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Abstract
We investigate unbiased high-dimensional mean estimators in differential privacy. We consider
differentially private mechanisms whose expected output equals the mean of the input dataset, for
every dataset drawn from a fixed bounded domain K in Rd. A classical approach to private mean
estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise
to it. In the first part of this paper, we study the optimal error achievable by a Gaussian noise
mechanism for a given domain K, when the error is measured in the ℓp norm for some p ≥ 2. We
give algorithms that compute the optimal covariance for the Gaussian noise for a given K under
suitable assumptions, and prove a number of nice geometric properties of the optimal error. These
results generalize the theory of factorization mechanisms from domains K that are symmetric and
finite (or, equivalently, symmetric polytopes) to arbitrary bounded domains.

In the second part of the paper we show that Gaussian noise mechanisms achieve nearly optimal
error among all private unbiased mean estimation mechanisms in a very strong sense. In particular,
for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy
introduces approximately at least as much error as the best Gaussian noise mechanism. We extend
this result to local differential privacy, and to approximate differential privacy, but for the latter
the error lower bound holds either for a dataset or for a neighboring dataset, and this relaxation is
necessary.
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1 Introduction

Unbiased estimation is a classical topic in statistics, and an elegant theory of the existence
and optimality of unbiased estimators, and methods for constructing unbiased estimators
and proving lower bounds on their variance have been developed over the last century.
We refer the reader to the monographs on this topic by Nikulin and Voinov [43, 44], and
other standard statistical texts such as [41]. One highlight of this theory is the existence of
uniformly minimum variance unbiased estimators (UMVUE), i.e., estimators whose variance
is smaller than any other unbiased estimator for every value of the parameter. Such estimators
can be derived via the Rao-Blackwell and Lehmann-Scheffé theorems. In addition to their
mathematical tractability, unbiased estimators also have the nice property that averaging
several estimators decreases the mean squared error. Moreover, in some cases unbiased
estimators are also minimax optimal, e.g., the empirical mean in many settings.

In this paper we consider the basic problem of mean estimation under the additional
constraint that the privacy of the data must be protected. In particular, we study estimators
computed by a randomized algorithm M (a mechanism), that satisfies (ε, δ)-differential
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85:2 Private Unbiased Mean Estimation

privacy [19]. We focus on the setting where the dataset X = (x1, . . . , xn) consists of a
sequence of n data points from a domain K ⊆ Rd, and our goal is to estimate the mean
µ(X) := 1

n

∑n
i=1 xi using an unbiased differentially private mechanism M. Formally, we use

the following definition of unbiased mechanisms.

▶ Definition 1. A mechanism M that takes as input datasets of n points in some domain
K ⊆ Rd, and outputs a vector in Rd is unbiased over K ⊆ Rd if, for every dataset X ∈ Kn,
we have E[M(X)] = µ(X), where the expectation is over the randomness of M.

We note that this definition captures being empirically unbiased, i.e., unbiased with respect
to the dataset. This is a desirable property when multiple differentially private analyses
are performed on the same dataset, as being unbiased allows decreasing the mean squared
error by averaging. Moreover, bias has been raised as a concern when publishing official
statistics such as census data. The bias of differentially private mean estimation algorithms
in this context was examined, for example, in [48, 47]. It is also possible to define unbiased
algorithms in a distributional setting, by assuming that X contains i.i.d. samples from an
unknown distribution P , and E[M(X)] equals the mean of P , with the expectation taken over
the randomness in choosing X, and the randomness used by M. We give such a definition
in the full version of the paper, and extend our results to this setting as well.

The prototypical example of an unbiased differentially private mechanisms is given by
oblivious, or noise-adding mechanisms, i.e., mechanisms that output M(X) := µ(X) + Z for
some mean 0 random variable Z ∈ Rd drawn from a fixed distribution that’s independent of
X. A particularly important oblivious mechanism is the Gaussian noise mechanism [19, 18],
for which Z is a mean 0 Gaussian random variable in Rd with covariance matrix proportional
to the identity, and scaled proportionally to the ℓ2 diameter of the domain K. Another family
of oblivious mechanisms is given by the matrix mechanism from [34], and, more generally,
factorization mechanisms [40, 22]. Factorization mechanisms are defined for a finite domain
K := {±w1, . . . , ±wN } ⊆ Rd, where a dataset X can be represented by a histogram vector
h ∈ [0, 1]N , defined by letting hi equal the difference between the fraction of points in X

equal to wi and the fraction of points equal to −wi. Then µ(X) can be written as Wh,
where W is the d × N matrix with columns w1, . . . , wN . A factorization mechanism chooses
(usually by solving an optimization problem) matrices L and R for which W = LR, and
outputs L(Rh + Z) = µ(X) + LZ for a mean 0 Gaussian noise random variable Z with
covariance matrix proportional to the identity, and scaled proportionally to the maximum ℓ2
norm of a column of the matrix R. Thus, factorization mechanisms can be seen as either a
post-processing of the Gaussian noise mechanism, or a method of achieving privacy by adding
correlated mean 0 Gaussian noise. Factorization mechanisms have received a lot of attention
in differential privacy, both from the viewpoint of theoretical analysis [34, 40, 22, 26, 27, 36],
and from a more applied and empirical viewpoint [35, 12].

There are, also, natural and widely used non-oblivious unbiased mechanisms. For example,
each iteration of the differentially private stochastic gradient descent algorithm for convex
minimization [5] uses an unbiased mechanism to compute a private unbiased estimate of the
current gradient. The mechanism first samples a subset of the data points, and then adds
Gaussian noise to the mean of the sample. The subsampling effectively adds noise to the mean
in a way that’s not independent from the dataset X. Another example of a non-oblivious
unbiased mechanism is randomized response [45]. In its simplest form, randomized response
is defined for the domain K := {0, 1}, and involves releasing, for each data point xi in X, xi

with probability eε

1+eε and 1 − xi with probability 1
1+eε . It is easy to compute an unbiased

estimator of µ(X) from these released points, but the additive error of this estimator is
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not independent of X. There are also other mechanisms based on randomized response
used for higher-dimensional mean estimation in the local model of differential privacy, see
e.g. [16, 8, 22]. They are, likewise, unbiased but not oblivious.

Among the mechanisms mentioned above, in high dimensional settings the mechanisms
that add (possibly correlated) Gaussian noise, i.e., the Gaussian noise mechanism and
factorization mechanisms based on it, tend to give the lowest error for a given dataset size.
Let us call mechanisms that add unbiased but potentially correlated Gaussian noise general
Gaussian noise mechanisms. This paper is motivated by the following questions.
1. What is the best error achievable by a general Gaussian noise mechanism for a given

domain K and a given measure of error? Relatedly, can this error, and the optimal
covariance matrix for the noise be computed efficiently?

2. Are general Gaussian noise mechanisms indeed optimal among all unbiased private mean
estimators? Can their error be improved on some “nice” datasets?

To answer the first question, we study the best ℓp error achievable by a differentially
private Gaussian noise mechanism, i.e., a mechanism MΣ(X) := µ(X) + Z for Z ∼ N(0, Σ),
when X ∈ Kn for a bounded domain K. Here, N(µ, Σ) is the Gaussian distribution
with mean µ and covariance matrix Σ. Let us denote the unit Euclidean ball in Rd by
Bd

2 := {x ∈ Rd : ∥x∥2 ≤ 1}, where ∥x∥p := (|x1|p + . . . + |xd|p)1/p is the standard ℓp norm
on Rd. For a positive semidefinite matrix M ∈ Rd×d and a real number p ≥ 1, we define
trp(M) := (

∑d
i Mp

ii)1/p. We define tr∞(M) := maxd
i=1 Mii. Note that trp(M) is simply the

ℓp-norm of the diagonal entries of M . Finally, for sets K and L, let us write

K ⊆↔ L ⇐⇒ ∃v ∈ Rd, K + v ⊆ L

We now define the following key quantity.

