {e} and S \ {e} respectively.
We say that v is monotone, if v(S) ≤ v(T ) whenever S ⊆ T ⊆ U . We consider various classes
of valuation functions. We say that v is:

additive (or modular), if there exists some a ∈ RU such that v(S) = a(S) for all S ⊆ U .
Note that an additive valuation is monotone iff it is nonnegative.
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submodular, if v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ U .
XOS, if v is the maximum of a finite collection of additive functions, i.e., there exist
a1, . . . , ak ∈ RU such that v(S) = maxi∈[k] ai(S) for all S ⊆ U . Note that we allow
the additive functions to be negative, and this allows us to capture non-monotone XOS
functions. The above definition is equivalent to saying that for every S ⊆ U , there
exists some w ∈ RU such that v(S) = w(S) and v(T ) ≥ w(T ) for all T ⊆ S; we say
that w (or the corresponding additive valuation) supports S. XOS valuations are also
called fractionally subadditive valuations, and can be equivalently defined in terms of
fractional covers. A fractional cover of a set S ⊆ U is a collection {µT }T ⊆S such that∑

T ⊆S:e∈T µT = 1 for all e ∈ S, and its value is defined as
∑

T ⊆S v(T )µT . We say that v

is fractionally subadditive, if for every S ⊆ U , every fractional cover of S has value at
least v(S). Using LP duality, it is not hard to infer that this is equivalent to stating that
every S ⊆ U has a supporting additive valuation. When v is monotone and XOS, we can
assume that v is the maximum of a collection of nonnegative additive valuations, and we
can relax the fractional-cover condition to the inequality

∑
T ⊆U :e∈T µT ≥ 1 for all e ∈ S.

This is because we can always ensure that equality holds here by dropping elements from
sets if needed, and with a monotone valuation, this does not increase the value of the
fractional cover.
subadditive, if v(S ∪ T ) ≤ v(S) + v(T ) for all S, T ⊆ U .

It is well known that additive valuations are a strict subclass of submodular valuations, which
in turn form a strict subclass of both XOS and subadditive valuations. Also, monotone XOS
valuations form a strict subclass of monotone subadditive valuations.

Our mechanisms chiefly utilize two types of oracles for accessing the valuation v: a
generalized demand oracle and a knapsack-cover oracle. Both oracles take item prices q ∈ RU

+;
a generalized demand oracle returns an optimal solution to max {v(S)− q(S) : S ∈ I}, and
a knapsack-cover oracle takes also a target value Val and returns an optimal solution to
min {q(S) : v(S) ≥ Val, S ∈ I}.

While we have mentioned non-monotone valuations above, we observe that the following
simple trick lets us reduce to the setting with monotone valuations. Given a valuation v, the
monotonized version of v, denoted vmon, is the function given by vmon(S) = maxT ⊆S v(T ) for
all S ⊆ U . It is not hard to infer (see Lemma 2.1) that if v is {subadditive, XOS} then vmon

belongs to the same class; moreover, since the input prices to a generalized demand oracle or
knapsack-cover oracle are always nonnegative, an oracle for v also yields an oracle for vmon.
In the sequel, we therefore focus on monotone valuation functions.

▶ Lemma 2.1. Let v : 2U 7→ R+ and vmon be its monotonized version. (a) If v is subadditive,
then so is vmon; if v is XOS, then so is vmon. (b) A {generalized demand, knapsack-cover}
oracle for v yields the same type of oracle for vmon.

We will often need to restrict our attention to a specific set A ⊆ U when solving the
optimization problems underlying our oracles (i.e., optimize among subsets of A that are
in I). For subadditive valuations, this can be easily achieved by setting qe to be a suitably
large value M for all e /∈ A.

For a generalized demand oracle, we can take M = maxe∈U v(e) + 1; then for any set
S with S −A ̸= ∅, we have v(S ∩A)− q(S ∩A) > v(S)− q(S), and so the oracle must
return a subset of A as the maximizer.
For a knapsack-cover oracle, we can take M = |A| ·maxe∈A qe + 1, which ensures that
q(S) > q(T ) for any S, T such that S − A ≠ ∅, T ⊆ A. So if the output S∗ of the
knapsack-cover oracle with these prices is not a subset of A, then we can infer that there
is no feasible solution that is a subset of A.

ITCS 2024
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We will also naturally require a value oracle for the valuation v. It is well known that
a demand oracle can be used to supply a value oracle, and the same holds for sets S ∈ I
given a generalized demand oracle. Given a knapsack-cover oracle and a set S ∈ I, for a
monotone valuation v, we can simply set the prices to be 0 for e ∈ S and 1 for e /∈ S, and
keep increasing the target Val until the knapsack-cover oracle returns a set containing some
element not in S. (For non-monotone valuations, we first move to the monotonized version
of the valuation and simulate a value oracle for this monotonic function.)

Both oracles can be used to compute a good approximation to OPT , and one can show
that one oracle can be used to supply an approximate version of the other oracle.

▶ Lemma 2.2. Let v : 2U 7→ R+ be subadditive, I ⊆ 2U be a downwards-monotone family. For
any ϵ > 0: (a) a knapsack-cover oracle for v can be used to compute a (1 + ϵ)-approximation
to OPT in polytime; (b) a generalized demand oracle for v can be used to compute a
(2 + ϵ)-approximation to OPT in polytime.

Proof. Let e∗ = argmaxe∈U v(e). Note that OPT ≥ v(e∗) (due to the assumptions stated at
the start of this section). For part (a), we simply try all target values Val = v(e∗)(1 + ϵ)i,
where i is a nonnegative integer, and return the largest value (and the corresponding set) for
which the knapsack cover oracle returns a set S with c(S) ≤ B. It is clear that v(S) is at least
OPT/(1 + ϵ). Part (b) follows from [6], by folding the family I into the valuation function:
define v′ by setting v′(S) := maxT ⊆S:T ∈I v(T ). Then v′ is subadditive, a generalized demand
oracle for (v, I) yields a demand oracle for v′, and OPT = max {v′(S) : S ⊆ U, c(S) ≤ B}.
So using [6], we can obtain a set S with v′(S) ≥ OPT/(2 + ϵ). To obtain the set in I
determining v′(S), we can use a generalized demand oracle by setting 0 prices for elements
in S, and very large prices (e.g., v(e∗) + 1) for elements not in S. ◀

It will be important that our oracles use a consistent, price-independent, tie-breaking
rule to choose an optimal solution in case there are multiple optimal solutions. Lemma 2.3
shows that one can suitably perturb the element prices to obtain a lexicographically-smallest
set among all optimal solutions. Recall that item e means the item labeled e, where e ∈ [n].
Given two distinct sets S, T ⊆ U , we say that S is lexicographically smaller than T , denoted
S ≺lex T , if

∑
e∈S

1
2e <

∑
e∈T

1
2e .

