
Tensor Reconstruction Beyond Constant Rank
Shir Peleg #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Amir Shpilka #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Ben Lee Volk #

Efi Arazi School of Computer Science, Reichman University, Herlizya, Israel

Abstract
We give reconstruction algorithms for subclasses of depth-3 arithmetic circuits. In particular, we
obtain the first efficient algorithm for finding tensor rank, and an optimal tensor decomposition as a
sum of rank-one tensors, when given black-box access to a tensor of super-constant rank. Specifically,
we obtain the following results:

1. A deterministic algorithm that reconstructs polynomials computed by Σ[k] ∧[d] Σ circuits in time
poly(n, d, c) · poly(k)kk10

,

2. A randomized algorithm that reconstructs polynomials computed by multilinear Σ[k] ∏[d] Σ

circuits in time poly(n, d, c) · kkkkO(k)

,

3. A randomized algorithm that reconstructs polynomials computed by set-multilinear Σ[k] ∏[d] Σ

circuits in time poly(n, d, c) · kkkkO(k)

,
where c = log q if F = Fq is a finite field, and c equals the maximum bit complexity of any coefficient
of f if F is infinite.

Prior to our work, polynomial time algorithms for the case when the rank, k, is constant, were
given by Bhargava, Saraf and Volkovich [5].

Another contribution of this work is correcting an error from a paper of Karnin and Shpilka
[20] (with some loss in parameters) that also affected Theorem 1.6 of [5]. Consequently, the results
of [20, 5] continue to hold, with a slightly worse setting of parameters. For fixing the error we
systematically study the relation between syntactic and semantic notions of rank of ΣΠΣ circuits,
and the corresponding partitions of such circuits.

We obtain our improved running time by introducing a technique for learning rank preserving
coordinate-subspaces. Both [20] and [5] tried all choices of finding the “correct” coordinates, which,
due to the size of the set, led to having a fast growing function of k at the exponent of n. We manage
to find these spaces in time that is still growing fast with k, yet it is only a fixed polynomial in n.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic circuits, reconstruction, tensor decomposition, tensor rank

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.87

Related Version Full Version: https://arxiv.org/abs/2209.04177

Funding Shir Peleg: The research leading to these results has received funding from the Israel
Science Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family
foundation.
Amir Shpilka: The research leading to these results has received funding from the Israel Science
Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.
Ben Lee Volk: The research leading to these results has received funding from the Israel Science
Foundation (grant number 843/23).

© Shir Peleg, Amir Shpilka, and Ben Lee Volk;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 87; pp. 87:1–87:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shirpele@tauex.tau.ac.il
https://orcid.org/0000-0002-7836-7780
mailto:shpilka@tauex.tau.ac.il
https://orcid.org/0000-0003-2384-425X
mailto:benleevolk@gmail.com
https://orcid.org/0000-0002-7143-7280
https://doi.org/10.4230/LIPIcs.ITCS.2024.87
https://arxiv.org/abs/2209.04177
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

87:2 Tensor Reconstruction Beyond Constant Rank

1 Introduction

Reconstruction of algebraic circuits is a natural algorithmic problem that asks, given a black
box access to a polynomial f from some circuit class C, to efficiently output an algebraic
circuit computing f . Algebraic circuits are computational devices that compute multivariate
polynomials using basic arithmetic operations, much like boolean circuits compute boolean
functions using boolean bit operations. Thus, the reconstruction problem is a natural
algebraic analog for well studied boolean learning problems [7].

It is often desired that the output of the algorithm will also be a circuit from the class C
(which is called proper learning). Requiring the learning algorithm to be efficient imposes an
obvious upper bound on the size of the output, but it is also desirable to output a circuit as
small as possible, ideally the smallest possible circuit from the class C that computes f .

Reconstruction, however, is also a hard algorithmic problem. Results such as the NP
hardness of computing or even approximating tensor rank [18, 29, 6, 33] force us to carefully
manage our expectations regarding what’s possible to compute efficiently, since it turns out
that even for weak classes C (such as depth-3 set-multilinear circuits) it’s unlikely to find an
efficient algorithm that outputs the smallest possible circuit. Furthermore, reconstruction
appears to be an even harder problem than black box Polynomial Identity Testing (PIT), the
problem of determining whether the black box f computes the identically zero polynomial.
While PIT can be efficiently solved using randomness, efficient deterministic algorithms
are known only for a handful of restricted circuit classes (we note, though, that in the
reconstruction problem even giving a randomized algorithm is a non-trivial task). For a
survey on algebraic circuits, PIT and reconstruction, see [30].

Nevertheless, for some restricted classes, or when the constraints are sufficiently relaxed,
it is possible to give many non-trivial efficient reconstruction algorithms. For example, many
works have dealt with random algebraic circuits (see, e.g., [16, 22, 13], among others). In
this setting, we think of the black box as being chosen randomly from the class C under some
natural distribution on circuits from C, and we require the algorithm to reconstruct f with
high probability over the chosen circuit (and perhaps over the random coins of the algorithm
as well). Random circuits often avoid the degeneracies and pathologies that are associated
with the clever cancellations that facilitate sophisticated algebraic algorithms, and are thus
easier to handle and argue about.

Another line of study, more relevant to our work, has to do with reconstruction of small
depth algebraic circuits. The simplest non-trivial case is depth-2 circuits, for which the
reconstruction problem is pretty well understood and can be done efficiently [3, 24]. However,
even slightly larger depths, like depth-3 and depth-4 circuits, already pose a much greater
challenge. This is perhaps explained by a sequence of depth reduction results [2, 25, 34, 15]
that show that low depth circuits are expressive enough to non-trivially simulate any
algebraic circuit of polynomial size (and arbitrary depth). Thus, most attention has focused
on restricted classes of depth-3 and depth-4 circuits [20, 17, 31, 32, 4, 5].

1.1 Circuit Classes
A depth-3 circuit with top fan-in (that is, the in-degree of the top sum gate) k computes a
polynomial of the form

∑k
i=1

∏di

j=1 ℓi,j(x), where each ℓi,j is a linear function in the input
variables x. We denote this class ΣkΠΣ. When k is constant, this is a subclass of general
depth-3 circuits that has been extensively studied (see Section 4.6 of [30]).

The circuit is called multilinear if every gate in the circuit computes a multilinear
polynomial. An even stronger restriction is set-multilinearity. A polynomial f is set-
multilinear if the set of variables x can be partitioned into disjoint sets x1, . . . , xd such that
every monomial appearing in f is a product of variables x1,i1x2,i2 · · · xd,id

such that xj,ij

S. Peleg, A. Shpilka, and B. L. Volk 87:3

is in xj . That is, a degree-d set-multilinear polynomial is simply a d-dimensional tensor.
Depth-3 set-multilinear circuits, which are circuits in which every gate computes a multilinear
polynomial, are a natural model for computing tensors. Each product of linear functions∏d

j=1 ℓj(xj) corresponds to a rank one tensor, and thus we see that f can be computed by a
set-multilinear circuit of top fan-in k if and only if its rank is at most k.

Finally, the most restricted model we study is depth-3 powering circuits. In this model,
multiplication gates are replaced by powering gates. Such gates get as input a single linear
function and their output is that function raised to some power. We denote the class of
depth-3 powering circuit by Σk ∧Σ. This is a natural computational model for computing
symmetric tensors, where again the top fan-in corresponds to the rank.

Karnin and Shpilka [20] presented polynomial time reconstruction algorithms for Σk ∧Σ
multilinear circuits for k = O(1) over fields of size at most polynomial in n. More recently,
Bhargava, Saraf, and Volkovich [5] presented proper reconstruction algorithms for circuit
models discussed above. The running times of their algorithms are polynomial in n, the
number of variables, and the degree d, assuming k is constant, but not when k is any growing
function of n or d. Unlike [20], their algorithms work even over infinite fields. The exact
running time is a polynomial whose exponent is a somewhat complicated expression that
involves some quickly growing function of k. We describe their results more precisely vis-à-vis
our results in Subsection 1.2.