▶ Definition 2. For a bounded set K ⊆ Rd and p ∈ [2, ∞], we define

Γp(K) := inf
{√

trp/2(AAT ) : K ⊆↔ ABd
2

}
,

where the infimum is over d × d matrices A, and

The definition of Γp is motivated by the next theorem. Its proof is given in Section 2.2

▶ Theorem 3. For any p ∈ [2, ∞], any ε > 0, any δ ≤ e−ε, and any bounded set K ⊆ Rd,
there exists a mechanism M that is unbiased over K, and, for any X ∈ Kn achieves

(E ∥M(X) − µ(X)∥2
p)1/2 ≲

√
min{p, log(2d)} log(1/δ) Γp(K)

εn
,

and satisfies (ε, δ)-differential privacy. The mechanism outputs µ(X) + Z, where Z is a mean
0 Gaussian random variable with covariance matrix proportional to AAT , for a matrix A

such that K ⊆↔ ABd
2 and

√
trp/2(AAT ) ≲ Γp(K).

In addition, it is not hard to also show that this bound on (E ∥M(X) − µ(X)∥2
p)1/2 is also

tight up to the
√

min{p, log(2d)} factor (see the proof of Lemma 23). Thus, Γp(K) nearly
captures the best ℓp error we can achieve by a general Gaussian noise mechanism for mean
estimation over K.

In the special case when p ∈ {2, ∞} and K is a finite set symmetric around 0, the
general Gaussian mechanism above is equivalent to a factorization mechanism, as we show in
Section 2.4. Factorization mechanisms, as defined, for example, in [34, 22], can be suboptimal
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for non-symmetric K. A trivial example is a singleton K = {w} for some w ̸= 0, for which any
factorization mechanism would add non-zero noise, but the optimal mechanism just outputs
µ(X) := w with no noise. This issue is the reason we allow K to be shifted in the definition
of Γp(K), and one can similarly modify factorization mechanisms by allowing a shift of K,
i.e., shifting the columns of the matrix W by a fixed vector. It is also not difficult to extend
standard factorization mechanism formulations from minimizing ℓp error for p ∈ {2, ∞}, to
minimizing ℓp error for any p ≥ 2. Independently from our work, this was also done in a
recent paper by Xiao, He, Zhang, and Kifer, who, in addition, also considered error measures
that are convex functions of the per-coordinate variances [46]. These modification allow
deriving factorization mechanisms equivalent to the general Gaussian mechanism achieving
error Γp(K) when K is finite, as shown in Theorem 19 below.

Extending factorization mechanisms to infinite K, or K of size exponential in the
dimension d, however, is more challenging. A fundamental issue is that the matrices W and
R involved in the definition of a factorization mechanism are infinite or exponentially sized
in these cases. Heuristic solutions tailored to specific structured K have been proposed, for
example in [35, 46]. With the definition of general Gaussian mechanisms, and of Γp(K), we
take a different approach, moving away from factorizations and instead focusing on optimizing
the covariance matrix of the noise. This is the role of the matrix A in the definition of Γp(K):
it can be seen as a proxy for the covariance matrix of the noise, which is, per Theorem 3,
proportional to AAT . Equivalently, our definition of Γp(K) can be thought of as formulating
a factorization mechanism only in terms of the left matrix of the factorization, without
explicitly writing the right matrix. The benefit in this approach is that the covariance matrix
has size d × d, independently of the size of K. Of course, optimizing the covariance matrix
may still be computationally expensive, depending on how complicated K is. Nevertheless,
we show that finding an optimal A approximately achieving Γp(K) can be done in polynomial
time under natural condition. In particular, we show that Γp(K) equals the value of the
convex optimization problem

Γp(K)2 = min trp/2(M)
s.t.
(x + v)T M−1(x + v) ≤ 1 ∀x ∈ K,

M ≻ 0, v ∈ Rd.

In the full version of the paper we prove this equivalence, and show that this optimization
problem can be approximately solved in polynomial time using the ellipsoid method, assuming
the existence of an oracle that approximately solves the quadratic maximization problem
maxx∈K(x + v)T M−1(x + v) for a given v ∈ Rd and a given positive definite matrix M . (The
notation M ≻ 0 above means that M is positive definite.) Beyond finite K, such oracles
exist for many classes of K, e.g., affine images of ℓp and Schatten-p balls when p ≥ 2, and
affine images of other symmetric norms and unitarily invariant matrix norms: see [7] for
more information. As one example, we can compute Γp(K) over zonotopes: sets of the type
K := [u1, v1]+ . . .+[uN , vN ] where u1, . . . , uN ∈ Rd, and v1, . . . , vN ∈ Rd are given explicitly,
and [ui, vi] is the line segment joining ui and vi. Such sets are simply affine images of the ℓ∞
ball [−1, +1]N , and for them the maximization problem maxx∈K(x + v)T M−1(x + v) can be
solved approximately using algorithmic versions of Grothendieck’s inequality [24, 1]. These
computational results are the first general theoretical guarantees that allow optimizing the
Gaussian noise covariance matrix for domains K that are not explicitly presented finite sets
or polytopes in vertex representation.
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In addition to computational tractability, we also prove a number of properties of
Γp(K) which significantly generalize known facts about factorization norms and factorization
mechanisms. Let us highlight some of these properties, whose proofs are given in in the full
version of the paper:

Γp(K) behaves like a norm on convex sets: it is monotone under inclusion, absolutely
homogeneous under scaling, i.e., Γp(tK) = |t|Γp(K), and satisfies the triangle inequality
with respect to Minkowski sum, i.e., Γp(K + L) ≤ Γp(K) + Γp(L).
Γp(K) admits a nice dual characterization. For example, for p = 2 we have

Γ2(K) = sup{tr(cov(P )1/2) : P ∈ ∆(K)}.

Above, ∆(K) is the set of probability measures supported on K, cov(P ) is the covariance
matrix of a probability distribution P , and cov(P )1/2 is its positive semidefinite square
root of cov(P ). This characterization (and its generalization to p > 2, both given in
Section 2.5) is particularly useful for proving lower bounds on Γp(K).

Next we turn to the question of the optimality of general Gaussian noise mechanisms.
Our main result is the following theorem.

▶ Theorem 4. Let c > 0 be a small enough absolute constant, let p ∈ [2, ∞], and let M be
an (ε, δ)-differentially private mechanism that is unbiased over a bounded set K ⊆ Rd. If
ε ≤ c, and δ ≤ min

{
c
n , cε2

d2

}
, then the following holds. For any dataset X ∈ Kn, there exists

a neighboring dataset X ′ ∈ Kn (which may equal X) for which√
E

[
∥M(X ′) − µ(X ′)∥2

p

]
≳

Γp(K)
nε

.

Above, the notation A ≳ B for two quantities A and B is used to mean that there exists an
absolute constant c > 0 such that A ≥ cB.

Theorem 4, together with Theorem 3, shows that, for any ℓp norm for p ≥ 2, and any
unbiased mechanism M over any domain K, there is a general Gaussian noise mechanism that
has ℓp error not much larger than that of M. Moreover, this is true in an instance optimal
sense: every dataset X has a neighbor X ′ for which the correlated Gaussian noise mechanism
has smaller error (up to small factors). This somewhat complicated version of instance
optimality is necessary, since, for any dataset X, there is an unbiased (0, δ)-differentially
private mechanism that has error 0 on X. Roughly speaking, this mechanism outputs µ(X)
on X, and on any other dataset outputs µ(X) with probability 1 − δ and some other output
with probability δ, chosen to make the mechanism unbiased. This illustrates the key difficulty
in proving a result such as Theorem 4: one has to rule out the possibility that a mechanism
can “cheat” by hard-coding the true answer for one dataset, thus outperforming an “honest”
mechanism on that dataset.