▶ Lemma 2.3. Let q ∈ RU be some item prices, and Val be some target value. Suppose we
have an integer M such that every qe, and all v(S) values are integer multiples of 1

M . Define
q′

e := qe + 1
2e·M for all e ∈ U . For both generalized demand oracle and knapsack-cover oracle,

the underlying optimization problem with prices q′ has a unique optimal solution, which is
the lexicographically-smallest set among all optimal solutions to the problem with prices q.

Mechanism design. A (direct-revelation) mechanism consists of an algorithm or allocation
rule f , and a payment scheme pe for each player e. In budget-feasible mechanism design,
f and the pes receive as input the publicly-known information (v : 2U 7→ R+, I, B) and
the players’ reported costs {ce ≥ 0}e∈U ; the algorithm f outputs a set S ∈ I, that we call
the winner set, and each pe outputs a number, which is the payment made to player e.
Notationally, we will often view f and the pes as functions of only the reported cost-vector
c, treating (v, I, B) as implicitly fixed. The utility of player e, when her true private cost
is ce ≥ 0, she reports ce, and the others report c−e, is ue(ce; ce, c−e) := pe(ce, c−e) − ce if
e ∈ f(ce, c−e) and pe(ce, c−e) otherwise, and each player aims to maximize her utility. We
seek a mechanism M =

(
f, {pe}e∈U

)
satisfying the following properties.
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M is truthful: each player e maximizes her utility by reporting her true private cost: for
every ce, ce, c−e, we have ue(ce; ce, c−e) ≥ ue(ce; ce, c−e).
M is individually rational (IR): ue(ce; ce, c−e) ≥ 0 for every e, and every ce, c−e; note
that this implies that pe(c) ≥ 0 for all c. We say that M makes no positive transfers
(NPT) if pe(c) = 0 if e /∈ f(c). In the sequel, we will always also implicitly require NPT.
M is budget feasible: we have

∑
e pe(c) ≤ B for every cost-vector c. (Assuming NPT,

this is equivalent to
∑

e∈f(c) pe(c) ≤ B.) Note that if M is individually rational, this
implies that c

(
f(c)

)
≤ B.

We say that M is an α-approximation mechanism, if f is an α-approximation algorithm, i.e.,
we have v

(
f(c)

)
≥ OPT (c)/α for all c, where α ≥ 1.

In budget-feasible mechanism design, where players are single-dimensional (i.e., each
player’s cost is a known linear function of a private real number), it follows from Myerson [23]
that a mechanism M = (f, p) in this setting is truthful iff the algorithm f is monotone: for
every player e ∈ U , every ce, c′

e ∈ R+ with c′
e ≤ ce, and every c−e ∈ RU−e

+ , if e ∈ f(ce, c−e)
then e ∈ f(c′

e, c−e) (i.e., a winner remains a winner upon decreasing her reported cost).

▶ Theorem 2.4 (Truthful mechanisms in single-dimensional domains [23]). Given an algorithm
f for budget-feasible mechanism design, there exist payment functions {pe}e∈U such that
(f, p) is a truthful mechanism iff f is monotone. Suppose that f is monotone, and τe =
τe(c−e) := sup {ce ≥ 0 : e ∈ f(ce, c−e)} is finite for every e ∈ U and c−e ∈ RU−e

+ . Then
setting pe(c) = τe(c−e) if e is a winner, and 0 otherwise, is the unique payment scheme that
yields a truthful, individually-rational mechanism (satisfying NPT).

Given this characterization of truthful mechanisms and payments, we focus on designing
a monotone algorithm where the threshold values can be computed efficiently and the sum
of the winners’ thresholds is at most B, thereby obtaining a budget-feasible mechanism. We
abuse notation slightly, and say that a monotone algorithm is budget-feasible, if the resulting
mechanism is budget feasible (i.e., the sum of the winners’ thresholds is at most B). Due to
the preprocessing mentioned at the beginning of this section, where we discard elements e

with ce > B, the threshold value of every player is well-defined and is at most B.
Our mechanisms crucially exploit, and in turn satisfy, a key property called nobossiness:

we say that an algorithm f satisfies nobossiness (or is nobossy) if for every player e and every
c−e, and ce, c′

e, if e ∈ f(ce, c−e) and e ∈ f(c′
e, c−e), then f(ce, c−e) = f(c′

e, c−e). We say that
a mechanism (f, {pe}) satisfies nobossiness (or is nobossy), if f is nobossy. Monotonicity
coupled with nobossiness ensures that the winner set remains unchanged when a winner
decreases her cost. This is quite useful in: (a) the computation of threshold values, since we
can focus on a fixed winner set, and (b) settings where the mechanism prunes the output
of another algorithm g to obtain its output; monotonicity and nobossiness of g make it
convenient to reason about this composition, since they ensure that the pruning procedure
receives the same set as input when a winner decreases her cost.

Properties of XOS and subadditive valuations. We will utilize some well-known properties
about XOS and subadditive valuations, which we collect below.

▷ Claim 2.5. Let v : 2U 7→ R+ be an XOS valuation. Then, for any subsets T ⊆ S ⊆ U , we
have

∑
e∈T

(
v(S)− v(S − e)

)
≤ v(T ).

▷ Claim 2.6. Let v : 2U 7→ R+ be subadditive, q ∈ RU
+ be item prices, I ⊆ 2U be a

downwards-monotone family, and S∗ = arg max{v(S) − q(S) : S ∈ I}. Then, we have
v(T ) ≥ q(T ) for all T ⊆ S∗.
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Our randomized mechanisms all use a random-sampling step to compute a good ap-
proximation of OPT . Let U1, U2 be a random partition of U obtained by placing each
element of U independently with probability 1

2 in U1 or U2. Throughout, for i = 1, 2, we
use V ∗

i := max {v(S) : S ∈ I, S ⊆ Ui, c(S) ≤ B} to denote the optimal value that can be
achieved using only elements from Ui.

▶ Lemma 2.7 (Random partitioning lemma [10]). Let g : 2U 7→ R+ be a subadditive function.
Consider any S ⊆ U . Then, Pr

[
g(S ∩ U1), g(S ∩ U2) ≥ g(S)−maxe∈S g(e)

4
]
≥ 1

2 .

▶ Corollary 2.8. Let v : 2U 7→ R+ be subadditive. We have Pr
[
V ∗

2 ≥ OPT
2 , V ∗

2 ≥ V ∗
1 ≥

OPT−v(e∗)
4

]
≥ 1

4 .