In particular, given a constant upper bound on the rank, they obtain efficient algorithms
that given a tensor (or a symmetric tensor) can exactly compute its rank, and also obtain
a decomposition as a sum of rank-one tensors. Since for large enough ranks the problem
of computing the tensor rank becomes NP hard, it’s natural to wonder at which point the
intractability kicks in. That is, is there an efficient polynomial time algorithm that can
compute the rank and obtain a decomposition even when the upper bound k is super-constant?

In this paper we obtain faster algorithms that remain polynomial time algorithms (in n and
d) even when k is slightly super-constant. Our running times are of the form poly(n, d, T (k))
where T is some quickly growing function of k. Like the algorithms of Karnin and Shpilka
[20] and Bhargava, Saraf, and Volkovich [5], our learning algorithms are proper and return
the smallest possible representation of f in the relevant circuit model. In particular, they
imply efficient randomized algorithms for computing tensor rank even when the rank is
slightly super-constant.

Another contribution of this work is correcting an error that appeared in previous work.
This error originated in [20] and affected Theorem 1.6 of [5] as well. Explaining the nature
of the error requires some technical details that we present in Subsubsection 1.3.4. Our
correction recovers the affected results of [20, 5], albeit with a slight change in the parameters
that implies a somewhat worse dependence on the parameter k.

Our algorithms require the field F to be large enough. The precise meaning of what “large
enough” means depends on each case. The largeness assumption can always be guaranteed
without loss of generality by considering field extensions, if necessary (in which case the
output will also be a circuit over the extension field). In certain cases, we also assume that
the characteristic of the field is large enough.

1.2 Our Results
We start by describing our results for depth-3 powering circuits.

▶ Theorem 1. There exists a randomized algorithm that, given a black box access to a
polynomial f with n variables and degree d that is computed by a Σk ∧Σ circuit, reconstructs
f in time poly(n, d, c) · poly(k)kk10

, where c = log q if F = Fq is a finite field, and c equals
the maximum bit complexity of any coefficient of f if F is infinite.

ITCS 2024

87:4 Tensor Reconstruction Beyond Constant Rank

In [5], the authors give an algorithm for a similar task that runs in time poly((dk)kk10

, n, c).
Note that unlike the algorithm in [5], when d = poly(n) our algorithms runs in polynomial
time even when k is a slightly super-constant function of n (e.g., k = (log log n/ log log log n−
O(1))1/10). As in [5], we can derandomize the algorithm from Theorem 1 over R or C and
obtain a deterministic algorithm that runs in roughly the same time. Theorem 1 is proved in
Section 3.

We also provide reconstruction algorithms for multilinear depth-3 circuits with top
fan-in k.

▶ Theorem 2. There exists a randomized algorithm that, given a black box access to a
polynomial f with n variables and degree d, which is computed by a ΣkΠΣ multilinear circuit,

reconstructs f in time poly(n, d, c) · kkkkO(k)

, where c = log q if F = Fq is a finite field, and c

equals the maximum bit complexity of any coefficient of f if F is infinite.

Note that again, the algorithm in Theorem 2 runs in polynomial time for small enough
(but super-constant) k, whereas the corresponding algorithm of [5] had running time of
roughly nT (k) for some quickly growing function T (k).

Finally, we also present a reconstruction algorithm for set-multilinear depth-3 circuits.
Note that even though this class is a subclass of the previous model of multilinear circuits,
as long as we insist on proper learning, reconstruction algorithms for a more general class
don’t imply reconstruction algorithms for its subclasses.

▶ Theorem 3. There exists a randomized algorithm that, given a black box access to a
polynomial f(x1, . . . xd) such that |xi| ≤ n for every i ∈ [d], such that f is computed by a

depth-3 set-multilinear circuit with top fan-in k, reconstructs f in time poly(n, d, c) · kkkkO(k)

,
where c = log q if F = Fq is a finite field, and c equals the maximum bit complexity of any
coefficient of f if F is infinite.

Unlike the algorithms from [5] and our algorithm from Theorem 1, we don’t know how
to derandomize the algorithms from Theorem 2 and Theorem 3, even over R or C. This
remains an interesting open problem.

In this version, due to space constraints, many of the details are omitted. The full proofs
appear in the full version of this paper (linked under “related version” above).

1.3 Proof Technique
While our proof follows general outline of the proofs in [20, 5], improving the running time
and correcting the errors (as explain in Subsubsection 1.3.4) requires significant changes in
parts of the argument.

There are two main factors contributing to the doubly or triply exponential dependence
on k in the time complexity of the algorithms in [5].

The first is the fact that their algorithms solve systems of polynomial equations. This is
required in order to find brute force solutions for the reconstruction problem over various
projections of f to a few variables, making the number of variables in the polynomial system
of equations rather small (that is, only a function of k, and not of n). They then calculate
the running time using the best known algorithms for solving such systems of polynomial
equations. The exact running time depends on the field, and it is typically singly or doubly
exponential time in the number of variables.

Our main observation is that in all of these cases, it is also possible to modify the
algorithms so that the degree of the polynomial system of equations and the number of
equations are also only functions of k (and not of n or d, the number of variables and degree
of the original polynomial f).

S. Peleg, A. Shpilka, and B. L. Volk 87:5

The second reason their algorithms run in time nT (k) is a construction of an object called
“rank preserving subspace”, introduced in [20], which is a subset of the coordinates that
preserves certain properties of the polynomial, as we explain in Subsubsection 1.3.2. The
dimension of this subspace depends on k, but finding it involves enumerating over all possible
subsets of coordinates of the relevant size. As we soon explain, overcoming this difficulty
requires a substantial amount of work.

1.3.1 Σk ∧Σ circuits
In the case of Theorem 1, getting the degree of the polynomial system of equations to be
small is done in a simple way, by simply learning a high order derivative of f instead of f

itself. Of course, when we take derivatives of f we have to make sure that we don’t lose
too much information so that the learning problem for the derivative becomes trivial but
useless. We find a small sets of vectors S ⊆ Fn such that given any black box access to
a polynomial computed by a depth-3 powering circuit, f =

∑k
i=1 ciℓ

d
i , there exists u ∈ S

such that in the iterated directional derivative g := ∂d−2k−1f/∂ud−2k−1 none of the linear
functions “disappear”: that is, g itself is a depth-3 powering circuit with top fan-in k and
exactly the same k linear functions ℓ1, . . . , ℓk appearing in the circuit, perhaps with different
coefficients (that are easily computable functions of the original coefficients). We can then
learn g using the algorithm of [5], except that g is a polynomial of degree 2k + 1, so that the
dependence on d of our algorithm is much more tame.

1.3.2 Multilinear and Set-Multilinear ΣkΠΣ Circuits
The proofs of Theorem 2 and Theorem 3 can be broken down to two parts, the first handles
low degree polynomials and the second high degree polynomials. The analysis of both parts
in [5] incurs factors of the form nT (k), which we would like to eliminate. While the proof
of the low degree case follows the general outline of [5], the proof of the high degree case is
significantly more challenging and requires new ideas. As we describe later, the proof of the
high degree case in [5], for multilinear ΣkΠΣ circuits, contains an error originating in [20].
We are able to correct this error (see Theorem 21), but even this correction doesn’t suffice for
improving the running time and a new approach is needed. Their result for set-multilinear
circuits were not affected by this error as they use a different proof technique in the high
degree case.

The low degree case

when the degree d is small, the number of linear functions in the circuit, which is bounded by
kd, is also small so that we can allow ourselves to try and learn the circuit for f in an almost
brute-force manner by solving a system of polynomial equations. Following [5] we first find,
in polynomial time, an invertible linear transformation A so that g := f(Ax) depends on a
few variables (and not merely linear functions). We then obtain a low-degree polynomial
in a small number of variables, so that we can allow ourselves to learn the new circuit by
solving a set of polynomial equations whose variables are the coefficients of the purported
small circuit.

We then wish to output g(A−1x). The problem is that this circuit may not be multilinear.
To solve this, [5] introduce an additional set of ≈ poly(n) low degree polynomial equations
to guarantee that the output circuit is multilinear. This results in a running time of about
nT (k) for this part alone. We observe however that this set is highly redundant in the sense

ITCS 2024

87:6 Tensor Reconstruction Beyond Constant Rank

that, by dimension arguments, many of these equations are linearly dependent. By finding
a basis to the polynomial system of equations and solving that basis alone, we’re able to
reduce the running time to n · T ′(k) for some different function T ′(k).

