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Abstract
Randomized rumor spreading processes diffuse information on an undirected graph and have been
widely studied. In this work, we present a generic framework for analyzing a broad class of such
processes on regular graphs. Our analysis is protocol-agnostic, as it only requires the expected
proportion of newly informed vertices in each round to be bounded, and a natural negative correlation
property.

This framework allows us to analyze various protocols, including PUSH, PULL, and PUSH-PULL,
thereby extending prior research. Unlike previous work, our framework accommodates message
failures at any time t ≥ 0 with a probability of 1 − q(t), where the credibility q(t) is any function of
time. This enables us to model real-world scenarios in which the transmissibility of rumors may
fluctuate, as seen in the spread of “fake news” and viruses. Additionally, our framework is sufficiently
broad to cover dynamic graphs.
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1 Introduction

The rise of online social networks has facilitated a way for network users to rapidly obtain
information, express their opinion, and stay in touch with friends and family. However, at
the same time the large scale information cascades enabled by these new social technologies
provide fertile ground for the spread of misinformation, rumors and hoaxes. This in turn can
have severe consequences such as public panic, growing polarization, the manipulation of
political events, and also economic damage. For instance, in 2013 a rumor that President
Obama was injured in two explosions at the White House led to $90 billion USD being
temporarily wiped off the value of United States stock market [30]. In the same year the
World Economic Forum report [21] listed “massive digital misinformation” as one of the
main risks for the modern society. More recently we have seen the spread of misinformation
surrounding the Covid-19 pandemic [4]. Consequently, there has been a growing body of
work aiming to gain insights into the rumor spreading dynamics [12, 26, 31, 35].

For a long time, randomized rumor spreading protocols such as the PUSH, PULL and
PUSH-PULL protocols have been used to model the dissemination of information on graphs,
e.g., [2, 13, 23]. Both by mathematical analysis on “scale free” graphs in addition to
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experimental results on real-world social networks, it has been demonstrated that these
protocols (in particular, PUSH-PULL) spread a rumor to a large fraction of vertices in a very
short time (e.g., [14]).

However, one shortcoming of the previous works that analyze these protocols is the
assumption that the probability with which an individual believes the rumor, when receiving
it, is constant over time – in fact, in many studies it is assumed that this credibility is
equal to one in all rounds. In real world settings, one can imagine that the occurrence of
emergent events (such as an earthquake or a new possibly lethal decease) can intensify the
formation and propagation of rumors due to their suddenness and urgency, followed by a
decrease in credibility once more information has become available. A related example is the
spread of viruses, where counter-measures such as vaccination or social distancing, but also
seasonal effects may affect the transmissibility over time, potentially even periodically/non-
monotonically.

Moreover, it is often assumed that the graph is fixed throughout the execution of
randomized rumor spreading protocols, which is rather restrictive since many networks, e.g.,
social networks, P2P networks or communication networks, are subject to frequent changes.

To address these issues, we introduce a new methodology for analyzing randomized rumor
spreading protocols that allows us to study PUSH, PULL, and PUSH-PULL processes under
the presence of a time-changing credibility (or transmissibility) function q(t) and dynamic
graphs (Gt)t≥0. However, our method is more general and allows us to study a broader
class of spreading processes on dynamic graphs. To show the effectiveness of our analysis,
we recover known results for the PUSH, PULL, and PUSH-PULL protocols in the context of a
constant credibility function q, and provide analysis for specific time-dependent credibility
functions q(t).

1.1 Our Contribution
In this work, we present a general framework for analyzing a large class of randomized rumor
spreading models. Our main results give concentration for the number of vertices informed
after a certain stopping time. These results are very general however we show in detail how
they can be applied to several models.

Broad Class of Spreading Processes. Instead of using protocol specific characteristics,
our framework only requires some mild conditions on the spreading process (i.e., bounded
expected growth and a natural negative correlation property; see Definition 1). This allows
our setting to cover many models of randomized rumor spreading, beyond the standard
PULL and PUSH models (see Lemma 8, the final bullet point below, and Section 2.5).
Credibility Function q(t). Our model allows for a time-dependent credibility function
q(t) ∈ [0, 1], which specifies how transmissible the rumor is in each step. This can be seen
as a major generalization of the prevalent notion of “robustness” in the literature, which
usually refers to the uniform fault model with q fixed over t. Unlike in previous models,
our credibility functions can be arbitrary, in particular they do not need to be monotone.
Stopping time Criterion. We introduce a new technical tool based on a stopping time
criterion. Roughly, for some desired number of vertices B to be informed, the stopping
time triggers when a sum of expected growth factors of the process exceeds a threshold
depending on B. The aforementioned growth factors are conditional expectations of the
proportion of new vertices informed in the next step. We show that if this stopping
criterion is met, then B vertices are informed with high probability (see Theorem 9).
This is complemented by Theorem 15 with a dual statement on the shrinking of the
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uninformed vertices. Both results are significantly more general than previous analyses,
which usually rely on a growth factor “target” that is independent of t and the set of
informed vertices.
Dynamic Graphs. Due to the general nature of our framework and stopping criteria,
our analysis “abstracts away” the graph and the specific spreading process. Hence, we
can cover sequences of dynamic regular graphs (Gt)t≥0 instead of a fixed graph G. This
flexibility comes from the fact that the connectivity of each Gt is captured by the growth
factor of the process at round t, which in turn determines the stopping criterion. In
particular, we do not require the graph to be connected at each step (see Remark 10).
Applications. We prove several new results for general and specific credibility functions.
First, for general credibility functions, we combine our stopping time criterion with a simple
lower bound based on sub-martingales. Together, they reveal a threshold phenomenon,
very roughly saying that for expander graphs the quantity

∑t
k=0 log(1+q(k)) approximates

log(|It|), where It is the set of vertices informed by time t (see Section 4.1).
After that, we turn to some specific credibility functions, including additive, multiplicative
and Power-Law (see Sections 4.2–4.4 for the respective definitions and results). There,
we prove several dichotomies in terms of the decay of q(t).
Despite the generality and abstract nature of our main results, we also recover some
previous results for static graphs (and time-invariant q(t)) as a special case; however, our
results for PUSH, PULL and PUSH-PULL additionally apply to dynamic graphs (see, e.g.,
the results in Section 4.5).

Due to space restrictions most proofs are deferred to the full version of this paper [27].

1.2 Related Work
Classical Protocols and Robustness

Given a rumor spreading process on an n-vertex graph, define the spreading time by T (n) as
the first time all vertices are informed. The spreading time of PUSH was first investigated on
complete graphs by Frieze and Grimmett [18]. Pittel [32] improved on this, showing that for
PUSH on the complete graph, the spreading time is given by T (n) = log2(n) + log(n)± f(n)
with probability (w.p.) 1− o(1), for any f(n) = ω(1). Karp, Schindelhauer, Schenker and
Vöcking [23] investigated the PUSH-PULL model (and variants) with a focus on the total
number of messages sent. In particular, they exploit the phenomenon that once a constant
fraction of vertices are informed, PULL manages to inform all vertices in just O(log log n)
rounds.

Doerr and Kostrygin [15] derived a bound on the expected spreading time E [ T (n) ] of
PUSH, replicating the bound from [32] but only with an additive O(1) error instead of f(n).
Furthermore, [15] also considered PULL and PUSH-PULL on complete graphs, and determined
these spreading times up to and additive O(1) error. They also presented a more general
result for the uniform fault model, where the leading factors are delicate functions of the
(time-invariant) credibility q ∈ (0, 1]. We are able to recover a with high probability version
of the upper bounds from [15] for PUSH, PULL and PUSH-PULL (see Section 4.5).