Proof. Applying Lemma 2.7 to the set S = O∗, we obtain that Pr
[
v(U1 ∩ O∗), v(U2 ∩

O∗) ≥ OPT−v(e∗)
4

]
≥ 1

2 , which implies that Pr
[
V ∗

1 , V ∗
2 ≥

OPT−v(e∗)
4

]
≥ 1

2 . Let Ω be the
event that V ∗

1 and V ∗
2 are both at least OPT−v(e∗)

4 . Note that V ∗
1 and V ∗

2 are identically
distributed, and this remains true even when we condition on the event Ω. It follows that
Pr[Ω] ≤ Pr[{V ∗

1 ≥ V ∗
2 } ∧ Ω] + Pr[{V ∗

2 ≥ V ∗
1 } ∧ Ω] = 2 · Pr[{V ∗

2 ≥ V ∗
1 } ∧ Ω]. It follows that

Pr[{V ∗
2 ≥ V ∗

1 } ∧ Ω] ≥ 1
4 . Observe that V ∗

1 + V ∗
2 ≥ OPT . So the event {V ∗

2 ≥ V ∗
1 } also

implies that V ∗
2 ≥ OPT

2 . ◀

For XOS valuations, we prove an analogous result for the optimal value of the LP-
relaxation (BudgP) for the algorithmic problem of computing OPT . This will be more useful
to us, since (BudgP) can be solved in polytime given a generalized demand oracle. Let LP∗

be the optimal value of the following LP:

max
∑
S∈I

v(S)xS s.t.
∑
S∈I

c(S)xS ≤ B,
∑
S∈I

xS ≤ 1, x ≥ 0. (BudgP)

For A ⊆ U , let (BudgP(A)) denote the optimal value of (BudgP) when we are restricted to
use only items in A (i.e., xS > 0 only if S ∈ I, S ⊆ A). We note that (BudgP(A)) can be
solved in polytime using a generalized demand oracle, since the separation problem for the
dual corresponds to a generalized-demand-oracle computation. Throughout, for i = 1, 2, let
LP∗

i denote the optimal value of (BudgP(Ui)).

▶ Lemma 2.9. Let v : 2U 7→ R+ be XOS. With probability at least 1/4, we have LP∗
2 ≥

LP∗
1 ≥

(
LP∗ − v(e∗)

)
/4 and LP∗

2 ≥ LP∗/2.

Proof. We utilize Lemma 2.7 in a clever fashion. Let x∗ be an optimal solution to
(BudgP). For each S ⊆ U , let qS ∈ RU

+ be the additive valuation supporting S. Defin-
ing we =

∑
S∈I:e∈S x∗

SqS
e for each e ∈ U , we can write the value of x∗ as w(U). More-

over, w(Ui) ≤ LP∗
i for i = 1, 2: this is because x∗ can be mapped to the solution

{xA :=
∑

S∈I:S∩Ui=A x∗
S}A∈I,A⊆Ui

that is feasible for (BudgP(Ui)) and whose value is
at least w(Ui). Also, maxe∈U we ≤ v(e∗). So considering the additive valuation given by w,
by Lemma 2.7, we have that Pr

[
w(U1), w(U2) ≥ w(U)−maxe∈U we

4
]
≥ 1

2 . As in Corollary 2.8,
this also implies that Pr

[
LP∗

2 ≥ LP∗
1 ≥

LP∗−v(e∗)
4

]
≥ 1

4 . We also have LP∗
1 + LP∗

2 ≥ LP∗, so if
the event {LP∗

2 ≥ LP∗
1} happens, then LP∗

2 ≥ LP∗/2. ◀

3 XOS Valuations

We begin by describing the mechanisms utilizing a generalized demand oracle, which leads
to part (a) of Theorem 1.1. As mentioned earlier, we describe the underlying algorithm,
which we prove is monotone and budget feasible. In Section 3.2, we describe the polytime
mechanisms utilizing a knapsack-cover oracle (but not a generalized demand oracle), which
will prove parts (b) and (c) of Theorem 1.1.
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3.1 Mechanisms using a generalized demand oracle
We deviate slightly from the description in the Introduction in that, to slightly improve the
approximation factor, after randomly partitioning the elements and computing an estimate V1
of OPT from the first part, we find a good candidate set S∗ from the second part by running a
generalized demand oracle with prices qe = λ·V1+v(e∗)/2

B ·ce. Recall that e∗ = argmaxe∈U v(e),
LP∗ is the optimal value of (BudgP), and given a partition U1, U2 of U , we define LP∗

i as the
optimal value of (BudgP(Ui)) for i = 1, 2. Clearly, LP∗ ≥ OPT .

Algorithm XOS-Alg-GD. // algorithm(s) using generalized demand oracle

Input: Budget-feasible MD instance
(
U, v : 2U 7→ R+, I, {ce}, B

)
; parameters p, λ ∈ [0, 1]

Output: subset of U ; payments are threshold values
1 Partition U into two sets U1, U2, by placing each element of U independently with

probability 1
2 in U1 or U2. Compute LP∗

1, the LP-optimum achievable from U1, using a
generalized demand oracle. Set V1 = LP∗

1.
2 Use a generalized demand oracle to obtain

S∗ ← argmax
{

v(S)− λV1+v(e∗)/2
B

· c(S) : S ∈ I, S ⊆ U2
}

.
3 Considering elements of S∗ in increasing order, return a maximal prefix T of S∗ with

v(T ) ≤ λV1 + v(e∗)/2.
4 return T with probability p, and e∗ with probability 1− p.

▶ Theorem 3.1 (Part (a) of Theorem 1.1). Taking λ = 2
3 and p = 6

7 in Algorithm XOS-Alg-GD,
we obtain a polytime randomized 28-approximation budget-feasible mechanism.

Proof. Lemmas 3.2 and 3.3 prove that truthfulness, individual rationality, and budget
feasibility hold with probability 1, and that payments can be computed in polytime. We
focus here on proving the approximation guarantee. Note that the set output is in I
since S∗ ∈ I and I is a downwards-monotone family. By Lemma 2.9, we have Pr

[
LP∗

2 ≥
LP∗

2 , LP∗
2 ≥ LP∗

1 ≥
LP∗−v(e∗)

4
]
≥ 1

4 . Assume that this event happens. We claim that v(S∗) ≥
LP∗

2 − λV1 − 0.5v(e∗), and since V1 = LP∗
1 ≤ LP∗

2, this yields v(S∗) ≥ 1−λ
2 · LP∗ − v(e∗)/2.

To see the claim, let θ = λV1 + v(e∗)/2 and let x∗ be an optimal solution to (BudgP(U2)).
Then v(S∗)− θ

B · c(S∗) ≥
∑

S∈I:S⊆U2
x∗

S

(
v(S)− θ

B · c(S)
)
≥ LP∗

2 − θ; the first inequality is
because

∑
S∈I,S⊆U2

x∗
S ≤ 1, and the second is because

∑
S∈I,S⊆U2

c(S)x∗
S ≤ B.