Our algorithm for low-degree set-multilinear circuits is very similar but a bit simpler.
By slightly tweaking the polynomial system of equations that describes the circuit, we can
learn f(Ax) as a set-multilinear circuit. Further, in this case it’s possible to find A such
that g(A−1x) will automatically be set-multilinear, so that the challenge described in the
previous paragraph doesn’t exists in this setting.

The high degree case

this is the more complicated and tedious part of the argument. We start by explaining the
high level approach of [20] and [5].

The (syntactic) rank of a ΣkΠΣ circuit is defined to be the dimension of the span of
the linear functions appearing in its multiplication gates, after factoring out the greatest
common divisors of these gates (that is, the linear functions appearing in all of them). For
more details see Definition 16. This is a well studied notion originating in the work of Dvir
and Shpilka [10] and used in many later works [19, 20, 26, 28, 23]. The rank function allows
one to define the distance between two circuits C1 and C2 as the rank of their sum.

The algorithm of [5] for learning multilinear ΣkΠΣ circuits relies on a structural property
of such circuits claimed by Karnin and Shpilka [20]. Karnin and Shpilka [20] partition the
k multiplication gates in the circuit to clusters, so that each cluster has a low rank and
each two distinct clusters have a large distance. In [20], it is claimed that for some choice
of parameters, this partition is unique and depends only on the polynomial computed by
the circuit and not on the circuit itself (this is where the error is, and this is what is being
corrected in Theorem 21). Thus, the authors of [5] try to obtain black box access to each of
the clusters. Then, factoring out their greatest common divisors they can reconstruct them
as, by multilinearity, the remaining part is a low degree polynomial.

Obtaining black box access to the clusters is most of the technical work in the proof
of Theorem 1.6 of [5]. In a high level, using their uniqueness result, Karnin and Shpilka
[20] claimed to prove the existence of a small “rank preserving subset” of the variables B,
such that after randomly fixing the variables outside of B, the remaining circuit C|B has
the property that its clusters are in one-to-one correspondence with the original clusters
restricted to B. The circuit C|B can again be reconstructed using the low-degree case, as it
only involves a small number of variables, and thus we can get direct access to its clusters.
Using a clever algorithm, Bhargava, Saraf and Volkovich [5] are able to obtain evaluations of
the original clusters using evaluations of the restricted clusters.

Regardless of the correctness issue that we discuss soon, a big bottleneck of this argument
is that one needs to iterate over all subsets B of [n] up to a certain size bound (that depends
only on k). Clearly such a procedure requires running time of the form nT (k).

Thus, we would like to obtain an algorithm that explicitly constructs a set B. One natural
approach is to start with the empty set and add one variable at a time. This can be done
by reconstructing the polynomial f restricted to the current set B, and its clusters, and
checking whether adding a variable to B changes one of the parameters. If so then we add
the variable and repeat the process. We continue as long as either the number of clusters
or the rank of a cluster increases. The challenge with this approach is that the uniqueness
guarantee of Theorem 21 does not suffice. Note that if f has a ΣkΠΣ circuit C, f restricted
to B as a natural ΣkΠΣ circuit obtained by restricting the circuit C to B. However, our
low-degree algorithm learns some, and potentially different, ΣkΠΣ circuit that computes

S. Peleg, A. Shpilka, and B. L. Volk 87:7

the restriction of f to B. While Theorem 21 guarantees both circuits would have the same
number of clusters, computing the same polynomials, we don’t have the guarantee that the
rank of each cluster is the same in the different circuits, as the rank may depend on the
circuit. Thus, as we gradually increase B, it seems hard to compare rank of clusters between
different representations.

To circumvent that we introduce semantic versions of ranks and distances, which are
properties of a polynomial and not of a circuit computing it. We then develop a theory that
studies the semantic and syntactic notions of rank, and the relations between them. In fact,
our version of the semantic rank was already introduced by Karnin and Shpilka in [19, 20], in
the context of learning so-called ΣΠΣ(k, d, ρ) circuits. Their notion of “rank” for such circuits
is a certain hybrid between syntactic and semantic rank. Since in our case the distinction is
important, we try to mention explicitly whether we mean syntactic or semantic rank.

1.3.3 Semantic Notions of Rank

The semantic rank of a polynomial f is defined as follows: first write f =
∏

i ℓi · h, where
the ℓi’s are linear functions and h has no linear factors. Then define the semantic rank of f

to be the minimal number r such that h depends on r linear functions.
This number is well defined and doesn’t depend on any representation of f as a ΣkΠΣ

circuit. Working with semantic rank has advantages and disadvantages. On the one hand,
it is now possible to prove stronger uniqueness properties regarding the clusters, since if
two clusters compute the same polynomial then they also have the same rank. Indeed we
prove such a uniqueness statement for some parameters. On the other hand, analyzing the
semantic rank and its behavior under various operations (such as restricting the circuit to
a subset of the variables, or increasing the set B using the approach mentioned above) is
significantly more difficult. Thus, we also prove various connections between semantic and
syntactic ranks and we are able to show that if f is computed by an ΣkΠΣ circuit C, then
the semantic and syntactic ranks of C are not too far apart.

Recall that our main challenge is to explicitly construct a cluster-preserving subset B of
the variables, whose existence for syntactic ranks was proved by [20] (see Subsubsection 1.3.4
for a discussion of this result). In the context of semantic rank, proving such an analogous
statement is significantly more challenging. In fact, while the proof of [20] is existential (and
then the algorithm of [5] essentially enumerates over all possible subspaces), our proof is
algorithmic. In essence, our algorithm follows the outline described above: it starts with
the empty set and on each iteration adds a few variables to B until the cluster structure
“stabilizes”, i.e., their number and their ranks stay the same. Proving that this algorithm
works requires a significant amount of technical work.

1.3.4 The Errors in Previous Work and Our Corrections

Explaining the nature of the erroneous statements appearing in [5, 20] requires giving some
more technical details.

As mentioned earlier, one of the main components in the reconstruction algorithm for
multilinear ΣkΠΣ circuits given in [5] is the uniqueness of clusters property for such circuits,
which is claimed by Karnin and Shpilka [20]. Note that the rank and distance measures for
ΣkΠΣ circuits are syntactic and inherently tied to a circuit. Karnin and Shpilka [20] define
a clustering algorithm that, given a circuit, partitions the k multiplication gates into several
sets such that the rank of the subcircuit corresponding to each set is small, and the distance
between every pair of subcircuits is large.

ITCS 2024

87:8 Tensor Reconstruction Beyond Constant Rank

In Corollary 6.8 of [5] it is claimed, based on [20], that these clusters are unique, even
among different circuits that compute the same polynomial. That is, if C and C ′ are two
circuits computing the same polynomial f , the clustering algorithm of [20] would return the
same clusters (perhaps up to a permutation). Such a claim can indeed be read from Theorem
5.3 of [20]. However, in our judgment, the paper [20] does not contain a valid mathematical
proof for such a statement.

Karnin and Shpilka associate with each partition into clusters two parameters, κ and r.
The parameter r upper bounds the rank of each cluster, and the parameter κ controls the
distance: their clustering algorithm guarantees that each pair of clusters has distance at
least κr. Consequentially, their clustering algorithm receives κ as an additional input, and
outputs a clustering with parameters κ and r for some value of r that can be upper bounded
as a function of κ and k.

The proof of Theorem 5.3 of [20] assumes without justification that, given two different
circuits C and C ′ computing the same polynomial, the clustering algorithm with parameters
κ would return partitions with the same value of the parameter r, which is crucially used in
their proof.

In this work we provide a corrected proof of Theorem 5.3 of [20] (Theorem 21). While the
corrected version is not identical to the original statement word-for-word (as our parameter
κ is much larger than originally stated as a function of k), it suffices for fixing the arguments
in [20] and [5], with the straightforward corresponding changes in parameters throughout.

We wish to stress again that Theorems 1.1 and 1.4 of [5], that give algorithms for learning
depth-3 set-multilinear and depth-3 powering circuits, respectively, are not affected by the
error in [20].