We note that Theorem 4 is a simplification of our main result, and what we prove is
actually stronger: we show that either the error of M on X is comparable to that of a
general Gaussian noise mechanism, or there is a neighboring dataset X ′ for which the error
grows with 1√

δ
. Since usually δ is chosen to be very small, this means that, on every input,

M is either dominated by a general Gaussian noise mechanism, or has huge error in the
neighborhood of the input.

Theorem 4 strengthens results showing the optimality of Gaussian noise mechanisms
among oblivious mechanisms [22] to the more general class of unbiased mechanisms. As
mentioned above, some natural unbiased mechanisms fail to be oblivious. We also consider
the class of unbiased mechanisms more natural and robust than the class of oblivious
mechanisms. It is worth noting further that Gaussian noise mechanisms are known to be

ITCS 2024
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approximately optimal in the worst case for sufficiently large datasets among all differentially
private mechanisms. This follows, for example, by reductions from general mechanisms to
oblivious mechanisms in [6, 22].

Independently from our work, unbiased mechanisms for private mean estimation were
also recently investigated by Kamath, Mouzakis, Regehr, Singhal, Steinke, and Ullman [29].
They focus on mechanisms that take as input independent samples from an unknown one-
dimensional distribution in some family, e.g., distributions with bounded k-th moments, and
study the trade-off between the bias of the mechanism with respect to the distribution’s
mean, and its variance. Their results are incomparable to ours: on the one hand, they study
one-dimensional mean estimation and prove worst-case (i.e., minimax) lower bounds, rather
than instance per instance lower bounds; on the other hand, they give a tight trade-off
between bias and variance in their setting, whereas we only consider unbiased mechanisms.
They also show that for Gaussian mean estimation no purely private (i.e., (ε, δ)-differentially
private with δ = 0) unbiased mechanism can achieve finite variance.

The kind of instance optimality guarantee shown in Theorem 4 is reminiscent of the theory
of uniformly minimum variance unbiased estimators in statistics. Our result is also related
to results by Asi and Duchi [3, 2], and by Huang, Liang, and Yi [28] who also study instance
optimality for unbiased differentially private algorithms. Asi and Duchi also focus on notions
of being unbiased defined with respect to the dataset, but only treat pure differential privacy,
i.e., the δ = 0 setting. The results in [3] are tailored to one-dimensional estimation, and the
lower bounds proved there are not sufficiently strong to prove the result in Theorem 4. The
results in [2] do extend to higher-dimensional problems, but use a non-standard definition
of unbiased mechanisms that is incomparable with the more standard definition we use.
Their lower bounds also rely on some strong regularity assumptions that we do not make.
Finally, the work of Huang, Liang, and Yi [28] is not restricted to unbiased mechanisms, and,
similarly to our results, considers mean estimation and optimality for the neighborhood of
every dataset (in fact only considering datasets resulting from removing points). In their
results, however, optimality is proved only up to a factor of at least the square root of the
dimension, making them less interesting in high dimensions.

Let also mention that there are other approaches to instance optimality in differential
privacy. One approach is based on local minimax rates, initiated by Ruan and Duchi [17], and
Asi and Duchi in [3], and explored further in [15, 37]. The local minimax rates framework is
not suitable for proving strong instance optimality for high dimensional problems, as noted
in [37]. Another approach, similar to that of [28], based on optimality with respect to subsets
of a dataset, was considered in [13]. Their results are also restricted to one-dimensional
problems. In general, existing instance optimality results tend to only be meaningful in low
dimensional settings, and our work is a rare example of instance optimality up to small
factors for a high-dimensional problem.

In addition to Theorem 4, we also show analogous, and, in fact, stronger results for other
variants of differential privacy. For concentrated differential privacy [21, 9], our result holds
for every dataset X ∈ Kn. This is also the case for local differential privacy [23, 30], recalled
in the next definition.

▶ Definition 5. A (non-interactive) locally differentially private mechanism M is defined by
a tuple of randomized algorithms A, R1, . . . , Rn, where each Ri, called a local randomizer,
receives a single data point from a domain K, and is (ε, 0)-differentially private with respect
to that point, and the algorithm’s output on a dataset X := (x1, . . . , xn) is defined by

M(X) := A(R1(x1), . . . , Rn(xn)),

i.e., the postprocessing of the outputs of the randomizers Ri by the aggregator A. Moreover,
each algorithm uses independent randomness.
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Local differential privacy captures settings in which there is no trusted central authority, and
instead every data owner ensures the privacy of their own data. Mean estimation algorithms
in local differential privacy are typically based on randomized response, and are not oblivious
even when they are unbiased. The recent work [4] studies unbiased mechanisms for mean
estimation in this model when K = Bd

2 , and gives a tight characterization of algorithms that
achieve optimal error in ℓ2. Here we extend their results to arbitrary bounded domains K,
and to error measured in other norms, albeit with a somewhat less tight characterization. Our
characterization shows that that the instance optimal unbiased locally private mechanism
for mean estimation has every local agent add a linear transformation of (non-oblivious)
subgaussian noise. The precise results are given in the full version.

As mentioned above, we also prove a result analogous to Theorem 4 for mechanisms that
are unbiased in a distributional sense, i.e., where the expectation of the mechanism’s output,
given an input dataset drawn i.i.d. from some distribution over the domain K, matches the
mean of the distribution. In that case we show that, for every distribution P on K, the ℓp

error of every distributionally unbiased mechanism is at least ≳ Γp(K)
nε either on P , or on

some distribution Q that is at distance at most 1
n from P in total variation distance. Our

result thus shows that, in the distributional setting, too, unbiased mechanisms are dominated
by general Gaussian noise mechanisms in the neighborhood of every input distribution. The
precise results are given in the full version.

Using the properties of the Γp function that we establish, we can prove lower bounds
on Γp(K) for domains K that naturally appear in applications. Together with Theorem 4,
these lower bounds imply concrete lower bounds on the ℓp error of any unbiased mechanism
that hold in the neighborhood of every dataset. Analogous results would for distributionally
unbiased mechanisms and unbiased locally differentially private mechanisms also follow via
the appropriate variant of Theorem 4. First, we state one such lower bound for estimating
moment tensors.

▶ Theorem 6. Let c > 0 be a small enough absolute constant, let p ∈ [2, ∞] and let ℓ be
a positive integer. Let M be an (ε, δ)-differentially private mechanism that takes as input
datasets in (Bd

2 )n. Suppose that for every dataset X := (x1, . . . , xn),

E[M(X)] = Mℓ(X) := 1
n

n∑
i=1

x⊗ℓ
i .

If ε ≤ c, and δ ≤ min
{

c
n , cε2

d2ℓ

}
, then, for any dataset X ∈ (Bd

2 )n, there exists a neighboring
dataset X ′ ∈ (Bd

2 )n (which may equal X) for which√
E

[
∥M(X ′) − Mℓ(X ′)∥2

p

]
≳

1
εn

(
d

ℓ

)ℓ/p

.

This lower bound implies that estimating the ℓ-th moment tensor of a dataset in Bd
2 via an

(ε, δ)-differentially private unbiased mechanism requires ℓ2 error at least on the order dℓ/2

εn

for small enough ε and δ and constant ℓ. This lower bound is nearly matched by the basic
Gaussian noise mechanism, which adds independent Gaussian noise to each coordinate of
the tensor. At the same time, the projection mechanism [40] allows ℓ2 error on the scale of
d1/4 log(1/δ)1/4

√
εn

for any constant ℓ, which is much smaller for n ≪ dℓ− 1
2 . This follows from

an analysis similar to that in [20]: see the recent paper [14] for the argument in the ℓ = 2
case. Theorem 6 thus illustrates the cost of using private unbiased mechanisms: while they
produce answers that are accurate in expectation, they can incur much more error than biased
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algorithms, and this is true in the neighborhood of every input. We note that Theorem 6
can easily be extended to unbiased estimates of the covariance, and also to a distributional
setting, and show a similar gap between biased and unbiased mechanisms.