The set T obtained in step 3 is either S∗, and if not, has value at least λV1 − v(e∗)/2. It
follows that

v(T ) ≥ min
{

1−λ
2 · LP∗, λ(LP∗−v(e∗))

4

}
− v(e∗)

2 = min
{

LP∗

6 , LP∗−v(e∗)
6

}
− v(e∗)

2 , = LP∗

6 −
2
3 · v(e∗).

Hence, the expected value returned is (1−p)v(e∗)+ p
4 ·v(T ) ≥ 1

7 ·v(e∗)+ 1
28 ·LP∗− 1

7 ·v(e∗) =
LP∗

28 . ◀

▶ Lemma 3.2. Algorithm XOS-Alg-GD is a distribution over monotone, nobossy algorithms.
For each monotone algorithm in the support, the threshold values can be computed efficiently.

Proof. We consider each possible outcome of the random choices made in Algorithm XOS-
Alg-GD, and show that the resulting algorithm is monotone. If the algorithm returns e∗, then
it is trivially monotone. Also, the threshold value here is B, due to our initial preprocessing.

Now consider the outcome where we obtain partition U1, U2 by our random partitioning
in step 1 and return the set T in step 4. Suppose that S∗ ⊆ U2 is the set computed in step 2
under input c. Consider any e ∈ S∗. We argue that for any c′

e < ce, we still obtain the set
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S∗ in step 2 under the input c′ = (c′
e, c−e). Since the mapping from S∗ to the final set T

that is returned is independent of the costs, it follows that the same set T is returned under
the inputs c and c′. This establishes monotonicity and nobossiness: the set returned does
not change if a winner decreases her cost.

For d ∈ RU
+ and S ⊆ U2, let demd(S; d) := v(S)− λV1+v(e∗)/2

B · d(S). We claim that the
set of optimal solutions to max {demd(S; c′) : S ∈ I, S ⊆ U2} contains S∗, and is a subset
of the collection of optimal solutions to max {demd(S; c) : S ∈ I, S ⊆ U2}. Given this,
since the output S∗ of the generalized demand oracle on input c is the lexicographically-
smallest set among all optimal solutions to max {demd(S; c) : S ∈ I, S ⊆ U2}, it
follows that S∗ is also the lexicographically-smallest set among all optimal solutions to
max {demd(S; c′) : S ∈ I, S ⊆ U2}. To prove the claim, for any A ⊆ U2, we have
demd(A; c′)− demd(A, c) = λV1+v(e∗)/2

B · (ce − c′
e) if e ∈ A, and equal to 0 otherwise. This

implies that every optimal solution A to max {demd(S; c′) : S ∈ I, S ⊆ U2} must satisfy:
(i) demd(A; c′) ≥ demd(S∗, c′) > demd(S∗, c) ≥ demd(A; c), and hence e ∈ A; and (ii)
consequently, 0 ≤ demd(A; c′)− demd(S∗; c′) = demd(A; c)− demd(S∗; c) ≤ 0, thus we must
have equality everywhere. Due to (ii) S∗ is an optimal solution to max {demd(S; c′) : S ∈
I, S ⊆ U2}, and A is an optimal solution to max {demd(S; c) : S ∈ I, S ⊆ U2}.

Computation of threshold values. Consider some input c. We may again focus on the
outcome where we do not return e∗. Suppose that U1, U2 is the partition obtained in step 1,
and T ⊆ S∗ ⊆ U2 are the sets computed in steps 3 and 2. By the nobossiness property
established earlier, in order for some e ∈ T to be a winner under input c′ = (c′

e, c−e), it must
be that, under input c′, the same sets S∗ and T are returned in steps 2, 3. Therefore, the
threshold value for e is simply the largest value τe under which S∗ is an optimal solution to
max {demd

(
S; (τe, c−e)

)
: S ∈ I, S ⊆ U2}. It is not hard to see that this can be calculated

in polytime using a generalized demand oracle. In particular, a generalized demand oracle is
an affine minimizer, and this threshold is simply the payment in the VCG mechanism. ◀

▶ Lemma 3.3. Algorithm XOS-Alg-GD is a distribution over budget-feasible algorithms.

Proof. If the outcome of the random choices is to return e∗, then the total payment is B. So
suppose otherwise. Let U1, U2 be the partition obtained in step 1, and T ⊆ S∗ ⊆ U2 be the
sets computed in steps 2, 3. From the threshold-value computation in the proof of Lemma 3.2,
we can infer that the threshold value of player e ∈ T is at most B

λV1+v(e∗)/2 ·
(
v(S∗)−v(S∗−e)

)
,

since for any larger value τ , we would have demd
(
S∗ − e, (τ, c−e)

)
> demd

(
S∗, (τ, c−e)

)
.

Therefore, the total payment is at most

B

λV1 + v(e∗)/2 ·
∑
e∈T

(
v(S∗)− v(S∗ − e)

)
≤ B

λV1 + v(e∗)/2 · v(T ) ≤ B.

The first inequality is due to Claim 2.5; the second is because v(T ) ≤ λV1 + v(e∗)/2. ◀

3.2 Mechanisms using a knapsack-cover oracle
We now describe the polytime mechanisms leading to parts (b) and (c) of Theorem 1.1.
These mechanisms utilize a knapsack-cover oracle, but do not require a generalized demand
oracle. The basic idea is similar to that of Algorithm XOS-Alg-GD, but one key difference is
that after we randomly partition U , we obtain an estimate V1 of V ∗

1 , the integer optimum
achievable from U1, and run a knapsack-cover oracle on the second part to obtain a good
candidate set S∗. The postprocessing of S∗ is also different: earlier, we could directly infer a
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threshold value for an agent e to be included in S∗ and thereby argue budget feasibility; now,
we prune S∗ to explicitly enforce this, so that, as before, we can ensure budget feasibility by
returning a suitable prefix of the pruned set.

The mechanisms we present here demonstrate the effectiveness of knapsack-cover oracles,
and are interesting for various reasons. First, they show that budget-feasibility can be
enforced given an oracle for the underlying algorithmic problem. Moreover, these mechanisms
work with even an approximate knapsack-cover oracle satisfying monotonicity and nobossiness
(and in fact, even with a weaker feasibility oracle); see Remark 3.7. Thus, Algorithm XOS-
Alg-KC yields a reduction from budget-feasible mechanism design to the design of truthful,
nobossy, approximation mechanisms for generalized knapsack-cover. Second, the friendliness
of Algorithm XOS-Alg-KC to approximate knapsack-cover oracles makes it more amenable
than Algorithm XOS-Alg-GD for yielding efficient mechanisms, when the valuation function
is specified implicitly (e.g., via a combinatorial-optimization problem) or in terms of a
weaker oracle. The analysis of budget feasibility in Section 3.1 relied crucially on having
an exact generalized demand oracle: specifically, the upper bound obtained on the payment
made to a winner e relies on this exactness; the bound obtained from an approximate
generalized demand oracle is not strong enough for the arguments to go through (unless the
approximation factor is quite small). Often, computing even a good approximation for a
mixed-sign objective problem, as in the case of generalized-demand oracle, is quite difficult.
Algorithm XOS-Alg-KC shows that this difficulty does not pose an impediment provided we
have a (approximate, nobossy) knapsack-cover (feasibility) oracle.