1.4 Open Problems
One natural problem our work raises is the question of how large the top fan-in k needs to
be before reconstruction problem becomes intractable. The NP-hardness results for tensor
rank imply that clearly when k = poly(n) we shouldn’t expect to find exact proper learning
algorithm, whereas we show that the intractability barrier is not at the regime when k is
constant. It remains an interesting problem to bridge the gap.

Another interesting problem is derandomizing our algorithms from Theorem 2 and
Theorem 3.

2 Preliminaries

All proof from this section are omitted and appear in the full version of the paper.
The following notation will be very useful throughout our paper.

▶ Definition 4. For a ∈ Fn, B ⊆ [n], and a polynomial f ∈ F[x1, . . . , xn] we define f |B,a
the polynomial obtained by fixing xj = aj for every j /∈ B.

2.1 Black Box Access to Directional Derivatives
▶ Lemma 5. Let F be a field of size at least d + 1 and let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a
polynomial of degree d. Given a black box access to f , for every e ≤ d and for every variable
x ∈ {x1, . . . , xn}, we can simulate a black box access to g := ∂ef/∂xe using at most d + 1
queries to f .

Lemma 5 can be generalized to directional derivatives.

S. Peleg, A. Shpilka, and B. L. Volk 87:9

▶ Lemma 6. Let F be a field of size at least d + 1 and let f(x1, . . . , xn) ∈ F[x1, . . . , xn]
be a polynomial of degree d. Given a black box access to f , for every e ≤ d and for every
0 ̸= u ∈ Fn, we can simulate a black box access to g := ∂ef

∂ue using at most d + 1 queries to f .

2.2 Essential Variables
Let f be an n-variate polynomial. We say that f depends on m essential variables if there
exists an invertible linear transformation A such that f(Ax) depends on m variables. An
interesting fact is that it’s possible, given a black box access to f , to compute a linear
transformation A such that g := f(Ax) depends only on x1, . . . , xm.

▶ Lemma 7 ([21, 8]). Let f ∈ F[x] be an n-variate polynomial of degree d with m essential
variables, where char(F) = 0 or char(F) > d. Suppose f is computed by a circuit of size s.
Then, there’s an efficient randomized algorithm that, given black box access to f , runs in time
poly(n, d, s) and computes an invertible linear transformation A such that f(Ax) depends on
the first m variables x1, . . . , xm.

Bhargava, Saraf and Volkovich [5] derandomize this lemma when f is computed by a
Σk∧Σ circuit, a depth-3 set-multilinear circuit of top fan-in k or a depth-3 multilinear circuit
of top fan-in k. However the time required for their derandomization involves factors of nO(k)

and thus we want to obtain an improved running time.
For a class of polynomials C, we denote by ΣtC the class of polynomials of the form

α1f1 + α2f2 + · · · + αtft with αi ∈ F and fi ∈ C for every i.

▶ Lemma 8. Let C be a class of polynomials and let f1, . . . , ft ∈ C. Let H be a hitting set
for ΣtC. Denote by fi|H the vector (of length |H|) (fi(β))β∈H. Then for any α1, . . . , αt ∈ F,

t∑
i=1

αifi = 0 ⇐⇒
t∑

i=1
αifi|H = 0.

In particular, the polynomials f1, . . . , ft are linearly independent if and only if the vectors
f1|H, . . . , ft|H are linearly independent.

Lemma 8 gives an efficient way to test for dependency of polynomials assuming the
existence of a small and efficiently constructible hitting set for ΣtC.

A derandomized version of Lemma 7 is given below.

▶ Lemma 9. Let C be a class of polynomials closed under taking first order partial derivatives.
Denote by |H| a hitting set for Σt+1C. Then, there’s a deterministic algorithm that, given
a black box access to a degree-d polynomial f(x) ∈ F[x] that has t essential variables such
that f ∈ C, runs in time poly(n, d, |H|) and outputs an invertible matrix A ∈ Fn×n such that
f(Ax) depends only the first t variables.

We note that the models we consider in this work are all closed under first order partial
derivatives.

2.3 Hitting Sets for Depth-3 Circuits
While there exist hitting sets of size nO(log log n) for depth-3 powering circuits [11] and
quasi-polynomial size hitting sets for depth-3 set-multilinear circuits [12, 11, 1], we insist
on obtaining polynomial size hitting sets for these models when k is slightly super-constant
(when k is constant there are hitting sets of size npoly(k) for general depth-3 circuits of

ITCS 2024

87:10 Tensor Reconstruction Beyond Constant Rank

top fan-in k, see, e.g., Section 4.6.2 of [30] and [27]). Guo and Gurjar constructed such
explicit polynomial size hitting sets for read-once algebraic branching programs (roABPs) of
super-constant width.

▶ Theorem 10 ([14]). There’s an explicit hitting set of size poly(n, d) for the class of n-
variate, individual degree d polynomials computed by any-order roABPs of width w, assuming
there’s a constant ε > 0 such that w = 2O(log1−ε(nd)).

▶ Corollary 11. There’s an explicit hitting set of size poly(n, d) for the class of set-multilinear
polynomials computed by depth-3 set-multilinear circuits of degree d and top fan-in k =
2O(log1−ε(nd)).

We can also reduce depth-3 powering circuits to roABPs.

▶ Lemma 12 ([12]). Suppose f is computed by a depth-3 powering circuit of top fan-in k

and degree d. Then f is computable by an any-order roABP of width O(dk), size poly(dk, n)
and degree d.

We only use Lemma 12 when k is very small and the degree d is commensurate with k.
Thus, since the parameters of Theorem 10 are quite comfortable, we can deduce.

▶ Corollary 13. Suppose d and k are both 2O(log1−ε(n)). Then, there’s an explicit hitting set
of size poly(n) for the class of set-multilinear polynomials computed by a Σk ∧Σ circuits of
degree d and top fan-in k.

For general depth-3 circuits with top fan-in k, the known results are slightly weaker.

▶ Lemma 14 ([27]). There exists an explicit hitting set for the class of n-variate polynomials
computed by multilinear ΣkΠΣ circuits of degree d of size n(O(k2 log k).

We remark that the hitting set presented in [30] is of size nO(R(k,r)) where R(k, r) is the
so-called rank bound for ΣkΠΣ circuits, which (for some fields, as explained in [30]) depends
on d. However for multilinear circuits the above result is a corollary of Corollary 6.9 of [10]
and the rank bounds of [28].

We further note that had we used Lemma 14, our algorithm wouldn’t run in polynomial
time for super-constant k, which is one of the reasons we use a randomized PIT algorithm
for this class in our reconstruction algorithm. However, this is not the major obstacle
for derandomization: derandomizing our algorithm in polynomial time would require a
deterministic PIT for much larger classes than multilinear ΣkΠΣ circuits. It’s an interesting
open problem to obtain a derandomization for our algorithm even modulo Lemma 14.

2.4 Solving a System of Polynomial Equations

Let F be a field and let SysF(n, m, d) denote the randomized time complexity of finding a
solution to a polynomial system of m equations in n variables of degree d. A detailed analysis
of this function for various fields F appears in Section 3.8 of the arXiv version of [5]. For
our purposes, it is enough to note that for every field F, SysF(n, m, d) = poly(nmd)nn , if we
allow solutions from an algebraic extension of F. Further, for F = R, C or Fq, extensions are
not needed, and if F = R or C then the algorithm is in fact deterministic.

S. Peleg, A. Shpilka, and B. L. Volk 87:11

2.5 Resultants
Let f(x), g(x) be two polynomials of degrees m and ℓ in the variable x, respectively. Suppose
m, ℓ > 0, and write

f(x) = cmxm + xm−1xm−1 + · · · + c0

g(x) = dℓx
ℓ + dℓ−1xℓ−1 + · · · + d0.

The Sylvester matrix of the polynomials f and g with respect to the variable x is the
following (m + ℓ) × (m + ℓ) matrix:

cm dℓ

cm−1 cm dℓ−1

cm−2 cm−1
. . . dℓ−2 dℓ−1

. . .
...