Analogous techniques also imply tight upper and lower bounds on estimating ℓ-way
marginals on d-dimensional binary data when ℓ = O(1). Before we state these bounds,
let us recall the general connection between query release and mean estimation. Suppose
that Q = (q1, . . . , qk) is a sequence of statistical queries on a universe X , also known as a
workload. This means that each qi is specified by a function qi : X → R, and, overloading
notation, its value on a dataset X := (x1, . . . , xn) ∈ X n is defined by qi(X) := 1

n

∑n
i=1 qi(X).

Overloading notation again, we can define Q(X) := (q1(X), . . . , qk(X)) to be the sequence of
true answers to the queries in Q on the dataset X. When n = 1, i.e., X consists of the single
data point x ∈ X , we write Q(x) rather than Q((x)). The problem of privately releasing an
approximation to Q(X) is equivalent to mean estimation over the set KQ := {Q(x) : x ∈ X }
in the following sense. Given a dataset X = (x1, . . . , xn) ∈ X n, we can construct a dataset
f(X) := (Q(x1), . . . , Q(xn)) ∈ Kn

Q. Clearly, µ(f(X)) = Q(X), and any differentially private
algorithm M for (unbiased) mean estimation over KQ gives an (unbiased) differentially
private algorithm for releasing Q(X), simply by running M(f(X)). We can also choose an
inverse g of f by choosing, for each y ∈ KQ, some x ∈ X such that Q(x) = y, and defining
g(Y ) for Y = (y1, . . . , yn) ∈ Kn

Q as the function that replaces each yi with the chosen xi

giving Q(xi) = yi. This shows, in turn, that an (unbiased) differentially private mechanism
M that releases Q(X) gives an (unbiased) private mean estimation algorithm M(f(Y )).
These reductions preserve the privacy parameters, the property of being unbiased, and the
error.

Let us now specialize this discussion to releasing ℓ-way marginal queries. Let Qmarg
d,ℓ be the

statistical queries over the universe X := {0, 1}d where each query qs,β in Qmarg
d,ℓ is defined by a

sequence of ℓ indices s := (i1, . . . , iℓ) ∈ [d]ℓ and a sequence of ℓ bits β := (β1, . . . , βℓ) ∈ {0, 1}ℓ,
and has value qs,β(x) =

∏ℓ
j=1 |xij − βj | on every x ∈ X . For an easier to read notation, let

us write Kmarg
d,ℓ := KQmarg

d,ℓ
. By analyzing Γp(Kmarg

d,ℓ ), we derive the following bound on the
error necessary to release unbiased estimates of the ℓ-way marginal queries.

▶ Theorem 7. Let c > 0 be a small enough absolute constant, let p ∈ [2, ∞] and let ℓ be
a positive integer. Let M be an (ε, δ)-differentially private mechanism that takes as input
datasets in ({0, 1}d)n. Suppose that for every dataset X := (x1, . . . , xn),

E[M(X)] = Qmarg
d,ℓ (X).

If ε ≤ c, and δ ≤ min
{

c
n , cε2

(2d)2ℓ

}
, then, for any dataset X ∈ ({0, 1}d)n, there exists a

neighboring dataset X ′ ∈ ({0, 1}d)n (which may equal X) for which√
E

[∥∥∥M(X ′) − Qmarg
d,ℓ (X ′)

∥∥∥2

p

]
≳

d
ℓ
2 + ℓ

p

(2
√

2ℓ)ℓ
.

Theorem 7 shows a similar gap as Theorem 6 between the optimal error achievable by
unbiased and biased mechanisms for releasing marginals. For constant ℓ, the lower bound
in Theorem 7 nearly matches the error achievable by adding i.i.d. Gaussian noise. By
contrast, the error achieved by the projection mechanism or the private multiplicative weights
mechanism, which can be biased, is much smaller for moderate values of n and ℓ > 1: for
example, the projection mechanism achieves error on the order of d1/4 log(1/δ)1/4

√
εn

for any
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constant ℓ [20]. In the case of ℓ = 1, Theorem 7 gives lower bounds on the error achieved by
unbiased mechanisms for one-way marginals that match, up to the dependence on δ, the lower
bounds against all (ε, δ)-differentially private algorithms proved via fingerprinting codes [10].
While our lower bounds are for restricted mechanisms, they hold in the neighborhood of
every input dataset, rather than for a worst case dataset as the fingerprinting lower bounds.

The proofs of Theorems 6 and 7, and more precise upper and lower bounds on Γp(Kmarg
d,ℓ )

are presented in the full version.

1.1 Techniques
In terms of techniques for proving Theorem 4 and its extensions, we combine a technique
from [22], developed for proving lower bounds on oblivious mechanisms, with classical results
from the statistical theory of unbiased estimation. The key insight from [22] is that, in order
to prove a theorem like Theorem 4, it is sufficient to show that, for every unit vector θ ∈ Rd,
the variance of θT M(X) is bounded below in terms of the width of K in the direction of θ.
This reduction is explained in Section 3. While proving a lower bound on the worst-case
variance of a one-dimensional private mechanism like θT M(X) is easy, the challenge is that
the lower bound must hold for a fixed X that is not allowed to vary with θ. This is trivial
for oblivious mechanisms, but not for unbiased mechanisms. Nevertheless, we show that the
classical Hammersley-Chapman-Robins (HCR) bound [25, 11] implies the one-dimensional
variance lower bounds we need for pure and concentrated differential privacy. The situation
is more subtle for approximate differential privacy, i.e., (ε, δ)-differential privacy for δ > 0.
The main technical issue is that applying the HCR bound requires proving an upper bound
on the χ2 divergence between the output distributions M(X) and M(X ′) of a differentially
private mechanism M on two neighboring datasets X and X ′. No such finite bound need
exist for (ε, δ)-differentially private mechanisms when δ > 0. To get around this issue, we
modify one of the output distributions M(X) and M(X ′) so that the the χ2 divergence
becomes bounded, and, moreover, the expectations of the two distributions does not change
much, unless one of the two distributions already has huge variance. Then we can carry out
a win-win analysis: either one of M(X) or M(X ′) has huge variance, or the HCR bound
can be applied to them.

1.2 Notation
As already noted, we use ∥x∥p := (|x1|p + . . . + |xd|p)1/p for the ℓp norm of a vector x ∈ Rd,
and Bd

p := {x ∈ Rd : ∥x∥p ≤ 1} for the corresponding unit ball. We write the standard inner
product in Rd as ⟨x, y⟩ := x1y1 + . . . + xdyd = xT y for x, y ∈ Rd. For a d × N matrix M , we
define the ℓp → ℓq operator norm by ∥M∥p→q := supx∈RN :x̸=0

∥Mx∥q

∥x∥p
. Note that ∥M∥1→2

equals the largest ℓ2 norm of a column of M , and ∥M∥2→∞ equals the largest ℓ2 norm of a
row of M . We also define the Frobenius (or Hilbert-Schmidt) norm ∥M∥F := tr(MT M)1/2.
Note that this is just the ℓ2 norm of M treated as a vector.

For a d × d matrix M , we use M ⪰ 0 to denote that M is positive semidefinite, i.e.,
M is symmetric and satisfies xT Mx ≥ 0 for all x ∈ Rd. If M is also positive definite, i.e.,
positive semidefinite and non-singular, we write M ≻ 0. We write A ⪰ B and B ⪯ A when
A − B ⪰ 0 for two d × d matrices A and B. We write

√
M or M1/2 for the principle square

root of a positive semidefinite matrix M , i.e.,
√

M is a positive semidefinite matrix such that
(
√

M)2 = M .
For a probability distribution P , we use X ∼ P to denote the fact that the random

variable X is distributed according to P . We use EX∼P [f(X)] to denote the expectation of
the function f(X) when X is a random variable distributed according to P . We use cov(P )
to denote the covariance matrix of a distribution P on Rd.