Fountoulakis, Huber and Pangiotou [16] considered the uniform fault setting of PUSH on
random graphs with n vertices where each edge is present w.p. p = ω(log n/n). They proved
that, up to lower-order terms, the same bound as for the complete graph holds. For the
model without faults, Fountoulakis and Panagiotou [17] presented a tight analysis for PUSH
on random d-regular graph for any constant d ≥ 3. Panagiotou, Perez-Gimenez, Sauerwald

ITCS 2024
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and Sun [28] analyzed PUSH on almost-regular strong expanders, recovering the runtime
bound for complete graphs up to low order terms (see Equation (1) for the definition of
strong expander for regular graphs).

Finally, Daknama, Panagiotou and Reisser [10] greatly extended and unified these lines
of works in terms of the graph classes considered, and the uniform fault model. Among
other results, they proved that the aforementioned results from [15] (for PUSH, PULL and
PUSH-PULL) also hold for almost-regular strong expanders, without any change in the leading
factor. Our framework allows us to recover the upper bounds in [10] for regular graphs as
well as dynamic sequences of regular graphs (see Section 4.5).

For general graphs (including highly non-regular ones), Chierichetti, Giakkoupis, Lattanzi
and Panconesi [6] proved an upper bound of O(log n/φ) on the time to inform all vertices
for PUSH-PULL, where φ is the conductance of the graph. A similar, but more complicated
bound was shown by Giakkoupis [19] for the PUSH-PULL model, where the conductance is
replaced by the vertex expansion. The results of both works also extend to PUSH and PULL,
if the graph is (approximately) regular.

Dynamic Graphs

Extending the aforementioned bounds for conductance and vertex expansion, Giakkoupis,
Sauerwald and Stauffer [20] proved similar bounds for dynamic graphs in the PUSH-PULL
model, where each graph Gt≥0 = (V, Et≥0) must be dt-regular. In particular, they proved
that if the sum of the conductances over rounds 0, 1, . . . , T is Ω(log n), then by round T

all vertices are informed. Pourmiri and Mans [33] analyzed an asynchronous version of
PUSH-PULL. While some of their positive results are similar to the ones in [20], they also
established dichomoties between the synchronous and asynchronous version on dynamic
graphs. Our approach can be seen as a refinement and generalization of the methods employed
in these two works, since our stopping time aggregates over the (random) conductances
of the sets It, for t = 0, 1, . . . , T , and it works for arbitrary, so-called Cgrow-growing and
Cshrink-shrinking processes.

Finally, Clementi, Crescenzi, C. Doerr, Fraigniaud, Pasquale and Silvestri [9] analyzed
PUSH on a random dynamic graph model called Edge Markovian Evolving Graph, and proved
a runtime bound of O(log n) for certain parameter ranges of their model. Ideas and techniques
related to rumor spreading have also been employed in the analysis of components in a
temporal random graph model [1, 5].

Other Models with Time Dependent Credibility Functions

The inclusion of a local time dependent forgetting rate in the SIR model [25] was empirically
investigated by Zhao, Xie, Gao, Qiu, Wang, and Zhang [37], leading to q(t) := µ− eβ·t, for
0 ≤ µ− eβ·t ≤ 1, for µ and β parameters indicating the initial credibility and the speed with
which the credibility decreases. Very recently, Zehmakan, Out and Khelejan [36] studied a
version of the Independent Cascade model [24] where q(t) is a variant of the multiplicative
credibility function (with α = 1/2, see Definition 28), but additionally is edge dependent (i.e.
a function q(t, uv), uv ∈ E(G)) and depends on the Jaccard similarity between two vertices
u and v.
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2 Models and Notation

We will cover some basic notation before introducing the models studied in this paper.

2.1 Notation
We let N denote the natural numbers (starting from 0) and let R denote the reals.

Graph Notation

Throughout this paper, all considered graphs G = (V, E) will be simple and undirected. We
denote n := |V | and m := |E|. For a node v ∈ V , N(v) := {w ∈ V : {w, v} ∈ E} is the
neighborhood of v, and deg(v) := |N(v)| is called the degree of v. We say a graph is regular
if every vertex has the same degree. For U ⊆ V we let NU (v) := {w ∈ U : {v, w} ∈ E} =
N(v) ∩ U , and denote degU (v) := |NU (v)|. We will also consider dynamic graphs, which can
be thought of as a sequence of graphs (Gt)t≥0 where each graph Gt = (V, Et) is on the same
vertex set, however the edge sets Et may change over time.

For any two sets U, W ⊆ V , we let e(U, W ) := |{{u, w} ∈ E : u ∈ U, w ∈ W}| denote
the number of edges between U and W . The volume of a set U ⊆ V is the sum of the
degrees of the vertices in U , vol(U) :=

∑
u∈U deg(u). We let A be the adjacency matrix

of G and denote the degree matrix by D := diag(d), where d(u) = deg(u), which is the
matrix with the degrees of the vertices on the diagonal and the rest of the entries equal to 0.
Lastly, we let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the normalized adjacency matrix
D−1/2AD−1/2 and let λ := max{|λ2|, |λ3|, . . . , |λn|} ≥ 0.

We say that a regular graph G of degree d is a strong expander if,

lim
n→∞

λ→ 0. (1)

Note that a necessary requirement for that is d → ∞. As noted in other works on rumor
spreading, the class of random d-regular graphs with d = ω(1) forms an example of strong
expander graphs with w.p. 1− o(1) [3, 34]. We refer to [10, 28] for the exact definition of
strong expander graphs when G is almost-regular.

The conductance [22] of any vertex set ∅ ⊊ S ⊊ V in a graph G = (V, E) is

φG(S) := e(S, V \ S)
min (vol(S), vol(V \ S)) .

If the graph G or graph sequence (Gt)t≥0 is clear from the context, we drop the subscript.
The conductance of G is in turn defined as,

φ(G) := min
∅⊊S⊊V

e(S, V \ S)
min (vol(S), vol(V \ S)) .

Model Notation

As mentioned, we will consider random processes on a sequence of dt-regular graphs, (Gt)t≥0
where each Gt has a common vertex set V . We always assume that dt > 0 (i.e., we do not
consider the empty graph). These processes produce a sequence of sets (It)t≥0 where It is
the set of informed vertices at time t (i.e., after t rounds are completed) and It ⊆ It+1 ⊆ V

for all t ≥ 0. Similarly, we let Ut := V \ It denote the set of uninformed vertices at time
t ≥ 0. Lastly, we define ∆t := It \ It−1 to be the set of vertices that get informed in round t.
Further notation relating to such process is given in Section 2.3.

ITCS 2024
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Mathematical Notation and Assumptions

We use asymptotic notation O(·), o(·), Ω(·), ω(·), Θ(·), . . . throughout, this is always defined
relative to the number of vertices n. All logarithms are to base e, unless indicated otherwise.
We let n tend to infinity and say an event E happens with high probability (w.h.p.) if it
occurs w.p. 1− o(1). For f : X → R a non-negative real-valued function with domain X, we
let Supp(f) := {x ∈ X : f(x) ̸= 0}. We define Ft to be the filtration corresponding to the
first t rounds of the process, in particular Ft reveals I0, I1, . . . , It. For brevity, we set

Pt [ · ] := P
[

· | Ft
]

, Et [ · ] := E
[

· | Ft
]

, and Vart [ · ] := E
[ (

· − E
[

· | Ft
])2 | Ft

]
.