. . . cm

...
. . . dℓ

... cm−1
... dℓ−1

c0 d0

c0
... d0

...
.

c0 d0

The determinant of this matrix is called the resultant of f and g with respect to the

variable x and is denoted Resx(f, g).
In our case we often think of f, g ∈ F[x1, . . . , xn] interchangeably as n-variate polynomials

or as univariate polynomials in some variable, say x1, over the ring F[x2, . . . , xn], in which
case the resultant is a polynomial in x2, . . . , xn. The main property of resultant we use is
that, assuming the degree in x1 of both f and g is positive, f and g have a common factor
in F[x2, . . . , xn] if and only if Resx1(f, g) = 0 (see, e.g., Proposition 3 in Chapter 3, Section
6 of [9]).

3 A Reconstruction Algorithm for Depth-3 Powering Circuits of
Super-Constant Top Fan-in

The full version of this paper contains the proof of the following theorem.

▶ Theorem 15. Suppose |F| > kn+1 and char(F) > d or char(F) = 0. There’s a randomized
algorithm that, given a black box access to a polynomial f computed by a Σk ∧Σ circuit,
reconstructs f and runs in time poly(n, d, c) · poly(k)kk10

, where c = log q if F = Fq is a finite
field, and c equals the maximum bit complexity of any coefficient of f if F is infinite.

The details are omitted from this abridged version.

4 Syntactic Rank of Depth-3 Circuits

In the following two sections, we define syntactic and semantic notions of ranks of polynomials
computed by ΣkΠΣ circuits. Note that syntactic ranks are inherently tied to circuits
computing the polynomials, whereas semantic ranks are independent of the representation or
computation of the polynomials.

ITCS 2024

87:12 Tensor Reconstruction Beyond Constant Rank

For a circuit C we denote by [C] the polynomial computed by C. For two ΣkΠΣ circuits
C, C ′, we define their syntactic sum, C + C ′, to be the depth-3 circuit whose top gate sums
all multiplication gates in C and C ′. Observe that C + C ′ is a Σ2kΠΣ circuit.

We start by defining syntactic notions of rank and distance for ΣkΠΣ circuits.

▶ Definition 16 (Syntactic Rank and Distance). Let C =
∑k

i=1 Mi =
∑k

i=1
∏di

j=1 ℓi,j be a
ΣkΠΣ circuit. Define the following notions:
1. deg(C) = max{deg[Mi] : 1 ≤ i ≤ k}.
2. gcd(C) is the set of linear functions appearing in all of M1, . . . , Mk (up to multiplication

by a constant). I.e., gcd(C) = gcd(M1, . . . , Mk).
3. sim(C) := C

gcd(C) =
∑k

i=1
Mi

gcd(C) ∈ ΣkΠΣ is called the simplification of C. C is called
simple if gcd(C) = 1.

4. We say that C is minimal if for every ∅ ≠ S ⊊ [k],
∑

i∈S Mi ̸= 0.
5. Let Li be the collection of linear polynomials appearing in Mi

gcd(C) , we define ∆syn(C) :=
dim(span {L1, . . . , Lk}).

6. Let C ′ be a ΣkΠΣ circuit. We define dist(C, C ′) = ∆syn(C + C ′).

The usefulness of syntactic rank is expressed in the following well known rank bound for
multilinear depth-3 circuits.

▶ Theorem 17 ([10, 23, 26, 28]). There’s a monotone function R(k, d) such that any simple
and minimal ΣkΠΣ circuit C that computes the zero polynomial and such that deg(C) ≤ d,
satisfies ∆syn(C) ≤ R(k, d). Further, R(k, d) ≤ 4k2 log(2d).

If C is multilinear there’s a similar function RM (k) depending only on k: any simple and
minimal, multilinear ΣkΠΣ circuit C, computing the zero polynomial satisfies ∆syn(C) ≤
RM (k). One can take RM (k) ≤ 10k2 log k.

4.1 Syntactic Partitions of ΣkΠΣ Circuits

In this section we study syntactic partitions of ΣkΠΣ circuits. In Subsection 5.2 we shall
discuss semantic partitions and compare the two notions.

▶ Definition 18 (Syntactic Partition, Definition 3.3 of [20]). Let C =
∑k

i=1
∏di

j=1 ℓi,j =∑k
i=1 Mi be a ΣkΠΣ circuit. Let I = {A1, . . . , As} be a partition of [k]. For each i ∈ [s] let

Ci =
∑

j∈Ai
Mj. We say that {Ci}i∈[s] is a (τ, r)-syntactic partition of C if:

For every i ∈ [s], ∆syn(Ci) ≤ r.
For every i ̸= j ∈ [s], dist(Ci, Cj) ≥ τr.

The main corollary proved in the full version of the paper is:

▶ Corollary 19 (Uniqueness of syntactic partitions with the same number of clusters). Let
τ ≥ 10. Let C be a minimal multilinear ΣkΠΣ circuit. Let (C1, . . . , Cs) and (D1, . . . , Ds) be
(τ, rC) and (τ, rD)-syntactic partitions of the multiplication gates in C, respectively. Then,
there is a permutation π on [s] such that for every i ∈ [s], Ci = Dπ(i).

4.1.1 Algorithms for Computing Partitions

An algorithm for computing (τ, r)-syntactic partitions was provided by Karnin and
Shpilka [20].

S. Peleg, A. Shpilka, and B. L. Volk 87:13

▶ Lemma 20 (Syntactic Clustering Algorithm; See Algorithm 1 and Lemma 5.1 of [20]). Let
n, k, rinit, τ ∈ N. There exists an algorithm that given τ and an n-variate multilinear ΣkΠΣ
circuit C as input, outputs r ∈ N such that

RM (2k) ≤ r ≤ k(k−2)·⌈logk(τ)⌉ · RM (2k) ≤ (kτ)k−2 · RM (2k)

and a (τ, r)-syntactic partition of [k], in time O(log(τ) · n3k4). Further, with an additional
running time of 2O(k2) · poly(n), we can guarantee that this syntactic partition has the lowest
value of r among all τ syntactic partitions of C.

We remark that the “further” part isn’t explicitly stated in [20]. However, it is easy to
modify their algorithm in order to guarantee this property. For example, after running
their algorithm one can run a brute force search over all partitions of [k] and search for a
τ -partition with a lower value of r. In the applications of Lemma 20, the additional running
time incurred by this step is either irrelevant or anyway subsumed by larger factors of k

originating from other elements in the proof.

4.2 Existence of a Unique Syntactic Partition
In the full version of the paper, we prove that for every multilinear polynomial f ∈ ΣkΠΣ
there is a parameter τ , which is bounded by some function of k, such that any two τ partitions
of any two ΣkΠΣ circuits computing f define, up to a permutation, the same clusters.

▶ Theorem 21. For every multilinear polynomial f ∈ ΣkΠΣ there is τ = O(kk+2)k2k+1 such
that the following holds: Let C, D be any two ΣkΠΣ circuits computing f . Let C =

∑s
i=1 Ci

and D =
∑s′

i=1 Di be the τ -partitions of C and D, respectively, that Lemma 20 guarantees.
Then s = s′ and there is a permutation π : [s] → [s] such that [Ci] = [Dπ(i)]. Furthermore,
for every i, ∆syn(Ci)/k − 2RM (2k) ≤ ∆syn(Dπ(i)) ≤ k · ∆syn(Ci) + 2kRM (2k).

5 Semantic Rank of Depth-3 Circuits

In the following section, we define the semantic rank of polynomials computed by ΣkΠΣ
circuits. Note that while syntactic ranks is inherently tied to a circuit C computing the
polynomial, the semantic rank is independent of the representation or computation of the
polynomial. We omit all proofs from this version.

We say that a polynomial g ∈ F[x1, . . . , xn] depends on r linear functions if there
exist r linear functions ℓ1, . . . , ℓr and a polynomial h ∈ F[y1, . . . , yr] such that g(x) =
h(ℓ1(x), . . . , ℓr(x)).

▶ Definition 22 (Semantic Rank). Let f ∈ F[x1, . . . , xn] be a polynomial. Define Lin(f) to
be the product of the linear factors of f . Let r ∈ N be the minimal integer such that f/Lin(f)
is a polynomial of exactly r linear functions. We define ∆sem(f) = r.