Algorithm XOS-Alg-KC. // algorithm(s) using knapsack-cover oracle

Input: Budget-feasible MD instance
(
U, v : 2U 7→ R+, I, {ce}, B

)
; parameters p, λ ∈ [0, 1]

Output: subset of U ; payments are threshold values
1 Partition U into two sets U1, U2, by placing each element of U independently with

probability 1
2 in U1 or U2. Compute estimate V1 of the integer optimum achievable from

U1, using a knapsack-cover oracle.
2 Use a knapsack-cover oracle to obtain S∗ ← argmin

{
c(S) : v(S) ≥ V1, S ∈ I, S ⊆ U2

}
. If

the problem is infeasible, return ∅.
3 Let A← S∗. While there exists e ∈ A such that ce > B

λ·V1
·
(
v(A)− v(A− e)

)
, considering

elements in increasing order, find the first such element f ∈ A and update A← A− f .
4 Considering elements of A in increasing order, return a maximal prefix T of A with

v(T ) ≤ λV1.
5 return T with probability p, and e∗ with probability 1− p.

▶ Theorem 3.4 (Part (b) of Theorem 1.1). For any ϵ > 0, taking λ = 0.5 and p = 32+0.8ϵ
41+ϵ in

Algorithm XOS-Alg-KC, we obtain a polytime randomized (41 + ϵ)-approximation budget-
feasible mechanism.

Proof. Lemmas 3.5 and 3.6 prove that truthfulness, individual rationality, and budget
feasibility hold with probability 1, and that payments can be computed in polytime. Let β =
1+ϵ/40. So p = 32β

40β+1 . Recall that V ∗
i := max {v(S) : S ∈ I, S ⊆ Ui, c(S) ≤ B}, for i = 1, 2.

We can assume that V1 ≥ V ∗
1 /β. By Lemma 2.8, we have that Pr

[
V ∗

2 ≥ V ∗
1 ≥

OPT−v(e∗)
4

]
≥ 1

4 .
Assume that this event happens. Then the optimization problem in step 2 is feasible, and
we have c(S∗) ≤ B. Let A0 = S∗, A1, . . . , Ak be the sequence sets obtained in step 3, where
Ai = Ai−1−fi for all i = 1, . . . , k. Then we have v(Ai−1)−v(Ai) < λV1

B ·cfi
for all i = 1, . . . , k.
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Adding these inequalities gives v(S∗) − v(Ak) ≤ λV1
B · c({f1, . . . , fk}) ≤ λV1

B · c(S∗) ≤ λV1.
Thus, the set A obtained at the end of step 3 satisfies v(A) ≥ (1− λ)V1. The set T obtained
in step 3 is either A, and if not, has value at least λV1 − v(e∗). It follows that

v(T ) ≥ min
{

(1− λ)V1, λV1 − v(e∗)
}

= 0.5 · V1 − v(e∗) ≥ 1
8β ·OPT − 8β+1

8β · v(e∗).

Hence, the expected value returned is

(1−p)v(e∗)+ p

4 ·v(T ) ≥ 8β + 1
40β + 1 ·v(e∗)+ 8β

40β + 1 ·
(

1
8β ·OPT− 8β+1

8β ·v(e∗)
)

= OPT
40β + 1 . ◀

▶ Lemma 3.5. Algorithm XOS-Alg-KC is a distribution over monotone, nobossy algorithms.
for each monotone algorithm in the support, the threshold values can be computed efficiently.

Proof. As before, we consider each possible outcome of the random choices made in Algo-
rithm XOS-Alg-KC and show that the resulting algorithm is monotone. If it returns e∗, then
it is trivially monotone. Also, the threshold value here is B, due to our initial preprocessing.

Now suppose we obtain partition U1, U2 by our random partitioning in step 1 and return
the set T in step 5. Suppose that S∗ ⊆ U2 is the set computed in step 2 under input c.
Consider any e ∈ S∗. We argue that for any c′

e < ce, we still obtain the set S∗ in step 2
under the input (c′

e, c−e). It follows then that for the set A obtained at the end of step 3, for
any e ∈ A and any c′

e < ce, we still obtain the same set (S∗ and) A at the end of step 3 under
input (c′

e, c−e). Since the mapping from A to the final set T that is returned is independent
of the costs, it follows that the same set is returned under the inputs c and c′. This yields
monotonicity and nobossiness.

We now prove the claim. So consider e ∈ S∗, and c′
e < ce. Let c′ = (c′

e, c−e). We argue
that the set of optimal solutions to min {c′(S) : v(S) ≥ Val, S ∈ I, S ⊆ U2} is precisely
the set of optimal solutions to min {c(S) : v(S) ≥ Val, S ∈ I, S ⊆ U2} that contain e. The
optimal value under c′ is at least (optimal value under c) −(ce − c′

e). Thus, any optimal
solution to the problem with costs c containing e (in particular, S∗) must be an optimal
solution to min {c′(S) : v(S) ≥ Val, S ∈ I, S ⊆ U2}. Now suppose A is an optimal solution
to min {c′(S) : v(S) ≥ Val, S ∈ I, S ⊆ U2}. Then c′(A) = c′(S∗) < c(S∗) ≤ c(A), so e ∈ A,
and then 0 = c′(A) − c′(S∗) = c(A) − c(S∗), so A is an optimal solution to the problem
with costs c. Since the knapsack-cover oracle always returns the lexicographically-smallest
set among all optimal solutions, it follows that S∗ is the lexicographically-smallest set also
among all optimal solutions to min {c′(S) : v(S) ≥ Val, S ∈ I, S ⊆ U2}, and hence will be
returned by the knapsack-cover oracle under input c′.