2.2 Standard Rumor Spreading Protocols and Credibility Function q(t)
Given any graph sequence, Gt≥0 = (V, Et≥0) initially one node v∗ in graph G0 is informed
of the rumor, i.e., I0 = {v∗}. We recall the definition of the PULL, PUSH, and PUSH-PULL
protocols [18, 23]. In the PULL model, in every round t = 0, 1, . . ., every uninformed vertex v

chooses a neighbor u uniformly and independently at random. If u is informed, then as a
response u transmits the rumor to v, so v becomes informed. In the PUSH protocol, in each
round, every informed node v chooses a neighbor u uniformly at random, and transmits the
rumor to u. Lastly, PUSH-PULL is the combination of both strategies: In each round, if the
node knows the rumor, it chooses a random neighbor to send the rumor to. Otherwise, it
chooses a random neighbor to request the rumor from.

We can extend the PULL, PUSH and PUSH-PULL models by including a credibility function
q(t) for q(t) : N → [0, 1] and t ≥ 0. In the PULL, PUSH and PUSH-PULL with credibility q(t)
models, at the beginning of each round t = 0, 1, . . . , for any uninformed node v ̸∈ It−1 and
for each transmission of the rumor to v (regardless of whether that was due to a PUSH or PULL
transmission), it becomes informed with w.p. q(t) independently, and remains uninformed
otherwise1. This is depicted for the PUSH-PULL model in Algorithm 1. Notice that q(t) may
be time-dependent, and also that when q(t) = q = 1 we return to the standard PULL, PUSH,
and PUSH-PULL models, whereas with q(t) = q being a constant in (0, 1) we recover the
“uniform failure” model studied in [10, 15].

Algorithm 1 Round t ∈ N of PUSH-PULL with credibility function q(t).

1: Input: Gt, It, q(t)
2: Initialize: ∆t+1 ← ∅
3: for each v ∈ It do ▷ PUSH
4: Sample a neighbor v′ ∈ NGt

(v) chosen uniformly at random.
5: if v′ ̸∈ ∆t+1 then
6: With probability q(t), ∆t+1 ← ∆t+1 ∪ {v′}
7: for each v ∈ V \ It do ▷ PULL
8: Sample a neighbor v′ ∈ NGt

(v) chosen uniformly at random.
9: if v′ ∈ It then

10: With probability q(t), ∆t+1 ← ∆t+1 ∪ {v}
11: It+1 ← It ∪∆t+1

1 Hence if in a round, an uninformed vertex receives k transmissions (regardless of whether these are PULL
or PUSH transmissions), then the probability it gets informed is 1 − (1 − q(t))k, i.e. each transmission is
independent.
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2.3 Our Class of Spreading Processes

We now introduce two general spreading processes, that are crucial to our framework. This is
an abstraction of the aforementioned examples of PUSH, PULL and PUSH-PULL with credibility
function q(t), since we are now only considering the expected growth (or shrinking) factors.
We point out that these may depend on several quantities such as the conductance of the
informed set It (or uninformed set Ut, respectively), and q(t) of course.

▶ Definition 1 (Growing and Shrinking Processes). Let (Gt)t≥0 be a sequence of graphs. Let
P be a stochastic process on (Gt)t≥0 with a sequence of informed vertices (It)t≥0 ⊆ V (Gt)
and uninformed vertices Ui = V (Gt) \ It for all t ≥ 0. We begin by defining the following
property of such a process
P1 (Negative Correlation): For any round t ≥ 0 and any subset S ⊆ Ut,

Pt

[ ⋂
u∈S

{u ∈ It+1}

]
≤
∏
u∈S

Pt [ u ∈ It+1 ] .

For some time-independent value Cgrow > 0 we say that P is a Cgrow-growing process if it
satisfies P1 and
P2 (Monotonicity): For any round t ≥ 0, it holds deterministically that It ⊆ It+1 (and
|I0| ≥ 1),
P3 (Bounded Expected Growth): For any round t ≥ 0 the expected growth factor
satisfies,

Et

[
|∆t+1|
|It|

]
≤ Cgrow.

Similarly, for some time-independent Cshrink < 1, P is a Cshrink-shrinking process if it
satisfies P1 and
P̃2 (Monotonicity): For any round t ≥ 0, it holds deterministically that Ut ⊇ Ut+1 (and
|U0| ≤ n/2),
P̃3 (Bounded Expected Shrinking): For any round t ≥ 0 the expected shrinking factor
satisfies,

Et

[
|∆t+1|
|Ut|

]
≤ Cshrink.

For convenience, we also define for all rounds t ≥ 0 a “combined” growth/shrinking factor as

δt := Et

[
|∆t+1|

min (|It|, |Ut|)

]
= max

(
Et

[
|∆t+1|
|It|

]
, Et

[
|∆t+1|
|Ut|

])
.

We now prove that the negative correlation property immediately implies a strong upper
bound on the variance of the growth (shrinking) factor. The same result was derived in [10]
for PUSH, PULL and PUSH-PULL using the concept of self-bounding functions.

▶ Lemma 2. Consider any stochastic process with sequence of informed vertices (It)t≥0
satisfying P1 . Then, also the following property also holds:
P4 (Bounded Variance): For any round t ≥ 0, Vart [ |∆t+1| ] ≤ Et [ |∆t+1| ] .

ITCS 2024
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Table 1 Basic lower and upper bounds on the expected growth factor δt for PUSH, PULL and
PUSH-PULL in terms of q(t) and the conductance φ(It) on regular graphs.

δt

Lower Bound Upper Bound

PULL q(t) · φ(It)

PUSH q(t) ·
(

1− q(t)
2

)
· φ(It) q(t) · φ(It)

PUSH-PULL 3
2 · q(t) ·

(
1− 1

2 q(t)
)
· φ(It) 2 · q(t) · φ(It)

2.4 Specific Protocols and Growth Factors
In this subsection, we analyze specific protocols (in particular, PUSH, PULL and PUSH-PULL
with credibility function q(t)) and verify that they are Cgrow-growing and Cshrink-shrinking
processes in the sense of Definition 1. Let (Gt)t≥0 be a sequence of regular graphs. Recall
that in our setting |I0| = 1 and ∆t+1 = It+1 \ It. In order to capture the progress of the
rumor spreading process between the rounds t1 and t2, we observe the following identities,

|It2 |
|It1 |

=
t2−1∏
t=t1

|It+1|
|It|

=
t2−1∏
t=t1

|It|+ |∆t+1|
|It|

=
t2−1∏
t=t1

(
1 + |∆t+1|

|It|

)
|Ut2 |
|Ut1 |

=
t2−1∏
t=t1

|Ut+1|
|Ut|

=
t2−1∏
t=t1

|Ut|+ |∆t+1|
|Ut|

=
t2−1∏
t=t1

(
1− |∆t+1|

|Ut|

)
.

As such, we prove upper and lower bounds on the expectation of the growth/shrinking factors,
|∆t+1|

min(|It|,|Ut|) of the PUSH, PULL and PUSH-PULL protocols.

▶ Lemma 3. Let t ≥ 0 be any round, Gt a dt-regular graph with n vertices and dt ≥ 1, and
q(t) an arbitrary credibility. Then,

(i) for the PUSH protocol,

q(t) ·
(

1− q(t)
2

)
· φ(It) ≤ Et

[
|∆t+1|

min(|It|, |Ut|)

]
≤ q(t) · φ(It),

(ii) for the PULL protocol,

Et

[
|∆t+1|

min (|It|, |Ut|)

]
= q(t) · φ(It),

(iii) and for the PUSH-PULL protocol,

3
2 · q(t) ·

(
1− q(t)

2

)
· φ(It) ≤ Et

[
|∆t+1|

min (|It|, |Ut|)

]
≤ 2 · q(t) · φ(It).