Recall that the number of linear functions that a polynomial depends on equals the rank
of its partial derivative matrix.

▶ Definition 23. Let f ∈ F[x1, . . . , xn] be a polynomial. Define Mf to be a matrix whose
i-th row contains the coefficients of ∂f/∂xi.

Note that if f depends on exactly r linear functions and char(F) = 0 or char(F) > deg(f),
then rank(Mf) = r.

ITCS 2024

87:14 Tensor Reconstruction Beyond Constant Rank

▶ Remark 24. Note that under the definition above, it may be the case that f is non-zero
and yet ∆sem(f) equals 0. This happens when f is a product of linear functions. In what
follows we will often implicitly assume that ∆sem(f) ≥ 1. This doesn’t affect our results but
somewhat simplifies the presentation. One may also arbitrarily define the semantic rank of f

to be 1 when f is a non-zero product of linear functions.

5.1 Semantic vs. Syntactic Rank
We now prove several claims that relate the syntactic and semantic notions of rank for
polynomials computed by multilinear ΣkΠΣ circuits. We start by observing that the
semantic rank is at most the syntactic rank.

▶ Observation 25. Suppose f is a polynomial in multilinear ΣkΠΣ. Then, every multilinear
ΣkΠΣ circuit C computing f satisfies ∆syn(C) ≥ ∆sem(f).

We want to upper bound the syntactic rank as a function of the semantic rank (naturally,
this only makes sense for minimal circuits, as other circuits can have artificially large syntactic
rank). Our argument is essentially identical to Lemma 2.20 of [20].

▶ Lemma 26 (Lemma 4.2 of [19]). Let C be a simple and minimal ΣΠΣ(k, d, ρ) circuit
computing the zero polynomial. Suppose

C =
k∑

i=1

 di∏
j=1

ℓi,j

 · hi(ℓ̃i1 , . . . , ℓ̃i,ρi)

and let R̃ =
∑k

i=1 ρi. Then ∆syn(C) ≤ R(k, d) + R̃.

Here R(k, d) = 4k2 log(2d) is the rank bound for (not necessarily multilinear) ΣkΠΣ
circuits (recall Theorem 17). Note that trivially R̃ ≤ kρ, but in Lemma 28 we shall use the
stricter upper bound stated in the lemma.

The proof of Lemma 26 in [19] is also not very complicated. Given a ΣΠΣ(k, d, ρ) circuit
C as in the statement of the lemma, one fixes randomly the linear functions ℓ̃i1 , . . . , ℓ̃i,ρi

,
for i ∈ [k], to obtain a simple and minimal ΣkΠΣ circuit of degree at most d, and applies
the rank bound for such circuits. Note that fixing those linear functions might make the
circuit non-multilinear even if the original circuit was multilinear, which means we have to
use the rank bound R(k, d) for non-multilinear ΣkΠΣ circuits. This incurs a dependence on
the degree d. However, it is also convenient to have a form of Lemma 26 with no dependence
on d. This is possible since C is multilinear. A similar observation was made by Dvir and
Shpilka [10] for ΣkΠΣ circuits. Since C is multilinear, all linear functions appearing in
each multiplication gate are variable disjoint, and hence linearly independent, which implies
that ∆syn(C) ≥ d. Together with the upper bound in Lemma 26, this implies the following
corollary.

▶ Corollary 27 (Rank bound for multilinear ΣΠΣ(k, d, ρ) circuits with no dependence on d).
Let C be a simple and minimal ΣΠΣ(k, d, ρ) circuit computing the zero polynomial. Then,

∆syn(C) ≤ 40 · (k2 log k + k2ρ).

The following lemma uses the notation of Theorem 17.

▶ Lemma 28 (Small semantic-rank implies small syntactic-rank, similar to Lemma 2.20 in
[20]). Let C be a minimal multilinear ΣkΠΣ circuit computing a polynomial f . Suppose that
∆sem(f) ≤ r. Then ∆syn(C) ≤ r + R(k + 1, ∆syn(C)). In particular, ∆syn(C) ≤ 27rk2 log k.

S. Peleg, A. Shpilka, and B. L. Volk 87:15

5.2 Semantic Partitions of ΣkΠΣ Circuits

We next define semantic partitions of ΣkΠΣ circuits, that correspond to semantic rank in the
same manner that syntactic partitions correspond to syntactic rank (recall Definition 18).

▶ Definition 29 (Semantic Partition). Let f be a multilinear polynomial. We say that
(f1, . . . , fs) is a (τ, r) semantic partition of f if f =

∑s
i=1 fi, and

For every i ∈ [s], ∆sem(fi) ≤ r.
For every i ̸= j ∈ [s], ∆sem(fi + fj) ≥ τr.

We further say that the partition is realizable if there exists a ΣkΠΣ circuit C computing f

and a partition of its multiplication gates (C1, . . . , Cs) such that [Ci] = fi. From now on, we
only consider realizable partitions.

We also often use the term “τ -partition” (either syntactic or semantic) where it is implied
that the partition is a (τ, r)-partition for some value of r.

▶ Corollary 30. Let C be a minimal multilinear ΣkΠΣ circuit. Every (τ, r)-semantic partition
of [C] is also a (τ ′, r′)-syntactic partition of C with r′ = 27k2 log k · r and τ ′ = τ/(27k2 log k).

▶ Corollary 31. Let C be a minimal multilinear ΣkΠΣ circuit. Let (C1, . . . , Cs) be a (τ, r)-
syntactic partition of C. Then ([C1], . . . , [Cs]) is a (τ ′, r)-semantic partition of [C] with
τ ′ = τ/(27k2 log k).

5.2.1 Uniqueness Properties of Semantic Partitions

In the full version of this paper, we prove:

▷ Claim 32 (Lower rank implies finer partition). Let τ > 40k2 log k + k2. Let C, D be two
minimal multilinear ΣkΠΣ circuits computing the same polynomial f . Let C =

∑s
i=1 Ci

be a partition of the multiplication gates in C and similarly D =
∑s′

i=1 Di a partition of
the gates in D. Let fi = [Ci] and suppose that (f1, . . . , fs) is a (τ, r1)-semantic partition of
f . Similarly, let gi = [Di] and suppose that (g1, . . . , gs′) is a (τ, r2)-semantic partition of f .
Assume r1 ≥ r2.

Then, for every i ∈ [s] there is a subset Si ⊆ [s′] such that

fi =
∑
j∈Si

gj

and the subsets S1, . . . , Ss form a partition of [s′].

▶ Corollary 33. Let C and D be as in Claim 32. If s = s′ then there is a permutation π of
[s] such that fi = gπ(i).

We also prove:

▶ Corollary 34 (Uniqueness of maximal partition regardless of representation). Let τ > RM (2k)+
28k2 log k. Let C, D be two minimal multilinear ΣkΠΣ circuits computing the same polynomial
f . Let (C1, . . . , Cs) be a τ -semantic partition of the multiplication gates in C of minimal
semantic rank. Similarly let (D1, . . . , Ds′) be a τ -semantic partition of D of minimal semantic
rank. Then s = s′ and there is a permutation π such that for every i ∈ [s], [Ci] = [Dπ(i)].

ITCS 2024

87:16 Tensor Reconstruction Beyond Constant Rank

5.2.2 An Algorithm for Computing Partitions
We first note that computing the semantic rank of a polynomial f in ΣkΠΣ can be done in
randomized polynomial time given black box access to f .

▶ Lemma 35. There exists a randomized polynomial time algorithm that, given black box
access to a polynomial f ∈ ΣkΠΣ computes ∆sem(f).

In the full version of this paper, we describe a semantic clustering algorithm that outputs
a (τ, r) partition of a circuit C. Recall that Lemma 20 implies that the Karnin-Shpilka
syntactic clustering algorithm returns syntactic clusters. This allows us to obtain some
guarantees on the output of the algorithm.

▷ Claim 36. There’s an algorithm that for every τ , runs in time at most 2k2 · poly(n) and
outputs a (τ, r) partition where

r ≤ RM (2k) · k⌈logk(τ ·27k2 log k)⌉·(k−2) ≤ RM (2k) · 27kk4kτk−2.