Computation of threshold values. Consider some input c. We may again focus on the
outcome where we do not return e∗. Suppose that U1, U2 is the partition obtained in step 1,
and T ⊆ A ⊆ S∗ ⊆ U2 are the sets computed in steps 4, 3 (at the end of the step), 2
respectively. By the nobossiness property established earlier, in order for some e ∈ T to be a
winner under input c′ = (c′

e, c−e), it must be that, under input c′, we obtain the same set
S∗ in step 2, the same sequence of sets in step 3, and the same set T in step 4. For e ∈ T ,
the largest value ce for which we obtain S∗ in step 2 can be computed efficiently using a
knapsack-cover oracle; thus, the threshold value for e ∈ T can be computed efficiently. Due to
our rule for dropping elements in step 3, this threshold is at most B

λV1
·
(
v(A)−v(A− e)

)
. ◀

▶ Lemma 3.6. Algorithm XOS-Alg-KC is a distribution over budget-feasible algorithms.
Proof. If the outcome of the random choices is to return e∗, then the total payment is
B. So suppose otherwise. Suppose that U1, U2 is the partition obtained in step 1, and
T ⊆ A ⊆ S∗ ⊆ U2 are the sets computed in steps 4, 3 and 2 respectively. By the argument in
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the proof of Lemma 3.5, due to our rule for dropping elements in step 3, the threshold value of
a winner e ∈ T is at most B

λV1
·
(
v(A)− v(A− e)

)
. So the sum of threshold values of elements

in T is at most B
λV1
· v(T ), due to Claim 2.5, and hence, at most B since v(T ) ≤ λV1. ◀

Part (c) of Theorem 1.1. If, in addition to a knapsack-cover oracle, we are given an XOS
oracle, then we can obtain an improved (33 + ϵ)-approximation as follows. An XOS oracle
for v receives a set S ⊆ U as input and returns an additive valuation supporting S. Instead
of steps 3 and 4 in Algorithm XOS-Alg-KC, we use an XOS oracle for v to obtain q ∈ RU

+
supporting S∗ and then run the randomized 2-approximation budget-feasible mechanism for
additive valuations due to [18] on this additive valuation to obtain the set T . (As before, we
return T with some probability p and e∗ with probability 1− p, where 1− p is now 1

33+ϵ .)
▶ Remark 3.7. We do not actually need an oracle that solves the generalized knapsack-cover
problem exactly. Besides the fact that the oracle returns a low-cost set, what was crucial
is that the oracle satisfies monotonicity and nobossiness. We can in fact work with any
algorithm Alg for generalized knapsack-cover satisfying these properties. More precisely,
suppose Alg satisfies the following properties.

(i) (α, β)-approximate knapsack-cover oracle: for some α, β ≥ 1, on any input
q ∈ RU

+, Val, it returns S ∈ I such that q(S) ≤ α ·
(
min {q(S) : v(S) ≥ Val, S ∈ I}

)
and v(S) ≥ Val/β if the problem is feasible;

(ii) Monotonicity and nobossiness: if e belongs to the output set S for some q ∈ RU
+,

then the same set S is output for any q′ = (q′
e, q−e) with q′

e ≤ qe.
Then, we can utilize algorithm Alg in place of a knapsack-cover oracle in step 2 of Algo-
rithm XOS-Alg-KC, and choose parameters p, λ suitably, to obtain an O(αβ)-approximation
budget-feasible mechanism. Thus, our construction can be seen as a reduction from budget-
feasible mechanism design to the design of truthful, nobossy approximation mechanisms
for the generalized knapsack-cover problem. In fact, since we only seek some S∗ with
v(S∗) ≥ Val, c(S∗) ≤ B, we can work with an even weaker feasibility oracle satisfying
monotonicity and nobossiness. A feasibility oracle is also given a budget B and returns
a set in {S ∈ I : q(S) ≤ B, v(S) ≥ Val} or declares infeasibility; again, we can work
with a monotone, nobossy, approximate feasibility oracle, which returns S with q(S) ≤ αB,
v(S) ≥ Val/β if the problem is feasible.

4 Subadditive valuations

In this section, we develop various budget-feasible mechanisms for subadditive valuations.
We begin by presenting a 33-approximation budget-feasible mechanism for subadditive
valuations, proving Theorem 1.2. We obtain this by distilling and refining a key insight from
the existential O(1)-approximation for subadditive valuations in [10], which we state below.

▶ Lemma 4.1. Let v : 2U 7→ R+ be a subadditive function, S ⊆ U , and K ⊆ RS
+ be

a finite set. There exists a distribution D over K such that, for any c ∈ K, we have
Eτ∼D

[
v({e ∈ S : ce ≤ τe})

]
≥ 0.5 · v(S).

We show that, applied to a suitable set K, the distribution given by Lemma 4.1 imme-
diately yields an (explicit) O(1)-approximation budget-feasible mechanism. For the set K

that arises in the application to budget-feasible mechanism design, we do not know how
to obtain such a distribution in polytime, and we leave this as an enticing open question.
However, such a distribution can be computed in exponential time, thereby yielding an
explicit exponential-time 33-approximation budget-feasible mechanism.
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In the full version, we also present a polytime mechanism obtained via the same template
that yields an O(1)-approximation for any cardinality-based subadditive valuation v, i.e.,
where v(S) depends only on |S| for every S ⊆ U . To our knowledge, this is the first
such guarantee for such subadditive functions. Singer [24] obtained a 2-approximation for
cardinality-based submodular functions (called symmetric submodular functions in [24]),
and showed that this is best possible in this setting. This can be seen as providing some
evidence that the above distribution-based template holds promise and may lead to stronger
guarantees for subadditive valuations.

As we show in Section 5, Lemma 4.1 is quite powerful and can be used to decouple
the truthfulness + approximation and budget-feasibility requirements, and thus obtain a
reduction from budget-feasible mechanism design to the task of designing a truthful, nobossy
mechanism that well-approximates OPT (see Theorem 5.2).

Mechanism yielding Theorem 1.2. By scaling, we may assume that the input cost vector
is integral. Our mechanism is quite simple. Recall that given a partition U1, U2 of U , we
define V ∗

i := max {v(S) : S ∈ I, S ⊆ Ui, c(S) ≤ B}, for i = 1, 2.

Algorithm Subadd-Alg. // O(1)-approximation for subadditive valuations

Input: Budget-feasible MD instance
(
U, v : 2U 7→ R+, I, {ce}, B

)
, where c is an integral

vector
Output: subset of U ; payments are threshold values

1 As in Algorithm XOS-Alg-KC, obtain partition U1, U2, and compute V1 = V ∗
1 and

S∗ ← argmin
{

c(S) : v(S) ≥ V1, S ∈ I, S ⊆ U2
}

. If this problem is infeasible or
c(S∗) > B, return ∅.

2 Let K = KS∗ :=
{

x ∈ ZS∗
+ :

∑
e∈S∗ xe ≤ B

}
. Apply Lemma 4.1 to obtain a distribution D

over K. Sample a random threshold vector τ ∈ K from D, and let T ← {e ∈ S∗ : ce ≤ τe}.
3 return T with probability p := 32

33 , and e∗ with probability 1− p.