ITCS 2024
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2 Gaussian Noise Mechanisms

In this section, we introduce the general Gaussian noise mechanism for estimating means in an
arbitrary bounded domain K. This mechanism generalizes known factorization mechanisms,
as we discuss later on in the section. The mechanism’s error bound generalizes factorization
norms: we prove this fact, and some other important properties in this section, as well.

2.1 Preliminaries on Concentrated Differential Privacy
Our mechanism’s privacy guarantees are most cleanly stated in the language of concentrated
differential privacy. We recall the definition of this variant of differential privacy here, together
with some basic properties of it.

Before we define concentrated differential privacy, it is convenient to define a “ratio of
probability densities” for general probability distributions. We use the following (standard)
definition.

▶ Definition 8. For two probability distribution P and Q over the same ground set, we
define dP

dQ as follows. Let R = P +Q
2 be a reference distribution, and denote by dP

dR , dQ
dR the

Radon-Nykodim derivatives of P and Q with respect to R. Then we take dP
dQ := dP/dR

dQ/dR where
the ratio is defined to be ∞ if the denominator is 0 while the numerator is positive.

We also recall the definition of Rényi divergence. s

▶ Definition 9. For two probability distributions P and Q over the same ground set, and a
real number α > 1, the Rényi divergence Dα(P∥Q) of order α is defined by

Dα(P∥Q) := 1
α − 1 lnEX∼Q

[(
dP

dQ
(X)

)α]
.

We are now ready to define zero-concentrated differential privacy, following [9].

▶ Definition 10. A mechanism M satisfies ρ-zero concentrated differential privacy (ρ-zCDP)
if, for all neighboring datasets X, X ′, we have

Dα(M(X)∥M(X ′)) ≤ ρα.

Concentrated differential privacy satisfies many nice properties: it has a simple and
optimal composition theorem, is invariant under post-processing, and implies some protection
to small groups in addition to protecting the privacy of individuals. We refer to [9] for details.
The properties we need are stated in the following lemmas, and proofs can be found in [9].

▶ Lemma 11. Suppose that M1 is a ρ1-zCDP mechanism, and, for every y in the range of
M1, M2(y, ·) is a ρ2-zCDP mechanism. Then the composition M defined on dataset X by
M(X) := M2(M1(X), X) satisfies (ρ1 + ρ2)-zCDP.

In particular, if M satisfies ρ-zCDP, and A is a randomized algorithm defined on the
range of M, then the post-processed mechanism defined on dataset X by A(M(X)) satisfies
ρ-zCDP as well.

▶ Lemma 12. If a mechanism M satisfies ρ-zCDP, then, for any δ > 0, M also satisfies
(ρ + 2

√
ρ log(1/δ), δ)-differential privacy.

▶ Lemma 13. Suppose that f : Kn → Rd is a function on size n datasets drawn from the
domain K with ℓ2 sensitivity at most ∆, i.e., for any two neighboring datasets X and X ′ we
have ∥f(X) − f(X ′)∥2 ≤ ∆. Then the mechanism that on input X outputs M(X) := f(X)+Z

for Z ∼ N(0, σ2I) satisfies ∆2

2σ2 -zCDP.
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2.2 A Gaussian Noise Mechanism for General Domains
Recall the notation trp(M), defined in the Introduction: for a positive semidefinite matrix
M ∈ Rd×d and a real number p ≥ 1, we have trp(M) := (

∑d
i Mp

ii)1/p. Moreover, we have
tr∞(M) := maxd

i=1 Mii. Recall also that trp(M) is simply the ℓp-norm of the diagonal
entries of M . The next lemma notes a few useful properties of trp(M) which follow from
this observation.

▶ Lemma 14. The function trp satisfies the following properties for any p ≥ 1:
1. for any positive semidefinite matrix M , trp(M) = 0 implies M = 0;
2. for any real number t ≥ 0, and any positive semidefinite matrix M , trp(tM) = t trp(M);
3. for any two positive semidefinite matrices M1, and M2, trp(M1+M2) ≤ trp(M1)+trp(M2);
4. for any two 1 ≤ p ≤ q ≤ ∞, and any d × d positive semidefinite matrix M , trq(M) ≤

trp(M) ≤ d
1
q − 1

p trq(M).

Proof. All except the first property are immediate from the observation that when M is a
positive semidefinite matrix, trp(M) is the ℓp norm of its diagonal entries. This observation
also shows that when trp(M) = 0 and M ⪰ 0, the diagonal entries of M are 0. But, since
the largest absolute value of any entry of a positive semidefinite matrix is achieved on the
diagonal, this also implies that M = 0. ◀

Next recall our notation for inclusion of sets up to shifting: for subsets K and L of Rd,
we write

K ⊆↔ L ⇐⇒ ∃v ∈ Rd, K + v ⊆ L.

Finally, we recall the Γp(K) function defined in the Introduction as

Γp(K) := inf
{√

trp/2(AAT ) : K ⊆↔ ABd
2

}
,

where the infimum is over d × d matrices A.
The next theorem is the core of the proof of Theorem 3 from the Introduction, and is a

slight generalization of Corollary 2.8 from [40]. We defer the proof to the full version.

▶ Theorem 15. Suppose that p ∈ [2, ∞], that K ⊆ Rd is a bounded set, and that for some
d × d matrix A, K ⊆↔ ABd

2 . Then the mechanism M that, on input X ∈ Kn, outputs
M(X) := µ(X) + Z, where Z ∼ N(0, 4

ε2n2 AAT ), satisfies ε2

2 -zCDP. In particular, M is an
unbiased ε2

2 -zCDP mechanism M that, for any dataset X ∈ Kn achieves

(E ∥M(X) − µ(X)∥2
p)1/2 ≲

√
min{p, log(2d)} trp/2(AAT )1/2

εn
.

Taking A to achieve Γp(K) in Theorem 15, and also using Lemma 12, gives Theorem 3.
We also have the following corollary for zCDP.

▶ Corollary 16. For any p ∈ [2, ∞], any ε > 0, and any bounded set K ⊆ Rd, there exists a
mechanism M that is unbiased over K, for any X ∈ Kn achieves

(E ∥M(X) − µ(X)∥2
p)1/2 ≲

√
min{p, log(2d)} Γp(K)

εn
,

and satisfies ε2

2 -zCDP.

In the full version, we also give a variant of this result for local differential privacy.

ITCS 2024
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2.3 Basic Properties of Γp(K)
In this subsection we give some important properties of the Γp function. Proofs and further
properties are deferred to the full version of the paper. The properties are given in the
following theorem.

▶ Theorem 17. The function Γp satisfies the following properties:
1. ( invariance with respect to convex hulls) for any bonded set K ⊆ Rd, Γp(K) = Γp(conv K);
2. (monotonicity) whenever K ⊆↔ conv L, we have Γp(K) ≤ Γp(L);
3. (homogeneity) for any bounded set K ⊆ Rd, and any t ∈ R, Γp(tK) = |t|Γp(K);
4. ( triangle inequality) for any bounded sets K, L ⊆ Rd, and their Minkowski sum K + L,

Γp(K + L) ≤ Γp(K) + Γp(L).