▶ Remark 37. Note that Corollary 34 shows that the semantic partition with the minimal
semantic rank is unique regardless of the representation. Hence the output of the semantic
clustering algorithm does not depend on the circuit C but only on the polynomial f it
computes.

5.2.3 Semantic Partitions under Restrictions
Corollary 34 proves that any maximal semantic partition is unique. However, in our
reconstruction algorithm we shall consider restrictions of the unknown polynomial to subsets
of the variables. Hence, we will need a stronger property.

The next claim shows that for every multilinear polynomial, f ∈ ΣkΠΣ, there exists a
(τ1, r)-semantic partition with the special property that its rank bound, r, is upper bounded
as a function of τ0, which is much smaller than τ1.

▷ Claim 38. For every function φ : N → N, every τmin ∈ N and for every multilinear
f ∈ ΣkΠΣ there is τmin ≤ τ0 ≤ τ(k) = RM (2k)φ(k)k such that there is a (τ1, r)-semantic
partition of f with:

τ1 = τ
φ(k)
0 .

r ≤ RM (2k)27kk4kτk−2
0 .

6 Learning Low Degree Polynomials

As in [5], we start by providing an algorithm, which is efficient when the degree d is very
small. All the details are omitted from this version.

▶ Corollary 39. Let f(x) ∈ F[x] be a set-multilinear polynomial computed by a degree d,
set-multilinear depth-3 circuit. Suppose x = x1 ∪· · ·∪xd and |xi| ≤ n for all i. Then, there is
a randomized algorithm that given n, k, d and black-box access to f outputs a set-multilinear
depth-3 circuit with top fan-in k that computes f , in time poly

(
n, c, (dk)O(d2k3)d2k2)

.

▶ Lemma 40. Let f ∈ F[x1, . . . , xn] be a polynomial computed by set-multilinear ΣkΠΣ
circuit C with ∆sem(C) ≤ r. Then, there is a randomized algorithm that given k, r and
black-box access to f outputs a set-multilinear ΣkΠΣ circuit computing f , where k′ ≤ k is
the smallest possible fan-in, in time poly

(
n, c, (rk)O(r3k2)r2k2)

.

S. Peleg, A. Shpilka, and B. L. Volk 87:17

7 Efficient Construction of Cluster Preserving Sets

In order to reconstruct general multilinear ΣkΠΣ circuits, we would again like to follow the
steps of [5]. However, as some of our definitions are different, and we replace some brute
force steps with algorithmically efficient steps, we’re required to make substantial changes in
the algorithm. In particular we replace their use of the notion of “rank preserving subspaces”
with an explicit construction of a subset B of the variables that, in some sense, preserves the
structure of semantic clusters of f .

In the full version, we give an algorithm that attempts to construct a set B together with
a vector a such that the clusters of f |B,a (with respect to a certain semantic τ -partition),
found by the algorithm of Lemma 35, are in one-to-one correspondence with the clusters that
the same algorithm would have outputted on f . Our algorithm receives τ as a parameter.

We now explain what guarantees we get on the outputs (B, a) of the algorithm.

▷ Claim 41. The algorithm for finding a cluster preserving set, when given the parameter τ

guaranteed in Claim 42 as input, runs in time poly(n) · kkkkpoly(k)

and returns a set B of size
at most kkO(k) .

The following important claim shows that if (B, a) is the output of the algorithm, then for
the “correct” choice of τ , f |B,a preserves the clusters (with respect to a τ -semantic partition)
of f .

▷ Claim 42. Let f ∈ ΣkΠΣ be a multilinear polynomial and let C be a minimal multilinear
ΣkΠΣ computing f . There exists a non-zero polynomial ΓC of degree at most nkkO(k)

such
that if B, a are the outputs of the algorithm on f , and ΓC(a) ̸= 0, then the following holds:
Consider the semantic partition of f , f =

∑s
i=1 fi, given by Claim 38 with φ(k) = k2 and

τmin = RM (2k) · 27k+20 · k4k+4. Let τ0, τ1, r be its parameters as promised by the claim and
let τ = τk

0 . Let D be a minimal multilinear ΣkΠΣ circuit computing f |B,a. Then, the output
of the semantic clustering algorithm on D with parameter τ , denoted by [D] =

∑s′

i=1 gi,
satisfies:
1. s′ = s.
2. There is a permutation π on [s] such that gπ(i) = (fi)|B,a.
3. ∆sem(gπ(i)) = ∆sem(fi).
In particular, the gi’s also form a (τ, r) partition.

Proof for both of these claims appear in the full version.

8 Reconstruction Algorithm for Multilinear ΣkΠΣ Circuits

In this section we provide our algorithm for learning multilinear ΣkΠΣ circuits.
We start by explaining how the results of the previous sections imply that we can get

black box access to the clusters on arbitrary points. In the previous section, we picked a
random a in and argued about the clusters of f |B,a. We’d like to obtain similar claims about
the clusters of f |B,b, assuming b doesn’t satisfy certain degeneracy conditions. We say that
an output (B, a) of the algorithm from Section 7 is good if it satisfies ΓC(a) ̸= 0, where ΓC

is the polynomial defined in Claim 42.

▷ Claim 43. Let f ∈ ΣkΠΣ be a multilinear polynomial and let C be a minimal ΣkΠΣ
computing f . Let (B, a) be a good output on f .

ITCS 2024

87:18 Tensor Reconstruction Beyond Constant Rank

Consider a partition of f , f =
∑s

i=1 fi, as given by Claim 38 with φ(k) = k2 and τmin as
in Claim 42. Let τ0, τ1, r be its parameters as promised by the claim. Denote τ = τk

0 .
Then, there exists a polynomial ΘB,C of degree at most 2n7 such that ΘB,C(a) ̸= 0,

and the following property holds: for every b ∈ Fn such that ΘB,C(b) ̸= 0 and circuit D

computing f |B,b, it holds that the output of the semantic clustering algorithm, when given
D and τ as input, which we denote [D] =

∑s′

i=1 gi, satisfies:
1. s′ = s,
2. gi = (fi)|B,b, up to reordering of the indices,
3. ∆sem(gi) = ∆sem(fi).
In particular, the gi’s also form a (τ, r) partition.

8.1 Cluster Evaluation
In the full version of the paper we explain how to evaluate the clusters at arbitrary points.
Recall that what we have is access to the clusters fi|B,a so we’d like to replace a by an
arbitrary point b ∈ Fn. We do it in several stages as in [5]. Basically, we replace all uses of
their Lemma 6.14 by our Claim 43, to prove:

▶ Lemma 44 (Similar to Lemma 6.19 in [5]). Let f ∈ ΣkΠΣ be a multilinear polynomial and let
C be a ΣkΠΣ circuit computing f . Let (B, a) be good outputs on f . Let f |B,a =

∑s
i=1 fi|B,a

be the output of the semantic clustering algorithm on f |B,a.
Then, there exists an algorithm that, given any b ∈ Fn, runs in time 2k2 · poly(n) and

outputs (f1|B,b, . . . , fs|B,b).

8.2 The Reconstruction Algorithm
In the full version of the paper, we give our reconstruction algorithm for multilinear ΣkΠΣ
circuits, to prove:

▶ Theorem 45. Suppose |F| > nkkO(k)

. There’s a randomized algorithm that, given black
box access to a polynomial f computed by a multilinear ΣkΠΣ circuit. with high probability,

returns a multilinear ΣkΠΣ circuit C̃ computing f in time poly(n) · kkkkpoly(k)

.

8.3 Proper Learning of Depth-3 Set-Multilinear Circuits
With small changes, we can modify the algorithm in order to prove Theorem 3. The details
appear in the full version.

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM Journal of Computing, 44(3):669–697, 2015. doi:
10.1137/140975103.

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008),
pages 67–75, 2008. doi:10.1109/FOCS.2008.32.

3 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC 1988), pages 301–309. ACM, 1988. doi:10.1145/
62212.62241.

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/62212.62241

S. Peleg, A. Shpilka, and B. L. Volk 87:19

4 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction of depth-4 multilinear
circuits. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2020), pages 2144–2160. SIAM, 2020. doi:10.1137/1.9781611975994.132.