Proof of Theorem 1.2. We defer the proof of Lemma 4.1, and show here that the above
mechanism has the stated guarantees assuming this. We first argue that Algorithm Subadd-
Alg is a distribution over monotone, budget-feasible algorithms. If the algorithm returns e,
it is trivially monotone and budget feasible. So suppose otherwise. Once we fix the random
choices determining the partition U1, U2, we can view the resulting algorithm as follows. For
each S ⊆ U2, we obtain the distribution given by Lemma 4.1 for the set KS . Fixing the
random bits then fixes a specific threshold vector in KS sampled from this distribution, for
each S ⊆ U2. Thus, we obtain a distribution over deterministic algorithms.

Suppose S∗ was computed in step 1 of Algorithm Subadd-Alg for input c. We know that
for e ∈ S∗ and c′

e < ce, under input (c′
e, c−e), we again compute S∗. Since the threshold

vector τ ∈ KS∗ is fixed by the random choices, we therefore return the same set T under
input c and (c′

e, c−e). This proves monotonicity and nobossiness. Moreover, the threshold
value for a winner e ∈ T is the minimum of the threshold for e to belong to S∗, and τe. Since∑

e∈S∗ τe ≤ B, we obtain budget feasibility.
We now analyze the approximation guarantee. We have Pr

[
V ∗

2 ≥ V ∗
1 ≥

OPT−v(e∗)
4

]
≥ 1

4 .
Assume this event happens. Then, c(S∗) ≤ B, and so by Lemma 4.1, E

[
v(T )

]
≥ v(S∗)/2 ≥

V1/2. So the expected value returned is at least (1− p)v(e∗) + p
4 ·

OPT−v(e∗)
8 = OPT/33.

The running time is dominated by the time needed to compute V1 = V ∗
1 , and the distribu-

tion given by Lemma 4.1. We can clearly compute V ∗
1 in O

(
2n

)
time. (The computation of
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V1 is however not really a bottleneck, since we can instead work with a polytime-computable
estimate V1 ≥ V ∗

1 /β.) We can solve the LP (P) in the proof of Lemma 4.1 in poly(|KS∗ |) time,
and since |KS∗ | = exp

(
O(max{n, B})

)
this yields exp

(
O(max{n, B})

)
running time. ◀

Proof of Lemma 4.1. Consider the following primal LP (P) for finding the desired distribu-
tion, with variables xτ for every point τ ∈ K and λ ∈ R, and its dual (D). This primal-dual
pair can be viewed as encoding the problems of finding the optimal mixed strategies for two
players in a two-player zero-sum game.

max λ s.t.
∑
τ∈K

xτ · v({e∈S:ce≤τe})
v(S) ≥ λ ∀c ∈ K,

∑
τ∈K

xτ = 1, x ≥ 0. (P)

min µ s.t.
∑
c∈K

yc · v({e∈S:ce≤τe})
v(S) ≤ µ ∀τ ∈ K,

∑
c∈K

yc = 1, y ≥ 0. (D)

Let (µ, y) be a feasible solution to (D). We argue that µ ≥ 0.5. By duality, this implies
that the optimal value of (P) is at least 0.5. The optimal solution to (P) yields the desired
distribution.

Let M ∈ RK×K
+ be the matrix with entries Mc,τ = v({e∈S:ce≤τe})

v(S) for all c, τ ∈ K. Let
J ∈ RK×K

+ be the all 1s matrix, and 1⃗ be the all 1s vector in RK . Then, the constraints
of (D) can be written compactly as MT y ≤ µ1⃗, yT 1⃗ = 1. So we have µ ≥ yT MT y =
yT My = 0.5 · yT (M + MT )y. Note that M + MT ≥ J as v is subadditive and therefore
yT (M + MT )y ≥ yT Jy = 1. ◀

Improving the running time. We can improve the running time to exp
(
O(n)

)
while

worsening the approximation by a factor of roughly 2, by suitably sparsifying KS∗ . After
obtaining S∗, we simply scale and round c|S∗ = (ce)e∈S∗ so that its entries lie in [n] and they
sum to 2n. This reduces the space of vectors to 2O(n) yielding the improved running time for
solving (P), and hence the algorithm. We need to take some care to ensure budget feasibility
as the rounding introduces some error, leading to a violation of the budget. To compensate
for this, we reduce the budget by factor of 2, which translates to an O(1)-factor loss in the
approximation. We thus obtain a 2O(n)-time 69-approximation budget-feasible mechanism.

5 Budget-feasible mechanism design with general payment constraints

We now consider generalized budget-feasible mechanism design, wherein we have constraints
on the payments doled out by the mechanism that are more general than just a bound on
the total payment, as is the case in standard budget-feasible mechanism design. We focus
on two types of payment constraints: (1) group budget constraints, wherein players may be
divided into (potentially overlapping) groups, and we have a budget constraint on the total
payment made to the winners in each group; (2) Top-ℓ budget constraints, wherein we have
budget constraints on the sum of the ℓ largest payments doled out by the mechanism, for
one or more indices ℓ ∈ [n].

5.1 Group budget constraints
We first define the problem precisely: we are given k subsets G1, . . . , Gk of players, along with
budgets B1, . . . , Bk. As before, each player e ∈ U has a private cost ce ≥ 0, we have a valuation
function v : 2U 7→ R+, and a downwards-monotone family I ⊆ 2U . The algorithmic problem is
to compute (a good approximation to) OPT := max {v(S) : S ∈ I, c(S ∩Gi) ≤ Bi ∀i ∈ [k]};
we call a set S ∈ I with c(S ∩Gi) ≤ Bi for all i ∈ [k], a feasible set. The mechanism-design
problem is to devise a group-budget-feasible mechanism: a truthful, individually-rational

ITCS 2024



84:20 Budget-Feasible Mechanism Design: Simpler, Better Mechanisms

mechanism that returns a set T ∈ I such that v(T ) is a good approximation to OPT ,
and where the payments {pe} made to the players satisfy the group budget constraints
p(T ∩Gi) ≤ Bi for all i = 1, . . . , k. We may assume that ce ≤ mini∈[k]:e∈Gi

Bi (and {e} ∈ I)
for all e ∈ U , as we can discard any element e not satisfying this.

Our main result here is an O(k)-approximation mechanism (Theorem 5.1) for subadditive
valuations, and such a polytime mechanism for XOS valuations, generalizing the state-of-
the-art for budget-feasible mechanisms, which corresponds to the case k = 1. Moreover, we
obtain this via a simple adaptation of our mechanisms for subadditive and XOS valuations,
illustrating the versatility of our underlying ideas. We also obtain a novel and powerful
reduction demonstrating that the requirements of truthfulness and group-budget-feasibility
can be completely decoupled: we show that a truthful, nobossy mechanism that returns an
α-approximation to OPT can be transformed in a black-box way to an O(α)-approximation
group-budget-feasible mechanism (Theorem 5.2). For XOS valuations, we also obtain a polytime
reduction that yields an O(kα)-approximation group-budget-feasible mechanism. These
reductions are of independent interest, and we believe will prove to be useful in (generalized)
budget-feasible mechanism design, since they allow one to ignore payment constraints and
focus on only the truthfulness component (albeit with the additional nobossiness requirement),
which is usually an easier task, especially in single-dimensional domains.