2.4 Connection to Factorization
In this subsection we show that, in the case when K = {±w1, . . . , ±wN } ⊆ Rd is a finite
symmetric set, the quantities Γ2(K) and Γ∞(K) can be equivalently formulated in terms
of the factorization norms γF (W ) and γ2(W ) of the matrix W := (wi)N

i=1. These norms
have been studied in prior work on factorization mechanisms in differential privacy. The
γ2 norm is classical in functional analysis: see, e.g., the book by Tomczak-Jaegermann [42].
It was first applied to differential privacy implicitly in [39, 40], and more explicitly in [38].
The γF norm is implicit in the work on the matrix mechanism [33], and the notation we
use is from [22], albeit with different normalization. We define natural analogs of these
quantities that correspond to Γp for any p ∈ [2, ∞]. Our general formulation of Gaussian
noise mechanisms thus generalizes factorization mechanisms to more general domains and
more general measures of error.

First we recall the definitions of the γF and γ2 factorization norms, and introduce a
definition of a family of factorization norms parameterized by p ∈ [2, ∞] that we later show
correspond to Γp.

▶ Definition 18. The γ2 and the γF factorization norms of a d × N real matrix W are
defined1 as

γ2(W ) := inf{∥A∥2→∞∥C∥1→2 : AC = W}
γF (W ) := inf{∥A∥F ∥C∥1→2 : AC = W}.

More generally, we define, for p ∈ [2, ∞],

γ(p)(W ) := inf
{√

trp/2(AAT )∥C∥1→2 : AC = W
}

,

where γ(2)(W ) = γF (W ) and γ(∞)(W ) = γ2(W ).

We have the following connection between Γp and these factorization norms. The proof
of the theorem is deferred to the full version of the paper.

▶ Theorem 19. For any p ∈ [2, ∞], and any d × N real matrix W with columns w1, . . . , wN ,
for the set Ksym := {±w1, . . . , ±wN } we have

Γp(Ksym) = γ(p)(W ).

Moreover, for the set K := {w1, . . . , wN } we have

Γp(K) = inf
v∈Rd

γ(p)(W + v1T ),

where 1 is the N -dimensional all-ones vector.

1 In [22] the γF norm is normalized differently.
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Notice that (W1 + W2)BN
1 ⊆ W1BN

1 + W2BN
2 . Then, a triangle inequality for γ(p), as

well as homogeneity, follow from Theorem 17. The fact that γ(p)(W ) = 0 only if W = 0
follows from the observation that trp/2(AAT ) = 0 implies the diagonal of AAT is 0, which
implies that A = 0. This verifies that γ(p) is, indeed, a norm on matrices.

2.5 Duality
Our goal in this section is to derive a dual characterization of Γp(K) as a maximization
problem over probability distributions on K. We first carry this out for p = 2, and then
reduce the general case to p = 2. This dual characterization is useful in the proofs of some of
our later results.

Let us introduce some notation before we state our main duality result.

▶ Definition 20. For a compact set K ⊆ Rd, we define ∆(K) to be the set of Borel regular
measures supported on K.

▶ Definition 21. For a probability measure P over Rd, we use the notation cov(P ) for the
covariance matrix of P , i.e.,

cov(P ) := EY ∼P [(Y − E[Y ])(Y − E[Y ])T ].

The following theorem is our dual characterization of Γp(K) as a problem of maxim-
izing the covariance of probability distributions over K. It generalizes the known dual
characterizations of the γ2 and γF factorization norms [32, 27].

▶ Theorem 22. Let K ⊆ Rd be a bounded set, and let p ∈ (2, ∞]. Then, for q := p
p−2 we

have the identity

Γp(K) = sup{tr((D cov(P )D)1/2) : D diagonal, D ⪰ 0, trq(D2) = 1, P ∈ ∆(K)}. (1)

Moreover, if K is symmetric around 0 (i.e., K = −K), then

Γp(K) = sup{tr((DEX∼P [XXT ]D)1/2) : D diagonal, D ⪰ 0, trq(D2) = 1, P ∈ ∆(K)}. (2)

Our proof of Theorem 22 uses Sion’s minimax theorem and the compactness of ∆(K) in
the weak* topology. We defer the proof to the full version of the paper.

3 High-dimensional Lower Bound from One-dimensional Marginals

In this section we give a framework for deriving lower bounds on the ℓp error of an unbiased
mean estimation mechanism from lower bounds on the variance of its one-dimensional
marginals. This framework is essentially the same as the one proposed in [22] for oblivious
mechanisms, with some small improvements. In particular, here we generalize the framework
in [22] to not necessarily symmetric domains, and to error measured in the ℓp norm for
p ∈ [2, ∞]. We also give slightly different, easier proofs of some of the main claims.

In the following, we use the notation cov(M(X)) for the covariance matrix of the output
distribution of the mechanism M on input dataset X. The next lemma gives a lower bound
on the ℓp error in terms of a function of the covariance matrix. We defer the (easy) proof to
the full version of the paper.

▶ Lemma 23. For any p ∈ [2, ∞], and any unbiased mechanism M over K ⊆ Rd, and any
input dataset X ∈ Kn, we have

E
[
∥M(X) − µ(X)∥2

p

]1/2
≥

√
trp/2(cov(M(X)))
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The next lemma is key to our framework. Before we state it, we introduce notation for
the support function and the width of a set in a given direction.

▶ Definition 24. We define the support function hK : Rd → R of a set K ⊆ Rd by
hK(θ) := supx∈K⟨x, θ⟩. We define the width function wK : Rd → R of a set K ⊆ Rd by

wK(θ) := sup
x∈K

⟨x, θ⟩ − inf
x∈K

⟨x, θ⟩ = hK(θ) + hK(−θ).

▶ Lemma 25. Let c > 0, let K ⊆ Rd, let X ∈ Kn be a dataset, and let M be an unbiased
mechanism over K. If, for all θ ∈ Rd, M satisfies that√

Var[θT M(X)] ≥ c wK(θ),

then K ⊆↔
1
c

√
cov(M(X))Bd

2 .

Proof. Let us denote E :=
√

cov(M(X))Bd
2 . Then, for each θ ∈ Rd, we have

hE(θ) =
∥∥∥√

cov(M(X))θ
∥∥∥

2
=

√
θT cov(M(X))θ =

√
Var[θT M(X)].

Together with the assumption of the lemma, this means that hE(θ) ≥ c wK(θ) for all θ ∈ Rd.
Let then v ∈ K be arbitrary, and note that

hK−v(θ) = hK(θ) − ⟨v, θ⟩ = max
x∈K

⟨x, θ⟩ − ⟨v, θ⟩ ≥ 0,

for all θ ∈ Rd. Therefore,

hK−v(θ) ≤ hK−v(θ) + hK−v(−θ) = wK−v(θ) = wK(θ).

Then, for all θ ∈ Rd, hK−v(θ) ≤ 1
c hE(θ) = h(1/c)E(θ) which is equivalent to K −v ⊆ 1

c E. ◀

Combining the two lemmas, we have the following lemma that allows us to reduce proving
our lower bounds to proving one-dimensional lower bounds on variance.

▶ Lemma 26. Let c > 0, let K ⊆ Rd, let X ∈ Kn be a dataset, and let M be an unbiased
mechanism over K. If, for all θ ∈ Rd, M satisfies that√

Var[θT M(X)] ≥ c wK(θ),

then we have that

E
[
∥M(X) − µ(X)∥2

p

]1/2 ≥ c Γp(K).

Proof. By Lemma 25, and the definition of Γp(·), we have

Γp(K) ≤ 1
c

√
trp/2(cov(M(X))).

On the other hand, by Lemma 23,√
trp/2(cov(M(X))) ≤ E

[
∥M(X) − µ(X)∥2

p

]1/2
.

Combining the two inequalities and multiplying through by c gives the lemma. ◀
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4 Lower Bound for Pure and Concentrated Differential Privacy

We first show that for any dataset X we can find a neighboring dataset X ′ so µ(X) and
µ(X ′) are far in a given direction. The following simple geometric lemma is helpful for that
goal.