Next we prove tighter bounds for the PUSH and PUSH-PULL protocol if the graph is a
strong expander.
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▶ Lemma 4. Consider the PUSH protocol, and let t ≥ 0 be any round where with |It| ≤ n/2 and
Gt a dt-regular graph with n vertices. Then, for q(t) an arbitrary credibility and β := λ + |It|

n ,

Et

[
|∆t+1|
|It|

]
≥ q(t) ·

(
1− 7

√
β
)

.

For the same setting in the PUSH-PULL protocol,

Et

[
|∆t+1|
|It|

]
≥ q(t) ·

(
2− 12

√
β
)

.

The next lemma improves over the lower and upper bound in Lemma 3 (i) if |It| ≥ n/2.
Concerning the lower bound, we have q(t) · (1− q(t)

2 ) ≤ 1− e−q(t) since e−z ≤ 1− z + 1
2 z2 =

1 − z ·
(
1− z

2
)

for z ∈ [0, 1]. Further, if dt = ω(1) and q(t) · φ(It) is bounded below by a
constant, then the upper bound below is tighter as 1− exp(−x) ≤ x for any x ∈ R.

▶ Lemma 5. Consider the PUSH protocol, and let t ≥ 0 be any round, Gt is a dt-regular
graph with n vertices and q(t) an arbitrary credibility. Then,

(i) Et

[
|∆t+1|

|Ut|

]
≥
(
1− e−q(t)) · φ(It).

(ii) If Gt is connected, then,

Et

[
|∆t+1|
|Ut|

]
≤ 1− e−φ(It)·q(t) ·

(
1− φ(It) · (q(t))2

dt

)
.

The next lemma improves the result for the PUSH-PULL protocol in Lemma 3 (iii).

▶ Lemma 6. Consider the PUSH-PULL protocol, and let t ≥ 0 be any round, Gt is a dt-regular
graph with n vertices and q(t) an arbitrary credibility. Then,

(i) Et

[
|∆t+1|

|Ut|

]
≥
(

1− e−q(t) · (1− q(t))
)
· φ(It).

(ii) Et

[
|∆t+1|

|Ut|

]
≤ 1− (1− q(t))φ(It) · (1− q(t) · φ(It)) .

A summary of these tighter bounds for PUSH, PULL and PUSH-PULL is given in Table 2,
and the more simple bounds are summarized in Table 1. For strong expanders, similar
bounds have been derived in [10, 29].

Next, we state a simple but crucial fact:

▶ Lemma 7. Let (Gt)t≥0 be a sequence of dt-regular graphs with n vertices and let q(t) be
an arbitrary credibility function . Then, the PUSH, PULL and PUSH-PULL protocol satisfy the
negative correlation property (see Definition 1).

Finally, we close this section by verifying that PUSH, PULL and PUSH-PULL satisfy the
condition in Definition 1 for certain Cgrow and Cshrink. Note that even for static graphs,
PULL and PUSH-PULL require a restriction on q(t); this is since if q(t) = 1, then on certain
graphs (like the complete graph), PULL and PUSH-PULL would only need O(log log n) steps in
the shrinking phase. However, for dynamic graphs, even for PUSH we require a restriction on
q(t); this is because otherwise Gt could be a 1-regular graph, i.e., a perfect matching so that
each vertex in Ut is matched to a vertex in It.

▶ Lemma 8. Let (Gt)t≥0 be any sequence of dt-regular graphs and let q(t) be an arbitrary
credibility function.

(i) The PUSH protocol is a 1-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0 (not
necessarily constant), then the PUSH protocol is a (1− ε)-shrinking process. Also, if all
graphs in the sequence (Gt)t≥0 are connected, then the PUSH protocol is a (1− e−1 · 1

2 )-
shrinking process.
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Table 2 Refined bounds in terms of q(t) and the spectral expansion λ on the expected growth
factors of PUSH and PUSH-PULL on regular graphs. These bounds are tighter than the more basic
ones (see Table 1), whenever λ = o(dt) (which also implies φ(It) = 1 − o(1) if |It| = o(n) as well as
φ(It) = 1 − o(1) if |Ut| = o(n)). The 1 − o(1) terms in the two upper bounds go to 1 if dt → ∞ or
φ → 0 or q(t) → 0 for all t ≥ 0.

δt, 1 ≤ |It| ≤ n/2 δt, n/2 ≤ |It| ≤ n

Lower Bound Lower Bound Upper Bound

PULL q(t) · φ(It) q(t) · φ(It)

PUSH q(t) ·
(

1 − 7
√

λ + |It|
n

) (
1 − e−q(t)

)
· φ(It) q(t) · φ(It)

P-P q(t) ·
(

2 − 12
√

λ + |It|
n

) (
1 − e−q(t) · (1 − q(t))

)
· φ(It) 1 − (1 − q(t))φ(It) · (1 − q(t) · φ(It))

(ii) The PULL protocol is a 1-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0 (not
necessarily constant), then the PULL protocol is a (1− ε)-shrinking process.

(iii) The PUSH-PULL protocol is a 2-growing process. Furthermore, if q(t) ≤ 1− ε, for ε > 0
(not necessarily constant), then the PUSH-PULL protocol is a (1− ε2)-shrinking process.

2.5 Other Examples
We will briefly outline some other examples of (Cgrow, Cshrink)-spreading processes. We will
not study these processes further in this paper, so for the sake of space we omit the proofs of
membership.

Variants of PUSH, PULL and PUSH-PULL where vertices accept all incoming messages w.p.
q(t), independent of the number of messages received, otherwise reject all. This is an
alternative interpretation of the credibility function as being “belief-based”, i.e. whenever
a vertex receives at least one transmission (regardless of whether they are PUSH or PULL),
it believes in the rumor w.p. q(t). Hence, the “believed” versions of PUSH, PULL and
PUSH-PULL are slower siblings of the “transmission-based” versions of PUSH, PULL and
PUSH-PULL as defined in Section 2.2.
A variant of PUSH where all vertices transmit to a random neighbor in each step (unin-
formed vertices transmit an “empty” message, informed vertices transmit the rumor).
Each uninformed vertex chooses at most one received message (chosen uniformly at
random from all received messages, ignoring all others). If they receive a message with
the rumor they are informed; otherwise they are not. This process was introduced by
Daum, Kuhn and Maus [11].
The multiple call model, where each vertex pushes the opinion to k of random neighbors
[29], for constant k (one could even consider k to be dependent on the node as in [29], or
on the round t). This model can also be extended by using credibility functions.
For any constant α ∈ [0, 1], in each round t ≥ 0, each node performs a pull with w.p. α

and a push w.p. 1− α. This model can also support a credibility function.
Variants of Broadcasting or Flooding models [8] where in each round each informed node
sends the information to all its neighbors, however, edges may independently fail to
transmit the message with some probability depending only on the edge.
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3 Lower Bounds on the Number of Informed vertices

Our analysis will be split into two phases, a “growing” phase where |It| ≤ n/2, and a
“shrinking” phase where |It| ≥ n/2.

3.1 Growing phase: It ∈ [A, B]
In this section, we prove a lower bound on the number of informed vertices after a stopping
time τ2, which aggregates over the expected growth factors between round 1 and τ2 − 1. In
the following theorem (and throughout the rest of this paper) we use the convention that
min {∅} =∞.

▶ Theorem 9. Let (Gt)t≥0 be any sequence of dt-regular n-vertex graphs and consider a
Cgrow-growing process P with expected growth factors δt. Let t1 ≥ 0 be any round, and let
A, B be thresholds satisfying 1 ≤ A < B ≤ n/2 and ξ := 10−30. Define the stopping time
τ2 ∈ N ∪ {∞} as

τ2 := min
(

s ≥ t1 :
s−1∑
t=t1

log (1 + δt) ≥
log
(

B
A

)
+
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

(1− (1− ξ) · |It|−ξ)2

)
.