▶ Theorem 5.1 (Part (a) of Theorem 1.3). For any downwards-monotone family and any
subadditive valuation, we obtain a randomized O(k)-approximation group-budget-feasible
mechanism. For XOS valuations, we obtain a polytime mechanism given a generalized
demand oracle.

Proof sketch. The mechanisms for both types of valuations follow the same template. We
obtain a random partition U1, U2, and use U1 to obtain an estimate V1 of OPT , or the
LP-optimum. We compute S∗ ← argmax

{
v(S)− V1

2k ·
∑k

i=1
c(S∩Gi)

Bi
: S ∈ I, S ⊆ U2

}
via a

generalized demand oracle. For subadditive valuations (where we are ignoring computational
concerns), we take V1 to be the integer optimum for U1, and for XOS valuations, we take
V1 to be the LP-optimum for U1, which can be computed in polytime given a generalized
demand oracle. We take R to be a maximal prefix of S∗ with v(R) ≤ V1/2k.

One can then argue that c|R satisfies the group budget constraints, and for XOS valuations,
the threshold values for e ∈ R (i.e., the payments) satisfy the group budget constraints.
Moreover, assuming that V1 is a good estimate of OPT , we can argue that v(R) = Ω(OPT/k).
This finishes things up for XOS valuations. For subadditive valuations, we can now utilize
Theorem 5.2 (a) to return a suitable subset of R, since R is computed via a monotone,
nobossy algorithm. ◀

▶ Theorem 5.2. Let M = (f, p) be a (possibly randomized) truthful, nobossy mechanism
for a class C of subadditive valuations (and downwards-monotone family I), achieving an
α-approximation to OPT . (a) We can utilize M to obtain a 2α-approximation group-budget-
feasible mechanism for class C. (b) If C consists of XOS valuations and M runs in polytime,
then we can obtain a polytime O(kα)-approximation group-budget-feasible mechanisms for
class C.

5.2 Top-ℓ budget constraints
The Top-ℓ norm of a vector x ≥ 0 is the sum of the ℓ largest entries of x. Given w ∈ RU

and S ⊆ U , define w|S := (we)e∈S . The underlying algorithm problem that we now consider
is to (approximately) compute OPT := max

{
v(S) : S ∈ I, Top-ℓ(c|S) ≤ Bℓ ∀ℓ ∈ F

}
.

The index-set F and budgets {Bℓ}ℓ∈F are part of the input (along with v, c, I). In the
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mechanism-design setting, the ces are private costs, and we seek to devise a truthful,
individually rational mechanism that achieves a good approximation to OPT , and where the
payment vector p = (pe) satisfies the Top-ℓ-budget constraints Top-ℓ(p) ≤ Bℓ for all ℓ ∈ F .
(Since we only make payments to winners, if T is the set returned by the mechanism, we
have Top-ℓ(p) = Top-ℓ(p|T ).)

For ℓ, ℓ′ ∈ F with ℓ < ℓ′, we may assume that: (i) Bℓ ≤ Bℓ′ , since Top-ℓ(x) ≤ Top-ℓ′(x)
for any vector x; and (ii) Bℓ

ℓ ≥
Bℓ′
ℓ′ , since for any vector x ≥ 0, we have Top-ℓ′(x) ≤

Top-ℓ(x) + (ℓ′ − ℓ) · Top-ℓ(x)
ℓ as the (ℓ + 1)-th largest entry of x is at most Top-ℓ(x)

ℓ . (We can
always satisfy (i) and (ii) by equivalently (re)defining the budget for index ℓ ∈ F to be
ℓ ·min

{ Bℓ′′
ℓ′ : ℓ′, ℓ′′ ∈ F, ℓ′ ≤ min{ℓ, ℓ′′}

}
.)

Let k = |F |. Our main result here is a reduction to (standard) budget-feasible mechanism
design while incurring a factor-(k + 1) loss in approximation, which applies to any class
of subadditive valuations. Thus, we obtain O(k)-approximation for subadditive valuations,
and polytime mechanisms with this guarantee for XOS valuations and cardinality-based
subadditive valuations. Also, observe that the reduction in Theorem 5.2 (a) applies here as
well, since we can specify a Top-ℓ-budget constraint Top-ℓ(c|S) ≤ Bℓ equivalently via the
group-budget constraints c(S ∩A) ≤ Bℓ for all A ⊆ U with |A| = ℓ.

▶ Theorem 5.3 (Part (b) of Theorem 1.3). Let M = (f, p) be a (possibly randomized)
α-approximation budget-feasible mechanism for a class C of subadditive valuations and
downwards-monotone family I. We can obtain a randomized (k + 1)α-approximation truthful
mechanism for generalized budget-feasible mechanism design with k Top-ℓ-budget constraints,
valuation class C and downwards-monotone family I, which makes k + 1 calls to M.

Proof sketch. We illustrate the main underlying idea. From prior algorithmic work on
Top-ℓ-norm and minimum-norm optimization [13, 14], we infer that we can ensure that
Top-ℓ(x) ≤ Bℓ holds with a factor-2 violation by ensuring that

∑
i:xi>Bℓ/ℓ xi ≤ Bℓ. In our

setting, for the algorithmic problem, x = c|S for the set S that is output. But we cannot
violate the Top-ℓ budget constraint, and we cannot consider only the large-cost entries as
this would violate monotonicity. The insight is that if Top-ℓ(c|S) ≤ Bℓ, then we can consider
T = {e ∈ S : ce > Bℓ/ℓ}. We then have |T | ≤ ℓ, and so the total cost of T is at most Bℓ.
Note also, that any A ⊆ {e : ce ≤ Bℓ/ℓ} trivially satisfies Top-ℓ(c|A) ≤ Bℓ. Thus, we can
take the better of two solutions, one satisfying a total-cost constraint of Bℓ, and the other
using only elements e with ce ≤ Bℓ/ℓ, and this leads to a factor-2 loss in approximation. But
note that we have reduced the Top-ℓ-budget constraint to a standard total-budget constraint.
The extension to handle k Top-ℓ budget constraints considers k + 1 solutions, and due to
truthfulness considerations, we return each of these solutions with equal probability (instead
of the best solution). ◀

▶ Corollary 5.4. We can obtain an randomized O(k)-approximation truthful mechanism
for generalized budget-feasible mechanism with k Top-ℓ-budget constraints for subadditive
valuations. For XOS valuations, and cardinality-based subadditive functions, the mechanisms
run in polytime.
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