5 Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Reconstruction algorithms for
low-rank tensors and depth-3 multilinear circuits. In Proceedings of the 53rd Annual ACM
Symposium on Theory of Computing (STOC 2021), pages 809–822. ACM, 2021. doi:10.1145/
3406325.3451096.

6 Markus Bläser, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. Generalized
matrix completion and algebraic natural proofs. In Proceedings of the 50th Annual ACM
Symposium on Theory of Computing (STOC 2018), pages 1193–1206. ACM, 2018. doi:
10.1145/3188745.3188832.

7 Nader H. Bshouty. Exact learning from membership queries: Some techniques, results and
new directions. In Algorithmic Learning Theory – 24th International Conference, ALT
2013, volume 8139 of Lecture Notes in Computer Science, pages 33–52. Springer, 2013.
doi:10.1007/978-3-642-40935-6_4.

8 Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic Geometry and
Geometric Modeling, pages 237–247, 2006. doi:10.1007/978-3-540-33275-6_15.

9 David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algorithms. Under-
graduate texts in mathematics. Springer, 2007. doi:10.1007/978-0-387-35651-8.

10 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007. Preliminary
version in the 37th Annual ACM Symposium on Theory of Computing (STOC 2005). doi:
10.1137/05063605X.

11 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing (STOC 2014), pages 867–875, 2014. doi:10.1145/
2591796.2591816.

12 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 243–252,
2013. Full version at arXiv:1209.2408. doi:10.1109/FOCS.2013.34.

13 Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In Proceedings of the 61st Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2020), pages 889–899. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00087.

14 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Proceedings of the
24th International Workshop on Randomization and Computation (RANDOM 2020), volume
176 of LIPIcs, pages 4:1–4:16, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.4.

15 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. doi:10.1137/140957123.

16 Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient reconstruction of random
multilinear formulas. In Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2011), pages 778–787. IEEE Computer Society, 2011. doi:
10.1109/FOCS.2011.70.

17 Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Reconstruction of depth-4 multilin-
ear circuits with top fan-in 2. In Proceedings of the 44th Annual ACM Symposium on Theory
of Computing (STOC 2012), pages 625–642. ACM, 2012. doi:10.1145/2213977.2214035.

18 Johan Håstad. Tensor rank is np-complete. J. Algorithms, 11(4):644–654, 1990. doi:
10.1016/0196-6774(90)90014-6.

19 Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual
IEEE Conference on Computational Complexity, CCC 2008, 23-26 June 2008, College Park,
Maryland, USA, pages 280–291. IEEE Computer Society, 2008. doi:10.1109/CCC.2008.15.

ITCS 2024

https://doi.org/10.1137/1.9781611975994.132
https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/3406325.3451096
https://doi.org/10.1145/3188745.3188832
https://doi.org/10.1145/3188745.3188832
https://doi.org/10.1007/978-3-642-40935-6_4
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/05063605X
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1145/2591796.2591816
http://arxiv.org/abs/1209.2408
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1109/FOCS46700.2020.00087
https://doi.org/10.1109/FOCS46700.2020.00087
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4
https://doi.org/10.1137/140957123
https://doi.org/10.1109/FOCS.2011.70
https://doi.org/10.1109/FOCS.2011.70
https://doi.org/10.1145/2213977.2214035
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1016/0196-6774(90)90014-6
https://doi.org/10.1109/CCC.2008.15

87:20 Tensor Reconstruction Beyond Constant Rank

20 Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity (CCC 2009), pages 274–285. IEEE Computer Society, 2009.
doi:10.1109/CCC.2009.18.

21 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2011), pages 1409–1421. SIAM, 2011. doi:10.1137/1.9781611973082.108.

22 Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization and
reconstruction of low width algebraic branching programs. Comput. Complex., 28(4):749–828,
2019. doi:10.1007/s00037-019-00189-0.

23 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth-3 circuits.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2009), 2009. doi:10.1109/FOCS.2009.67.

24 Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC 2001), pages 216–223, 2001. doi:10.1145/380752.380801.

25 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer
Science, 448:56–65, 2012. doi:10.1016/j.tcs.2012.03.041.

26 Nitin Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. SIAM
J. Comput., 40(1):200–224, 2011. doi:10.1137/090770679.

27 Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3 circuits:
The field doesn’t matter. SIAM J. Comput., 41(5):1285–1298, 2012. Preliminary version in the
43rd Annual ACM Symposium on Theory of Computing (STOC 2011). doi:10.1137/10848232.

28 Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Improved
blackbox identity test for depth-3 circuits. J. ACM, 60(5):33:1–33:33, 2013. doi:10.1145/
2528403.

29 Yaroslav Shitov. How hard is the tensor rank? arXiv preprint, 2016. arXiv:1611.01559.
30 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open

questions. Foundations and Trends in Theoretical Computer Science, 5:207–388, March 2010.
doi:10.1561/0400000039.

31 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In Proceedings of the
31st Annual Computational Complexity Conference (CCC 2016), volume 50 of LIPIcs, pages
31:1–31:53, 2016. doi:10.4230/LIPIcs.CCC.2016.31.

32 Gaurav Sinha. Efficient reconstruction of depth three arithmetic circuits with top fan-in two.
In Mark Braverman, editor, Proceedings of the 13th Innovations in Theoretical Computer
Science Conference (ICTS 2022), volume 215 of LIPIcs, pages 118:1–118:33. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.118.

33 Joseph Swernofsky. Tensor rank is hard to approximate. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
volume 116 of LIPIcs, pages 26:1–26:9, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.26.

34 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. Preliminary version in the 38th International Symposium on the Mathematical
Foundations of Computer Science (MFCS 2013). doi:10.1016/j.ic.2014.09.004.

https://doi.org/10.1109/CCC.2009.18
https://doi.org/10.1137/1.9781611973082.108
https://doi.org/10.1007/s00037-019-00189-0
https://doi.org/10.1109/FOCS.2009.67
https://doi.org/10.1145/380752.380801
https://doi.org/10.1016/j.tcs.2012.03.041
https://doi.org/10.1137/090770679
https://doi.org/10.1137/10848232
https://doi.org/10.1145/2528403
https://doi.org/10.1145/2528403
https://arxiv.org/abs/1611.01559
https://doi.org/10.1561/0400000039
https://doi.org/10.4230/LIPIcs.CCC.2016.31
https://doi.org/10.4230/LIPIcs.ITCS.2022.118
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.26
https://doi.org/10.1016/j.ic.2014.09.004

	1 Introduction
	1.1 Circuit Classes
	1.2 Our Results
	1.3 Proof Technique
	1.3.1 Sigma^k wedge Sigma circuits
	1.3.2 Multilinear and Set-Multilinear Sigma^k Pi Sigma Circuits
	1.3.3 Semantic Notions of Rank
	1.3.4 The Errors in Previous Work and Our Corrections

	1.4 Open Problems

	2 Preliminaries
	2.1 Black Box Access to Directional Derivatives
	2.2 Essential Variables
	2.3 Hitting Sets for Depth-3 Circuits
	2.4 Solving a System of Polynomial Equations
	2.5 Resultants

	3 A Reconstruction Algorithm for Depth-3 Powering Circuits of Super-Constant Top Fan-in
	4 Syntactic Rank of Depth-3 Circuits
	4.1 Syntactic Partitions of Sigma^{k} PiSigma Circuits
	4.1.1 Algorithms for Computing Partitions

	4.2 Existence of a Unique Syntactic Partition

	5 Semantic Rank of Depth-3 Circuits
	5.1 Semantic vs. Syntactic Rank
	5.2 Semantic Partitions of Sigma^{k} PiSigma Circuits
	5.2.1 Uniqueness Properties of Semantic Partitions
	5.2.2 An Algorithm for Computing Partitions
	5.2.3 Semantic Partitions under Restrictions

	6 Learning Low Degree Polynomials
	7 Efficient Construction of Cluster Preserving Sets
	8 Reconstruction Algorithm for Multilinear Sigma^{k} PiSigma Circuits
	8.1 Cluster Evaluation
	8.2 The Reconstruction Algorithm
	8.3 Proper Learning of Depth-3 Set-Multilinear Circuits