Then there is a constant C2 > 0 such that

Pt1

[
|Iτ2 | < B

∣∣∣ |It1 | ≥ A
]
≤ exp

(
−C2 ·

(
log
(

B

A

))1/3
)

+ Pt1

[
τ2 =∞

∣∣∣ |It1 | ≥ A
]

.

Recall that the growth factors δt are conditional expectations given by δt = Et

[
|∆t|
|It|

]
in

the growing phase, where |It| ≤ n/2. Intuitively, the stopping time τ2 in Corollary 18 can be
viewed as a partial observer who does not know the sequence It, but only gets to know the
expected growth factors in each round.

▶ Remark 10. At first it might look challenging to apply Theorem 9, as one would need to
control the probability that the stopping time is unbounded. However, in most applications
we have a deterministic lower bound on the expected growth in each step and then, provided
this bound is sufficiently large, this probability equals zero. We refer to Corollary 18 for a
weaker but easier to apply variant of Theorem 9 which leverages this idea. The use of this
stopping time also allows Theorem 9 to be very general. For instance, notice that Gt is not
required to always be connected; this gives flexibility when handling dynamic graphs.

We will now give a brief overview of the proof of Theorem 9, followed by some helper
lemmas and claims, and then complete the proof. The starting point is to analyze the growth
rate of the number of informed vertices. To this end, we recall the following formula involving
growth factors:

|Iτ2 |
|It1 |

=
τ2−1∏
t=t1

|It+1|
|It|

=
τ2−1∏
t=t1

(
1 + |∆t+1|

|It|

)
. (2)

In order to transform this product into a sum of random variables, we first define for any
t ≥ 0,

Xt := log
(

1 + |∆t+1|
|It|

)
.
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Then, by taking logarithms in Equation (2) we obtain that

log
(
|Iτ2 |
|It1 |

)
=

τ2−1∑
t=t1

Xt.

Our approach will be to lower bound the sum of these Xt’s. Therefore, we will consider the
expected (logarithmic) growth in each step (i.e. Et [ Xt ]) (note that due to the dependence
on Ft it is also a random variable). We then show that

∑τ2−1
t=t1

Xt is tightly concentrated
around

∑τ2−1
t=t1

Et [ Xt ], using a variant of Azuma’s concentration inequality (Lemma 12). In
doing so, we face the following difficulty of relating the expectation of Xt to the expected
growth factor δt. Specifically, we would like to apply the following approximation:

Et

[
log
(

1 + |∆t+1|
|It|

)]
≈ log

(
1 + Et

[
|∆t+1|
|It|

])
= log (1 + δt) .

One direction in this approximation is immediate; since log(·) is concave, Jensen’s inequality
gives us

Et

[
log
(

1 + |∆t+1|
|It|

)]
≤ log

(
1 + Et

[
|∆t+1|
|It|

])
.

It thus remains to bound the other direction, which amounts to proving an “approximate
reverse version” of Jensen’s inequality. This is fairly involved, but we manage to establish
the following general lemma:

▶ Lemma 11. For a fixed round t ≥ 0, let Gt be a regular n-vertex graph and consider a
Cgrow-growing process P. If |It| ∈ [A, n/2], then, for ξ := 10−30, we have

Et

[
log
(

1 + |∆t+1|
|It|

)]
≥
(
1− (1− ξ) · |It|−ξ

)2 · log
(

1 + Et

[
|∆t+1|
|It|

])
.

Note that the first factor on the right-hand side of the inequality above is (1− o(1)) in
the case |It| = ω(1) (i.e., a super-constant number of vertices are informed).

As mentioned above we will also need the following variant of Azuma’s inequality.

▶ Lemma 12 ([7, Theorem 6.5]). Let (Zi)i≥0 be a discrete-time martingale associated with a
filter F satisfying
1. Var

[
Zi

∣∣∣ Fi−1

]
≤ σ2

i for all 1 ≤ i ≤ n;
2. Zi−1 − Zi ≤M for 1 ≤ i ≤ n.

Then for any h ≥ 0,

P [ Zn −E [ Zn ] ≤ −h ] ≤ exp
(
− h2

2 · (
∑n

i=1 σ2
i + Mh/3)

)
.

To apply this the following simple lemma will be useful.

▶ Lemma 13. Let Z be a non-negative random variable. Then, Var [ log(1 + Z) ] ≤ Var [ Z ] .

Lastly, before beginning the proof of Theorem 9, we first state the following helper claim.

▷ Claim 14. For τ2 and ξ := 10−30 as in Theorem 9 and 1 ≤ A ≤ B ≤ n/2, we have,

τ2−1∑
t=t1

δt ≤
4
ξ2 ·

(
log
(

B

A

)
+ log(1 + Cgrow) + 1

)
.
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We can now prove our lower bound on the informed set during the growing phase.

Proof of Theorem 9. Recall that,

Xt := log
(

1 + |∆t+1|
|It|

)
.

and if |It| ≤ n/2

Et

[
|∆t+1|
|It|

]
:= δt.

Moreover, let us define

Yt :=
t−1∑
s=t1

(Xs −Es [ Xs ]) .

By construction, (Yt)τ2−1
t=t1

is a zero-mean martingale with respect to It1 , It1+1, . . . , Iτ2−1.
To apply concentration inequalities, we need to provide a bound (M) on Yt − Yt+1 when
|It| ≤ n/2. In this case,

Yt − Yt+1 =
t−1∑

s=t1

(Xs − Es [ Xs ]) −
t∑

s=t1

(Xs − Es [ Xs ]) = − (Xt − Et [ Xt ]) .

Now, using in (a) that Xt ≥ 0 deterministically, Jensen’s inequality in (b), and in (c) the fact that
P is a Cgrow-growing process, we obtain

Yt − Yt+1
(a)
≤ Et

[
log
(

1 + |∆t+1|
|It|

)]
(b)
≤ log

(
1 + Et

[
|∆t+1|

|It|

])
(c)
≤ log (1 + Cgrow) := M. (3)

We seek concentration for Yτ2 , however τ2 may be very large (even unbounded). Thus, we
cannot use a standard version of Azuma’s inequality, and we need to additionally consider
the conditional variances, Vart [ Xt ]. To this end, we bound the variance for any round t

with |It| ≤ n/2, by using Lemma 13 in (a),

Vart [ Xt ] = Vart

[
log
(

1 + |∆t+1|
|It|

)]
(a)
≤ Vart

[
|∆t+1|
|It|

]
= 1
|It|2

·Vart [ |∆t+1| ] .

Using Lemma 2 and by recalling the definition δt = Et

[
|∆t+1|

|It|

]
, assuming |It| ≤ n/2, we get

Vart [ Xt ] ≤ 1
|It|
·Et

[
|∆t+1|
|It|

]
= 1
|It|
· δt. (4)

Note that by Claim 14, and using that |It| ≥ A for all t ≥ t1,

τ2−1∑
t=t1

1
|It|
· δt ≤

1
A
· 4

ξ2

(
log
(

B

A

)
+ log (1 + Cgrow) + 1

)
.

We are almost in a position to apply Lemma 12 to Yτ2 . The only slight tweak is that we will
work with a martingale also stopped by τ := min{t ≥ t1 : |It| ≥ n/2}, namely

Ŷt := Yt∧τ2∧τ ,
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which is also a zero-mean martingale that satisfies Equations (3) and (4). The reason for
this is that the bound (4) assumes the inequality |It| ≤ n/2 holds; we loose nothing doing
this because |B| ≤ n/2.