▶ Lemma 27. For any β > 0, any bounded K ⊆ Rd, any x ∈ K, and any θ ∈ Rd, there
exists a point x′ ∈ K such that |⟨θ, x − x′⟩| ≥ (1−β)wK (θ)

2 .

Proof. Let x+ be such that ⟨θ, x+⟩ ≥ hK(θ) − βwK (θ)
2 and let x− be such that ⟨−θ, x+⟩ ≥

hK(−θ) − βwK (θ)
2 . Thus,

|⟨θ, x − x+⟩| + |⟨θ, x − x−⟩| ≥ ⟨θ, x+ − x−⟩ ≥ (1 − β)wK(θ).

Then, it must be true that either |⟨θ, x − x+⟩| ≥ (1−β)wK (θ)
2 , or |⟨θ, x − x−⟩| ≥ (1−β)wK(θ)

2 ,

and we can choose x′ ∈ {x+, x−} accordingly. ◀

Next we use Lemma 27 to construct a neighboring dataset X ′ for any dataset X so that
the means of X and X ′ are far in the direction of θ.

▶ Lemma 28. For any β > 0, any bounded K ⊆ Rd, any θ ∈ Rd, and any dataset X ∈ Kn,
there exists a neighboring dataset X ′ such that

|⟨θ, µ(X) − µ(X ′)⟩| ≥ (1 − β)wK(θ)
2n

.

Proof. For any given X, we change only the first data point to construct X ′. Let x1 ∈ K

be the first data point of X, and, take x′
1 to be the point x′ guaranteed by Lemma 27 used

with x := x1. Then we set X ′ := (x′
1, x2 . . . , xn). We have

|⟨θ, µ(X) − µ(X ′)⟩| = |(µ(θT X) − µ(θT X ′))| =
∣∣∣∣ 1
n

⟨θ, x1 − x′
1⟩

∣∣∣∣ ≥ (1 − β)wK(θ)
2n

,

where we use the notation

θT X := (θT x1, . . . , θT xn), θT X ′ := (θT x′
1, . . . , θT xn).

This completes the proof. ◀

Recall that, for two probability distributions P and Q, defined on the same ground set,
the χ2-divergence between them is defined by

χ2(P∥Q) := EX∼Q

[(
dP

dQ
(X) − 1

)2
]

.

The following lemma, bounding the χ2-divergence between the output distributions of an
ε-differentially private mechanism run on two neighboring datasets, is likely well-known. We
omit the proof from this version of the paper.

▶ Lemma 29. Suppose that M is an ε-differentially private mechanism, and X, X ′ are two
neighboring datasets. Let P be the probability distribution of M(X), and Q the probability
distribution of M(X ′). Then χ2(P∥Q) ≤ e−ε(eε − 1)2.

For the our one dimensional lower bounds, we use the classical Hammersley-Chapman-
Robins bound [25, 11], stated in the next lemma.
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▶ Lemma 30. For any two probability distributions P and Q over the reals, and for random
variables X, Y distributed, respectively, according to P and Q, we have√

Var(Y ) ≥ |E[X] − E[Y ]|√
χ2(P∥Q)

.

A (not tight) lower bound for pure differential privacy follows immediately from Lem-
mas 28, 29, 30, and Lemma 26. Instead, we state a lower bound for zCDP, which is nearly
tight for small ε.

▶ Theorem 31. For any ε2

2 -zCDP mechanism M that is unbiased over K ⊆ Rd, and any
dataset X ∈ Kn, its error is bounded below as√

E
[
∥M(X) − µ(X)∥2

p

]
≳

Γp(K)
n

√
eε2 − 1

.

Proof. Let c < 2, and let X ′ be any dataset that is neighboring with X and satisfies
|θT (µ(X) − f(X ′))| ≥ c wK (θ)

n . Such a dataset exists by Lemma 28. Let Q be the probability
distribution of θT M(X) and P the probability distribution θT M(X ′). From the definition
of zCDP, the 2-Renyi divergence of of P and Q is bounded as D2(P∥Q) ≤ ε2. We then use
the relationship between the 2-Renyi divergence and the χ2-divergence to write χ2(P∥Q) =
2D2(P ∥Q) − 1 ≤ eε2 − 1. The theorem now follows from Lemmas 26 and 30. ◀

5 Lower Bound for Approximate Differential Privacy

Our lower bounds for approximate differential privacy do not follow directly from the
Hammersley-Chapman-Robins bound, because the probability distributions of M(X) and
M(X ′), for two neighboring datasets X and X ′, and an (ε, δ)-differentially private mechanism
M, may not have the same support. For this reason, the χ2-divergence between the
distributions can be infinite. This leads to some complications, both for the one-dimensional,
and for the higher-dimensional lower bounds, presented in this section.

5.1 One-dimensional Lower Bound
Let us introduce notation for the subset of the ground set where the ratio of densities is
small. In our context, this will be the subset of possible outputs of a mechanism for which
the mechanism satisfies pure differential privacy for a pair of neighboring inputs.

▶ Definition 32. For two probability distribution P and Q over the same ground set Ω, we
define

SP,Q,ε :=
{

ω ∈ Ω : e−ε ≤ dP

dQ
(ω) ≤ eε

}
.

We restate Case 2 of Lemma 3.3 from [31] here. The lemma captures the fact that an
approximately differentially private mechanism is “purely differentially private with high
probability”.

▶ Lemma 33. Let M be an (ε, δ)-differentially private mechanism, let X, X ′ be neighboring
datasets, and define P to be the probability distribution of M(X), and Q to be the probability
distribution of M(X ′). Then,

max {Pr [M(X) ̸∈ SP,Q,2ε] , Pr [M(X ′) ̸∈ SP,Q,2ε]} ≤ δ′ := 2δ

1 − e−ε
.
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The main challenge in applying our techniques to approximate differential privacy is
that the χ2-divergence between the output distributions of an (ε, δ)-differentially private
mechanism run on two neighboring datasets is not necessarily bounded. To get around this
issue, we modify one of the two distributions slightly, so that we can fall back on bounds on
the χ2-divergence for pure differential privacy. Here we will use Lemma 33 crucially.

▶ Lemma 34. Let M be an (ε, δ)-differentially private mechanism with range Rd, let X be
an arbitrary dataset, and let X ′ be any dataset that is neighboring with X. Let Q be the
probability distribution of θT M(X), and P the probability distribution of θT M(X ′). Define
S := SP,Q,2ε. There exists a probability distribution P̂ s.t.∣∣∣∣∣log dP̂

dQ
(y)

∣∣∣∣∣ ≤ 2ε − log (1 − δ′) for any y in the range of M (3)

|E
Y ∼P̂

[Y ] − EY ∼Q[Y ]]| = |Cδ EY ∼P [Y 1{Y ∈ S}] − EY ∼Q[Y 1{Y ∈ S}]| (4)

where δ′ is as in Lemma 33, and Cδ := Q(S)
P (S) .

While we omit the proof of Lemma 34, we note here that P̂ is defined, for any (measurable)
subset T of the range of M, by P̂ (T ) := CδP (T ∩ S) + Q(T \ S).

Combining Lemma 29 and Lemma 34, we get the following bound on the χ2-divergence.

▶ Lemma 35. Let P̂ and Q be as in Lemma 34. Then we have

χ2(P̂∥Q) ≤ ε̂ 2 := e−(2ε−log (1−δ′))(e2ε−log (1−δ′) − 1)2.

The next lower bound on the variance of an approximately differentially private mechanism
in a given direction is crucial to our argument. The proof is deferred to the full version. The
main idea is to show that, unless the variance of θT M(X ′) is very large, its distribution has
similar mean as P̂ above, and we can use Lemma 35 and the HCR bound.