Now, applying Lemma 12 to Ŷt yields that for any h > 0 and t ≥ t1

Pt

[
Ŷt < −h

]
< exp

− h2

2 ·
(

1
A ·

4
ξ2

(
log
(

B
A

)
+ log (1 + Cgrow) + 1

)
+ h

3 log (1 + Cgrow)
)
 .

Let us set,

h :=
(

log
(

B

A

)
+ log(1 + Cgrow) + 1

)2/3
≥ 1. (5)

Thus, for this h and any round t ≥ t1,

Pt1

[
Ŷt < −h

]
= exp

− h2

2
(

4h3/2

A·ξ2 + log(1+Cgrow)h
3

)


≤ exp

− h2

2
(

4h3/2

A·ξ2 + log(1+Cgrow)h3/2

3

)


= exp
(
−C2 · h1/2

)
, (6)

where C2 is given by
(

8
A·ξ2 + 2

3 · log (1 + Cgrow)
)−1

> 0. Observe that the right-hand side
of (6) is independent of t, this will be important later. However, at this point we must make
the following claim:

Conditional on |It1 | ≥ A, {Yτ2∧τ ≥ −h}∩{τ2∧τ <∞} ⊆ {|Iτ2∧τ | ≥ B}∩{τ2∧τ <∞}. (7)

We prove this later, first we show how this, and earlier estimates, will establish the theorem.
Returning to the proof, by (6), we have that for any integer t ≥ 0,

Pt1 [ Yτ2∧τ < −h, τ2 ∧ τ ≤ t ] ≤ exp
(
−C2 · h1/2

)
.

Since the above bound holds for any integer t ≥ 0, it follows that

Pt1 [ Yτ2∧τ < −h, τ2 ∧ τ <∞ ] ≤ exp
(
−C2 · h1/2

)
. (8)

Observe that |Iτ2∧τ | ≤ |Iτ2 | by monotonicity (P2). Using this fact, then (7), and finally (8),

Pt1

[
|Iτ2 | < B

∣∣∣ |It1 | ≥ A
]

(9)

≤ Pt1

[
|Iτ2∧τ | < B

∣∣∣ |It1 | ≥ A
]

= Pt1

[
|Iτ2∧τ | < B, τ2 ∧ τ < ∞

∣∣∣ |It1 | ≥ A
]

+ Pt1

[
|Iτ2∧τ | < B, τ2 ∧ τ = ∞

∣∣∣ |It1 | ≥ A
]

≤ Pt1

[
Yτ2∧τ < −h, τ2 ∧ τ < ∞

∣∣∣ |It1 | ≥ A
]

+ Pt1

[
τ2 ∧ τ = ∞

∣∣∣ |It1 | ≥ A
]

≤ exp
(
−C2 · h1/2)+ Pt1

[
τ2 = ∞

∣∣∣ |It1 | ≥ A
]

,

which, recalling the definition (5) of h, gives the bound in the statement.
It remains to prove the claimed containment in (7). For that we analyze the behavior of

|Iτ2∧τ | when the event {Yτ2∧τ ≥ −h} ∩ {τ2 ∧ τ <∞} holds. We will split into two cases.
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In the first case {Yτ2∧τ ≥ −h} ∩ {τ <∞, τ ≤ τ2}. Hence, |Iτ2∧τ | = |Iτ | ≥ n/2 ≥ B.

In the second case {Yτ2∧τ ≥ −h} ∩ {τ2 <∞, τ2 < τ}. Thus, Yτ2∧τ = Yτ2 , and determinist-
ically we have,

Yτ2 =
τ2−1∑
t=t1

(Xt −Et [ Xt ]) ≥ −h.

Rearranging this, we get that,
τ2−1∑
t=t1

Xt ≥
τ2−1∑
t=t1

Et [ Xt ]− h =
τ2−1∑
t=t1

Et

[
log
(

1 + |∆t+1|
|It|

)]
− h

≥ γ ·
τ2−1∑
t=t1

log
(

1 + Et

[
|∆t+1|
|It|

])
− h,

where the last inequality follows from Lemma 11, and γ :=
(
1− (1− ξ) · |It|−ξ

)2 for ξ :=
10−30. Since Et

[
|∆t+1|

|It|

]
= δt for rounds t with |It| ≤ n/2, we conclude that

τ2−1∑
t=t1

Xt ≥ γ ·
τ2−1∑
t=t1

log (1 + δt)− h = γ ·
τ2−1∑
t=t1

log (1 + δt)−
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

) 2
3 .

Finally, by using that
τ2−1∑
t=t1

log (1 + δt) ≥
log( B

A ) +
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

γ
,

we conclude that
∑τ2−1

t=t1
Xt ≥ log( B

A ), i.e. that |Iτ2 | − |It1 | ≥ B −A, and thus |Iτ2 | ≥ B. ◀

3.2 Shrinking phase: |Ut| ∈ [C, D]
In this section we consider the shrinking of the number of informed vertices. We prove an
upper bound on the number of uninformed vertices after a stopping time τ3 ≥ t2, which now
aggregates over the expected shrinking factors between round t2 and τ3 − 1.

▶ Theorem 15. Let (Gt)t≥0 be any sequence of dt-regular n-vertex graphs and consider
a Cshrink-shrinking process P with expected shrinking factors δt. Let C, D be thresholds
satisfying n/2 ≥ C ≥ D ≥ 3

4 and t2 ≥ 0 be a round such that |Ut2 | ≤ C. We define a stopping
time τ3 ∈ N ∪ {∞} as

τ3 := min

{
s ≥ t2 :

τ3−1∑
t=t2

log (1 − δt) ≤ − 1
γ

(
log
(

C

D

)
+
(
log
(

C

D

)
− log (1 − Cshrink) + 1

)2
3
)}

,

where

γ :=
(

1−min
(

1
2(1− Cshrink) ·D ,

1
2

))
.

Then there is a constant C2 > 0 such that

Pt2

[
|Uτ3 | > D

∣∣∣ |Ut2 | ≤ C
]
≤ exp

(
−C2 ·

(
log
(

C

D

))1/3
)

+Pt2

[
τ3 =∞

∣∣∣ |Ut2 | ≤ C
]

.

The proof of Theorem 15 follows a similar flow to the proof of Theorem 9.
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4 Applications

In this section we will apply our general results to more concrete credibility functions,
protocols and graph classes. We do not give an exhaustive list of all results that could be
derived from our analysis framework, but instead choose to analyze some natural models with
decaying credibility, and show that despite the flexible and abstract nature of the framework,
we can recover some known results. Roughly speaking, in this section we will first present
results that are very general but not necessarily tight, followed by more specific results that
are asymptotically tight up to lower order terms.

We will now outline the general approach followed in this section. To control the growth
of |It| we break the process into j phases defined by time steps [ti, ti+1) for 1 ≤ i ≤ j. With
each phase i we associate two values Ai and Bi, where Ai < Bi, such that at the beginning
of the i-th phase the informed set has size at least Ai and w.h.p. when the phase ends the
informed set has size at least Bi. We use the size of the informed set at the end of the
previous phase as a lower bound on the size of the informed set throughout the current phase
(i.e. Bi−1 = Ai). The w.h.p. guarantees on the length and growth of phases are provided by
Corollary 18 and Corollary 19 (which are direct consequences of Theorem 9 and Theorem 15
respectively). These results also give us expressions for the time to finish the phase i.e.
ti+1 − ti.

▶ Definition 16. For a round t ≥ 0 and any subset I ⊆ V with 1 ≤ |I| ≤ n− 1, let

δt(I) := Et [ δt | It = I ] = 1
min(|It|, |Ut|)

·Et [ |∆t+1| | It = I ] ,

be the expected growth factor, conditional on It = I (this is in fact, a deterministic quantity).
Further, for a fixed range of [A, B], we define a worst-case lower bound on the expected growth
factor (which only depends on t) by

δ
[A,B]
t := min

I⊆V : A≤|I|≤B
δt(I).

Note that δt(I) depends on the structure of the set I (e.g., the conductance), as well as on
q(t). However, for the more coarse quantity δ

[A,B]
t , we only need A ≤ |I| ≤ B. In order to

separate these two factors, we also define the following deterministic quantities,

Φ(t) := min
I⊆V :

1≤|I|≤n−1

δt(I)
q(t) and Ψ(t) := max

I⊆V :
1≤|I|≤n−1

δt(I)
q(t) . (10)

Moreover, we define Φ := mint≥0 Φ(t) and Ψ := maxt≥0 Ψ(t).

▶ Definition 17. For any subset I ⊆ V with 1 ≤ |I| ≤ k ≤ n− 1,

ϕk := min
1≤|I|≤k

φ(I).

The following corollary is a direct consequence of Theorem 9.

▶ Corollary 18. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and consider a
Cgrow-growing process P. Let A, B be thresholds satisfying 1 ≤ A ≤ B ≤ n/2. Moreover, let
ν

[A,B]
t be deterministic quantities such that ν

[A,B]
t ≤ δ

[A,B]
t for all t ≥ 0. Let t′ ≥ 0 be any

round such that |It′ | ≥ A, and define t∗ ∈ N ∪ {∞} as

t∗ := min
{

s ≥ t′ :
s−1∑
t=t1

log
(

1 + ν
[A,B]
t

)
≥

log
(

B
A

)
+
(
log
(

B
A

)
+ log(1 + Cgrow) + 1

)2/3

(1− (1− ξ) ·A−ξ)2

}
,



C. Out, N. Rivera, T. Sauerwald, and J. Sylvester 86:17

(11)

where, ξ := 10−30. Assume that t∗ <∞, then there is a constant C2 > 0 such that

Pt′

[
|It∗ | < B

∣∣∣ |It′ | ≥ A
]
≤ exp

(
−C2 ·

(
log
(

B

A

))1/3
)

.

The following corollary is a direct consequence of Theorem 15.

▶ Corollary 19. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and consider a
Cshrink-shrinking process P. Let C, D be thresholds that satisfy n/2 ≥ C ≥ D ≥ 3

4 . Moreover,
let ν

[C,D]
t be deterministic quantities such that ν

[C,D]
t ≤ δ

[C,D]
t for all t ≥ 0. Let t′ ≥ 0 be a

round such that |Ut′ | ≤ C. We define t̂ ∈ N ∪ {∞} as

t̂ := min
{

s ≥ t′ :
s−1∑
t=t2

log
(

1− ν
[C,D]
t

)
≤ − 1

γ̃

(
log
(

C
D

)
+
(
log
(

C
D

)
− log (1− Cshrink) + 1

)2
3
)}

,

where

γ̃ :=
(

1−min
(

1
2(1− Cshrink) ·D ,

1
2

))
.

Assume that t̂ <∞, then there is a constant C2 > 0 such that

Pt′

[
|U

t̂
| > D

∣∣∣ |Ut′ | ≤ C
]
≤ exp

(
−C2 ·

(
log
(

C

D

))1/3
)

.

4.1 Arbitrary Credibility
The following upper bound is relatively straightforward to prove.

▶ Theorem 20. Let (Gt)t≥0 be any sequence of regular n-vertex graphs, and q(t) be an
arbitrary credibility function. Let T ≥ 1 be a deterministic number of rounds such that for
some small ρ ∈ (0, 1) (not necessarily constant) it holds that,

T −1∑
t=0

log
(

1 + Ψ(t) · q(t)
)
≤ log n + log ρ.

Then, E[ |IT | ] ≤ ρ · n, and hence by Markov’s inequality, for any η > 0 (not necessarily
constant),

P
[
|IT | ≤ ρ · n1+η

]
≤ n−η.

Next, we state two central results lower bounding the number of informed vertices, which
both hold for arbitrary credibility functions. The first one is simple to prove.

▶ Theorem 21. Let (Gt)t≥0 be any sequence of regular n-vertex graphs and κ > 0 be any
constant. Consider a process P which is both a Cgrow-growing process and a Cshrink-shrinking
process, where Cshrink ≤ 1−n−κ, with an arbitrary credibility function q(t). If T is a number
of rounds satisfying,

T −1∑
t=0

log
(

1 + δ
[1,n−1]
t

)
≥ (2/ξ + κ) · log n,

where ξ := 10−30 then, we have

P [ |IT | = n ] ≥ 1− o(1).
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The next result applies to PUSH and PULL.

▶ Theorem 22. Let (Gt)t≥0 be a sequence of regular n-vertex strong expander graphs, with
largest non-trivial eigenvalues (λt)t≥0 and let λ := supt≥0 λt. Consider the PUSH or PULL
model and let q(t) be an arbitrary credibility function such that for,

ε := 1− max
t≥ 1

2 log(2) ·log(n)
q(t),

we have that ε ≥ 1
log n . Let P ∈ {PUSH, PULL}, and assume that TP and q(t) satisfy,

TP∑
t=0

log (1 + q(t)) ≥ 1
γP
· log n + 7 (log n)2/3(

1− (1− ξ) · (log n)−ξ
)2 ,

where ξ := 10−30, γPULL := 1− λ, and γPUSH := 1− 7
√

λ + 1/ log n. Then,

P
[
|ITP | ≥ n ·

(
1− exp(−

√
log n)

) ]
≥ 1− o(1).

Matching previous works [10, 15], for PULL and fixed q(t) ∈ (0, 1) our result implies that
in (1 + o(1)) · log n

log(1+q) rounds the majority of the vertices get informed. The same result also
holds for PUSH. However, it is important to note that in the results above we do not consider
the time to inform all n vertices, see Section 4.5 for more results on this model.

4.2 Power-Law Credibility
In this part we consider a natural credibility function with a polynomial decay.

▶ Definition 23 (Power-law credibility). Let α ∈ (0,∞) be any constant . Then, the power-law
credibility function is defined for any round t ≥ 0 as

qα(t) := (t + 1)−α.

In particular, in the first round the credibility function is 1.

We first observe that if α > 1, we only inform a constant number of vertices in expectation.

▶ Proposition 24. Let (Gt)t≥0 be any sequence of regular graphs, and consider a Growing
Process such that Et

[
|∆t+1|

|It|

]
≤ Cgrow · q(t) for all t ≥ 0 . Then, for any constant α > 1,

there is a constant κ = κ(α) > 0, such that for any T ≥ 0,

E[ |IT | ] ≤ κ.

The condition Et

[
|∆t+1|

|It|

]
≤ Cgrow · q(t) is a refinement of P2 in Definition 1, and is

satisfied by the PULL, PUSH, PUSH-PULL processes as shown in Lemma 3 by choosing Cgrow
as 1, 1, and 2, respectively.

The next result considers the regime α ≤ 1, and proves that after a sufficiently long time,
the rumor reaches all n vertices. In particular, when α = 1, the spreading time becomes
polynomial in n (even if (Gt)t≥0 was a sequence of expander graphs).

▶ Theorem 25. Let (Gt)t≥0 be any sequence of regular n-vertex graphs, and consider a process
P that is both a Cgrow-growing process and a Cshrink-shrinking process, where Cshrink < 1
is constant, with a power law credibility function. Then, for any constant α < 1, there are
constants 0 < κ1 := κ1(α) < κ2 := κ2(α) such that for any T1 ≤ κ1 · ( 1

Ψ · log n)1/(1−α),
T2 ≥ κ2 · ( 1

Φ · log n)1/(1−α) and any η > 0 we have,
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(i) P
[
|IT1 | < n1/2+η

]
≥ 1− n−η,

(ii) P [ |IT2 | = n ] ≥ 1− o(1).
Further, if α = 1, then there are constants 0 < κ1 < κ2, such that for any T1 ≤

( 1
Ψ · n

)κ1

and T2 ≥
( 1

Φ · n
)κ2 ,

(iii) P
[
|IT1 | < n1/2+η

]
≥ 1− n−η,

(iv) P [ |IT2 | = n ] ≥ 1− o(1).