▶ Lemma 36. Let c > 0 be a small enough absolute constant, and let M be (ε, δ)-differentially
private mechanism that is unbiased over K ⊆ Rd. Define ε̂ and δ′ as in Lemmas 35 and 33.
If δ′ ≤ c

n , then for every θ ∈ Rd, and for every dataset X ∈ Kn, either√
Var[θT M(X)] ≳ wK(θ)

nε̂
,

or there exist some X ′ neighboring with X such that√
Var[θT M(X ′)] ≳ wK(θ)

n
√

δ′
.

5.2 High-dimensional Lower Bound for ℓ2

We first state a lower bound on ℓ2 error that is nearly tight when δ is small with respect to
the minimum width of the domain K. Then we will show that we can always ensure the
minimum width is not too small.

The next lemma follows immediately from Lemmas 26 and 36, and an application of the
Cauchy-Schwarz inequality.

▶ Lemma 37. Let c > 0 be a small enough absolute constant, and let M be (ε, δ)-differentially
private mechanism that is unbiased over K ⊆ Rd. Define ε̂ and δ′ as in Lemmas 35 and 33.
If δ′ ≤ c

n , and K satisfies minθ∈Rd:∥θ∥2=1 wK(θ) ≥ w0, then for every dataset X ∈ Kn, either√
E

[
∥M(X) − µ(X)∥2

2

]
≳

Γ2(K)
nε̂

,
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or there exists a neighboring dataset X ′ to X s.t.√
E

[
∥M(X ′) − µ(X ′)∥2

2

]
≳

w0

n
√

δ′
.

Proof. By Lemma 36, one of the following two cases will hold:
Case 1. For all θ ∈ Rd, ∥θ∥2 = 1,

√
Var[θT M(X)] ≳ wK (θ)

nε̂
. Then, by Lemma 26,

E [∥M(X) − µ(X)∥2] ≳ Γ(K)
nε̂

.

Case 2. There exists a θ∗ ∈ Rd, ∥θ∗∥2 = 1 such that there exists some X ′ neighboring to X

for which
√

Var[θ∗T M(X ′)] ≳ wK (θ∗)
n

√
δ′ . Then, by the Cauchy-Schwarz inequality, we have√

E
[
∥M(X ′) − µ(X ′)∥2

2

]
≥

√
E

[
⟨θ∗, M(X ′) − µ(X ′)⟩2

]
=

√
Var[θ∗T M(X ′)]

≳
wK(θ∗)
n

√
δ′

≥ w0

n
√

δ′
.

This completes the proof. ◀

In general, the minimum width of K can be 0 even of Γ2(K) is large. The next lemma
shows that, nevertheless, any K has a projection P (K) for which the minimum width (within
the image of P ) and Γ2(P (K)) are within a factor linear in the dimension, and Γ2(P (K)) is
comparable to Γ2(K).

▶ Lemma 38. For any K ⊆ Rd, there exists an orthogonal projection P : Rd → Rd, such
that P (K) satisfies both of the following two conditions:

Γ2(P (K)) ≥ Γ2(K)
2

min
θ∈Im(P ):∥θ∥2=1

wP (K)(θ) ≥ Γ2(K)
2d

Above, Im(P ) is the image of P .

Proof. Let K0 := K, and consider the following procedure. Set, initially, i := 1. While there
is a direction θi, ∥θi∥2 = 1 which is orthogonal to θ1, . . . , θi−1 (if i > 1), and is such that
wKi−1(θi) < Γ2(K)

2d , we set Ki to be the projection of Ki−1 orthogonal to θi, and set i := i+1.
Continue until no such direction can be found, or until we have made d projections, after
which Kd is a point. Suppose that this procedure terminates after k ≤ d projections.

Let P (K) := Kk be the new set at the end of the procedure. P is the orthogonal
projection onto the subspace orthogonal to the span of θ1, . . . , θk. From the construction
it is clear that for any θ in the range of P such that ∥θ∥2 = 1, wP (K)(θ) ≥ Γ2(K)

2d , or the
procedure would not have terminated. It remains to analyze Γ2(P (K)), and here we use
the triangle inequality for Γ2. Define the segment Li :=

[
− wKi−1 (θi)

2 θi,
wKi−1 (θi)

2 θi

]
. Then

Ki−1 ⊆↔ Ki + Li, and, by induction, we have K ⊆↔ Kk +
∑k

i=1 Li. By the choice of θi,

Γ2(Li) ≤ wKi−1(θi) ≤ Γ2(K)
2d

,
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and, using the monotonicity and triangle inequality properties from Theorem 17, we have

Γ2(K) ≤ Γ2(Kk) +
k∑

i=1
Γ2(Li) ≤ Γ2(P (K)) + Γ2(K)

2 .

Rearranging gives us that Γ2(P (K)) ≥ Γ2(K)
2 . ◀

Combining these two lemmas above we can prove a lower bound on the ℓ2 error for general
K that is tight as long as δ is sufficiently small with respect to d.

▶ Theorem 39. Let c > 0 be a small enough absolute constant, and let M be an (ε, δ)-
differentially private mechanism that is unbiased over K ⊆ Rd. Define ε̂ and δ′ as in
Lemmas 35 and 33. If δ′ ≤ c

n , then for every dataset X ∈ Kn, either√
E

[
∥M(X) − µ(X)∥2

2

]
≳

Γ2(K)
nε̂

or there exists a dataset X ′ neighboring with X s.t.√
E

[
∥M(X ′) − µ(X ′)∥2

2

]
≳

Γ2(K)√
δ′nd

Proof. The key observation is that we can define an (ε, δ)-differentially private mechanism
that’s unbiased over P (K) using M, so that the ℓ2 error does not increase. To do so, we can
fix, for any x ∈ P (K) a preimage f(x) so that P (f(x)) = x. Then we apply f pointwise to
any dataset X̃ := (x̃1, . . . , x̃n) ∈ (P (K))n to get f(X̃) := (f(x̃1), . . . , f(x̃n)) in Kn so that
P (f(X̃)) := (P (f(x̃1)), . . . , P (f(x̃n))) = X̃. Moreover, for a fixed dataset X ∈ Kn, we can
make sure that f(P (X)) = X. Then, given M, we define M′(X̃) := P (M(f(X̃))). Since f

maps neighboring datasets to neighboring datasets, and M′ is a postprocessing of M(f(X̃)),
M′ is (ε, δ)-differentially private.

Because orthogonal projection does not increase the ℓ2 norm, and since we ensured
f(P (X)) = X, we have√

E
[
∥M(X) − µ(X)∥2

2

]
≥√

E
[
∥P (M(X)) − P (µ(X))∥2

2

]
=

√
E

[
∥M′(P (X))) − µ(P (X))∥2

2

]
. (5)

An analogous analysis works for a dataset X ′ that is neighboring to X.
It is clear that Im(P ) is isometric with Rd−k, both endowed with the ℓ2 metric. The

theorem then follows from Lemmas 37 and 38. ◀

5.3 High-dimensional Lower Bound for ℓp, p > 2
To prove a lower bound for the non-Euclidean case ℓp, p > 2, we reduce to the ℓ2 case. We
do so via Theorem 22. The details are deferred to the full version.

▶ Theorem 40. Let c > 0 be a small enough absolute constant, let p ∈ [2, ∞], and let M be
an (ε, δ)-differentially private mechanism that is unbiased over K ⊆ Rd. Define ε̂ and δ′ as
in Lemmas 35 and 33. If δ′ ≤ c

n , then for every dataset X ∈ Kn, either√
E

[
∥M(X) − µ(X)∥2

p

]
≳

Γp(K)
nε̂
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or there exists a dataset X ′ neighboring with X s.t.√
E

[
∥M(X ′) − µ(X ′)∥2

p

]
≳

Γp(K)√
δ′nd

Theorem 4 in the Introduction follows from Theorems 39 and 40.
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