4.3 Additive Credibility
▶ Definition 26 (Additive credibility). Let α ∈ (0, 1) . Then, the additive credibility function
is defined for any round t ≥ 0 as

qα(t) = q(t) := (1− t · α)+,

where z+ = max(z, 0). In particular, in the first round (t = 0) the credibility function is 1.

In comparison to the power-law credibility function, the additive credibility function has
a time-independent decrease. As we will see below, the interesting regime (for expanders) is
when α = Θ(1/ log n). That means, unlike the power-law-credibility, the additive credibility
function remains close to 1 for a significant number of rounds. However, after O(log2 n) steps,
the credibility becomes polynomially small; much smaller than any power-law credibility at
this point.

Let us consider the additive credibility function in the PUSH and PULL model for regular
graphs. We also observe that if we let T = 1/α, IT is the maximal set of informed vertices
in every execution, as q(t) = 0 for t ≥ T . We start by proving an upper bound on IT for
T = 1/α, followed by a lower bound. We remark that, due to the specific nature of q(t), we
can use Stirling’s approximation to determine a rather precise threshold for the parameter α.

▶ Theorem 27. Let (Gt)t≥0 be a sequence of regular n-vertex strong expander graphs,
and consider the PUSH or PULL protocol with an additive credibility function. Let P ∈
{PUSH, PULL}.

(i) Let α ≥ log( 4
e )

log n+log ζ , where 1
n < ζ < 1√

2·2 . Then, for any T := 1/α and for any η > 0
(not necessarily constant),

P
[
|IT | ≤

√
2 · ζ · n1+η

]
≥ 1− n−η.

(ii) Furthermore, let α ≤ log( 4
e )

log
(

2
√

2·exp
(

1
γP

· log n+7(log n)2/3

(1−(1−ξ)·(log n)−ξ)2

)) , for γP as in Theorem 22.

Then, for T := 1/α,

P
[
|IT | ≥ n ·

(
1− exp(−

√
log n)

) ]
≥ 1− o(1).

4.4 Multiplicative Credibility
▶ Definition 28 (Multiplicative credibility). Let α ∈ (0, 1) . Then, the multiplicative credibility
function is defined for any round t ≥ 0 as

qα(t) := (1− α)t.

In particular, in the first round the credibility function is 1.

The next result is the multiplicative analogue of Theorem 27.
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▶ Theorem 29. Let (Gt)t≥0 be any sequence of regular n-vertex strong expander graphs, and
consider the PUSH or PULL protocol with a multiplicative credibility function . Then, there
are constants κ1 ≤ 1

2 and κ2 ≥ 1
8 , such that the following holds.

(i) If α ≥ κ1
log n , then for any T ≥ 1, Et [ |IT | ] ≤

√
n, and hence for any η > 0 (not

necessarily constant),

P
[
|IT | ≤ n1/2+η

]
≥ 1− n−η.

(ii) Further, if α ≤ κ2
log n , then, for any T ≥ 4 log n,

P
[
|IT | ≥ n ·

(
1− exp(−(log n)1/2)

) ]
≥ 1− o(1).

▶ Remark 30. We believe that with a more refined analysis it would be also possible to show
that κ2 ≥ (1− o(1)) · κ1, but for the sake of space we only show a weaker dichotomy here.

4.5 Fixed Credibility
Here, we consider q(t) = q to be constant over time (however, q(t) may depend on n). This
model was studied in previous works [10, 15] on complete graphs and strong expanders
(1), respectively (under the guise of “robustness”). Here we provide upper bounds for the
spreading time of the PUSH, PULL and PUSH-PULL model on regular strong expander graphs,
using our framework. As the analysis between the protocols are very similar, we will only
give details in the case of PUSH here.

▶ Theorem 31 (cf. [10]). Let (Gt)t≥0 be any sequence of regular n-vertex strong expander
graphs. Let the credibility function q(t) = q be constant in (0, 1− ε] for some constant ε > 0
and define the following times

TPUSH := (1 + o(1)) ·
(

1
log(1+q) + 1

q

)
· log n,

TPULL := (1 + o(1)) ·
(

1
log(1+q) −

1
log(1−q)

)
· log n,

TPUSH-PULL := (1 + o(1)) ·
(

1
log(1+2q) + 1

q−log(1−q)

)
· log n.

Then for each P ∈ {PUSH, PULL, PUSH-PULL} we have

P [ |ITP | = n ] ≥ 1− o(1).

We note that the corresponding result [10, Theorem 1.2] in the original paper is stated only
for static graphs, however it is likely that the methods in that paper would also extend to
dynamic graphs.

In the proof of Theorem 31 we divide the process into 6 phases, based on the size of
informed set. In each phase, we apply either Corollary 18 (if |It| ≤ n/2) or Corollary 19 (if
|It| ≥ n/2), using deterministic lower bounds on the growth/shrinking factors. An overview
of the running times of these phases, and the size of the informed set when they start/finish,
is given in Table 3, also for the PULL and PUSH-PULL processes.

5 Conclusions

In this work, we presented a general framework for analyzing spreading processes with a
time-dependent credibility function. The key idea is to link the spreading progress to an
aggregate sum of growth (or shrinking) factors over consecutive rounds. In that way, our
approach generalizes various previous works that were based on estimating the worst-case
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Table 3 Runtimes for PUSH, PULL and PUSH-PULL for different phases obtained by Corollary 18
(row 1,2,3) and Corollary 19 (row 4,5,6), all bounds hold w.h.p.. The upper bounds contained within
cells shaded in yellow hold up to a multiplicative (1 + o(1)) factor and it is these bound which
contribute to the to total run time, all other bounds hold up to a multiplicative constant and are
negligible. Our result for PULL holds only when q is bounded away from 1, the remaining cases where
q is equal (or tending to) 1 are covered in [15, 10].

Phase Start/finish sizes PUSH PULL PUSH-PULL

1 A = 1, B = log n log log n
log(1+q)

log log n
log(1+q)

log log n
log(1+2q)

2 A = log n, B = n
log n

log n
log(1+q)

log n
log(1+q)

log n
log(1+2q)

3 A = n
log n , B = n

2
log log n
log(1+q)

log log n
log(1+q)

log log n
log(1+2q)

4 C = n/2, D = n
log n

1
q log log n log log n

− log(1−q)
log log n

q−log(1−q)

5 C = n
log n , D = log n 1

q log n log n
− log(1−q)

log n
q−log(1−q)

6 C = log n, D = 3
4

1
q log log n log log n

− log(1−q)
log log n

q−log(1−q)

growth across all sets via the conductance of the graph. We also obtained several dichotomy
results in terms of the number of vertices that get informed, both for general and more
concrete credibility functions (see Section 4).

In terms of open problems, a natural direction is to generalize our main technical results
from regular graphs to arbitrary graphs, which we believe to be doable. Another avenue
for future research is to allow more complex interactions between the credibility function
q(t) and the evolving set of informed vertices It, which could more accurately model an
external influence on the network (e.g., fact-checkers). Lastly, one could consider more
general spreading processes including other epidemic models (e.g., SIR model or independent
cascade model), majority dynamics or variants of the voter model, in which informed vertices
may also become uninformed in future steps.
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